高中物理选修3-2交变电流 传感器知识点及练习

合集下载

高中物理选修3-2交变电流--传感器知识点及练习

高中物理选修3-2交变电流--传感器知识点及练习

交变电流 传感器一.交变电流的产生和变化规律1.交变电流:大小和方向都随时间做 变化的电流2.正弦交流电(1)产生:闭合矩形线圈在匀强磁场中绕 方向的轴匀速转动时线圈中产生的感应电流(2)中性面:①定义:与磁场方向 的平面②特点:线圈位于中性面时,穿过线圈的磁通量 ,磁通量的变化率为 ,感应电动势为 ,线圈每经过中性面一次,电流的方向就改变一次。

(3)变化规律(线圈在中性面位置开始计时)①电动势(e ):e = ;②电压(u ):u = ; ③电流(i ):i = 。

二.描述交变电流的物理量1.交变电流的周期和频率的关系:T =2.交流电的四值①峰值:交变电流的峰值就是它能达到的 ,正弦交流电的峰值E m = ,对应电容器的击穿电压。

②瞬时值:交变电流某一时刻的值,对应计算线圈某时刻的受力情况,通电时间等。

③有效值:让交流与恒定电流分别通过大小 的电阻,如果在交流的一个周期内它们产生的 相等,则这个恒定电流I 、恒定电压U 就称作这个交流电的有效值,对应关于交流电的功和能的问题 ④平均值:=E ,对应计算通过电路横截面的电荷量q =三.变压器 远距离输电1.构造和原理(1)主要构造:由 、 和 组成(2)工作原理:电磁感应的 现象2.理想变压器的基本关系(1)功率关系:P 入=(2)电压关系:=21U U ,若21n n >,为 变压器;若21n n <,为 变压器 (3)电流关系:只有一个副线圈时,=21I I ; 有多个副线圈时,n n I U I U I U I U +++= 332211四.远距离输电——电路损失(1)功率损失:设输电电流为I ,输电线的电阻为R ,则功率损失为=∆P 。

(2)电压损失:=∆U ,减小功率损失和电压损失,都要求提高 ,减小输电电流五.传感器1.概念:传感器通常是把被测的 信息,按一定规律转换成与之对应的 信息的器件或装置2.结构:一般由 和 组成,敏感元件能直接感受非电信息,并将这些信息转换成易于 的物理量,形成电信号;处理电路能把微小的信号进行 ,并除去干扰信号,使敏感元件输出的电信号转变成便于显示、记录、处理和控制的 。

人教版高中物理选修3-2 复习素材:第五章 交变电流知识点总结

人教版高中物理选修3-2 复习素材:第五章 交变电流知识点总结

选修3-2知识点第五章 交变电流5.1交变电流一、交变电流1、交变电流:大小和方向都随时间做周期性变化2、直流电流:①大小变化,方向不变化的叫直流 ②大小和方向都不随时间变化的叫恒定电流 二、交变电流的产生中性面:线圈平面与磁感线垂直的位置(甲)。

①此位置AB 、CD 边的速度方向与磁感线平行,各边都不切割磁感线,故呈电中性所以叫中性面。

②线圈经过中性面时,Φ最大(B ⊥S ),但线圈中E=0,电流I=0。

因为线圏平面转到中性面瞬间,穿过线圈的磁通量虽然最大,但是,曲线的斜率为0,即,磁通量的变化率 t∆∆Φ=0,感应电动势为0;t E ∆∆Φ=垂直中性面(乙图):①此位置AB 、CD 边的速度方向与磁感线垂直,即两边都切割磁感线。

②此时Φ最小(B//S),但线圈中的电动势E 达到最大。

I 也最大。

感应电流方向B 到A 。

因为线圈平面转到跟中性面垂直时,穿过线圈的磁通量重为0,但是曲线的斜率最大,即磁通量的变化率t∆∆Φ最大,感应电动势最大。

推论:线圈经过中性面时,电流将改变方向,线圈转动一周,两次经过中性面,电流方向改变两次。

三、交变电流的变化规律1、感应电动势的峰值和瞬时值为:e=E m sinωt (从中性面开始计时) ①e 叫做感应电动势的瞬时值。

②W 是发电机线圈转动的角速度。

③E m 表示感应电动势可能达到的最大值, 叫做电动势的峰值,大小为NBSwE m =。

2、感应电流和电压的峰值和瞬时值 感应电流的瞬时值为i=I m sinωt 。

感应电流的峰值为:rR E I m m +=电压的瞬时值为u=U m sinωt电压的峰值U m =I m R 3、交变电流的图像 4、交变电流的种类(1)正弦交流电,(2)示波器中的锯齿波扫描电压 (3)电子计算机中的矩形脉冲,(4)激光通信中的尖脉冲 5、交流发电机(1)发电机的基本组成:①用来产生感应电动势的线圈(叫电枢) ②用来产生磁场的磁极 (2)发电机的基本种类:①旋转电枢式发电机(电枢动磁极不动) ②旋转磁极式发电机(磁极动电枢不动无论哪种发电机,转动的部分叫转子,不动的部分叫定子。

鲁科版高中物理选修3-2第3-5章《交变电流》《远距离输电》《传感器及其应用》单元复习

鲁科版高中物理选修3-2第3-5章《交变电流》《远距离输电》《传感器及其应用》单元复习

第3-5章《交变电流》《远距离输电》《传感器及其应用》单元复习一、不定项选择题:1.如图所示,观察电流表的指针,可以判定 ( )A .指针随着线圈转动而摆动,并且线圈每转一周,指针左右摆动一次B .当线圈平面转到跟磁感线垂直位置时,电流表的指针偏转最大C .当线圈平面转到跟磁感线平行的位置时,电流表的指针偏转最大D .感应电动势和感应电流是周期性变化的2.一矩形线圈,绕垂直于匀强磁场并位于线圈平面内的固定轴转动.线圈中的感应电动势e 随时间t 的变化如图所示,下面说法中正确的是( )A .1t 时刻通过线圈的磁通量为零B .2t 时刻通过线圈的磁通量的绝对值最大C .3t 时刻通过线圈的磁通量变化率的绝对值最大D .每当e 变换方向时,通过线圈的磁通量绝对值都为最大3.一交流电压的图像如图所示,将该交流电压加在一阻值为22Ω的电阻两端,下列说法中正确的是( )A .该电阻消耗的功率为1100WB .该交流电压的瞬时值表达式为)V (π100sin 2110t u =C .并联在该电阻两端的交流电压表的示数为V 2110D .流过电阻的电流方向每秒改变50次4.远距离输电线路的示意图如下:若发电机的输出电压不变,则下列叙述中正确的是( )A .升压变压器的原线圈中的电流与用户用电设备消耗的功率无关B .输电线中的电流只由升压变压器原副线圈的匝数比决定C .当用户用电器的总电阻减少时,输电线上损失的功率增大D .升压变压器的输出电压等于降压变压器的输入电压5.如图所示是一台发电机的机构示意图,其中N 、S 是永久磁铁的两个磁极,它们的表面呈半圆柱面形状.M 是圆柱形铁芯,它与磁极的柱面共轴,铁芯上有一矩形线框,可绕与铁芯M 共轴的固定轴旋转。

磁极与铁芯之间的缝隙中形成方向沿半径、大小近似均匀的磁场.若从图示位置开始计时,当线框绕固定转轴匀速转动时,下列图象中能正确反映线框中感应电动势e 随时间t 变化规律的是( )。

人教版高中物理选修3-2第五章交变电流传感器原理

人教版高中物理选修3-2第五章交变电流传感器原理

【知识概要】一、传感器:传感器是指这样一类元件:它能够感受诸如力、温度、光、声、化学成分等_________量,并能把它们按照一定的规律转换为电压、电流等________量,或转换为电路的通断。

把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。

传感器一般由敏感元件和输出部分组成,通过敏感元件获取外界信息并转换_______信号,通过输出部分输出,然后经控制器分析处理。

常见的传感器有:__________、____________、_____________、___________、力传感器、气敏传感器、超声波传感器、磁敏传感器等。

二、常见传感器元件:(1)光敏电阻:光敏电阻的材料是一种半导体,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性能变好,光敏电阻能够把__________这个光学量转换为电阻这个电学量。

它就象人的眼睛,可以看到光线的强弱。

(2)金属热电阻和热敏电阻:金属热电阻的电阻率随温度的升高而_________,用金属丝可以制作___________。

它能把___________这个热学量转换为________这个电学量。

热敏电阻的电阻率则可以随温度的升高而_______或_________。

与热敏电阻相比,金属热电阻的___________好,测温范围___________,但_____________较差。

(3)电容式位移传感器能够把物体的__________这个力学量转换为______这个电学量。

(4)霍尔元件能够把_______________这个磁学量转换为电压这个电学量【课堂例题】例1.如图-3所示,将万用表的选择开关置于“欧姆”挡,再将电表的两支表笔与一热敏电阻Rt的两端相连,这时表针恰好指在刻度盘的正中间。

若往Rt上擦一些酒精,表针将向_____________(填“左”或“右”)移动;若用吹风机将热风吹向电阻,表针将向______________(填“左”或“右”)移动。

(完整版)高二物理--选修3-2知识点复习

(完整版)高二物理--选修3-2知识点复习

2018年高二物理 选修3-2知识点复习知识点一:电磁感应现象Ⅰ 只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。

知识点二:感应电流的产生条件Ⅱ1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。

如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。

从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。

三、法拉第电磁感应定律 楞次定律Ⅱ ①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。

ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。

如图所示。

设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN 以v 匀速向右运动,所施外力F F BIL '==,当行进位移为S 时,外力功W BI L S BILv t ==···。

t 为所用时间。

而在t 时间内,电流做功W I t '=··ε,据能量转化关系,W W '=,则I t BILv t ···ε=。

高中物理选修3-2 第五章交变电流第1节交变电流同步练习

高中物理选修3-2 第五章交变电流第1节交变电流同步练习

第五章交变电流第一节交变电流同步练习一、单选题1.小型交流发电机中,矩形金属线圈在匀强磁场中匀速转动,产生的感应电动势与时间呈正弦函数关系,如图所示,此线圈与一个R=10Ω的电阻构成闭合电路,不计电路的其他电阻,下列说法正确的是()A. 该交流电压瞬时值的表达式u=100sin(25πt)VB. 该交流电的频率为50HzC. 该交流电的电压的有效值为100D. 若将该交流电压加在阻值R=100Ω的电阻两端,则电阻消耗的功率是50W2.某线圈在匀强磁场中匀速转动,穿过它的磁通量φ随时间的变化规律如图所示,那么在图中()A. t1时刻,穿过线圈磁通量的变化率最大B. t2时刻,穿过线圈的磁通量变化率为零C. t3时刻,线圈中的感应电动势达最大值D. t4时刻,线圈中的感应电动势达最大值3.单匝矩形线圈abcd边长分别为l1和l2,在匀强磁场中可绕与磁场方向垂直的轴OO′匀角速转动,转动轴分别过ad边和bc边的中点,转动的角速度为ω.磁场的磁感应强度为B.图为沿转动轴OO′观察的情况,在该时刻线圈转动到ab边的速度方向与磁场方向夹角为θ,此时线圈中产生的感应电动势的瞬时值为()A. 2Bl1l2ωcosθB. 3Bl1l2ωsinθC. Bl1l2ωcosθD.Bl1l2ωsinθ4.如图甲所示,矩形线圈abcd在匀强磁场中逆时针匀速转动时,线圈中产生的交变电流如图乙所示,设沿abcda方向为电流正方向,则下列说法正确的是()A. 乙图中ab时间段对应甲图中A至B图的过程B. 乙图中bc时间段对应甲图中C至D图的过程C. 乙图中d时刻对应甲图中的D图D. 若乙图中d处是0.02 s,则1 s内电流的方向改变50次5.一矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动,下列说法正确的是()A. 在中性面时,通过线圈的磁通量最小B. 在中性面时,磁通量的变化率最大,感应电动势最大C. 线圈通过中性面时,电流的方向发生改变D. 穿过线圈的磁通量为零时,感应电动势也为零6.矩形线框垂直于匀强磁场且位于线框平面的轴匀速转动时产生交变电流,下列说法正确的是()A. 当线框位于中性面时,线框中感应电动势最大B. 当穿过线框的磁通量为零时,线框中感应电动势为零第1页,共9页C. 每当线框掠过中性面时,感应电动势和感应电流方向就改变一次D. 线框经过中性面时各边切割线的速度为零7.线圈的匝数为100匝,在匀强磁场中绕垂直于磁场的轴匀速转动时,穿过线圈磁通量随时间的变化规律如图所示.下列结论正确的是()A. 在t=0 s和t=0.2s时,线圈平面和磁场垂直,电动势最大B. 在t=0.1s和t=0.3 s时,线圈平面和磁场垂直,电动势为零C. 在t=0.2s和t=0.4s时电流改变方向D. 在t=0.1s和t=0.3 s时,线圈切割磁感线的有效速率最大二、多选题8.在匀强磁场中,一矩形金属线框在匀强磁场中绕与磁感线垂直的转动轴匀速转动,如图甲所示,产生的交变电动势随时间变化的规律如图乙所示,则下列说法正确的是()A. t=0.01s时穿过线框的磁通量最小B. t=0.01s时穿过线框的磁通量变化率最大C. 该线框匀速转动的角速度大小为100πD. 电动势瞬时值为22V时,线圈平面与中性面的夹角可能为45°9.如图矩形线圈面积为S,匝数为n,线圈总电阻为r,在磁感应强度为B的匀强磁场中绕OO′轴以角速度ω匀速转动,外电路电阻R.在线圈由图示位置转过90°的过程中()A. 磁通量的变化量△φ=nBSB. 平均感应电动势=C. 通过电阻的电量为D. 电阻R产生的焦耳热Q=10.一台小型发电机产生的电动势随时间变化的正弦规律图象如图甲所示,已知发电机线圈内阻为5.0Ω接一只电阻为95.0Ω如图乙所示,则正确的是()A. 周期为0.02sB. 电路中的电压表的示数为220VC. 该交变电动势的瞬时值表达式为e =220sin(100πt)D. 发电机线圈内阻每秒钟产生的焦耳热为20J11.如图所示,发电机的矩形线圈面积为S,匝数为N,绕OO′轴在磁感应强度为B的匀强磁场中以角速度ω匀速转动.从图示位置开始计时,下列判断正确的是()A. 此时穿过线圈的磁通量为NBS,产生的电动势为零B. 线圈产生的感应电动势的瞬时值表达式为e=NBSωsinωtC. P向下移动时,电流表示数变小D. P向下移动时,发电机的电功率增大12.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,如线圈所围面积里的磁通量随时间变化的规律如图所示,则线圈中()A. 0时刻感应电动势最大B. 0.05s时感应电动势为零C. 0.05s时感应电动势最大D. 0~0.05s这段时间内平均感应电动势为0.4V13.在匀强磁场中,一矩形金属线框绕与磁感线垂直的转轴匀速转动,当线框的转速为n1时,产生的交变电动势的图线为甲,当线框的转速为n2时,产生的交变电动势的图线为乙.则()A. t=0时,穿过线框的磁通量均为零B. 当t=0时,穿过线框的磁通量变化率均为零C. n1:n2=3:2D. 乙的交变电动势的最大值是V三、计算题14.如图所示,在磁感应强度B=0.2T的水平匀强磁场中,有一边长为L=10cm,匝数N=100匝,电阻r=1Ω的正方形线圈绕垂直于磁感线的OO′轴匀速转动,转速n =r/s,有一电阻R=9Ω,通过电刷与两滑环接触,R两端接有一理想电压表,求:(1)若从线圈通过中性面时开始计时,写出电动势瞬时植表达式;(2)求从中性面开始转过T时的感应电动势与电压表的示数;(3)在1分钟内外力驱动线圈转动所作的功.第3页,共9页15.如图所示,线圈abcd的面积是0.05m2,共200匝;线圈总电阻r=1Ω,外接电阻R=9Ω,匀强磁场的磁感应强度B=T,线圈以角速度ω=100πrad/s匀速转动.(1)若线圈经图示位置时开始计时,写出线圈中感应电动势瞬时值的表达式;(2)求通过电阻R的电流有效值.16.如图所示为交流发电机示意图,匝数为n=100匝的矩形线圈,边长分别为10cm和20cm,内阻为5Ω,在磁感应强度B=0.5T的匀强磁场中绕OO′轴以50rad/s 的角速度匀速转动,线圈和外部20Ω的电阻R相接.求:(1)若从线圈图示位置开始计时,写出线圈中感应电动势的瞬时值表达式(2)电键S合上时,电压表和电流表示数;(3)通过电阻R的电流最大值是多少;(4)电阻R上所消耗的电功率是多少.答案和解析【答案】1. D2. D3. D4. B5. C6. C7. B8. CD9. BCD10. AC11. BD12. ABD13. BCD14. 解:(1)角速度ω=2πn=200rad/s电动势的最大值E m=NBSω=100×0.2×0.12×200=40V表达式e=E m sinωt=40sin200t(V)(2)电压有效值E =V电压表示数U ==18V从中性面开始转过T时的感应电动势e =40×sin(3)外力做的功转化为电能W=EIt=E=4800J答:(1)若从线圈通过中性面时开始计时,电动势瞬时植表达式为e=40sin200t(V);(2)从中性面开始转过T 时的感应电动势为V,电压表的示数为18V;(3)在1分钟内外力驱动线圈转动所作的功为4800J.15. 解:(1)感应电动势最大值为E m=NBS ω=200××0.05×100πV=1000V由于从中性面开始计时,则瞬时值表达式为:e=E m sin(ωt)=1000sin(100πt)V(2)流过电阻R的最大电流I m ===100A通过电阻R的电流有效值I ===50A.答:(1)若线圈经图示位置开始计时,线圈中感应电动势瞬时值的表达式是e=1000sin(100πt)V;(2)通过电阻R的电流有效值是50A.16. 解:(1)产生的感应电动势的最大值为瞬时表达式为闭合s 时,有闭合电路的欧姆定律可得电压为U=IR=40V(3)通过R 的电流最大值为(4)电阻R上所消耗的电功率P= IU=2×40 W=80 W.答:(1)若从线圈图示位置开始计时,写出线圈中感应电动势的瞬时值表达式为(2)电键S合上时,电压表和电流表示数分别为40V,2A;(3)通过电阻R 的电流最大值是(4)电阻R上所消耗的电功率是80W【解析】1. 解:A、由图象可知交变电流的周期T=0.04s ,角速度,频率f =Hz,故该交流电压瞬时值的表达式u=100sin(50πt)V,故AB错误;第5页,共9页C、该交流电的电压的有效值为,故C错误;D、若将该交流电压加在阻值R=100Ω的电阻两端,则电阻消耗的功率为:P=,故D正确故选:D从图象中可以求出该交流电的最大电压以及周期等物理量,然后根据最大值与有效值以及周期与频率关系求解.本题考查了交流电最大值、有效值、周期、频率等问题,要学会正确分析图象,从图象获取有用信息求解.2. 解:A、t1时刻,磁通量最大,磁通量的变化率为零,t2时刻磁通量为零,磁通量的变化率最大.故AB 错误.C、t3时刻,磁通量最大,磁通量的变化率为零,则感应电动势为零.故C错误.D、t4时刻磁通量为零,磁通量的变化率为最大,则感应电动势最大.故D正确.故选:D.感应电动势的大小与磁通量的变化率成正比,磁通量φ随时间的变化图线的斜率反映感应电动势的大小.解决本题的关键知道感应电动势与磁通量变化率的关系,知道图线的斜率反映感应电动势的大小.3. 解:矩形线圈在匀强磁场中做匀角速转动,产生交流电,感应电动势的最大值为:E m=nBSω=nBL1L2ω根据电动势的瞬时值表达式:e=E m sinωt,在该时刻线圈转动到ab边的速度方向与磁场方向夹角为θ时,θ=ωt;此时线圈中产生的感应电动势的瞬时值为:e=Bl1l2ωsinθ.故选:D发电机产生正弦式交变电流,根据公式E m=nBSω求解最大电动势,根据电动势的瞬时值表达式:e=E m sinωt,即可得出结论.本题关键是记住交流电最大值表达式E m=nBSω,然后结合电动势的瞬时值表达式即可.4. 解:从线圈转过中性面的位置开始计时,所以电流在开始时为0;线圈在匀强磁场中绕轴逆时针匀速转动时,切割磁感线,产生电流,根据右手定则可以判定;A、乙图中ab,感应电流为正方向,且大小在减小,根据楞次定律,则有:感应电流方向abcda,根据法拉第电磁感应定律,则有:感应电流的大小在增大,所以对应甲图中B至C图的过程,故A错误;B、乙图中bc,感应电流为负方向,且大小在增大,根据楞次定律,则有:感应电流方向adcba,根据法拉第电磁感应定律,则有:感应电流的大小在增大,所以对应甲图中C至D图的过程,故B正确;C、乙图中d时刻,感应电流为零,则磁通量的变化率最小,即磁通量最大,且电流有负变为零,故对应A 图,故C错误;D、若乙图中D等于0.02s,则周期为0.02s,则交流电的频率为50Hz,而一个周期内电流方向改变两次,所以1s内电流的方向改变了100 次;故D错误;故选:B.该位置的磁通量最大,感应电流为0,是中性面.矩形线圈在匀强磁场中绕轴匀速转动时,在线圈中产生正弦交流电该题考查交流电的产生、中性面与交流电的图象,要明确线圈的转动图象与交流电的瞬时电动势的图象之间的关系.5. 解:A、在中性面时,线圈与磁场垂直,磁通量最大.故A错误.B、在中性面时,没有边切割磁感线,感应电动势为零.故B错误.C、线圈每次通过中性面,电流的方向均会发生改变;故C正确;D、穿过线圈的磁通量为零时,线圈与磁场平行,有两边垂直切割磁感线,感应电动势最大.故D错误.故选:C.矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动时,线圈中产生正弦式电流.在中性面时,线圈与磁场垂直,磁通量最大,感应电动势为零.线圈每通过中性面一次,电流方向改变一次.本题考查正弦式电流产生原理的理解能力,抓住两个特殊位置的特点:线圈与磁场垂直时,磁通量最大,感应电动势为零;线圈与磁场平行时,磁通量为零,感应电动势最大.6. 解:A、在中性面时感应电流为零,感应电动势为零,线圈与磁场垂直,磁通量最大.故A错误;B、当穿过线框的磁通量为零时,线框中感应电动势最大;故B错误;C、每当线框掠过中性面时,感应电动势和感应电流方向就改变一次;故C正确;D、左右两边要切割磁感线的速度不为零,但由于相互抵消而使磁通量为零;故D错误;故选:C.线圈在匀强磁场中匀速转动产生正弦交变电流,由电流图象读出感应电流的变化.由欧姆定律得知感应电流与感应电动势成正比,由法拉第电磁感应定律得知,感应电动势与磁通量的变化率成正比,当线圈磁通量最大时,感应电动势为零;而当线圈的磁通量为零时,感应电动势最大.本题考查理解正弦交变电流与磁通量关系的能力及把握电流的变化与线圈转过的角度的关系的能力.比较简单.7. 解:A、在t=0 s和t=0.2 s时,磁通量最最小,线圈位于与中性面垂直位置,感应电动势最大,故A错误;B、在t=0.1 s和t=0.3 s时,磁通量最大,线圈位于中性面位置,感应电动势为零,故B正确;C、在t=0.2s和t=0.4s时,磁通量最最小,线圈位于与中性面垂直位置,电流方向没有发生变化,故C错误;D、在在t=0.1s和t=0.3 s时,磁通量最大,线圈处于中性面位置,感应电动势为零,故磁通量变化率为零,线圈切割磁感线的有效速率最小,故D错误;故选:B.交变电流产生过程中,线圈在中性面上时,穿过线圈的磁通量最大,感应电动势最小,线圈与中性面垂直时,通过的磁通量最小,电动势为大;结合Φ-t图象分析答题.要掌握交流电产生过程特点,特别是两个特殊位置:中性面和垂直中性面时,掌握电流产生过程即可正确解题.8. 解:A、由图象知:t=0.01s时,感应电动势为零,则穿过线框的磁通量最大,变化率最小,故AB错误;C、由图象得出周期T=0.02s,所以ω==100πrad/s,故C正确D、当t=0时,电动势为零,线圈平面与磁场方向垂直,故该交变电动势的瞬时值表达式为e=311sin(100πt)V,电动势瞬时值为22V时,代入瞬时表达式,则有线圈平面与中性面的夹角正弦值sinα=,所以线圈平面与中性面的夹角可能为45°,故D正确;故选:CD.从图象得出电动势最大值、周期,从而算出频率、角速度;磁通量最大时电动势为零,磁通量为零时电动势最大本题考查了对交流电图象的认识,要具备从图象中获得有用信息的能力,并掌握有效值与最大值的关系.9. 解:A、图示位置磁通量为Φ1=0,转过90°磁通量为Φ2=BS,△Φ=Φ2-Φ1=BS.故A错误.B 、根据法拉第电磁感应定律得,平均感应电动势,△t =解得=,故B正确;C、通过电阻R的电量q=It =t=n,得到q =,故C正确;D、电流的有效值为I =,E =,电阻R所产生的焦耳热Q=I2Rt,解得Q =,故D正确.故选:BCD.图示位置磁通量为Φ1=0,转过90°磁通量为Φ2=BS=Φ2-Φ1.根据法拉第电磁感应定律求解平均感应电动第7页,共9页势.根据焦耳定律Q=I2Rt求解热量,I为有效值.根据法拉第电磁感应定律、欧姆定律和电流的定义式求解电量.对于交变电流,求解热量、电功和电功率用有效值,而求解电量要用平均值.注意磁通量与线圈的匝数无关.10. 解:A、由甲图可知交流电的周期T=0.02s,故A正确;B、由甲图可知交流电的最大值为E m=220V,故有效值E=220V,电压表示数U=V=209V.故B错误;C、角速度,故该交变电动势的瞬时值表达式为e=220sin(100πt),故C正确;D、发电机线圈内阻每秒钟产生的焦耳热为Q=t=×1J=24.2J.故D错误.故选:AC.由图读出电动势的最大值,求出有效值,根据欧姆定律求出外电压的有效值,即为电压表的示数.根据电流方向每个周期改变两次,求出每秒钟方向改变的次数.根据电压有效值求出灯泡消耗的功率.由焦耳定律,由有效值求出发电机焦耳热.交流电的电压、电流、电动势等等物理量都随时间作周期性变化,求解交流电的焦耳热、电功、电功率时要用交流电的有效值,求电量时用平均值.11. 解:A、此时线圈位移中性面,穿过线圈的磁通量最大为BS,故A错误;B、产生的感应电动势的最大值为E m=NBSω,从中性面开始计时,故e=NBSωsinωt,故B正确;C、当P位置向下移动、R不变时,副线圈匝数增大,根据理想变压器的变压比公式,输出电压变大,故电流变大,功率变大,故输入功率变大,故C错误,D正确故选:BD正弦式交流发电机从中性面位置开始计时,其电动势表达式为:e=NBSωsinωt;电压表和电流表读数为有效值本题关键明确交流四值、理想变压器的变压比公式、功率关系,注意求解电量用平均值12. 解:A、由图示图象可知,0时刻磁通量的变化率最大,感应电动势最大,故A正确;B、由图示图象可知,0.05s时刻磁通量的变化率为零,感应电动势为零,故B正确,C错误;D、由法拉第电磁感应定律可知,0~0.05s内平均感电动势:E===0.4V,故D正确;故选:ABD.根据法拉第电磁感应定律知,感应电动势的大小与磁通量的变化率成正比.通过法拉第电磁感应定律求出平均感应电动势的大小.本题关键是掌握好图象的含义,磁通量比时间其物理含义为感应电动势,即图象的斜率表示感应电动势.13. 解:A、由图象知t=0时,电动势为零,穿过线框的磁通量最大,A错误;B、当t=0时,穿过线框的磁通量变化率均为零,B正确;C、由图象知=37.5,=25,所以n1:n2=3:2,C正确;D、由图象知NBS×2πn1=10V,所以,乙的交变电动势的最大值是NBS×2πn2=V,D正确;故选BCD根据图象判断初始时刻电动势为零,所以是从中性面开始计时,磁通量最大,磁通量变化率为零,由图象知道周期,求出转速之比,根据最大值的表达式判断D.本题考查了交流电的产生和原理,能够从图象中获取对我们解决问题有利的物理信息.14. (1)交流发电机产生电动势的最大值E m=nBSω,从线圈通过中性面时开始计时,电动势表达式为e=E m sinωt.(2)交流电压表测量的是路端电压有效值,根据闭合电路欧姆定律和最大值是有效值的倍,进行求解.(3)根据焦耳定律Q=EIt求解整个回路发热量,即可得到外力做功.解决本题的关键掌握正弦式交流电峰值的表达式E m=nBSω,知道从中性面计时,电动势表达式为e=E m sinωt,要注意求电功时必须用有效值求解.15. 从线圈处于中性面开始计时,线圈中感应电动势的瞬时值表达式e=E m s inωt,由E m=NBSω求出E m.根据闭合电路欧姆定律求最大电流I m,通过电阻R的电流有效值I =.本题考查对交流发电机原理的理解能力.对于交流电表,显示的是交流电的有效值.瞬时值表达式要注意计时起点,不同的计时起点表达式的初相位不同.16. (1)由E m= nBSω求得最大值,根据e=E m cosωt求得瞬时表达式;(2)电压表和电流表测量的是有效值,根据闭合电路的欧姆定律即可判断;(3)根据求得最大值;(4)有P=UI求得产生的功率本题考查了求电压表与电流表示数、求电阻消耗的功率问题,求出感应电动势的最大值、掌握最大值与有效值间的关系、应用欧姆定律即可正确解题.第9页,共9页。

选修3-2 第十章 交变电流 传感器(高考物理复习)

选修3-2 第十章 交变电流 传感器(高考物理复习)

第十章 交变电流 传感器第一单元 交变电流的产生和描述,交变电流、交变电流的图象 Ⅰ(考纲要求)1.交变电流(1)定义: 和 都随时间做周期性变化的电流.(2)图象:如图(a)、(b)、(c)、(d)所示都属于交变电流.其中按正弦规律变化的交变电流叫正弦交流电,如图(a)所示.2.正弦交流电的产生和图象 (1)中性面①中性面:与磁场方向 的平面. ②中性面与峰值面的比较(2)产生:在匀强磁场里,线圈绕 方向的轴匀速转动.(3)图象:用以描述交流电随时间变化的规律,如果线圈从中性面位置时开始计时,其图象为正弦曲线.如图(a)(e)、(f)所示.正弦交变电流的函数表达式、峰值和有效值 Ⅰ (考纲要求)1.周期和频率(1)周期(T ):交变电流完成 变化(线圈转一周)所需的时间,单位是秒(s),公式T =2πω. (2)频率(f ):交变电流在1 s 内完成周期性变化的 .单位是赫兹(Hz). (3)周期和频率的关系:T = 或f = .2.正弦式交变电流的函数表达式(线圈在中性面位置开始计时) (1)电动势e 随时间变化的规律:e = .(2)负载两端的电压u 随时间变化的规律:u = .(3)电流i 随时间变化的规律:i = .其中ω等于线圈转动的角速度,E m = . 3.交变电流的瞬时值、峰值、有效值(1)瞬时值:交变电流某一时刻的值,是时间的函数.(2)峰值:交变电流的电流或电压所能达到的最大值,也叫最大值.(3)有效值:跟交变电流的热效应等效的恒定电流的值叫做交变电流的有效值.对正弦交流电,其有效值和峰值的关系为:E = ,U = ,I = .一、基础自测1.图中闭合线圈都在匀强磁场中绕虚线所示的固定转轴匀速转动,能产生正弦式交变电流的是( ).2.如图甲所示,一矩形闭合线圈在匀强磁场中绕垂直于磁场方向的转轴OO ′以恒定的角速度ω转动,从线圈平面与磁场方向平行时开始计时,线圈中产生的交变电流按照图乙所示的余弦规律变化,在t =π2ω时刻( ).A.线圈中的电流最大B.穿过线圈的磁通量为零C.线圈所受的安培力为零D.穿过线圈磁通量的变化率最大 3.如图所示,矩形线框置于竖直向下的磁场中,通过导线与灵敏电流表相连,线框在磁场中绕垂直于磁场方向的转轴匀速转动,图中线框平面处于竖直面内.下述说法正确的是( ).A.因为线框中产生的是交变电流,所以电流表示数始终为零B.线框通过图中位置瞬间,穿过线框的磁通量最大C.线框通过图中位置瞬间,通过电流表的电流瞬时值最大D.若使线框转动的角速度增大一倍,那么通过电流表电流的有效值也增大一倍4.某台家用柴油发电机正常工作时能够产生与我国照明电网相同的交变电流.现在该发电机出现了故障,转子匀速转动时的转速只能达到正常工作时的一半,则它产生的交变电动势随时间变化的图象是( ).5. (2012·扬州模拟)一正弦式电流的电压随时间变化的规律如图所示.由图可知( ).A.该交变电流的电压瞬时值的表达式为u =100sin 25t (V)B.该交变电流的频率为25 HzC.该交变电流的电压的有效值为100 VD.若将该交流电压加在阻值为R =100 Ω的电阻两端,则电阻消耗的功率是50 W6.(2012·广东江门市模拟)风速仪的简易装置如图甲在风力作用下,风杯带动与其固定在一起的永磁铁转动,线圈中的感应电流随风速的变化而变化.风速为v 1时,测得线圈中的感应电流随时间变化的关系如图乙;若风速变为v 2,且v 2>v 1,则感应电流的峰值I m 和周期T 的变化情况是( )A.I m 变大,T 变小B.I m 变大,T 不变C.I m 变小,T 变小D.I m 不变,T 变大二、高考体验1.(2010·广东理综,19) 右上图是某种正弦式交变电压的波形图,由图可确定该电压的( ).A .周期是0.01 sB .最大值是311 VC .有效值是220 VD .表达式为u =220sin 100πt (V)2.(2011·安徽卷,19)如图所示的区域内有垂直于纸面的匀强磁场,磁感应强度为B .电阻为R 、半径为L 、圆心角为45°的扇形闭合导线框绕垂直于纸面的O 轴以角速度ω匀速转动(O 轴位于磁场边界).则线框内产生的感应电流的有效值为( ).A.BL 2ω2RB.2BL 2ω2RC.2BL 2ω4RD.BL 2ω4R3.(2011·天津卷,4)在匀强磁场中,一矩形金属框绕与磁感线垂直的转轴匀速转动,如图甲所示,产生的交变电动势的图象如图乙所示,则( ).A .t =0.005 s 时线框的磁通量变化率为零B .t =0.01 s 时线框平面与中性面重合C .线框产生的交变电动势有效值为311 VD .线框产生的交变电动势频率为100 Hz 4.(2011·四川卷,20)如图所示,在匀强磁场中匀速转动的矩形线圈的周期为T ,转轴O 1O 2垂直于磁场方向,线圈电阻为2 Ω.从线圈平面与磁场方向平行时开始计时,线圈转过60°时的感应电流为1 A ,那么( ).A .线圈消耗的电功率为4 WB .线圈中感应电流的有效值为2 AC .任意时刻线圈中的感应电动势为e =4cos 2πT tD .任意时刻穿过线圈的磁通量为Φ=T πsin 2πT t第二单元 变压器 电能的输送,理想变压器 Ⅰ(考纲要求)1.构造如图所示,变压器是由 和绕在铁芯上的 组成的. (1)原线圈:与交流电源连接的线圈,也叫 线圈. (2)副线圈:与 连接的线圈,也叫 线圈. 2.原理:电流磁效应、 . 3.基本关系式(1)功率关系: = .(2)电压关系: = ;有多个副线圈时,U 1n 1= = =…. (3)电流关系:只有一个副线圈时,I 1I 2=n 2n 1.由P 入=P 出及P =UI 推出有多个副线圈时,U 1I 1= + +…+ . 4.几种常用的变压器(1)自耦变压器——调压变压器(2)互感器⎩⎪⎨⎪⎧电压互感器:用来把高电压变成低电压W.电流互感器:用来把大电流变成小电流W.远距离输电 Ⅰ(考纲要求)1.输电过程(如右下图所示)2.输电导线上的能量损失:主要是由输电线的电阻发热 产生的,表达式为Q = .3.电压损失 (1)ΔU =U -U ′;(2)ΔU =4.功率损失(1)ΔP =P -P ′;(2)ΔP = =⎝ ⎛⎭⎪⎫P U 2R 5.输送电流(1)I =P U ;(2)I =U -U ′R. 说明:对理想变压器的理解(1)理想变压器:①没有能量损失②没有磁通量损失(2)基本量的制约关系一、基础自测1.一输入电压为220 V ,输出电压为36 V 的变压器副线圈烧坏.为获知此变压器原、副线圈匝数,某同学拆下烧坏的副线圈,用绝缘导线在铁芯上新绕了5匝线圈,如图,然后将原线圈接到220 V 交流电源上,测得新绕线圈的端电压为1 V .按理想变压器分析,该变压器烧坏前的原、副线圈匝数分别为( ).A.1 100,360 B .1 100,180 C.2 200,180 D .2 200,3602.一台理想变压器原、副线圈匝数比为22∶1,当原线圈两端输入u 1=2202sin 314t (V)的交变电压时,下列说法正确的是( ). A.副线圈两端电压为12 2 V B.副线圈接一10 Ω电阻时,原线圈中的电流为1 A C.副线圈接一10 Ω电阻时,原线圈中输入功率为10 W D.变压器铁芯中磁通量变化率的最大值是220 2 V3.(2012·江西重点中学联考)照明供电线路的路端电压基本上是保持不变的.可是我们在晚上七、八点钟用电高峰时开灯,电灯比深夜时要显得暗些.这是因为用电高峰时( ). A.总电阻比深夜时大,供电线路上的电流小,每盏灯两端的电压较低 B.总电阻比深夜时大,供电线路上的电流小,通过每盏灯的电流较小C.总电阻比深夜时小,供电线路上的电流大,输电线上损失的电压较大D.供电线路上的电流恒定,但开的灯比深夜时多,通过每盏灯的电流小 4.如图所示,理想变压器的副线圈上通过输电线接有三只灯泡L 1、L 2和L 3,输电线的等效电阻为R ,原线圈接有一个理想的电流表,交流电源的电压大小不变.开始时开关S 接通,当S 断开时,以下说法正确的是( ).A.原线圈两端P 、Q 间的输入电压减小B.等效电阻R 上消耗的功率变大C.原线圈中电流表示数变小D.灯泡L 1和L 2变亮 5.(2010·福建理综)中国已投产运行的1 000 kV 特高压输电是目前世界上电压最高的输电工程.假设甲、乙两地原来用500 kV 的超高压输电,输电线上损耗的电功率为P .在保持输送电功率和输电线电阻都不变的条件下,现改用1 000 kV 特高压输电,若不考虑其他因素的影响,则输电线上损耗的电功率将变为( ). A.P 4 B.P2 C .2P D .4P 二、高考体验(一)理想变压器基本关系的应用(高频考查)1.(2011·浙江卷,16)如右上图所示,在铁芯上、下分别绕有匝数n 1=800和n 2=200的两个线圈,上线圈两端与u =51sin 314t V 的交流电源相连,将下线圈两端接交流电压表,则交流电压表的读数可能是( ). A .2.0 V B .9.0 V C .12.7 V D .144.0 V 2.(2011·广东卷,19)图(a)左侧的调压装置可视为理想变压器,负载电路中R =55 Ω,○A 、○V 为理想电流表和电压表,若原线圈接入如图(b)所示的正弦交变电压,电压表的示数为110 V ,下列表述正确的是( ).A .电流表的示数为2 AB .原、副线圈匝数比为1∶2C .电压表的示数为电压的有效值D .原线圈中交变电压的频率为100 Hz3.(2011·山东卷,10)为保证用户电压稳定在220 V ,变电所需适时进行调压,图甲为调压变压器示意图,保持输入电压u 1不变,当滑动接头P 上下移动时可改变输出电压,某次检测得到用户电压u 2随时间t 变化的曲线如图乙所示,以下正确的是( ).A .u 1=1902sin (50πt ) VB .u 2=1902sin (100πt ) VC .为使用户电压稳定在220 V ,应将P 适当下移4.(2011·海南卷,11)如图,理想变压器原线圈与一10 V 的交流电源相连,副线圈并联两个小灯泡a 和b.小灯泡a 的额定功率为0.3 W ,正常发光时电阻为30 Ω,已知两灯泡均正常发光,流过原线圈的电流为0.09 A ,可计算出原、副线圈的匝数比为________,流过灯泡b 的电流为________A. (二)理想变压器的动态分解(中频考查)5.(2010·天津理综,7)为探究理想变压器原、副线圈电压、电流的关系,将原线圈接到电压有效值不变的正弦交流电源上,副线圈连接相同的灯泡L 1、L 2,电路中分别接了理想交流电压表V 1、V 2和理想交流电流表A 1、A2,导线电阻不计,如图所示.当开关S 闭合后( ). A .A 1示数变大,A 1与A 2示数的比值不变 B .A 1示数变大,A 1与A 2示数的比值变大 C .V 2示数变小,V 1与V 2示数的比值变大 D .V 2示数不变,V 1与V 2示数的比值不变 6.(2011·福建卷,15)图10220甲中理想变压器原、副线圈的匝数之比n 1∶n 2=5∶1,电阻R =20 Ω,L 1、L 2为规格相同的两只小灯泡,S 1为单刀双掷开关,原线圈接正弦交变电源,输入电压u 随时间t 的变化关系如图乙所示.现将S 1接1、S 2闭合,此时L 2正常发光.下列说法正确的是( ).A .输入电压u 的表达式u =202sin (50πt ) VB .只断开S 2后,L 1、L 2均正常发光C .只断开S 2后,原线圈的输入功率增大D .若S 1换接到2后,R 消耗的电功率为0.8 W 三、远距离输电(中频考查) 7.(2009·山东,19)某小型水电站的电能输送示意图如图所示,发电机的输出电压为200 V ,输电线总电阻为r ,升压变压器原副线圈匝数分别为n 1、n 2,降压变压器原副线圈匝数分别为n 3、n 4(变压器均为理想变压器).要使额定电压为220 V 的用电器正常工作,则( ).A.n 2n 1>n 3n 4 B. 升压变压器的输出电压等于降压变压器的输入电压 C.n 2n 1<n 3n 4D .升压变压器的输出功率大于降压变压器的输入功率 8.(2010·江苏单科,7)在如图所示的远距离输电电路图中,升压变压器和降压变压器均为理想变压器,发电厂的输出电压和输电线的电阻均不变.随着发电厂输出功率的增大,下列说法中正确的有( ).A .升压变压器的输出电压增大B .降压变压器的输出电压增大C .输电线上损耗的功率增大D .输电线上损耗的功率占总功率的比例增大第三单元 实验十一 传感器的简单应用 ,热敏电阻传感器【例1】 热敏电阻是传感电路中常用的电子元件,现用伏安法研究电阻在不同温度下的伏安特性曲线,要求特性曲线尽可能完整.已知常温下待测热敏电阻的阻值约4~5 Ω.将热敏电阻和温度计插入带塞的保温杯中,杯内有一定量的冷水,其他备用的仪表和器具有:盛有热水的热水瓶(图中未画出)、电源(3 V 、内阻可忽略)、直流电流表(内阻约1 Ω)、直流电压表(内阻约5 k Ω)、滑动变阻器(0~20 Ω)、开关、导线若干.(1)在图(a)中画出实验电路图.(2)根据电路图,在图(b)所示的实物图上连线. (3)简要写出完成接线后的主要实验步骤.,光敏电阻传感器【例2】 为了节能和环保,一些公共场所使用光控开关控制照明系统.光控开关可采用光敏电阻来控制,光敏电阻是阻值随着光的照度而发生变化的元件(照度可以反映光的强弱,光越强照度越大,照度单位为lx).某光敏电阻R P 在不同照度下的阻值如下表:(1)根据表中数据,请在图给定的坐标系中描绘出阻值随照度变化的曲线,并说明阻值随照度变化的特点.(2)如右上图所示,当1、2两端所加电压上升至2 V 时,控制开关自动启动照明系统,请利用下列器材设计一个简单电路.给1、2两端提供电压,要求当天色渐暗照度降低至1.0 lx 时启动照明系统,在虚线框内完成电路原理图.(不考虑控制开关对所设计电路的影响)提供的器材如下: 光敏电阻R P (符号,阻值见上表) 直流电源E (电动势3 V ,内阻不计);定值电阻:R 1=10 k Ω,R 2=20 k Ω,R 3=40 k Ω(限选其中之一并在图中标出);开关S 及导线若干.【例3】 一中学生为发射的“神舟七号”载人飞船设计了一个可测定竖直方向加速度的装置,其原理可简化为如图所示.连接在竖直弹簧上的重物与滑动变阻器的滑动触头连接,该装置在地面上静止时其电压表的指针指在表盘中央的零刻度处,在零刻度的两侧分别标上对应的正、负加速度值.关于这个装置在“神舟七号”载人飞船发射、运行和回收过程中示数的判断正确的是( ).A.飞船在竖直加速升空的过程中,如果电压表的示数为正,则飞船在竖直减速返回地面的过程中,电压表的示数仍为正B.飞船在竖直加速升空的过程中,如果电压表的示数为正,则飞船在竖直减速返回地面的过程中,电压表的示数为负C.飞船在圆轨道上运行时,电压表的示数为零D.飞船在圆轨道上运行时,电压表示数所对应的加速度大小应约为9.8 m/s 2【例4】 如图所示,电容式触摸屏的构造主要是在玻璃屏幕上镀一层透明的薄膜导体层,再在导体层外加上一块保护玻璃,电容式触摸屏在触摸屏四边均镀上狭长的电极,在导体层内形成一个低电压交流电场.在触摸屏幕时,由于人体是导体,手指与内部导体层间会形成一个特殊电容(耦合电容),四边电极发出的电流会流向触点,而电流强弱与手指到电极的距离成正比,位于触摸屏后的控制器便会计算电流的比例及强弱,准确算出触摸点的位置.由以上信息可知( ). A .电容式触摸屏的两极板分别是导体层和手指B .当用手触摸屏幕时,手指与屏的接触面积越大,电容越大C .当用手触摸屏幕时,手指与屏的接触面积越大,电容越小D .如果用带了手套的手触摸屏幕,照样能引起触摸屏动作 自我检测1.(2011·江苏卷)美国科学家Willard S .Boyle 与George E .Smith因电荷耦合器件(CCD)的重要发明荣获2009年度诺贝尔物理学奖.CCD 是将光学量转变成电学量的传感器.下列器件可作为传感器的有( ).A .发光二极管B .热敏电阻C .霍尔元件D .干电池2.2007年度诺贝尔物理学奖授予了法国和德国的两位科学家,以表彰他们发现“巨磁电阻效应”,基于巨说法中,错误的是().A.热敏电阻可应用于温度测控装置中B.光敏电阻是一种光电传感器C.电阻丝可应用于电热设备中D.电阻在电路中主要起到通过直流、阻碍交流的作用3.如图所示的电路中,当半导体材料做成的热敏电阻浸泡到热水中时,电流表示数增大,则说明().A.热敏电阻在温度越高时,电阻越大B.热敏电阻在温度越高时,电阻越小C.半导体材料温度升高时,导电性能变差D.半导体材料温度升高时,导电性能变好4.如图所示,由电源、小灯泡、电阻丝、开关组成的电路中,当闭合开关S后,小灯泡正常发光,若用酒精灯加热电阻丝时,发现小灯泡亮度变化是________,发生这一现象的主要原因是________(填字母代号).A.小灯泡的电阻发生了变化B.小灯泡灯丝的电阻率随温度发生了变化C.电阻丝的电阻率随温度发生了变化D.电源的电压随温度发生了变化5.(2010·全国高考Ⅱ)如图所示,一热敏电阻R T放在控温容器M内;○A为毫安表,量程6 mA,内阻为数十欧姆;E为直流电源,电动势约为3 V,内阻很小;R为电阻箱,最大阻值为999.9 Ω;S为开关.已知R T在95 ℃时的阻值为150 Ω,在20 ℃时的阻值约为550 Ω.现要求在降温过程中测量在95~20 ℃之间的多个温度下R T的阻值.(1)在图中画出连线,完成实验原理电路图.(2)完成下列实验步骤中的填空:a.依照实验原理电路图连线.b.调节控温容器M内的温度,使得R T的温度为95 ℃.c.把电阻箱调到适当的初值,以保证仪器安全.d.闭合开关,调节电阻箱,记录电流表的示数I0,并记录______.e.将R T的温度降为T1(20 ℃<T1<95 ℃);调节电阻箱,使得电流表的读数________,记录________.f.温度为T1时热敏电阻的电阻值R T1=________.g.逐步降低T1的数值,直至20 ℃为止;在每一温度下重复步骤e、f.6.(2011·嘉兴模拟)一台臭氧发生器P的电阻为10 kΩ,当供电电压等于24 V时能正常工作,否则不产生臭氧.现要用这种臭氧发生器制成自动消毒装置,要求它在有光照时能产生臭氧,在黑暗时不产生臭氧,拟用一个光敏电阻R1对它进行控制,R1的阻值在有光照时为100 Ω、黑暗时为1 000 Ω、允许通过的最大电流为3 mA;电源E的电压为36 V、内阻不计;另有一个滑动变阻器R2,阻值为0~100 Ω、允许通过的最大电流为0.4 A;一个开关S和导线若干.臭氧发生器P和光敏电阻R1的符号如右图所示.设计一个满足上述要求的电路图,图中各元件要标上字母代号,其中滑动变阻器两固定接线柱端分别标上字母A、B(电路图画在下面空白处).第一单元交变电流的产生和描述补练【典例1】如图(a)所示,一矩形线圈abcd放置在匀强磁场中,并绕过ab、cd中点的轴OO′以角速度ω逆时针匀速转动.若以线圈平面与磁场夹角θ=45°时如图(b)为计时起点,并规定当电流自a流向b时电流方向为正.则下列四幅图中正确的是().——关于交变电流图象的题目分为两类一类是给出图象,求解有关的物理量;另一类是通过计算,将结果用图象表示出来.【变式1】图线a 是线圈在匀强磁场中匀速转动时所产生正弦交流电的图象,当调整线圈转速后,所产生正弦交流电的图象如图线b 所示,以下关于这两个正弦交流电的说法正确的是( ). A.在图中t =0时刻穿过线圈的磁通量均为零 B.线圈先后两次转速之比为3∶2 C.交流电a 的瞬时值为u =10sin 5πt (V) D.交流电b 的最大值为203V考点二 对交变电流的“四值”的比较和理解【典例2】如图所示,N =50匝的矩形线圈abcd ,ab 边长l 120.4 T 的匀强磁场中,外力使线圈绕垂直于磁感线且通过线圈中线的OO ′轴以n =3 000 r/min 的转速匀速转动,线圈电阻r =1 Ω,外电路电阻R =9 Ω,t =0时,线圈平面与磁感线平行,ab 边正转出纸外、cd 边转入纸里. (1)在图中标出t =0时感应电流的方向; (2)写出感应电动势的瞬时值表达式; (3)线圈转一圈外力做多少功?(4)从图示位置转过90°的过程中流过电阻R 的电荷量是多少?【变式2】电阻为1Ω的矩形线圈绕垂直于磁场方向的轴,在匀强磁场中匀速转动,产生的交变电动势随时间变化的图象如图.现把交流电加在电阻为9 Ω的电热丝上,下列判断正确的是( ) A.线圈转动的角速度ω=100 rad/s B.在t =0.01 s 时刻,穿过线圈的磁通量最大 C.电热丝两端的电压U =100 2 V D.电热丝此时的发热功率P =1 800 W【典例3】 (2011·皖南八校联考)如图,图甲和图乙分别表示正弦脉冲波和方波的交变电流与时间的变化关系.若使这两种电流分别通过两个完全相同的电阻,则经过1 min 的时间,两电阻消耗的电功之比W 甲∶W 乙为( ). A.1∶ 2 B .1∶2 C.1∶3 D .1∶6——求交变电流有效值的“三同”原则交变电流的有效值是根据电流通过电阻时产生的热效应定义的,即让交变电流和直流电通过相同的电阻,在相同的时间里若产生的热量相同,则交变电流(电压)的有效值就等于这个直流电流(电压)的值,即求解交变电流有效值问题必须在相同电阻、相同时间、相同热量的“三同”原则下求解.【变式3】一个边长为6 cm 的正方形金属线框置于匀强磁场中,线框平面与磁场垂直,电阻为0.36 Ω.磁感应强度B 随时间t 的变化关系如图所示,则线框中感应电流的有效值为( )A.2×10-5 AB.6×10-5 AC.22×10-5 AD.322×10-5 A 建立模型.“电动机、发电机”模型 (1)模型概述“电动机”模型和“发电机”模型是高考题中时常出现的凡在安培力作用下于磁场中运动的通电导体均可看作电动机模型,在外力作用下于磁场中做切割磁感线运动的导体均可看作发电机模型,此模型综合考查了磁场力的作用、电磁感应、恒定电流、交流电、能量转化与守恒等知识.【例1】 如图所示为电动机的简化模型,线圈abcd 可绕轴O 1O 2自由转动.当线圈中通入如图所示的电流时,顺着O 1O 2的方向看去,线圈将( ). A.顺时针转动 B.逆时针转动 C.仍然保持静止D .既可能顺时针转动,也可能逆时针转动【例2】 如图甲所示是某同学设计的一种振动发电装置的示意图,一个半径r =0.10 m 、匝数n =20的线圈套在永久磁铁槽中,磁场的磁感线均沿半径方向均匀分布(其右视图如图乙所示).在线圈所在位置磁感应强度B 的大小均为B =0.20 T ,线圈的电阻为R 1=0.50 Ω,它的引出线接有R 2=9.5 Ω的小电珠L .外力推动线圈框架的P 端,使线圈沿轴线做往复运动,便有电流通过电珠.当线圈向右的位移x 随时间t 变化的规律如图丙所示时(x 取向右为正).求:(1)线圈运动时产生的感应电动势E 的大小; (2)线圈运动时产生的感应电流I 的大小;(3)每一次推动线圈运动过程中作用力F 的大小; (4)该发电机的输出功率P .第二单元 变压器 电能的输送 补练考点一 理想变压器基本关系的应用(1)基本关系式中U 1、U 2、I 1、I 2均指交流电的有效值.(2)只有一个副线圈的变压器电流与匝数成反比,多个副线圈的变压器没有这种关系. (3)理想变压器变压比公式和变流比公式中的电压和电流均采用峰值时,公式仍成立. 【典例1】 (2010·海南高考题)如图所示,一理想变压器原、副线圈匝数之比为4∶1,原线圈两端接入一正弦交流电源;副线圈电路中R 为负载电阻,交流电压表和交流电流表都是理想电表.下列结论正确的是( ).A.若电压表读数为6 V ,则输入电压的最大值为24 2 VB.若输入电压不变,副线圈匝数增加到原来的2倍,则电流表的读数减小到原来的一半C.若输入电压不变,负载电阻的阻值增加到原来的2倍,则输入功率也增加到原来的2倍D.若保持负载电阻的阻值不变,输入电压增加到原来的2倍,则输出功率增加到原来的4倍 【变式1】 (2012·三亚模拟)如图所示,理想变压器初级线圈的匝数为n 1,次级线圈的匝数为n 2,初级线圈的两端a 、b 接正弦交流电源,电压表V 的示数为220 V ,负载电阻R =44 Ω,电流表A 1的示数为0.20 A .下列判断中正确的是( ). A.初级线圈和次级线圈的匝数比为2∶1 B.初级线圈和次级线圈的匝数比为5∶1 C.电流表A 2的示数为1.0 A D.电流表A 2的示数为0.4 A 考点二 理想变压器动态分析问题 1.匝数比不变的情况:如图1所示:(1)U 1不变,根据U 1U 2=n 1n 2,输入电压U 1决定输出电压U 2,不论负载电阻R 如何变化,U 2也不变.(2)当负载电阻发生变化时,I 2变化,输出电流I 2决定输入电流I 1,故I 1发生变化.(3)I2变化引起P 2变化,由P 1=P 2,故P 1发生变化.2.负载电阻不变的情况 如图2所示:(1)U 1不变,n 1n 2发生变化,故U 2变化.(2)R 不变,U 2改变,故I 2发生变化. 图1 图2(3)根据P 2=U 22R,P 2发生变化,再根据P 1=P 2,故P 1变化,P 1=U 1I 1,U 1不变,故I 1发生变化.【典例2】 (2011·宝鸡模拟) 如图的电路中,有一自耦变压器,左侧并联一只理想电压表V 1后接在稳定的交流电源上;右侧串联灯泡L 和滑动变阻器R ,R 上并联一只理想电压表V 2.下列说法中正确的是( ) A.若F 不动,滑片P 向下滑动时,V1示数变大,V 2示数变小 B.若F 不动,滑片P 向下滑动时,灯泡消耗的功率变小 C.若P 不动,滑片F 向下移动时,V 1、V 2的示数均变小 D.若P 不动,滑片F 向下移动时,灯泡消耗的功率变大【变式2】如图所示是原、副线圈都有中间抽头的理想变压器,在原线圈上通过一个单刀双掷开关S 1与一只电流表A 连接,在副线圈上通过另一个单刀双掷开关S 2与一个定值电阻R 0相连接,通过S 1、S 2可以改变原、副线圈的匝数.在原线圈上加一电压为U 1的交流电后:①当S 1接a ,S 2接c 时,电流表的示数为I 1;②当S 1接a ,S 2接d 时,电流表的示数为I 2;③当S 1接b ,S 2接c 时,电流表的示数为I 3;④当S 1接b ,S 2接d 时,电流表的示数为I 4,则( ). A.I 1=I 2 B .I 1=I 4 C .I 2=I 3 D .I 2=I 4 考点三 远距离输电问题 解决远距离输电问题时应注意 1.首先画出输电的电路图:如图右上所示2.分析三个回路:在每个回路中变压器的原线圈是回路的用电器,而相应的副线圈是下一个回路的电源.3.综合运用下面三个方面的关系求解 (1)能量关系,P =U 1I 1=U 2I 2=P 用户+ΔP ,ΔP =I 22R ,P 用户=U 3I 3=U 4I 4 (2)电路关系,U 2=ΔU +U 3,ΔU =I 2R(3)变压器关系,U 1U 2=I 2I 1=n 1n 2,U 3U 4=I 4I 3=n 3n 4.。

高中物理选修3-2-交变电流

高中物理选修3-2-交变电流

交变电流知识元交变电流知识讲解交变电流1.交变电流定义:电流方向随时间做周期性变化的电流称为交变电流,简称交流(AC).与直流电相比,交流电有许多优点,如:可以利用变压器升高或降低电压,利于长途传输;可以驱动结构简单,运行可靠的感应电动机.2.直流:方向不随时间而变化的电流。

交变电流的产生图1是交流发电机的简图,根据图1可知(1)甲、丙位置时线圈中没有电流,乙、丁位置时线圈中电流最大。

(2)甲→乙→丙电流方向为DCBA,丙→丁→甲电流方向为ABCD,在甲、丙位置电流改变方向。

(3)结论:线圈每转一周,电流方向改变两次,电流方向改变的时刻也就是线圈中无电流的时刻(或者说磁通量最大的时刻),如图中甲、丙位置,我们把线圈平面垂直于磁感线时的位置叫作中性面。

正弦式电流表达式的推导设线圈从中性面以角速度ω开始转动,经时间t,线圈转过θ=ωt,此时V与B夹角也为θ,令ab=dc=L,ad=bc=L′,则线圈面积S=LL′。

此时,ab与dc边产生的电动势大小均为BLV sinωt,整个线圈中产生的瞬时电动势大小为:e=2BLV sinωt,又,故有令E m=BωS有:e=E m sinωt(E m为最大值)若电路总电阻为R,则瞬时电流为:交变电流图象1.正弦交流电图象2.其他交流电图象例题精讲交变电流例1.一交流电流的图象如图所示,由图可知()A.用电流表测该电流,其示数为10 AB.该交流电流的频率为0.01HzC.该交流电流通过10Ω电阻时,电阻消耗的电功率为1000WD.该交流电流即时值表达式为i=10sin628tA例2.如图甲所示,将阻值为R=5Ω的电阻接到内阻不计的正弦交变电源上,电流随时间变化的规律如图乙所示,电流表串联在电路中测量电流的大小.对此,下列说法正确的是()A.电阻R两端电压变化规律的函数表达式为u=2.5sin(200πt)VB.电阻R消耗的电功率为1.25WC.如图丙所示,若此交变电流由一矩形线框在匀强磁场中匀速转动产生,当线圈的转速提升一倍时,电流表的示数为1AD.这一交变电流与图丁所示电流比较,其有效值之比为例3.一个闭合矩形线圈在匀强磁场中绕垂直于磁感线的轴匀速转动,产生的感应电流如图所示.由该图可得出的正确判断是()A.0.01s时,线圈平面处于中性面位置B.0.02s时,线圈平面与磁感线平行C.该交变电流的频率为50HzD.1s内电流的方向变化50次例4.某线圈在匀强磁场中绕垂直于磁场的转轴匀速转动,产生交变电流的图象如图所示,由图中信息可以判断()A.在A和C时刻线圈处于中性面位置B.在B和D时刻穿过线圈的磁通量最大C.从A~D时刻线圈转过的角度为2πD.若从O~D时刻历时0.02s,则在1s内交变电流的方向改变100次例5.如图1所示,在匀强磁场中,有一匝数为10匝的矩形金属线圈两次分别以不同的转速绕与磁感线垂直的轴匀速转动,产生的交变电动势图象如图2中曲线a、b所示,则下列说法中不正确的是()A.曲线a、b对应的线圈转速之比为2:3B.曲线a、b对应的t=6×10-2s时刻线圈平面均与中性面重合C.曲线b对应的t=0时刻穿过线圈磁通量为WbD.曲线b对应的交变电动势有效值为10V例6.图甲是小型交流发电机的示意图,两磁极N、S间的磁场可视为水平方向的匀强磁场,A为交流电流表.线圈绕垂直于磁场方向的水平轴OO′沿逆时针方向匀速转动,从图示位置开始计时,产生的交变电流随时间变化的图象如图乙所示,以下判断正确的是()A.电流表的示数为10 AB.线圈转动的角速度为100πrad/sC.0.01s时线圈平面与磁场方向平行D.0.02s时电阻R中电流的方向自右向左例7.闭合线圈在匀强磁场中匀速转动,转速为240r/min,若线圈平面转至与磁场方向平行时的电动势2V,则从中性面开始计时,所产生的交流电动势的表达式为e=___________V,电动势的峰值为___V,从中性面起经s,交流电动势的大小为___V。

高中物理复习选修3-2第十一章交变电流传感器第2讲变压器远距离输电

高中物理复习选修3-2第十一章交变电流传感器第2讲变压器远距离输电

第2讲 变压器 远距离输电知识要点一、理想变压器 1.构造和原理(1)构造:如图1所示,变压器是由闭合铁芯和绕在铁芯上的两个线圈组成的。

图1(2)原理:电磁感应的互感现象。

2.基本关系式(1)功率关系:P 入=P 出。

(2)电压关系:U 1U 2=n 1n 2。

有多个副线圈时U 1n 1=U 2n 2=U 3n 3=…。

(3)电流关系:只有一个副线圈时I 1I 2=n 2n 1。

由P 入=P 出及P =UI 推出有多个副线圈时,U 1I 1=U 2I 2+U 3I 3+…+U n I n 。

二、远距离输电图21.电压损失:(1)ΔU =U 2-U 3。

(2)ΔU =I 2R 线。

2.功率损失:(1)ΔP=P2-P3。

(2)P损=I22R线=ΔU2 R线。

3.功率关系:P1=P2,P3=P4,P2=P损+P3。

4.电压、电流关系:U1U2=n1n2=I2I1,U3U4=n3n4=I4I3,U2=ΔU+U3,I2=I3=I线。

5.输电电流:I线=P2U2=P3U3=U2-U3R线。

6.输电线上损耗的电功率:P损=I线ΔU=I2线R线=⎝⎛⎭⎪⎫P2U22R线。

基础诊断1.[教科版选修3-2·P62·T10改编]有些机床为了安全,照明电灯用的电压是36 V,这个电压是把380 V的电压降压后得到的。

如果变压器的原线圈是1 140匝,副线圈是()A.1 081匝B.1 800匝C.108匝D.8 010匝解析由题意知U1=380 V,U2=36 V,n1=1 140,则U1U2=n1n2得n2=U2U1n1=108,选项C 正确。

答案 C2. (多选)理想变压器的原、副线圈匝数比n1∶n2=10∶1,原线圈两端接交流电源,则()A.原、副线圈中电流频率之比f1∶f2=10∶1B.原、副线圈两端电压之比为U1∶U2=10∶1C.原、副线圈内电流之比I1∶I2=1∶10D.变压器输入和输出功率之比P1∶P2=10∶1答案BC3.如图3所示,理想变压器原线圈接在交流电源上,图中各电表均为理想电表。

高三物理一轮总复习 第10章 交变电流传感器(选修3-2)

高三物理一轮总复习 第10章 交变电流传感器(选修3-2)
第十章 交变电流 传感器
考点
要求
交变电流、交变电流 的图象

说明
正弦交变电流的函数
表达式、峰值和有效 值

Hale Waihona Puke 理想变压器Ⅱ远距离输电

传感器的简单使用
1.不要求讨论交变电流的相位和相位差的问 题2.只限于单相理想变压器
本章的重点是对交变电流产生的分析, 能写出函数表达式和画出相应的图象, 弄清交变电流的峰值,有效值和平均值 的意义,能正确运用理想变压器的规律 分析解决问题.新旧考纲对知识、内容, 要求相同,仍然不要求讨论相位变化和 相位差的问题,变压器问题分析只限于 单相理想变压器.“变压器、远距离输 电”是本章高考命题的热点.
年份 考题
题型 分值
全国Ⅱ卷 选择题
第 21 题
山东卷第 选择题
17 题
2014
广东卷第 选择题
19 题
江苏卷第 选择题
3题
6分 6分 6分 3分
主要考点
理想变压器 电能的输送 电能的输送 理想变压器

高中物理复习选修3-2第十一章交变电流传感器实验十二传感器的简单使用

高中物理复习选修3-2第十一章交变电流传感器实验十二传感器的简单使用

实验十二传感器的简单使用1.研究热敏电阻的热敏特性装置及器材操作要领(1)绝缘:热敏电阻要绝缘处理。

(2)适当:“欧姆”挡要选择适当的倍率。

(3)调零:要先进行欧姆调零再测量。

(4)等待:加开水后要等一会儿再测阻值,以使电阻温度与水的温度相同。

(5)重新调零:欧姆表每次换挡后都要重新调零。

(6)记录:记下温度计的示数和多用电表测出的热敏电阻的阻值。

2.研究光敏电阻的光敏特性装置及器材操作要领(1)连接:按图示电路连接好。

(2)选挡:多用电表置于“×100”挡。

(3)调零:要先进行欧姆调零再测量。

(4)遮光:用手掌(或黑纸)遮光,改变照射到光敏电阻上的光的多少。

(5)重新调零:欧姆表每次换挡后都要重新调零。

(6)记录:记下不同光照强度下光敏电阻的阻值。

数据处理(1)研究热敏电阻的热敏特性①在R T-t坐标系中,粗略画出热敏电阻的阻值随温度变化的图线。

②结论:半导体热敏电阻的阻值随温度的升高而减小,随温度的降低而增大。

(2)研究光敏电阻的光敏特性①根据记录数据分析光敏电阻的特性。

②结论:光敏电阻的阻值被光照射时发生变化,光照增强电阻变小,光照减弱电阻变大。

误差分析(1)温度计读数带来误差。

(2)多用电表读数带来误差。

(3)热敏电阻与水温不同带来误差。

(4)作R T-t图像时的不规范易造成误差。

教材原型实验命题角度温度传感器的应用【例1】(2016·全国Ⅰ卷,23)现要组装一个由热敏电阻控制的报警系统,要求当热敏电阻的温度达到或超过60 ℃时,系统报警。

提供的器材有:热敏电阻,报警器(内阻很小,流过的电流超过I c时就会报警),电阻箱(最大阻值为999.9 Ω),直流电源(输出电压为U,内阻不计),滑动变阻器R1(最大阻值为1 000 Ω),滑动变阻器R2(最大阻值为2 000 Ω),单刀双掷开关一个,导线若干。

在室温下对系统进行调节,已知U约为18 V,I c约为10 mA;流过报警器的电流超过20 mA时,报警器可能损坏;该热敏电阻的阻值随温度升高而减小,在60 ℃时阻值为650.0 Ω。

高二物理选修32_第五章交变电流知识点总结

高二物理选修32_第五章交变电流知识点总结

高二物理选修32_第五章交变电流知识点总结第五章交变电流5.1 交变电流一、直流电(DC) 电流方向不随时间而改变交变电流(AC) 大小和方向都随时间做周期性变化的电流交流发电机模型的原理简图二、交变电流的产生中性面线圈平面与磁感线垂直的位置叫做中性面(1)线圈经过中性面时,穿过线圈的磁通量最大,但磁通量的变化率为零,线圈中的电动势为零(2)线圈经过中性面时,电流将改变方向,线圈转动一周,两次经过中性面,电流方向改变两次三、交变电流的变化规律以线圈经过中性面开始计时,在时刻t线圈中的感应电动势(ab和cd边切割磁感线)e为电动势在时刻t的瞬时值,Em为电动势的最大值(峰值)(四、交流电的图像1五、交变电流的种类课堂练习25.2《描述交变电流的物理量》复习回顾(一)交变电流:大小和方向随时间做周期性变化的电流;简称交流。

其中按正弦规律变化的交流电叫正弦交流电。

(二)正弦交流电的产生及变化规律1、产生:线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动时,产生正弦交流电。

2、中性面:跟磁场方向垂直的平面叫做中性面。

这一位置穿过线圈的磁通量最大,磁通量变化率为零,线圈中无感应电动势。

3、规律:瞬时值表达式:从中性面开始计时一、周期和频率物理意义:表示交流电变化的快慢1、周期:交变电流完成一次周期性变化所需的时间。

2、频率:交变电流一秒内完成周期性变化的次数。

角频率:线圈在磁场中转动的角速度二、峰值和有效值3.有效值定义:E、U、I根据电流的热效应来规定,让交流与直流分别通过相同的电阻,如果在交流的一个周期内3它们产生的热量相等,就把这个直流的数值叫做这个交流的有效值。

4.正弦交流电的有效值与最大值的关系:IE mmI,E, 22说明:A、以上关系式只适用于正弦或余弦交流电;B、交流用电器的额定电压和额定电流指的是有效值;C、交流电流表和交流电压表的读数是有效值D、对于交流电若没有特殊说明的均指有效值注意:峰值(最大值)、有效值、平均值在应用上的区别。

高三物理 一轮复习 选修3-2 第十章交变电流 全章

高三物理 一轮复习 选修3-2 第十章交变电流 全章

工具
选修3-2 第十章 交变电流 传感器
栏目导引
4.如图甲所示,矩形线圈abcd在匀强磁场中逆 时针匀速转动时,线圈中产生的交流电如图乙所 示,设沿abcda方向为电流正方向,则( )
工具
选修3-2 第十章 交变电流 传感器
栏目导引
A.乙图中Oa时间段对应甲图中A至B图的过程 B.乙图中c时刻对应甲图中的C图 C.若乙图中d等于0.02 s,则1 s内电流的方向改 变了50次 D.若乙图中b等于0.02 s,则交流电的频率为50 Hz
工具
选修3-2 第十章 交变电流 传感器
栏目导引
对交变电流的“四值”的理解及比较
物理量 物理含义
重要关系
适用情况及 说明
交变电流某 计算线圈某 e=Emsin ωt 瞬时值 一 时 刻 的 时刻的受力 i=Imsin ωt 值 情况 峰值 Em=nBSω 最大的瞬时 讨论电容器 Im =Em/(R+ 值 的击穿电压 r)
工具
选修3-2 第十章 交变电流 传感器
栏目导引
工具
选修3-2 第十章 交变电流 传感器
栏目导引
A.电压表V的示数为220 V B.电路中的电流方向每秒钟改变50次 C.灯泡实际消耗的功率为484 W D.发电机线圈内阻每秒钟产生的焦耳热为24.2 J
工具
选修3-2 第十章 交变电流 传感器
栏目导引
A.在图中t=0时刻穿过线圈的磁通量均为零 B.线圈先后两次转速之比为3∶2 C.交流电a的瞬时值为u=10 sin 5πt(V) D.交流电b的最大值为5 V
工具
选修3-2 第十章 交变电流 传感器
栏目导引
析:
t=0 时刻穿过线圈的磁通量最大,磁通量的变

(完整版)高中物理选修3-2知识点清单(非常详细)

(完整版)高中物理选修3-2知识点清单(非常详细)

(完整版)高中物理必修3-2知识点清单(非常详细)第一章 电磁感应第二章 楞次定律和自感现象一、磁通量1.定义:在磁感应强度为B 的匀强磁场中,与磁场方向垂直的面积S 和B 的乘积. 2.公式:Φ=B ·S .3.单位:1 Wb =1_T ·m 2.4.标矢性:磁通量是标量,但有正、负. 二、电磁感应 1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象. 2.产生感应电流的条件(1)电路闭合;(2)磁通量变化. 3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断 1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化. (2)适用情况:所有的电磁感应现象. 2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.3.楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”; (2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”四、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,n 为线圈匝数.3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv .(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Blv sin_θ. 五、自感与涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流. (1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.考点一 公式E =n ΔΦ/Δt 的应用 1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 引起时,则E =n S ΔB Δt ;当ΔΦ仅由S 引起时,则E =n B ΔSΔt.2.磁通量的变化率ΔΦΔt是Φ-t 图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点二 公式E =Blv 的应用 1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B 、l 、v 三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E =Blv sin θ,θ为B 与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Bl v .若v 为瞬时速度,则E 为相应的瞬时感应电动势.3.有效性公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度.例如,求下图中MN 两点间的电动势时,有效长度分别为甲图:l=cd sin β.乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.六、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦΔt . (2)路端电压:U =IR =ER +r·R .二、电磁感应中的图象问题 1.图象类型(1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象.考点一 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E =n ΔΦΔt或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的方向,电势逐渐升高. 考点二 电磁感应中的图象问题 1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算. 2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤 (1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者是E -t 图象、I -t 图象等; (2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.第三章 交变电流 传感器一、交变电流的产生和变化规律 1.交变电流大小和方向随时间做周期性变化的电流. 2.正弦交流电(1)产生:在匀强磁场里,线圈绕垂直于磁场方向的轴匀速转动. (2)中性面①定义:与磁场方向垂直的平面.②特点:线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零.线圈每经过中性面一次,电流的方向就改变一次.(3)图象:用以描述交变电流随时间变化的规律,如果线圈从中性面位置开始计时,其图象为正弦曲线.二、描述交变电流的物理量1.交变电流的周期和频率的关系:T =1f.2.峰值和有效值(1)峰值:交变电流的峰值是它能达到的最大值.(2)有效值:让交流与恒定电流分别通过大小相同的电阻,如果在交流的一个周期内它们产生的热量相等,则这个恒定电流I 、恒定电压U 就是这个交变电流的有效值.(3)正弦式交变电流的有效值与峰值之间的关系IU E 3.平均值:E =n ΔΦΔt=BL v .考点一 交变电流的变化规律1.正弦式交变电流的变化规律(线圈在中性面位置开始计时)图象2.(1)线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦΔt=0,e =0,i =0,电流方向将发生改变.(2)线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦΔt最大,e 最大,i 最大,电流方向不改变.3.解决交变电流图象问题的三点注意(1)只有当线圈从中性面位置开始计时,电流的瞬时值表达式才是正弦形式,其变化规律与线圈的形状及转动轴处于线圈平面内的位置无关.(2)注意峰值公式E m =nBS ω中的S 为有效面积. (3)在解决有关交变电流的图象问题时,应先把交变电流的图象与线圈的转动位置对应起来,再根据特殊位置求特征解.考点二 交流电有效值的求解 1.正弦式交流电有效值的求解 利用I =I m2,U =U m 2,E =E m2计算.2.非正弦式交流电有效值的求解交变电流的有效值是根据电流的热效应(电流通过电阻生热)进行定义的,所以进行有效值计算时,要紧扣电流通过电阻生热(或热功率)进行计算.注意“三同”:即“相同电阻”,“相同时间”内产生“相同热量”.计算时“相同时间”要取周期的整数倍,一般取一个周期.考点三 交变电流的“四值”的比较1.书写交变电流瞬时值表达式的基本思路(1)求出角速度ω,ω=2πT=2πf .(2)确定正弦交变电流的峰值,根据已知图象读出或由公式E m =nBS ω求出相应峰值. (3)明确线圈的初始位置,找出对应的函数关系式. ①线圈从中性面位置开始转动,则i -t 图象为正弦函数图象,函数式为i =I m sin ωt . ②线圈从垂直中性面位置开始转动,则i -t 图象为余弦函数图象,函数式为i =I m cos ωt三、变压器原理1.工作原理:电磁感应的互感现象. 2.理想变压器的基本关系式 (1)功率关系:P 入=P 出.(2)电压关系:U 1U 2=n 1n 2,若n 1>n 2,为降压变压器;若n 1<n 2,为升压变压器.(3)电流关系:只有一个副线圈时,I 1I 2=n 2n 1; 有多个副线圈时,U 1I 1=U 2I 2+U 3I 3+…+U n I n .四、远距离输电1.输电线路(如图所示)2.输送电流(1)I =P U. (2)I =U -U ′R.3.电压损失 (1)ΔU =U -U ′. (2)ΔU =IR . 4.功率损失 (1)ΔP =P -P ′.(2)ΔP =I 2R =⎝ ⎛⎭⎪⎫P U 2R =ΔU 2R .考点一 理想变压器原、副线圈关系的应用 1.基本关系(1)P 入=P 出,(有多个副线圈时,P 1=P 2+P 3+……)(2)U 1U 2=n 1n 2,有多个副线圈时,仍然成立.(3)I 1I 2=n 2n 1,电流与匝数成反比(只适合一个副线圈) n 1I 1=n 2I 2+n 3I 3+……(多个副线圈)(4)原、副线圈的每一匝的磁通量都相同,磁通量变化率也相同,频率也就相同. 2.制约关系(1)电压:副线圈电压U 2由原线圈电压U 1和匝数比决定. (2)功率:原线圈的输入功率P 1由副线圈的输出功率P 2决定. (3)电流:原线圈电流I 1由副线圈电流I 2和匝数比决定. 3.关于理想变压器的四点说明: (1)变压器不能改变直流电压.(2)变压器只能改变交变电流的电压和电流,不能改变交变电流的频率. (3)理想变压器本身不消耗能量.(4)理想变压器基本关系中的U 1、U 2、I 1、I 2均为有效值. 考点二 理想变压器的动态分析 1.匝数比不变的情况(如图所示)(1)U 1不变,根据U 1U 2=n 1n 2可以得出不论负载电阻R 如何变化,U 2不变.(2)当负载电阻发生变化时,I 2变化,根据I 1I 2=n 2n 1可以判断I 1的变化情况.(3)I 2变化引起P 2变化,根据P 1=P 2,可以判断P 1的变化. 2.负载电阻不变的情况(如图所示)(1)U 1不变,n 1n 2发生变化,U 2变化. (2)R 不变,U 2变化,I 2发生变化.(3)根据P 2=U 22R和P 1=P 2,可以判断P 2变化时,P 1发生变化,U 1不变时,I 1发生变化.3.变压器动态分析的思路流程考点三 关于远距离输电问题的分析 1.远距离输电的处理思路对高压输电问题,应按“发电机→升压变压器→远距离输电线→降压变压器→用电器”这样的顺序,或从“用电器”倒推到“发电机”一步一步进行分析.2.远距离高压输电的几个基本关系(以下图为例):(1)功率关系:P 1=P 2,P 3=P 4,P 2=P 损+P 3.(2)电压、电流关系:U 1U 2=n 1n 2=I 2I 1,U 3U 4=n 3n 4=I 4I 3U 2=ΔU +U 3,I 2=I 3=I 线.(3)输电电流:I 线=P 2U 2=P 3U 3=U 2-U 3R 线.(4)输电线上损耗的电功率:P 损=I 线ΔU =I 2线R 线=⎝ ⎛⎭⎪⎫P 2U 22R 线.3.解决远距离输电问题应注意下列几点(1)画出输电电路图.(2)注意升压变压器副线圈中的电流与降压变压器原线圈中的电流相等. (3)输电线长度等于距离的2倍.(4)计算线路功率损失一般用P 损=I 2R 线.。

高中物理选修3-2电磁感应第五章《交变电流》(人教版)

高中物理选修3-2电磁感应第五章《交变电流》(人教版)

物理选修3-2第五章交变电流第一节交变电流肥城市第六高级中学汪顺安●教学目标一、知识目标1.使学生理解交变电流的产生原理,知道什么是中性面.2.掌握交变电流的变化规律及表示方法.3.理解交变电流的瞬时值和最大值及中性面的准确含义.二、技能目标1.掌握描述物理量的三种基本方法(文字法、公式法、图象法).2.培养学生观察能力,空间想象能力以及将立体图转化为平面图形的能力.3.培养学生运用数学知识解决物理问题的能力.三、情感态度目标培养学生理论联系实际的思想.●教学重点交变电流产生的物理过程的分析.●教学难点交变电流的变化规律及应用.●教学方法演示法、分析法、归纳法.●教学用具手摇单相发电机、小灯泡、示波器、多媒体教学课件、示教用大的电流表.●课时安排1课时●教学过程一、引入新课[师]出示单相交流发电机,引导学生首先观察它的主要构造.[演示]将手摇发电机模型与小灯泡组成闭合电路.当线框快速转动时,观察到什么现象?[生]小灯泡一闪一闪的.[师]再将手摇发电机模型与示教电流表组成闭合电路,当线框缓慢转动(或快速摆动)时,观察到什么?[生]电流表指针左右摆动.[师]线圈里产生的是什么样的电流?请同学们阅读教材后回答.[生]转动的线圈里产生了大小和方向都随时间做周期性变化的交变电流.[师]现代生产和生活中大都使用交流电.交流电有许多优点,今天我们学习交流电的产生和变化规律.二、新课教学1.交变电流的产生[师]为什么矩形线圈在匀强磁场中匀速转动时线圈里能产生交变电流?[生]对这个问题有浓厚的兴趣,讨论热烈.[师]多媒体课件打出下图.当abcd线圈在磁场中绕OO′轴转动时,哪些边切割磁感线?[生]ab与cd.[师]当ab边向右、cd边向左运动时,线圈中感应电流的方向如何?[生]感应电流是沿着a→b→c→d→a方向流动的.[师]当ab边向左、cd边向右运动时,线圈中感应电流的方向如何?[生]感应电流是沿着d→c→b→a→d方向流动的.[师]正是这两种情况交替出现,在线圈中产生了交变电流.当线圈转到什么位置时,产生的感应电动势最大?[生]线圈平面与磁感线平行时,ab边与cd边线速度方向都跟磁感线方向垂直,即两边都垂直切割磁感线,此时产生感应电动势最大.[师]线圈转到什么位置时,产生的感应电动势最小?[生]当线圈平面跟磁感线垂直时,ab边和cd边线速度方向都跟磁感线平行,即不切割磁感线,此时感应电动势为零.[师]利用多媒体课件,屏幕上打出中性面概念:(1)中性面——线框平面与磁感线垂直位置.(2)线圈处于中性面位置时,穿过线圈Φ最大,但=0.(3)线圈越过中性面,线圈中I感方向要改变.线圈转一周,感应电流方向改变两次.2.交变电流的变化规律设线圈平面从中性面开始转动,角速度是ω.经过时间t,线圈转过的角度是ωt,ab边的线速度v的方向跟磁感线方向间的夹角也等于ωt,如右图所示.设ab边长为L1,bc边长L2,磁感应强度为B,这时ab边产生的感应电动势多大?[生]e ab=BL1vsinωt=BL1·ωsinωt=BL1L2sinωt[师]cd边中产生的感应电动势跟ab边中产生的感应电动势大小相同,又是串联在一起,此时整个线框中感应电动势多大?[生]e=e ab+e cd=BL1L2ωsinωt[师]若线圈有N匝时,相当于N个完全相同的电源串联,e=NBL1L2ωsinωt,令E m=NBL1L2ω,叫做感应电动势的最大值,e叫做感应电动势的瞬时值.请同学们阅读教材,了解感应电流的最大值和瞬时值.[生]根据闭合电路欧姆定律,感应电流的最大值I m=,感应电流的瞬时值i=I m s i nωt.[师]电路的某一段上电压的瞬时值与最大值等于什么?[生]根据部分电路欧姆定律,电压的最大值U m=I m R,电压的瞬时值U=U m sinωt.[师]电动势、电流与电压的瞬时值与时间的关系可以用正弦曲线来表示,如下图所示:3.几种常见的交变电波形三、小结本节课主要学习了以下几个问题:1.矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动时,线圈中产生正弦式交变电流.2.从中性面开始计时,感应电动势瞬时值的表达式为e=NBSωs i nω t,感应电动势的最大值为E m=NBSω.3.中性面的特点:磁通量最大为Φm,但e=0.六、本节优化训练设计1.一矩形线圈,绕垂直于匀强磁场并位于线圈平面内的固定轴转动,线圈中的感应电动势E随时间t的变化如图所示,则下列说法中正确的是A.t1时刻通过线圈的磁通量为零B.t2时刻通过线圈的磁通量的绝对值最大C.t3时刻通过线圈的磁通量变化率的绝对值最大D.每当电动势E变换方向时,通过线圈的磁通量的绝对值都为最大2.一台发电机产生的按正弦规律变化的感应电动势的最大值为311 V,线圈在磁场中转动的角速度是100π rad/s.(1)写出感应电动势的瞬时值表达式.(2)若该发电机只与含电阻的负载组成闭合电路,电路中的总电阻为100 Ω,试写出通过负载的电流强度的瞬时表达式.在t= s时电流强度的瞬时值为多少?3.一个矩形线圈在匀强磁场中转动产生交流电压为u=220s i n100πt V,则A.它的频率是50 HzB.当t=0时,线圈平面与中性面重合C.电压的平均值是220 VD.当t= s时,电压达到最大值4.交流发电机工作时的电动势的变化规律为e=E m s i nωt,如果转子的转速n提高1倍,其他条件不变,则电动势的变化规律将变化为A.e=E m s in2ωtB.e=2E m s in2ωtC.e=2E m s in4ωtD.e=2E m s inωt参考答案:1.D2.解析:因为电动势的最大值E m=311 V,角速度ω=100 π rad/s,所以电动势的瞬时值表达式是e=311s in100πt V.根据欧姆定律,电路中电流强度的最大值为I m= A=3.11 A,所以通过负载的电流强度的瞬时值表达式是i=3.11s in100πt A.当t= s时,电流的瞬时值为i=3.11s in(100π·)=3.11×A=1.55 A.3.ABD4.B四、作业问题与练习第3、4题五、板书设计●教后记注重与电磁感应的联系,重视交变电流产生的原理,多与现实生活和生产联系,并注重知识的灵活应用。

高中物理复习选修3-2第十一章交变电流传感器第1讲交变电流的产生和描述

高中物理复习选修3-2第十一章交变电流传感器第1讲交变电流的产生和描述

[高考导航]考点内容要求全国卷三年考情分析201720182019交变电流、交变电流的图像 ⅠⅢ卷·T 16:交变电流的有效值正弦交变电流的函数表达式、峰值和有效值 Ⅰ 理想变压器 Ⅱ 远距离输电Ⅰ 实验十二:传感器的简单使用第1讲 交变电流的产生和描述知识要点一、交变电流、交变电流的图像 1.交变电流 (1)定义大小和方向都随时间做周期性变化的电流。

(2)图像:如图1(a)、(b)、(c)、(d)所示都属于交变电流。

其中按正弦规律变化的交变电流叫正弦式交变电流,如图(a)所示。

图12.正弦式交变电流的产生和图像(1)产生:在匀强磁场里,线圈绕垂直于磁场方向的轴匀速转动。

(如图2所示)图2(2)两个特殊位置的特点①线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦΔt =0,e =0,i =0,电流方向将发生改变。

②线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦΔt 最大,e 最大,i 最大,电流方向不改变。

(3)电流方向的改变一个周期内线圈中电流的方向改变两次。

(4)交变电动势的最大值E m =nBSω,与转轴位置无关,与线圈形状无关。

(5)交变电动势随时间的变化规律(中性面开始计时) e =nBSωsin__ωt 。

二、描述交变电流的物理量 1.周期和频率(1)周期(T ):交变电流完成一次周期性变化(线圈转一周)所需的时间,单位是秒(s),公式T =2πω。

(2)频率(f ):交变电流在1 s 内完成周期性变化的次数。

单位是赫兹(Hz)。

(3)周期和频率的关系:T =1f 或f =1T 。

2.交变电流的瞬时值、峰值、有效值和平均值 (1)瞬时值:交变电流某一时刻的值,是时间的函数。

如e =E m sin ωt 。

(2)峰值:交变电流或电压所能达到的最大的值。

(3)有效值①定义:让交流和恒定电流通过相同阻值的电阻,如果它们在一个周期内产生的热量相等,就把这一恒定电流的数值叫做这一交流的有效值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交变电流 传感器一.交变电流的产生和变化规律1.交变电流:大小和方向都随时间做 变化的电流2.正弦交流电(1)产生:闭合矩形线圈在匀强磁场中绕 方向的轴匀速转动时线圈中产生的感应电流(2)中性面:①定义:与磁场方向 的平面②特点:线圈位于中性面时,穿过线圈的磁通量 ,磁通量的变化率为 ,感应电动势为 ,线圈每经过中性面一次,电流的方向就改变一次。

(3)变化规律(线圈在中性面位置开始计时)①电动势(e ):e = ;②电压(u ):u = ; ③电流(i ):i = 。

二.描述交变电流的物理量1.交变电流的周期和频率的关系:T =2.交流电的四值①峰值:交变电流的峰值就是它能达到的 ,正弦交流电的峰值E m = ,对应电容器的击穿电压。

②瞬时值:交变电流某一时刻的值,对应计算线圈某时刻的受力情况,通电时间等。

③有效值:让交流与恒定电流分别通过大小 的电阻,如果在交流的一个周期内它们产生的 相等,则这个恒定电流I 、恒定电压U 就称作这个交流电的有效值,对应关于交流电的功和能的问题 ④平均值:=E ,对应计算通过电路横截面的电荷量q =三.变压器 远距离输电1.构造和原理(1)主要构造:由 、 和 组成(2)工作原理:电磁感应的 现象2.理想变压器的基本关系(1)功率关系:P 入=(2)电压关系:=21U U ,若21n n >,为 变压器;若21n n <,为 变压器 (3)电流关系:只有一个副线圈时,=21I I ; 有多个副线圈时,n n I U I U I U I U +++= 332211四.远距离输电——电路损失(1)功率损失:设输电电流为I ,输电线的电阻为R ,则功率损失为=∆P 。

(2)电压损失:=∆U ,减小功率损失和电压损失,都要求提高 ,减小输电电流五.传感器1.概念:传感器通常是把被测的 信息,按一定规律转换成与之对应的 信息的器件或装置2.结构:一般由 和 组成,敏感元件能直接感受非电信息,并将这些信息转换成易于 的物理量,形成电信号;处理电路能把微小的信号进行 ,并除去干扰信号,使敏感元件输出的电信号转变成便于显示、记录、处理和控制的 。

3.敏感元件就其感知外界信息的原理科分为三类: 类,化学类,生物类;热敏电阻用 材料制成,具有电阻随 灵敏变化的特性,可以实现对温度的测量;干簧管是一种能感知 的敏感元件,它由密封在玻璃管内的两个 构成,两个簧片相互交叠但其间保持一个缝隙,簧片在磁场作用下会磁化为异名磁极相对的磁铁,当磁力大于簧片的弹力时,两者紧密地接触。

练习题1.线圈在匀强磁场中绕垂直于磁场的轴匀速旋转时产生的交变电动势为tV e π20sin 1.14=,则下列说法正确的是( )A .0=t 时,线圈平面位于中性面B .0=t 时,穿过线圈的磁通量最大C .0=t 时,导线切割磁感线的有效速度最大D .s t 4.0=时,电动势有最大值V 1.142.矩形线圈在匀强磁场中匀速转动时产生的电动势随时间变化的规律如图所示,下列判断正确的是( )A .在1t 、3t 时刻线图通过中性面B .在2t 、4t 时刻线圈中的磁通量最大C .在1t 、3t 时刻线圈中磁通量变化最快D .在2t 、4t 时刻线圈与中性面垂直3.下列各个量,其中所指不是有效值的是( )A .交流电压表的示数.B .保险丝的熔断电流.C .电容器的击穿电压.D .家庭用的V 220交变电压.4.由交变电动势的瞬时表达式t e π4sin 210⋅=V 可知( )A .此交流的频率是Hz 4π.B .此交流的周期是5.0s .C .此交流电动势的有效值10V .D .5.0=t s 时,该交流电动势达最大值.5.一电热器接在10V 直流电压上,消耗的电功率为P ,当把它接在一正弦交变电压上时,消耗的电功率为4P ,则该交变电压的最大值是( ) A .210V B .10V C .25 V D .5 V6.图中闭合线圈都在匀强磁场中绕虚线所示的固定转轴匀速转动,不能产生正弦式交变电流的是( )A .B .C .D .7.如图所示,一矩形闭合线圈在匀强磁场中绕垂直于磁场方向的转轴OO ’以恒定的角速度ω转动,从线圈平面与磁场方向平行时开始计时,线圈中产生的交变电流按照图乙所示的余弦规律变化,在ωπ2=t 时刻( ) A .线圈中的电流最大B .穿过线圈的磁通量为零C .线圈所受的安培力为零D .穿过线圈磁通量的变化率最大8.矩形线圈在匀强磁场中绕垂直于磁感线的转轴匀速转动,产生才交流电动势的最大值为Em ,设t=0时线圈平面与磁场平行,当线圈的匝数增加一倍,转速也增大一倍,其他条件不变时,交流电的电动势为( )A .t E e m ω2sin 2=B .t E e m ω2sin 4=C .t E e m ω2sin =D .tE e m ω2cos 2=9.如图所示,单匝矩形线圈的一半放在具有理想边界的匀强磁场中,线圈轴线OO ’与磁场边界重合,线圈绕OO ’轴顺时针匀速转动,t=0时刻线圈平面与磁场方向垂直,规定电流方向沿abcda 为正方向,则线圈内感应电流随时间变化的图像是( )A .B .C .D .10.关于理想变压器原、副线圈上的交变电流,它们一定具有相同的:( )A .频率B .功率C .磁通量的变化率D .交变电流的最大值11.如图所示,先后用不同的交流电源给同一盏灯泡供电,第一次灯泡两端的电压随时间按正弦规律变化,如图甲所示,第二次灯泡两端的电压变化规律如图乙所示,若图甲、乙中的U 0、T 所表示的电压、周期值是相同的,则以下说法正确的是( )A .第一次灯泡两端的电压有效值是022UB .第二次灯泡两端的电压有效值是023U C .第一次和第二次灯泡的电功率之比是2:9 D .第一次和第二次灯泡的电功率之比是1:512.如图所示的区域内有垂直于纸面的匀强磁场,磁感应强度为B ,电阻为R 、半径为L 、圆心角为45°的扇形闭合导线框绕垂直于纸面的O 轴以角速度ω匀速转动(O 轴位于磁场边界),则线框内产生的感应电流的有效值为( )A .R BL 22ωB .R BL 222ωC .R BL 422ωD .RBL 42ω 13.如图所示,在匀强磁场中匀速转动的矩形线圈的周期为T ,转轴O 1O 2垂直于磁场方向,线圈电阻为2Ω,从线圈平面与磁场方向平行时开始计时,线圈转过60°时的感应电流为1A ,那么( )A .线圈消耗的电功率为4WB .线圈中感应电流的有效值为2AC .任意时刻线圈中的感应电动势t Te π2cos4= D .任意时刻穿过线圈的磁通量为t T T ππ2sin =Φ 14.一个正常工作的理想变压器的原、副线圈中,下列的哪个物理量不一定相等( )A .交变电流的频率B .电流的有效值C .电功率D .磁通量的变化率15.如图,一理想变压器原副线圈的匝数比为1:2;副线圈电路中接有灯泡,灯泡的额定电压为220V ,额定功率为22W ;原线圈电路中接有电压表和电流表,先闭合开关,灯泡正常发光,若用U 和I 分别表示此时电压表和电流表的读数,则( )A .U=110V I=0.2AB .U=110V I=0.05AC .2110=U V I=0.2AD .2110=U V 22.0=I A16.如图所示,理想变压器的原线圈接入t u π100sin 211000=(V )的交变电压,副线圈通过电阻r=6Ω的导线对“220V 880W ”的电器R L 供电,该电器正常工作,由此可知( )A .原、副线圈的匝数比为50:1B .交变电压的频率为100HZC .副线圈中电流的有效值为4AD .变压器的输入功率为880W17.如图所示,平行极电容器与灯泡串联,接到交流电源上,灯泡正常发光,下列哪些措施可使灯泡变暗( )A .在电容器两极板间插入电介质B .将电容器两极板间的距离增大C .错开电容器两极板的正对面积D .在电容器两极板间插入金属板(不碰及极板)18.一个小水电站,输出的电功率为kW 20,输电线的总电阻为Ω5.0,如果先用400V 电压输电,后又改用2000V 电压输电,则输电电压提高后,输电线上电功率的损失变化情况为( )A .减少50WB .减少1200WC .减少61068.7⨯WD .增大61068.7⨯W知识点答案一.1.周期性 2.(1)垂直于磁场 (2)垂直 最大 零 零 (3)t E m ωsin t U m ωsin t I m ωs i n二.1.f1 2.最大值 NBS ω 相同 热量 t n ∆∆Φ R n t R t n t R Et I ∆Φ=∆⋅∆∆Φ=∆=∆⋅三.1.(1)原线圈 副线圈 闭合铁芯 (2)互感2.(1)P 出 (2)21n n 降压 升压 (3)12n n四.R I 2 IR 输电电压五.1.非电 电 2. 敏感元件 处理电路 测量 放大 电学量 3.物理半导体 磁场 铁磁体簧片练习题答案1.AB 2.AD 3.C 4.C 5.B 6. C 7.C 8.D 9. D 10.ABC11.AD 12.D 13.AC 14.B 15. A 16. C 17. BC 18.B。

相关文档
最新文档