MATLAB程序(牛顿法及线形方程组)
牛顿插值matlab程序

牛顿插值matlab程序牛顿插值是一种多项式插值方法,其基本思想是利用分差表来构造一个一次到n 次多项式,从而逼近给定的数据点集合。
牛顿插值法有着计算简单,精度高,兼容性好等优点。
在Matlab中,牛顿插值法的实现非常简单。
接下来将介绍如何使用Matlab编写牛顿插值程序。
首先,我们需要明确牛顿插值法的基本思想,这可以用一个公式表示:f(x)≈Nn(x)=y0+C1(x−x0)+C2(x−x0)(x−x1)+⋯+Cn(x−x0)(x−x1)⋯(x−xn−1)其中y0即为给定数据点中的第一个点的纵坐标,x0到xn-1为已知的节点,Ci 表示节点x0到xi的差商,x为我们要求解的插值点。
据此,我们可以编写如下的Matlab代码实现牛顿插值:matlabfunction [result] = newton_interpolation(x, y, z)% x, y为已知的节点,z为插值点n = length(x);diff = zeros(n, n);diff(:, 1) = y';for j = 2:nfor i = j:ndiff(i, j) = (diff(i, j-1) - diff(i-1, j-1)) / (x(i) - x(i-j+1));endendresult = diff(n, n);for k = n-1:-1:1result = diff(k, k) + (z - x(k)) * result;end我们首先定义一个函数newton_interpolation,其输入为已知节点x和纵坐标y,以及插值点z。
接着,我们使用双重循环来计算分差表,并按照公式计算插值多项式的值。
最后,我们得到了插值点z处的函数值。
需要注意的是,在计算分差表时,我们需要根据已知的节点计算出所有的差商,并记录在diff中。
在计算插值点z处的函数值时,我们需要按照公式从n-1到0依次计算出多项式的各项系数。
matlab牛顿迭代法求方程

一、引言在数值计算中,求解非线性方程是一项常见的任务。
牛顿迭代法是一种常用且有效的方法,它通过不断逼近函数的零点来求解方程。
而在MATLAB中,我们可以利用其强大的数值计算功能来实现牛顿迭代法,快速求解各种非线性方程。
二、牛顿迭代法原理与公式推导1. 牛顿迭代法原理牛顿迭代法是一种利用函数的导数信息不断逼近零点的方法。
其核心思想是利用当前点的切线与x轴的交点来更新下一次迭代的值,直至逼近方程的根。
2. 公式推导与迭代过程假设要求解方程f(x)=0,在初始值x0附近进行迭代。
根据泰勒展开,对f(x)进行一阶泰勒展开可得:f(x) ≈ f(x0) + f'(x0)(x - x0)令f(x)≈0,则有:x = x0 - f(x0)/f'(x0)将x带入f(x)的表达式中,即得到下一次迭代的值x1:x1 = x0 - f(x0)/f'(x0)重复以上过程,直至达到精度要求或者迭代次数上限。
三、MATLAB中的牛顿迭代法实现1. 编写函数在MATLAB中,我们可以编写一个函数来实现牛顿迭代法。
需要定义原方程f(x)的表达式,然后计算其一阶导数f'(x)的表达式。
按照上述推导的迭代公式,编写循环语句进行迭代计算,直至满足精度要求或者达到最大迭代次数。
2. 调用函数求解方程在编写好牛顿迭代法的函数之后,可以通过在MATLAB命令窗口中调用该函数来求解具体的方程。
传入初始值、精度要求和最大迭代次数等参数,即可得到方程的近似根。
四、牛顿迭代法在工程实践中的应用1. 求解非线性方程在工程领域,很多问题都可以转化为非线性方程的求解问题,比如电路分析、控制系统设计等。
利用牛顿迭代法可以高效地求解这些复杂方程,为工程实践提供了重要的数值计算手段。
2. 优化问题的求解除了求解非线性方程外,牛顿迭代法还可以应用于优化问题的求解。
通过求解目标函数的导数等于0的方程,可以找到函数的极值点,从而解决各种优化问题。
牛顿迭代法的MATLAB程序

牛顿迭代算法matlab程序1.牛顿迭代法描述:牛顿法求实系数高次代数方程f(x)=a0x^n+a1x^(n-1)+…+an-1x+an=0 (an≠0 ) (1)的在初始值x0附近的一个根。
解非线性议程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。
把f(x)在x0点附近展开成泰勒级数f(x)=f(x0)+(x-x0)fˊ(x0)+(x-x0)2 +…取其线性部分,作为非线性方程f(x)=0的近似方程,则有f(x0)+fˊ(x0)(x-x0)=0设fˊ(x0)≠0则其解为x1=x0-f(x0)/fˊ(x0)再把f(x)在x1附近展开成泰勒级数,也取其线性部分作f(x)=0的近似方程。
若f(x1)≠0,则得x2=x1-f(x1)/fˊ(x1)这样,得到牛顿法的一个迭代序列xn+1=xn-f(xn)/fˊ(xn)2.MATLAB函数说明Y=NEWTON_1(A,N,X0,NN,EPS1)输入变量:A n+1元素的一维实数组,输入参数,按升幂存放方程系数。
N 整变量,输入参数,方程阶数。
X0 实变量,输入参数,初始迭代值。
NN 整变量,输入参数,允许的最大迭代次数。
EPS1 实变量,输入参数,控制根的精度。
3.程序代码:newton_1.mfunction y=newton_1(a,n,x0,nn,eps1)x(1)=x0;b=1;i=1;while(abs(b)>eps1*x(i))i=i+1;x(i)=x(i-1)-n_f(a,n,x(i-1))/n_df(a,n,x(i-1));b=x(i)-x(i-1);if(i>nn)error(ˊnn is fullˊ);return;endendy=x(i);i程序中调两个子函数n_f.m和n_df.m文件如下:n_f.m:function y=n_f(a,n,x)%待求根的实数代数方程的函数y=0.0;for i=1:(n+1)y=y+a(i)*x^(n+1-i);endn_df.m:function y=n_df(a,n,x)%方程一阶导数的函数y=0.0;for i=1:ny=y+a(i)*(n+1-i)*x^(n-i);end4.程序实现说明:(1)程序中调用n_f.m和n_df.m文件。
牛顿法解方程组matlab

牛顿法解方程组matlab
牛顿法是一种可以求解方程组的迭代算法。
特别适用于求解非线性系统方程,它的思想是利用抛物线的顶点的构造方程的特性来解决多元函数的极值问题。
在Matlab中,我们可以使用其牛顿法解决方程组问题。
牛顿法的算法思想是根据函数的极值点更新解的方向,以此来找到方程的解,主要步骤如下:
1. 首先,输入要求解的方程组;
2. 然后,使用命令"fzero"构造牛顿法求解器;
3. 随后,使用命令"fsolve"求解方程,输出求解结果;
4. 最后,使用控制台显示求解结果,可以得到我们要求的方程组解。
使用Matlab牛顿法来求解方程组,由于Matlab提供的求解函数算法速度快且求解精度高,加之方便的调节控制,使得它在多元函数迭代求不等式约束系统的解的过程中,能够快速有效地完成任务,节省时间,可以得到较好的效果,从而更好地解决复杂的方程组问题。
由此可以看出,Matlab中使用牛顿法解决方程组是一个非常有用的工具,对求解复杂的方程组来说,它能大大降低计算的难度,提高求解的效率,可以为工程的快速发展做出重要的贡献。
牛顿迭代法解元方程组以及误差分析matlab实现

举例,给定方程组为:先用matlab 自带函数solve 解此方程组,确定牛顿迭代时的初值范围,得到根为:⎩⎨⎧==8493476.0848937.108y x 作图验证: 此组值确为方程的根。
通过观察我们可以发现y 的取值必须大于0。
这在程序中必须说明,如果迭代过程中y 小于0,则此迭代法发散。
误差分析:因为范数等价的原因,我们选择2范数。
将两次相邻迭代差差范数的比值,即相对误的与,2x x n n 1+n x 的2范数作为误差,存储与一个向量或矩阵中,并作出曲线图,观察迭代过程中误差的变化情况。
如选初值为(12,0.3),得到误差图形为:选初值为(12,1.2),误差图为:我们可以发现误差在前3-5次迭代的时候迅速下降,但是中间会有上升的过程,直至最后误差达到我们设定的误差值。
由此猜想迭代过程可能漏掉了一些根,利用作图,得到曲线如下:可以发现还有两组根,用牛顿迭代法只能得到一组值,可能是因为所给方程比较特殊,它的定义域中x,y 均不能为0,导致函数不连续。
另外,也可能因为函数不连续,导致初值只能在根的附件变化时才能得到收敛的结果。
因此我们不妨将初值选的稍微小一些,如:[1,2],得到根为选初值为[-1,4],得到根为综上所述,此方程组有三组根,不同的初值,会得到不同的解的情况,也会有不同的误差情况。
初值选得越接近真值,误差变化程度越小,迭代次数也越少。
程序在另三个附件中。
同理,对于n元函数方程组,我们有:.n .)('.)],...,(),...,,...,,([)(.n 1n )(')(.,...,,0],...,;......;,...,,[),...,,()(...)()(........),...,,()(...)()()()()(1)()(2)(11)()()1()()()()1(21112111)1(1012200201n 0202)1(2101)1(1002011102102)1(21101)1(1有限时的解编程,依然可以得到类似二元方程组,那么利用牛顿迭代法,为系数矩阵是一行向量为值迭代得到的各自变量的次是第的值,次迭代得到的各自变量是第牛顿迭代序列依二元方程组,可得到的值。
牛顿法matlab程序及例题

牛顿法matlab程序及例题牛顿法是一种求解非线性方程组的常用方法,它的基本思想是通过迭代逐步逼近方程组的根。
在matlab中,可以通过编写相应的程序来实现牛顿法,并且可以通过一些例题来深入理解其应用。
下面是一份牛顿法的matlab程序:function [x, fval, exitflag, output] = mynewton(fun, x0, tol, maxiter)% fun:非线性方程组的函数句柄% x0:初始点% tol:允许误差% maxiter:最大迭代次数x = x0;fval = feval(fun, x);iter = 0;output = [];while norm(fval) > tol && iter < maxiteriter = iter + 1;J = myjacobian(fun, x);dx = - J fval;x = x + dx;fval = feval(fun, x);output = [output; [x', norm(fval)]];endif norm(fval) <= tolexitflag = 0; % 成功求解elseexitflag = 1; % 未能求解end% 计算雅可比矩阵function J = myjacobian(fun, x)n = length(x);fval = feval(fun, x);J = zeros(n);h = sqrt(eps); % 微小的增量for j = 1:nxj = x(j);x(j) = xj + h;fval1 = feval(fun, x);x(j) = xj - h;fval2 = feval(fun, x);x(j) = xj;J(:, j) = (fval1 - fval2) / (2 * h);end接下来,我们可以通过一个例题来演示牛顿法的应用。
matlab牛顿法求根程序

matlab牛顿法求根程序1、引言牛顿法求解方程的数值解是非常常用的一种方法,也是收敛速度很快的一种方法。
在Matlab中,可以使用fzero函数实现牛顿法求根。
本篇文章将介绍如何使用Matlab实现牛顿法求根。
2、牛顿法求根的原理牛顿法求根实际上是一种迭代法,迭代公式为:x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}其中,x_n 是第n次迭代的数值解,f(x_n)是方程在x_n处的函数值,f'(x_n)是方程在x_n处的导数值。
3、使用Matlab实现牛顿法求根在Matlab中,我们可以使用fzero函数实现牛顿法求根。
该函数的基本用法为:x=fzero(fun,x0,options)其中,fun是一个函数句柄,x0是初始迭代值,options是一个选项结构体,用于设置迭代精度等参数。
例如,我们想求解方程x^2-2=0在x=1附近的解,可以写出如下Matlab程序:fun=@(x)x^2-2;x0=1;options=optimset('TolX',1e-8,'Display','iter');x=fzero(fun,x0,options)其中,optimset函数可以设置迭代精度等参数,‘TolX’表示迭代停止条件,‘Display’表示是否输出迭代过程。
程序的运行结果如下:Func-count x f(x) Procedure1 1 -1 initial2 1.5000 0.2500 search3 1.4167 0.0069 search4 1.4142 0.0000 search即求得方程的解为1.4142。
4、代码实现除了使用fzero函数外,我们也可以自己实现牛顿法求根的代码。
以下是一个简单的例子:function x=newton(fun,x0,tol)while abs(fun(x0))>tolx0=x0-fun(x0)/diff(fun,x0);endx=x0;end其中,fun是函数句柄,x0是初始迭代值,tol是迭代停止条件。
matlab牛顿法程序

matlab牛顿法程序以下是使用Matlab编写的牛顿法程序:```matlabfunction [x, iterations] = newton_method(f, df, x0, tol,max_iterations)x = x0;iterations = 0;while abs(f(x)) > tol && iterations < max_iterations x = x - f(x) / df(x);iterations = iterations + 1;endif abs(f(x)) > toldisp('The method did not converge');elsedisp('The method converged');endend```使用该程序,您需要提供以下输入参数:- `f`:要求解根的函数,可以是匿名函数或函数句柄。
例如:`f = @(x) x^2 - 4`。
- `df`:`f`的导数,同样可以是匿名函数或函数句柄。
例如:`df = @(x) 2*x`。
- `x0`:初始猜测值。
- `tol`:收敛容限。
- `max_iterations`:最大迭代次数。
程序会返回:- `x`:计算得到的方程的根。
- `iterations`:迭代次数。
您可以按照以下步骤使用该程序进行求解:1. 在命令窗口或脚本文件中定义函数`f`和它的导数`df`。
2. 设置初始猜测值`x0`、收敛容限`tol`和最大迭代次数`max_iterations`。
3. 调用`newton_method`函数并传入所需参数,将返回的结果保存在变量中。
4. 检查结果并使用根进行进一步计算或分析。
注意:该程序只能求解单变量方程的根。
如果需要求解多变量方程的根,需要对程序进行适当修改。
牛顿法matlab程序及例题

牛顿法matlab程序及例题牛顿法是一种求解非线性方程的优秀方法,其基本思想是利用切线逼近非线性方程的根,逐步逼近准确解。
下面我们介绍牛顿法的matlab程序及例题。
【程序】function [x_iter,k]=newton(f,df,x0,tol,maxit)%牛顿法%输入:f-目标函数,df-目标函数的导函数,x0-初始值,tol-误差限,maxit-最大迭代次数%输出:x_iter-迭代结果,k-迭代次数k=0;x_iter=x0;err=tol+1;while(err>tol && k<maxit)x=x_iter;x_iter=x-f(x)/df(x);err=abs(x_iter-x);k=k+1;endif(k==maxit)fprintf('未收敛');elsefprintf('迭代次数:%d',k);end【例题】example:求解非线性方程f(x)=x^3-5x^2+3x+7=0,初始值为x0=2,精度为1e-6。
解法:首先求导得df(x)=3x^2-10x+3,然后代入程序:>> f=@(x)x^3-5*x^2+3*x+7;>> df=@(x)3*x^2-10*x+3;>> [x_iter,k]=newton(f,df,2,1e-6,100);>> x_iterans =4.3793>> kk =5故该非线性方程的根为x=4.3793,迭代次数为5次。
【总结】通过以上例题,我们可以发现牛顿法是一种十分有效的求解非线性方程的方法,其程序简洁高效,对于复杂的非线性方程求解也能得到较好的结果。
因此在实际应用中,我们可以采用牛顿法来求解非线性方程,提高计算效率和精度。
MATLAB程序(牛顿法及线形方程组)

MATLAB 程序1、图示牛顿迭代法(M 文件)文件名:newt_gfunction x = new_g(f_name,x0,xmin,xmax,n_points)clf,hold off% newton_method with graphic illustrationdel_x = 0.001;wid_x = xmax - xmin; dx = (xmax - xmin)/n_points;xp = xmin:dx:xmax; yp = feval(f_name,xp);plot(xp,yp);xlabel('x');ylabel('f(x)');title('newton iteration'),hold onymin = min(yp); ymax = max(yp); wid_y = ymax-ymin;yp = 0. * xp; plot(xp,yp)x = x0; xb = x+999; n=0;while abs(x-xb) > 0.000001if n > 300 break; endy=feval(f_name,x); plot([x,x],[y,0]);plot(x,0,'o')fprintf(' n = % 3.0f, x = % 12.5e, y = % 12.5e \ n', n, x, y);xsc = (x-xmin)/wid_x;if n < 4, text(x,wid_y/20,[num2str(n)]), endy_driv = (feval(f_name,x + del_x) - y)/del_x;xb = x;x = xb - y/y_driv; n = n+1;plot([xb,x],[y,0])endplot([x x],[0.05 * wid_y 0.2 * wid_y])text( x, 0.2 * wid_y, 'final solution')plot([ x ( x - wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y])plot([ x ( x + wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y])传热问题假设一个火炉是用厚度为0.05m 的砖单层砌成的。
(完整word版)牛顿法MATLAB程序

问题一1、问题描述本次作业中使用共轭梯度法求解232122212142min x x x x x x x +-++-,初始点取为T x )2,2,2(0=。
2、求解方法及求解程序(1)共轭梯度法:对于二次函数的无约束最小化问题:x b x Q x x f T T -=21)(,共轭梯度方法: k k k k d x x α+=+1其中步长k α由最小线性化准则确定:)(min )(k k k k k d x f d x ααα+=+。
既将函数)(x f 对α求导等于零,得到的α就是我们当前所求步长。
梯度方向:b Qx x f g k k k -=∇=)(共轭梯度的方向由下式生成:00g d -=1,...,1,1-=+-=-n k d g d k k k k β其中k β由下式给出:1)1(--=k k kk k g g g g T T β该方法在最多n 次迭代后,将终止于某个最优解处。
(2)求解程序frcg.mfunction [x ,val,k ]=frcg(fun,funs,x0)% 功能: 用FR共轭梯度法求解无约束问题: min f(x)%输入: x0是初始点, fun, gfun分别是目标函数和梯度%输出: x, val分别是近似最优点和最优值, k是迭代次数。
maxk=5000; %最大迭代次数rho=0。
6;sigma=0.4;k=0; epsilon=1e—4;n=length(x0);while(k〈maxk)g=feval(funs,x0); %计算梯度itern=k-(n+1)*floor(k/(n+1));itern=itern+1;%计算搜索方向if(itern==1)d=—g;elsebeta=(g’*g)/(g0'*g0);d=—g+beta*d0; gd=g'*d;if(gd>=0.0)d=—g;endendif(norm(g)<epsilon), break; end %检验终止条件m=0; mk=0;while(m<20) %Armijo搜索if(feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m; break;endm=m+1;endx0=x0+rho^mk*d;val=feval(fun,x0);g0=g; d0=d;k=k+1;endx=x0;val=feval(fun,x);fun.mfunction f=fun(x)f=x(1)^2-x(1)*x(2)+x(2)^2+2*x(1)-4*x(2)+x(3)^2; funs.mfunction fs=funs(x)fs=[2*x(1)—x(2)+2,2*x(2)—x(1)-4,2*x(3)]’;命令行输入: x0=[2,2,2]';[x,val,k]=frcg(’fun',’funs',x0)3、求解结果x =0.00002。
数值分析大作业(牛顿下山法,拉格朗日法,切比雪夫法)及Matlab程序

课程设计课程名称:数值分析设计题目:学号:姓名:完成时间:2014.11.18题目一: 解线性方程组的直接法 设方程组Ax b =,其中250002511125555111x x x x x x A x x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 矩阵中10.1(0,1,,5)k x k k =+=,b 由相应的矩阵元素计算,使解向量(1,1,,1)T x =。
(1) A 不变,对b 的元素6b 加一个扰动410-,求解方程组;(2) b 不变,对A 的元素22a 和66a 分别加一个扰动610-,求解方程组; (3) 对上述两种扰动方程组的解做误差分析。
一.数学原理:本计算采用直接法中的列主元高斯消元法,高斯列主元消元法原理如下: 1、设有n 元线性方程组如下:1111n n nn a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭1nx x ⎛⎫ ⎪ ⎪ ⎪⎝⎭=1nb b ⎛⎫ ⎪ ⎪ ⎪⎝⎭2、第一步:如果a11!=0, 令l i1= ai1/a11, I= 2,3,……,n用(-li1)乘第一个方程加到第i 个方程上,得同解方程组:a (1)11 a (1)12 . . . a (1)1nx 1 b (1)1 a (1)21 a (1)22 . . . a (1)2n x 2 b (1)2 . . . . . . . = . a (1)n-11 a (1)n-12 . . a (1)n-1n x n-1 b (1)n-1 a (1)n1 a (1)n2 . . . a (1)nn x n b (1)n简记为:A (2) x = b (2) 其中a (2)ij = a (1)ij – l i1 * a (1)1j , I ,j = 2,3,..,nb (2)I = b (1)I – l i1 * b (1)1 , I = 2,3,...,n 第二步:如果a (2)22 != 0,令l i2= a (2)i2/a (2)22, I= 3,……,n依据同样的原理,对矩阵进行化间(省略),依次下去,直到完成!最后,得到上三角方程组:a(1)11 a(1)12. . . a(1)1nx1b(1)10 a(1)22 . . . a(1)2nx2b(1)2. . . . . . . = .0 0 . . a(n-1)n-1n xn-1b(n-1)n-10 0 . . . a(n)nn xnb(n)n简记为:A(n) x = b(n)最后从方程组的最后一个方程进行回代求解为:Xn = b(n) / a(n)nnXi = ( b(k)k- ∑ a(k)kj x j ) / a(k)kk二.解题过程:1.由题中所给条件可求出b。
matlab牛顿迭代法求方程组的根

MATLAB(矩阵实验室)是一种用于数学计算、绘图等的高度工程化的软件评台。
利用MATLAB进行牛顿迭代法求解方程组的根是一种常见的数值分析方法。
本文将介绍如何使用MATLAB进行牛顿迭代法求解方程组的根,并给出具体的代码实现。
1. 理论基础牛顿迭代法是一种求解方程根的常用数值方法。
对于一般的方程组F(X)=0,牛顿迭代法的迭代公式如下:X(k+1)=X(k)−(∂F/∂X)^(-1)·F(X(k))其中,X(k)表示第k次迭代的解,∂F/∂X表示F对X的雅可比矩阵,^(-1)代表矩阵的逆运算。
2. MATLAB代码实现以下是使用MATLAB进行牛顿迭代法求解方程组的一般代码实现:```matlabfunction [x, numIter] = newtonMethod(F, J, x0, tol, maxIter)F为方程组F(X)=0的函数句柄J为方程组F(X)的雅可比矩阵的函数句柄x0为初始解向量tol为迭代精度maxIter为最大迭代次数x = x0;numIter = 0;while norm(F(x)) > tol numIter < maxIterx = x - J(x) \ F(x); 使用MATLAB的\表示矩阵的逆运算numIter = numIter + 1;endend```3. 示例下面以一个二元非线性方程组为例,演示如何使用上述MATLAB代码进行牛顿迭代法求解方程组的根。
考虑方程组:F1(x1, x2) = x1^2 + x2^2 - 25 = 0F2(x1, x2) = x1*x2 - 9 = 0对应的雅可比矩阵为:J(x)=[2x1, 2x2; x2, x1]下面是具体的MATLAB代码实现:```matlab定义方程组F和雅可比矩阵JF = (x) [x(1)^2 + x(2)^2 - 25; x(1)*x(2) - 9];J = (x) [2*x(1), 2*x(2); x(2), x(1)];设置初始解向量、迭代精度和最大迭代次数x0 = [1; 1];tol = 1e-6;maxIter = 100;调用newtonMethod函数进行求解[x, numIter] = newtonMethod(F, J, x0, tol, maxIter);显示结果disp(['解向量为:', num2str(x')]);disp(['迭代次数为:', num2str(numIter)]);```4. 结论本文介绍了使用MATLAB进行牛顿迭代法求解方程组的方法,并给出了具体的代码实现和示例。
matlab求解方程的几种方法

牛顿切线法的MATLAB 主程序function[k,xk,yk,piancha,xdpiancha]=newtonqx(x0,tol,ftol,gxmax)x(1)=x0;for i=1: gxmaxx(i+1)=x(i)-fun(x(i))/(dfun(x(i))+eps);piancha=abs(x(i+1)-x(i));xdpiancha= piancha/( abs(x(i+1))+eps); i=i+1;xk=x(i);yk=fun(x(i)); [(i-1) xk yk piancha xdpiancha]if (abs(yk)<ftol)&((piancha<tol)|(xdpiancha< tol))k=i-1; xk=x(i);[(i-1) xk yk piancha xdpiancha]return ;endendif i>gxmaxdisp('请注意:迭代次数超过给定的最大值gxmax 。
')k=i-1; xk=x(i);[(i-1) xk yk piancha xdpiancha]return ;end[(i-1),xk,yk,piancha,xdpiancha]';例 3 用牛顿切线法求方程013223=+-x x 在9.04.00和-=x 的近似根,要求精度310-=ε.解1)先将上面的主程序作为M 文件保存;2)再保存如下的两个M 文件:function y=fun(x)y=2*x^3-3*x^2+1;function y=dfun(x)y=6*x^2-6*x;3)最后在工作窗口输入命令>> [k,xk,yk,piancha,xdpiancha]=newtonqx(-0.4,0.001, 0.001,100) 运行后输出初始值4.00-=x 和9.00=x 的迭代结果分别为:k =3,xk =-0.5000,yk =-7.7025e-007,piancha =3.5825e-004,xdpiancha =7.1650e-004 k =7,xk =0.9993,yk =1.5903e-006,piancha =7.2896e-004,xdpiancha =7.2949e-0041 高斯消元法及其MATLAB 程序f unction [RA,RB,n,X]=gaus(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB ,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n ,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); endelsedisp('请注意:因为RA=RB<n ,所以此方程组有无穷多解.') endend例1 用高斯消元法和MATLAB 程序求解下面的非齐次线性方程组。
matlab牛顿迭代法

matlab牛顿迭代法经过几千年的发展,牛顿迭代法一直是近代数学和计算机应用领域最受欢迎的数值解决方案。
其在Matlab工程中的应用可以极大程度地解决复杂的优化问题,并显著提升了解决高精度问题的效率。
本文旨在介绍Matlab中牛顿迭代法的基本原理、准备工作和实现过程,以期提高Matlab用户应用牛顿迭代法的能力,使其获得更好的结果。
一、牛顿迭代法基本原理牛顿迭代法是一种基于牛顿插值法的法,它利用逼近函数和迭代法来求解非线性方程组。
当用牛顿插值法求解一个函数时,先利用已知函数值和其导数值,给出一次和二次期望值,从而可以算出下一个函数值,从而迭代求解。
牛顿迭代法最重要的特点在于它对非线性方程组具有极大的精度,它重复操作过程可以较快地收敛,它的实现简单确定性,它易于并行计算,它能够收敛到方程组的精确解。
二、准备工作在开始使用Matlab使用牛顿迭代法之前,需要先准备一定的准备工作,使其具备有效的解决方案。
1.先,必须准备一个非线性方程组,这个方程组用牛顿迭代法来求解,根据实际情况,可以采用一阶、二阶或:方程组。
2.果求解一个函数时,还需要准备函数和其一阶、二阶导数,将其编写成具有一定结构的Matlab函数。
3.据实际情况,必须设定预先条件,是非线性方程组可以进行求解,比如设定精度要求、步长条件,并计算初始迭代点。
三、Matlab中牛顿迭代法的实现在Matlab中,只需要一行代码就可以实现牛顿迭代法,其在Matlab中可以简代码如下:[Xn, fval, info] = fsolve(fun, x0);其中,fun表示需要求解的函数,x0表示初始化迭代点。
此外,fsolve可以接受一些可选参数,包括精度要求以及步长条件等。
四、实际案例通过实际案例可以更好的理解上文讲解的内容,以下实例将应用于牛顿迭代法求解下面这个一元非线性方程组:f(x) = x^3*e^x-2 = 0求解的源程序如下:function f = fun(x)f = x.^3.*exp(x) - 2;endx0 = 0;[x, fval, info] = fsolve(@fun,x0);计算结果如下:x = 0.8245fval = -1.9625e-14info = 1从结果可以看出,牛顿迭代法给出的结果与精确解非常接近,说明使用牛顿迭代法求解此问题是可行的。
matlab牛顿插值法程序

matlab牛顿插值法程序牛顿插值法是一种数值分析方法,用于确定给定数据点之间的未知函数值。
该方法使用一个插值多项式,该多项式使得插值多项式通过给定的插值点,并且在插值点周围的函数值接近已知函数值。
该方法比其他插值方法更高,因为它使用被插值数据的微分。
下面是MATLAB中牛顿插值法的程序:function [f, c] = newton_interpolation(x, y)% x:插值节点不同的x值,必须有n个元素。
% y:相应在每个节点的y值,必须有n个元素。
% 返回:拟合的多项式和的权重向量c% 我们创建一个表格,其中包含x和y值的第一行n = length(x);delta=zeros(n,n);% 先把第一列设置为y值:delta(:,1)=y';%接下来,我们将使用牛顿插值法来填写余下的每个列for j=2:nfor i=j:ndelta(i,j) = ( delta(i,j-1) - delta(i-1,j-1) )/( x(i) - x(i-j+1));endend% 配置 c 数组% 从差分表中得出k次递归系数矩阵,目标是多项式系数c = zeros(1,n);c(1)=delta(1,1);% 获取插值多项式(通过牛顿插值法)syms t;L = c(1);for j=2:nprod = 1;for i=1:j-1prod = prod * ( t - x(i) );endL = L + c(j) * prod;end% 转换L成一个函数y=L(x)f = matlabFunction(L);end现在,当我们调用这个函数并输入我们想要插值的节点和相应的y值,我们会得到拟合的多项式和传递插值节点的权重向量。
牛顿迭代法matlab

牛顿迭代法matlab
牛顿迭代法(Newton Iteration)是一种经典的求解方程的数值计算方法。
牛顿迭代的思想是:利用泰勒级数展开,把一个方程表达成无穷多个多项式,假设初始值检验了,利用这无穷多个多项式,求出后面每一步的方程解。
这种方法被称为牛顿迭代,它能够在有限的步骤内求解出一个足够接近的解,比较适合于求解处于非线性的方程组的收敛的情况。
以下给出一个MATLAB程序来描述牛顿迭代的步骤:
其中,X是方程组解的初值,f为等式组右侧函数,J是等式组左侧Jacobian矩阵。
function X = Newton_iter(X,C,F)
% 光滑牛顿迭代
MXtimes=20;
for iter=1:MXtimes
% 计算jacobian矩阵
J=jacobian(C,F,X);
%计算右侧函数
F_val=F(X);
%牛顿迭代公式更新X
X=X-J\F_val;
end
end
其中jacobian函数返回计算出的jacobian矩阵和右侧方程组函数:
上面提到了求Jacobia矩阵时需要用到一个Ua函数,这个函数表达式如下:
function x=Ua(C)
eps=1.0e-6; %步长定义
x=eps*C/norm(C); %求计算步长
end
可以看到,牛顿迭代是利用Taylor展开式来建立接近原始方程解的方程组来解决求解非线性方程组收敛的情况,大致步骤是通过jacobian矩阵求出右侧方程函数值,然后利用函数求得x值,最后逐步收敛至原解。
牛顿法求极值 matlab程序

牛顿法求极值是一种常见的数值优化方法,通过迭代的方式逐步逼近函数的极值点。
在实际应用中,特别是在工程和科学领域,牛顿法求极值的程序实现通常使用MATLAB语言。
在本文中,我将深入探讨牛顿法求极值的原理、MATLAB程序实现和个人观点。
1. 牛顿法求极值的原理牛顿法是一种基于泰勒级数展开的优化方法。
其基本思想是通过对目标函数进行二阶泰勒展开,然后求解极值点的迭代过程。
具体来说,对于目标函数$f(x)$,牛顿法的迭代公式为:$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}$$其中,$f'(x)$和$f''(x)$分别代表目标函数$f(x)$的一阶和二阶导数。
通过不断迭代这一公式,可以逐步逼近函数的极值点。
2. MATLAB程序实现在MATLAB中,实现牛顿法求极值的程序通常包括以下几个步骤:(1)定义目标函数$f(x)$及其一阶和二阶导数;(2)选择初始点$x_0$并设置迭代停止条件;(3)利用牛顿法迭代公式进行迭代,直至满足停止条件。
下面是一个简单的MATLAB程序示例,用于求解目标函数$f(x)=x^3-2x+1$的极小值点:```matlab% 定义目标函数及其导数f = @(x) x^3 - 2*x + 1;df = @(x) 3*x^2 - 2;d2f = @(x) 6*x;% 初始点及迭代停止条件x0 = 1;epsilon = 1e-6;max_iter = 100;% 牛顿法迭代iter = 1;while iter < max_iterx1 = x0 - df(x0)/d2f(x0);if abs(x1 - x0) < epsilonbreak;endx0 = x1;iter = iter + 1;enddisp(['The minimum point is: ', num2str(x0)]); ```3. 个人观点和理解牛顿法求极值是一种快速而有效的数值优化方法,尤其适用于目标函数具有光滑的二阶导数的情况。
matlab牛顿法程序

matlab牛顿法程序牛顿法是一种常用的优化算法,主要用于求解非线性方程或最优化问题。
它基于一阶导数和二阶导数的信息,通过不断迭代逼近目标函数的零点或最小值。
在Matlab中,我们可以利用该语言的强大功能和简洁的语法编写牛顿法程序。
牛顿法的核心思想是利用二阶导数逼近目标函数,然后通过迭代来逼近方程的解。
设目标函数为f(x),则牛顿法的迭代公式为:x_{n+1} = x_n - f'(x_n) / f''(x_n)其中,x_n是当前的迭代点,f'(x_n)和f''(x_n)分别是目标函数在x_n处的一阶导数和二阶导数。
为了编写一个通用的牛顿法程序,我们需要先定义目标函数及其导数求解的函数。
以求解方程f(x) = 0为例,我们将定义一个函数newton_method(f, f_prime, x0, tol),其中f是目标函数,f_prime是一阶导数函数,x0是初始点,tol是迭代精度。
首先,我们需要定义目标函数和一阶导数函数:```matlabfunction y = f(x)y = x^2 - 2;endfunction y = f_prime(x)y = 2*x;end```接下来,我们可以定义牛顿法的主函数newton_method:```matlabfunction root = newton_method(f, f_prime, x0, tol)x = x0;while abs(f(x)) > tolx = x - f(x) / f_prime(x);endroot = x;end```在主函数中,我们使用一个while循环不断迭代,直到满足迭代精度tol。
每次迭代,我们更新x的值,逼近方程的解。
现在,我们可以调用newton_method函数来求解具体的方程。
假设我们要求解方程x^2 - 2 = 0,初始点x0取1,迭代精度tol取0.0001。
牛顿插值法matlab程序

《计算办法》数值实验陈述之邯郸勺丸创作090712学号09071235姓名金志彬时间:二O二一年七月二十九日班级实验室3-128设备编号D12日期实验题目1、实验目的:通过编程实现牛顿插值办法,加深对多项式插值的理解.应用所编程序解决实际算例.2、实验要求:(1)认真阐发课题要求,温习相关理论知识,选择适当的解决计划;(2)上机实验程序,做好上机前的准备任务;(3)调试程序,记录计算结果;(4)阐发和解释计算结果;(5)依照要求书写实验陈述.3、实验内容:(1)算法原理或计算公式算法原理:按照均差定义,把x看成[a,b]上一点,可得…只要把后一式代入前一式,就得到其中由式(1-1)确定的多项式显然满足插值条件,且次数不超出n次的多项式,其系数为称为牛顿(Newton)均差插值多项式.系数就是书本表5-1中第一条斜线上对应的数值.式(1-2)为插值余项,由插值多项式唯一性可知,它与书本式(5.1.19)是等价的,事实上,利用均差与导数关系式可由式(1-2)推出书本式(5.1.19).但式(1-2)更有一般性,它对f是由离散点给出的情形或f导数不存在时均适用.(2)程序设计思路1)输入:n的值及要计算的函数点x(本文取x0,x1两个函数点);2)由计算的值;3)输出:.(3)源程序function f=Newton(x,y,x0,x1)syms t;if(length(x)==length(y))n=length(x);c(1:n)=0.0;elsedisp('x和y的维数不相等!');return;endf=y(1);y1=0;l =1;for(i=1:n-1)for(j=i+1:n)y1(j)=(y(j)-y(i))/(x(j)-x(i));endc(i)=y1(i+1);l=l*(t-x(i));f=f+c(i)*l;y=y1;endf=simplify(f);g=subs(f,'t',x0)g1=subs(f,'t',x1)A=zeros(n,n-1);A=[y',A];for j=2:nfor i=j:nA(i,j)=(A(i,j-1)-A(i-1,j-1))/(x(i)-x(i+1-j));endenddisp('差商表为');disp(A);(4)运行结果>> x=[0 1 2 3];>> y=[1 2 17 64];>> x0=0.5;>> x1=2.5;>> f=Newton(x,y,x0,x1)g =g1 =差商表为0 0 0 01.0000 1.0000 0 07.0000 6.0000 2.5000 0f =1-2*t^2+3*t^34、实验小结体会:1)通过本次实验让我从实践验证了理论-------插值多项式的基本思想;2)牛顿插值法建立过程中用到了插商计算,这是有别于拉格朗日插值法的一部分,在已知点数较少的情况下用牛顿插值法较为准确;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB 程序1、图示牛顿迭代法(M 文件)文件名:newt_gfunction x = new_g(f_name,x0,xmin,xmax,n_points)clf,hold off% newton_method with graphic illustrationdel_x = 0.001;wid_x = xmax - xmin; dx = (xmax - xmin)/n_points;xp = xmin:dx:xmax; yp = feval(f_name,xp);plot(xp,yp);xlabel('x');ylabel('f(x)');title('newton iteration'),hold onymin = min(yp); ymax = max(yp); wid_y = ymax-ymin;yp = 0. * xp; plot(xp,yp)x = x0; xb = x+999; n=0;while abs(x-xb) > 0.000001if n > 300 break; endy=feval(f_name,x); plot([x,x],[y,0]);plot(x,0,'o')fprintf(' n = % 3.0f, x = % 12.5e, y = % 12.5e \ n', n, x, y);xsc = (x-xmin)/wid_x;if n < 4, text(x,wid_y/20,[num2str(n)]), endy_driv = (feval(f_name,x + del_x) - y)/del_x;xb = x;x = xb - y/y_driv; n = n+1;plot([xb,x],[y,0])endplot([x x],[0.05 * wid_y 0.2 * wid_y])text( x, 0.2 * wid_y, 'final solution')plot([ x ( x - wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y])plot([ x ( x + wid_x * 0.004)], [0.01 * wid_y 0.09 * wid_y])传热问题假设一个火炉是用厚度为0.05m 的砖单层砌成的。
炉内壁温度为T 0=625K, 外壁温度为T 1(未知)。
由于对流和辐射造成了外壁的热量损失,温度T 1由下式决定:44111()()()()0f k f T T T T T h T T xεσ∞=-+-+-=∆ 其中:k :炉壁的热传导系数,1.2W/mKε: 发射率,0.8T 0:内壁温度,625KT 1:外壁温度(未知),KT ∞:环境温度,298KT f :空气温度,298KH :热交换系数,20W/m 2Kσ:Stefan-Boltzmann 常数,5.67*10-8W/m 2K 4x ∆:炉壁厚度,0.05m试用牛顿迭代法求解T 1.先根据待求解的方程式建立(M 文件)文件名:wall_htfunction f= wall_ht(t1)k = 1.2; e = 0.8; tinf = 298;tf = 298; h = 20; t0 = 625;sig = 5.67e-8; wall_thick = 0.05;f = k/wall_thick * (t1-t0) + e * sig * (t1.^4-tinf^4) +h * (t1 - tf);程序的调用及计算结果:>> newt_g('wall_ht',550,400,600,500)n = 0, x = 5.50000e+002, y = 7.03301e+003n = 1, x = 4.55199e+002, y = 6.58551e+002n = 2, x = 4.44423e+002, y = 6.44623e+000n = 3, x = 4.44316e+002, y = 6.27680e-004n = 4, x = 4.44316e+002, y = 5.67525e-010ans =444.3157平衡问题一氧化碳与氢按以下反应生成甲醇232fr K K CO H CH OH + 现有1molCO 与2molH 2的混合物,在温度t=5900C ,压力p=3.04*107Pa 下进行反应并达到平衡(Kf=1.393*10-15,Kr=0.43),求CH3OH 在平衡气中的摩尔分数。
达到平衡时的关系式:232222()4(1)12(1)(129)40f x Kp x Kp x Kp x Kp =+-+++-=其中fr K K K据待求函数建立(M 文件)文件名:ping_henfunction f= ping_heng(x)t = 590; p = 3.04e7; kf = 1.393e-15;kr = 0.43;f = 4 * ((kf / kr) * p^2 + 1) * x.^3 - 12 * ((kf / kr) * p^2 + 1) * x.^2 + (12 * (kf / kr) * p^2 + 9) * x - 4 * (kf / kr) * p^2程序的调用及计算结果:newt_g('ping_hen',0.5,0.0,1.0,500)f = 0.5031n = 0, x = 5.00000e-001, y = 5.03076e-001f = 0.5120f = -0.0798n = 1, x = 4.43838e-001, y = -7.97582e-002f = -0.0680f = -0.0010n = 2, x = 4.50599e-001, y = -1.03321e-003f = 0.0104f = 2.1619e-006n = 3, x = 4.50689e-001, y = 2.16189e-006f = 0.0114ans =0.45072、线性方程组求解>> a=[3 2; 1 -1]a =3 21 -1>> y = [-1, 1]';>> x=a\yx =0.2000-0.8000高斯消去法求解线性方程组-0.0400x1 + 0.0400x2 + 0.1200x3= 3.00000.5600x1 - 1.5600x2 + 0.3200 x3= 1.0000-0.2400x1 + 1.2400x2- 0.2800 x3 = 0>> clear>> a = [-0.04 0.04 0.12 3; 0.56 -1.56 0.32 1; -0.24 1.24 -0.28 0] a =-0.0400 0.0400 0.1200 3.00000.5600 -1.5600 0.3200 1.0000-0.2400 1.2400 -0.2800 0>> x = [0,0,0]'x =>> tempo = a(1,:);a(1,:) = a(2,:);a(2,:) = tempo;aa =0.5600 -1.5600 0.3200 1.0000-0.0400 0.0400 0.1200 3.0000-0.2400 1.2400 -0.2800 0>>>> a(2,:) = a(2,:) - a(1,:) * a(2,1)/a(1,1);>> a(3,:) = a(3,:) - a(1,:) * a(3,1)/a(1,1);aa =0.5600 -1.5600 0.3200 1.00000 -0.0714 0.1429 3.07140.0000 0.5714 -0.1429 0.4286>> tempo = a(3,:);a(3,:) = a(2,:);a(2,:) = tempo;aa =0.5600 -1.5600 0.3200 1.00000.0000 0.5714 -0.1429 0.42860 -0.0714 0.1429 3.0714>>a(3,:) = a(3,:) - a(2,:) * a(3,2)/a(2,2);aa =0.5600 -1.5600 0.3200 1.0000 0.0000 0.5714 -0.1429 0.4286 0.0000 0 0.1250 3.1250 >> x(3) = a(3,4)/a(3,3);>> x(2) = (a(2,4) - a(2,3) * x(3))/a(2,2);>> x(1) = (a(1,4) - a(1,2:3) * x(2:3))/a(1,1);xx =7.00007.000025.00003、数值积分梯形法(M 文件)文件名:trapez_v% function trapez_v(f,h) integrates a function defined in % vector f with interval size, h.% Copyright S. Nakamura, 1995function I = trapez_v(f, h)I = h*(sum(f) - (f(1) + f(length(f)))/2);对方程220008.11200du u u dx=--采用梯形法积分 >> clear>> n_points = 16;i = 1:n_points;>> h = (30-15)/(n_points-1); u = 15 + (i-1) * h; >> f = 2000 * u./(8.1 * u.^2 + 1200);>> i = trapez_v(f,h)i =127.5040。