Matlab实现牛顿插值法

合集下载

数值计算实验牛顿前插和后插插值

数值计算实验牛顿前插和后插插值

数值计算实验二姓名:方小开学号:20060810202 班级:计科0602一. 实验目的:1、差分的matlab实现;2、Newton插值的matlab实现;二. 实验原理:MATLAB在线性代数,矩阵分析,数值及优化,数理统计和随机信号分析,电路系统,系统动力学,信号与图像处理,控制理论分析和系统设计,过程控制,建模和仿真,通信系统,等有广泛的应用。

它具有功能强大,界面友好,语言自然即开放性等特点。

三.试验环境MATLAB7.0四. 试验过程及现象:1、牛顿插值公式:把下面的matlab程序在matlab中建立M-file文件并保存;function [d,v1]=newtonjz(x,y,v) %d 插商表 v是要插入x v1是插入的y值n=length(x);d=zeros(n,n);d(:,1)=y';for j=2:nfor i=j:nd(i,j)=(d(i,j-1)-d(i-1,j-1))/(x(i)-x(i-j+1));endendw=1;v1=d(1,1);for i=2:nw=w*(v-x(i-1));v1=v1+d(i,i)*w;end分别给x,y赋初值,并调用Newton插值函数得到结果如下:x=[0.40,0.55,0.65,0.80,0.90,1.05];y=[0.41075,0.57815,0.69675,0.88811,1.02652,1.25382];[z,xy]=newtonjz(x,y,0.596);z =0.4108 0 0 0 0 00.5782 1.1160 0 0 0 00.6967 1.1860 0.2800 0 0 00.8881 1.2757 0.3589 0.1973 0 01.0265 1.3841 0.4335 0.2130 0.0312 01.2538 1.5153 0.5249 0.2287 0.0314 0.0003xy =0.63192Newton前插公式:把Newton前插公式的matlab程序写在matlab中建立M-file文件并保存;function [d,v1]=newtonBefore(x,y,t)n=length(x);d=zeros(n,n);d(:,1)=y';for j=2:nfor i=1:n-j+1d(i,j)=(d(i+1,j-1)-d(i,j-1));endendw=1;m=1;v1=d(1,1);for i=2:nw=w*(t-i+2);m=m*(i-1);v1=v1+d(1,i)*(w/m);end分别给x,y赋初值,并调用Newton前插函数得到结果如下;x=[1 1.05 1.10 1.15 1.20 1.25 1.30];y=[1 1.0247 1.04881 1.07238 1.09544 1.11803 1.14017];>> [z,qc]=newtonBefore(x,y,0.2);qc =1.004992263808003、Newton后插公式:把Newton后插公式的matlab程序写在matlab中建立M-file文件并保存;function [d,v1]=newtonAfter(x,y,t)n=length(x);d=zeros(n,n);d(:,1)=y';for j=2:nfor i=j:nd(i,j)=(d(i,j-1)-d(i-1,j-1));endendw=1;m=1;v1=d(1,1);for i=2:nw=w*(t+i-2);m=m*(i-1);v1=v1+d(n,i)*(w/m);end分别给x,y赋初值,并调用Newton后插函数得到结果如下;x=[1 1.05 1.10 1.15 1.20 1.25 1.30];y=[1 1.0247 1.04881 1.07238 1.09544 1.11803 1.14017];>> [z,hc]=newtonAfter(x,y,-0.4);hc=1.13136982835200五.遇到的问题在调试的过程中也遇到了一些小小的问题,如输出的结果只显示4位有效数字,结果的精度太低了,不能满足要求,因此在matlab中把数据的格式从short型改成了long型,这样就大大的提高了结果的精确度,减少了误差。

拉格朗日插值和牛顿插值matlab

拉格朗日插值和牛顿插值matlab

拉格朗⽇插值和⽜顿插值matlab1. 已知函数在下列各点的值为0.20.40.60.8 1.00.980.920.810.640.38⽤插值法对数据进⾏拟合,要求给出Lagrange插值多项式和Newton插值多项式的表达式,并计算插值多项式在点的值。

程序:x=[0.2 0.4 0.6 0.8 1.0];y=[0.98 0.92 0.81 0.64 0.38];x0=[0.2 0.28 0.44 0.76 1 1.08];[f,f0]=Lagrange(x,y,x0)function [f,f0] = Lagrange(x,y,x0)%求已知数据点的Lagrange插值多项式f,并计算插值多项式f在数据点x0的函数值f0syms t;n = length(x);f = 0.0;for i = 1:nl = y(i);for j = 1:i-1l = l*(t-x(j))/(x(i)-x(j));end;for j = i+1:nl = l*(t-x(j))/(x(i)-x(j));end;f = f + l;simplify(f);if(i==n)f0 = subs(f,'t',x0);f = collect(f);f = vpa(f,6);endend结果:>> Untitled3f =- 0.520833*t^4 + 0.833333*t^3 - 1.10417*t^2 + 0.191667*t + 0.98f0 =[ 49/50, 60137/62500, 56377/62500, 42497/62500, 19/50, 15017/62500]⽜顿:%y为对应x的值,A为差商表,C为多项式系数,L为多项式%X为给定节点,Y为节点值,x为待求节点function[y,A,C,L] = newton(X,Y,x,M)n = length(X);m = length(x);for t = 1 : mz = x(t);A = zeros(n,n);A(:,1) = Y';s = 0.0; p = 1.0; q1 = 1.0; c1 = 1.0;for j = 2 : nfor i = j : nA(i,j) = (A(i,j-1) - A(i-1,j-1))/(X(i)-X(i-j+1));endq1 = abs(q1*(z-X(j-1)));c1 = c1 * j;endC = A(n, n); q1 = abs(q1*(z-X(n)));for k = (n-1):-1:1C = conv(C, poly(X(k)));d = length(C);C(d) = C(d) + A(k,k);endy(t) = polyval(C,z);endL = poly2sym(C);x=[0.2 0.4 0.6 0.8 1.0];y=[0.98 0.92 0.81 0.64 0.38];x0=[0.2 0.28 0.44 0.76 1 1.08];m=1;[y,A,C,L]=newton(x,y,x0,m)结果:y =0.9800 0.9622 0.9020 0.6800 0.3800 0.2403A =0.9800 0 0 0 00.9200 -0.3000 0 0 00.8100 -0.5500 -0.6250 0 00.6400 -0.8500 -0.7500 -0.2083 00.3800 -1.3000 -1.1250 -0.6250 -0.5208C =-0.5208 0.8333 -1.1042 0.1917 0.9800L =- (25*x^4)/48 + (5*x^3)/6 - (53*x^2)/48 + (23*x)/120 + 49/502. 在区间上分别取,⽤两组等距节点对Runge函数作多项式插值(Lagrange插值和Newton插值均可),要求对每个值,分别画出插值多项式和函数的曲线。

拉格朗日插值、牛顿插值的matlab代码

拉格朗日插值、牛顿插值的matlab代码

实验五多项式插值逼近信息与计算科学金融崔振威201002034031一、实验目的:拉格朗日插值和牛顿插值的数值实现二、实验内容:p171.1、p178.1、龙格现象数值实现三、实验要求:1、根据所给题目构造相应的插值多项式,2、编程实现两类插值多项式的计算3、试分析多项式插值造成龙格现象的原因主程序1、拉格朗日function [c,l]=lagran(x,y)%c为多项式函数输出的系数%l为矩阵的系数多项式%x为横坐标上的坐标向量%y为纵坐标上的坐标向量w=length(x);n=w-1;l=zeros(w,w);for k=1:n+1v=1;for j=1:n+1if k~=jv=conv(v,poly(x(j)))/(x(k)-x(j)) %对多项式做卷积运算endendl(k,:)=v;endc=y*l;牛顿插值多项式主程序function [p2,z]=newTon(x,y,t)%输入参数中x,y为元素个数相等的向量%t为插入的定点%p2为所求得的牛顿插值多项式%z为利用多项式所得的t的函数值。

n=length(x);chaS(1)=y(1);for i=2:nx1=x;y1=y;x1(i+1:n)=[];y1(i+1:n)=[];n1=length(x1);s1=0;for j=1:n1t1=1;for k=1:n1if k==j %如果相等则跳出循环continue;elset1=t1*(x1(j)-x1(k));endends1=s1+y1(j)/t1;endchaS(i)=s1;endb(1,:)=[zeros(1,n-1) chaS(1)];cl=cell(1,n-1); %cell定义了一个矩阵for i=2:nu1=1;for j=1:i-1u1=conv(u1,[1 -x(j)]); %conv()用于多项式乘法、矩阵乘法cl{i-1}=u1;endcl{i-1}=chaS(i)*cl{i-1};b(i,:)=[zeros(1,n-i),cl{i-1}];endp2=b(1,:);for j=2:np2=p2+b(j,:);endif length(t)==1rm=0;for i=1:nrm=rm+p2(i)*t^(n-i);endz=rm;elsek1=length(t);rm=zeros(1,k1);for j=1:k1for i=1:nrm(j)=rm(j)+p2(i)*t(j)^(n-i);endz=rm;endendplot(t,z,'y',x,y,'*r') %输出牛顿插值多项式的函数图p171.1(a)、f(x)=e x解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[exp(0) exp(0.2) exp(0.4) exp(0.6) exp(0.8) exp(1)]y =1.0000 1.2214 1.4918 1.82212.2255 2.7183>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.0139 0.0349 0.1704 0.4991 1.0001 1.0000l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.0139 a1=0.0349 a2=0.1704 a3=0.4991 a4=1.0001 a5=1.0000(b)、f(x)=sin(x)解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[sin(0) sin(0.2) sin(0.4) sin(0.6) sin(0.8) sin(1)];>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.0073 0.0016 -0.1676 0.0002 1.0000 0l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.0073 a1=0.0016 a2=-0.1676 a3=0.0002 a4=1.0000 a5=0(c)、f(x)=(x+1)x+1解:在matlab窗口中输入:>> x=[0 0.2 0.4 0.6 0.8 1];>> y=[1 1.2^1.2 1.4^1.4 1.6^1.6 1.8^1.8 2^2];>> [c,l]=lagran(x,y)可以得出输出结果为:c =0.3945 -0.0717 0.7304 0.9415 1.0052 1.0000l =-26.0417 78.1250 -88.5417 46.8750 -11.4167 1.0000130.2083 -364.5833 369.7917 -160.4167 25.0000 0-260.4167 677.0833 -614.5833 222.9167 -25.0000 0260.4167 -625.0000 510.4167 -162.5000 16.6667 0-130.2083 286.4583 -213.5417 63.5417 -6.2500 026.0417 -52.0833 36.4583 -10.4167 1.0000 0由输出结果可以的出:P(x)的系数分别为:a0=0.3945 a1=-0.0717 a2=0.7304 a3=0.9415 a4=1.0052 a5=1.0000P178.12、a0=5 a1=-2 a2=0.5 a3=-0.1 a4=0.003x0=0 x1=1 x2=2 x3=3 c=2.5解:在matlab窗口中输入:>> x=[5 -2 0.5 -0.1];>> y=[0 1 2 3];>> t=0:0.1:2.5;>> [u,v]=newTon(x,y,t)可得出输出结果:u =0.1896 -0.7843 -1.3928 2.8688v =2.8688 2.7218 2.5603 2.3855 2.1983 2.0000 1.7917 1.5745 1.3497 1.1182 0.8813 0.6401 0.3957 0.1493 -0.0980 -0.3451 -0.5908 -0.8340 -1.0735 -1.3082 -1.5370 -1.7588 -1.9723 -2.1765 -2.3702 -2.5523由此可以求出牛顿多项式为:f(x)=0.1896x^3--0.7843^x2--1.3928x+2.8688输出的图为:结果分析:利用牛顿插值多项式的函数,通过调用函数可以求得牛顿多项式与给定的点的值,并通过matlab做出函数图像。

牛顿插值法matlab程序例题

牛顿插值法matlab程序例题

牛顿插值法是一种常用的数值分析方法,用于构造一个多项式函数,以便在给定的数据点上进行插值。

这个主题在数学和工程领域中有着广泛的应用,特别是在数据拟合和函数逼近方面。

牛顿插值法的核心思想是通过不断地添加新的数据点来构造一个多项式,并利用已知数据点来确定多项式的系数,从而实现对未知数据点的插值预测。

在Matlab中,实现牛顿插值法并不困难,我们可以利用已有的函数和工具来简化计算过程。

下面,我们将通过一个具体的例题来讲解如何使用Matlab编写牛顿插值法的程序,并分析其结果。

我们需要明确牛顿插值法的数学原理。

给定n个互不相同的节点\(x_0, x_1, ... , x_n\),以及在这些节点上的函数值\(f(x_0), f(x_1), ... , f(x_n)\),我们希望构造一个n次插值多项式p(x),满足p(x_i) = f(x_i),i=0,1,...,n。

牛顿插值多项式的一般形式为:\[p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + ... + a_n(x -x_0)(x - x_1)...(x - x_{n-1})\]其中,\[a_i\]表示插值多项式的系数。

通过牛顿插值法的迭代过程,可以逐步求解出这些系数,进而得到插值多项式的表达式。

接下来,我们将以一个具体的例题来演示如何在Matlab中实现牛顿插值法。

假设我们有如下的数据点和函数值:\(x = [1, 2, 3, 4]\)\(f(x) = [1, 4, 9, 16]\)我们希望利用这些数据点来构造一个插值多项式,并在给定的区间上进行插值计算。

在Matlab中,可以通过interp1函数来进行插值计算,该函数支持多种插值方法,包括牛顿插值法。

下面是一个简单的Matlab程序示例:```matlabx = [1, 2, 3, 4];y = [1, 4, 9, 16];xi = 2.5;yi = interp1(x, y, xi, 'spline');disp(['在x=',num2str(xi),'处的插值结果为:',num2str(yi)]);```在这段代码中,我们首先定义了给定的数据点x和对应的函数值y,然后利用interp1函数对x=2.5处的插值结果进行计算。

牛顿法matlab程序及例题

牛顿法matlab程序及例题

牛顿法matlab程序及例题牛顿法是一种求解非线性方程组的常用方法,它的基本思想是通过迭代逐步逼近方程组的根。

在matlab中,可以通过编写相应的程序来实现牛顿法,并且可以通过一些例题来深入理解其应用。

下面是一份牛顿法的matlab程序:function [x, fval, exitflag, output] = mynewton(fun, x0, tol, maxiter)% fun:非线性方程组的函数句柄% x0:初始点% tol:允许误差% maxiter:最大迭代次数x = x0;fval = feval(fun, x);iter = 0;output = [];while norm(fval) > tol && iter < maxiteriter = iter + 1;J = myjacobian(fun, x);dx = - J fval;x = x + dx;fval = feval(fun, x);output = [output; [x', norm(fval)]];endif norm(fval) <= tolexitflag = 0; % 成功求解elseexitflag = 1; % 未能求解end% 计算雅可比矩阵function J = myjacobian(fun, x)n = length(x);fval = feval(fun, x);J = zeros(n);h = sqrt(eps); % 微小的增量for j = 1:nxj = x(j);x(j) = xj + h;fval1 = feval(fun, x);x(j) = xj - h;fval2 = feval(fun, x);x(j) = xj;J(:, j) = (fval1 - fval2) / (2 * h);end接下来,我们可以通过一个例题来演示牛顿法的应用。

matlab实现牛顿差分及等距节点插值公式

matlab实现牛顿差分及等距节点插值公式

题目:探究matlab中牛顿差分及等距节点插值公式的实现在计算数学问题时,插值是一种常见的数值分析方法,它常常用于估计在已知数据点之间的数值。

而牛顿差分及等距节点插值公式,则是其中的一种重要方法。

本文将从简单到复杂,由浅入深地探讨matlab 中牛顿差分及等距节点插值公式的实现方法,以便读者更深入地理解这一主题。

1. 牛顿插值方法牛顿插值是一种使用多项式进行插值的数值方法,利用了拉格朗日插值多项式的一般形式,其在实际应用中具有良好的稳定性和精确度。

在matlab中,我们可以通过编写函数来实现牛顿插值方法,并根据所给定的数据点计算出插值多项式。

2. 差分及等距节点插值公式差分及等距节点插值公式是牛顿插值的一种具体形式,它通过相邻节点的差分来递推计算插值多项式的系数,从而实现对给定数据点的插值。

在matlab中,我们可以编写代码来实现这一方法,通过对数据点的差分计算来得到插值多项式的系数,并最终得到插值结果。

3. matlab中的实现步骤在matlab中,实现牛顿差分及等距节点插值公式主要包括以下几个步骤:3.1 准备数据点:首先需要准备好给定的数据点,这些数据点将作为插值的依据。

3.2 计算差商:利用给定的数据点,我们可以计算出插值多项式的系数,即差商。

这一步骤可以通过递推计算来实现。

3.3 构建插值多项式:根据得到的插值多项式的系数,我们可以构建出完整的插值多项式。

3.4 计算插值结果:我们可以利用构建好的插值多项式来计算任意点的插值结果。

4. 个人观点和理解在我看来,牛顿差分及等距节点插值公式是一种非常实用和有效的插值方法,在实际工程和科学计算中都有着广泛的应用。

在matlab中,通过编写相应的代码,我们可以很方便地实现这一方法,并得到高质量的插值结果。

掌握牛顿插值及其在matlab中的实现方法对我们来说是非常重要的。

总结回顾本文从简到繁,由浅入深地探讨了matlab中牛顿差分及等距节点插值公式的实现方法。

牛顿法matlab程序及例题

牛顿法matlab程序及例题

牛顿法matlab程序及例题牛顿法是一种求解非线性方程的优秀方法,其基本思想是利用切线逼近非线性方程的根,逐步逼近准确解。

下面我们介绍牛顿法的matlab程序及例题。

【程序】function [x_iter,k]=newton(f,df,x0,tol,maxit)%牛顿法%输入:f-目标函数,df-目标函数的导函数,x0-初始值,tol-误差限,maxit-最大迭代次数%输出:x_iter-迭代结果,k-迭代次数k=0;x_iter=x0;err=tol+1;while(err>tol && k<maxit)x=x_iter;x_iter=x-f(x)/df(x);err=abs(x_iter-x);k=k+1;endif(k==maxit)fprintf('未收敛');elsefprintf('迭代次数:%d',k);end【例题】example:求解非线性方程f(x)=x^3-5x^2+3x+7=0,初始值为x0=2,精度为1e-6。

解法:首先求导得df(x)=3x^2-10x+3,然后代入程序:>> f=@(x)x^3-5*x^2+3*x+7;>> df=@(x)3*x^2-10*x+3;>> [x_iter,k]=newton(f,df,2,1e-6,100);>> x_iterans =4.3793>> kk =5故该非线性方程的根为x=4.3793,迭代次数为5次。

【总结】通过以上例题,我们可以发现牛顿法是一种十分有效的求解非线性方程的方法,其程序简洁高效,对于复杂的非线性方程求解也能得到较好的结果。

因此在实际应用中,我们可以采用牛顿法来求解非线性方程,提高计算效率和精度。

matlab牛顿法

matlab牛顿法

matlab牛顿法牛顿法是一种经典的数值计算算法,其目的是在数值计算中寻找函数零点。

这个算法在工程、物理、计算机等各个领域都有广泛的应用。

在matlab中,牛顿法也是常用的算法之一。

1、牛顿法的概念及其原理牛顿法是一种迭代方法,用于解决方程f(x)=0的根。

该算法的基本思想是利用泰勒级数在函数零点处的展开式来逐步逼近函数零点。

具体地,看以下公式:f(x)=f(x0)+f'(x0)(x-x0)+...+f(n)(x0)/n!*(x-x0)^n这个公式表明了在x=x0附近的函数f(x)可以通过f(x0)以及一堆导数来近似表示。

如果我们只保留前两项,则有:0=f(x0)+f'(x0)(x-x0)然后可以解出以下的式子来得到下一个近似解:x1=x0-f(x0)/f'(x0)在牛顿法中只保留一阶泰勒级数,实际上是认为函数在零点附近,近似为线性函数,接下来的迭代是在这个线性函数上迭代得到零点。

2、应用牛顿法解决实际问题在实际问题中,当我们遇到求方程零点的问题时,我们可以使用牛顿法。

例如,我们想要计算sin(x)=1的解的话,可以将函数f(x)=sin(x)-1作为牛顿法的输入函数。

具体来说,可以这样写:% 定义初始值x0 = 1;% 定义牛顿法需要用到的函数f(x)fx = @(x) sin(x) - 1;% 迭代for i = 1:50x1 = x0 - fx(x0) / cos(x0);x0 = x1;enddisp(x1);通过这样的代码实现,我们可以得到方程sin(x)=1的解为1.5708。

事实上,matlab中有一个现成的函数,叫做fzero,可以直接用来求方程的解,这个函数内部实现也是用的牛顿法。

3、牛顿法的优缺点及适用条件牛顿法有其优点和缺点,其优点在于它的收敛速度非常快,因为它利用了导数来对函数刻画,逐步逼近了函数零点。

另外,牛顿法的收敛率是二次的,因此在计算精度方面也有比较大的保证。

matlab牛顿迭代法求方程组的根

matlab牛顿迭代法求方程组的根

MATLAB(矩阵实验室)是一种用于数学计算、绘图等的高度工程化的软件评台。

利用MATLAB进行牛顿迭代法求解方程组的根是一种常见的数值分析方法。

本文将介绍如何使用MATLAB进行牛顿迭代法求解方程组的根,并给出具体的代码实现。

1. 理论基础牛顿迭代法是一种求解方程根的常用数值方法。

对于一般的方程组F(X)=0,牛顿迭代法的迭代公式如下:X(k+1)=X(k)−(∂F/∂X)^(-1)·F(X(k))其中,X(k)表示第k次迭代的解,∂F/∂X表示F对X的雅可比矩阵,^(-1)代表矩阵的逆运算。

2. MATLAB代码实现以下是使用MATLAB进行牛顿迭代法求解方程组的一般代码实现:```matlabfunction [x, numIter] = newtonMethod(F, J, x0, tol, maxIter)F为方程组F(X)=0的函数句柄J为方程组F(X)的雅可比矩阵的函数句柄x0为初始解向量tol为迭代精度maxIter为最大迭代次数x = x0;numIter = 0;while norm(F(x)) > tol numIter < maxIterx = x - J(x) \ F(x); 使用MATLAB的\表示矩阵的逆运算numIter = numIter + 1;endend```3. 示例下面以一个二元非线性方程组为例,演示如何使用上述MATLAB代码进行牛顿迭代法求解方程组的根。

考虑方程组:F1(x1, x2) = x1^2 + x2^2 - 25 = 0F2(x1, x2) = x1*x2 - 9 = 0对应的雅可比矩阵为:J(x)=[2x1, 2x2; x2, x1]下面是具体的MATLAB代码实现:```matlab定义方程组F和雅可比矩阵JF = (x) [x(1)^2 + x(2)^2 - 25; x(1)*x(2) - 9];J = (x) [2*x(1), 2*x(2); x(2), x(1)];设置初始解向量、迭代精度和最大迭代次数x0 = [1; 1];tol = 1e-6;maxIter = 100;调用newtonMethod函数进行求解[x, numIter] = newtonMethod(F, J, x0, tol, maxIter);显示结果disp(['解向量为:', num2str(x')]);disp(['迭代次数为:', num2str(numIter)]);```4. 结论本文介绍了使用MATLAB进行牛顿迭代法求解方程组的方法,并给出了具体的代码实现和示例。

牛顿插值法实验报告

牛顿插值法实验报告

牛顿插值法实验报告x一、实验目的1. 了解牛顿插值法的理论原理;2. 通过Matlab软件模拟实现牛顿插值法的程序;3. 学习利用牛顿插值方法求解函数在指定单点上的值。

二、实验过程1. 理论推导牛顿插值法是用数值分析的有效的一类插值方法,在一定程度上,可以得到函数的求解结果。

其核心思想是把所求函数拟合成一系列的多项式,以此实现函数的求解。

牛顿插值法可以通过牛顿第二型插值多项式来实现,该多项式的构造方法如下:令n+1个数据点分别为x_0,x_1,…,x_n,对应的函数值为y_0,y_1,…,y_n ,则该多项式为:P_n(x)=y_0+sum_{i=1}^n[y_i-y_{i-1}]frac{(x-x_0)(x-x_1)cdots (x-x_{i-1})}{(x_i-x_0)(x_i-x_1)cdots(x_i-x_{i-1})}2. 编程实现(1)使用Matlab编程,实现牛顿插值算法。

(2)在给定的函数中,求解函数在[1,2]之间的牛顿插值。

% 目标函数f = @(x) x.*sin(2.*pi.*x);% 样本点xx = [1 2];% 函数值yy = f(xx);% 插值点x = 1.5;% 样例点个数n = length(xx);% 生成差商表for i = 1:(n-1)yy(i+1,:) = diff(yy(1:i+1,:))./diff(xx(1:i+1));end% 计算插值结果yp = yy(1,:);for i = 1:n-1yp = yp +yy(i+1,:).*prod((x-xx(1:i))./(xx(i+1)-xx(1:i)));endfprintf('函数在x=1.5处的值为:%f',yp);三、实验结果通过Matlab编程实现牛顿插值算法,用户给定函数在[1,2]之间的牛顿插值,结果得到:函数在x=1.5处的值为:1.055738。

四、实验结论本次实验通过Matlab实现牛顿插值算法,完成了实验目的,学习利用牛顿插值方法求解函数在指定单点上的值。

MATLAB插值算法实现

MATLAB插值算法实现

1.高斯插值function f = Gauss(x,y,x0)if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return;endxx =linspace(x(1),x(n),(x(2)-x(1)));if(xx ~= x)disp('节点之间不是等距的!');return;endif( mod(n,2) ==1)if(nargin == 2)f = GStirling(x,y,n);else if(nargin == 3)f = GStirling(x,y,n,x0);endendelseif(nargin == 2)f = GBessel(x,y,n);else if(nargin == 3)f = GBessel(x,y,n,x0);endendendfunction f = GStirling(x,y,n,x0)syms t;nn = (n+1)/2;f = y(nn);for(i=1:n-1)for(j=i+1:n)y1(j) = y(j)-y(j-1);endif(mod(i,2)==1)c(i) = (y1((i+n)/2)+y1((i+n+2)/2))/2;c(i) = y1((i+n+1)/2)/2;endif(mod(i,2)==1)l = t+(i-1)/2;for(k=1:i-1)l = l*(t+(i-1)/2-k);endelsel_1 = t+i/2-1;l_2 = t+i/2;for(k=1:i-1)l_1 = l_1*(t+i/2-1-k);l_2 = l_2*(t+i/2-k);endl = l_1 + l_2;endl = l/factorial(i);f = f + c(i)*l;simplify(f);f = vpa(f, 6);y = y1;if(i==n-1)if(nargin == 4)f = subs(f,'t',(x0-x(nn))/(x(2)-x(1)));endendendfunction f = GBessel(x,y,n,x0)syms t;nn = n/2;f = (y(nn)+y(nn+1))/2;for(i=1:n-1)for(j=i+1:n)y1(j) = y(j)-y(j-1);endif(mod(i,2)==1)c(i) = y1((i+n+1)/2)/2;c(i) = (y1((i+n)/2)+y1((i+n+2)/2))/2;endif(mod(i,2)==0)l = t+i/2-1;for(k=1:i-1)l = l*(t+i/2-1-k);endelsel_1 = t+(i-1)/2;l_2 = t+(i-1)/2-1;for(k=1:i-1)l_1 = l_1*(t+(i-1)/2-k);l_2 = l_2*(t+(i-1)/2-1-k);endl = l_1 + l_2;endl = l/factorial(i);f = f + c(i)*l;simplify(f);f = vpa(f, 6);y = y1;if(i==n-1)if(nargin == 4)f = subs(f,'t',(x0-x(nn))/(x(2)-x(1)));endendend2. Hermite(艾尔米特)插值function f = Hermite(x,y,y_1,x0)syms t;f = 0.0;if(length(x) == length(y))if(length(y) == length(y_1))n = length(x);elsedisp('y和y的导数的维数不相等!');return;elsedisp('x和y的维数不相等!');return;endfor i=1:nh = 1.0;a = 0.0;for j=1:nif( j ~= i)h = h*(t-x(j))^2/((x(i)-x(j))^2);a = a + 1/(x(i)-x(j));endendf = f + h*((x(i)-t)*(2*a*y(i)-y_1(i))+y(i));if(i==n)if(nargin == 4)f = subs(f,'t',x0);elsef = vpa(f,6);endendend3.拉格朗日插值function f = Language(x,y,x0)syms t;if(length(x) == length(y))n = length(x);elsedisp('x和y的维数不相等!');return;end %检错f = 0.0;for(i = 1:n)l = y(i);for(j = 1:i-1)l = l*(t-x(j))/(x(i)-x(j));end;for(j = i+1:n)l = l*(t-x(j))/(x(i)-x(j)); %计算拉格朗日基函数end;f = f + l; %计算拉格朗日插值函数simplify(f); %化简if(i==n)if(nargin == 3)f = subs(f,'t',x0); %计算插值点的函数值elsef = collect(f); %将插值多项式展开f = vpa(f,6); %将插值多项式的系数化成6位精度的小数endendend4. 利用均差牛顿插值function f = Newton(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = 0.0;elsedisp('x和y的维数不相等!');return;endf = y(1);y1 = 0;l = 1;for(i=1:n-1)for(j=i+1:n)y1(j) = (y(j)-y(i))/(x(j)-x(i));endc(i) = y1(i+1);l = l*(t-x(i));f = f + c(i)*l;simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,'t',x0);elsef = collect(f); %将插值多项式展开f = vpa(f, 6);endendend5.向后牛顿插值function f = Newtonback(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = 0.0;elsedisp('x和y的维数不相等!');return;endf = y(n);y1 = 0;xx =linspace(x(1),x(n),(x(2)-x(1)));if(xx ~= x)disp('节点之间不是等距的!');return;endfor(i=1:n-1)for(j=i+1:n)y1(j) = y(j)-y(j-1);endc(i) = y1(n);l = t;for(k=1:i-1)l = l*(t+k);end;f = f + c(i)*l/factorial(i);simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,'t',(x0-x(n))/(x(2)-x(1)));elsef = collect(f);f = vpa(f, 6);endendend5.向前牛顿插值function f = Newtonforward(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = 0.0;elsedisp('x和y的维数不相等!');return;endf = y(1);y1 = 0;xx =linspace(x(1),x(n),(x(2)-x(1)));if(xx ~= x)disp('节点之间不是等距的!');return;endfor(i=1:n-1)for(j=1:n-i)y1(j) = y(j+1)-y(j);endc(i) = y1(1);l = t;for(k=1:i-1)l = l*(t-k);end;f = f + c(i)*l/factorial(i);simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,'t',(x0-x(1))/(x(2)-x(1)));elsef = collect(f);f = vpa(f, 6);endendend。

牛顿迭代法matlab

牛顿迭代法matlab

牛顿迭代法matlab
牛顿迭代法(Newton Iteration)是一种经典的求解方程的数值计算方法。

牛顿迭代的思想是:利用泰勒级数展开,把一个方程表达成无穷多个多项式,假设初始值检验了,利用这无穷多个多项式,求出后面每一步的方程解。

这种方法被称为牛顿迭代,它能够在有限的步骤内求解出一个足够接近的解,比较适合于求解处于非线性的方程组的收敛的情况。

以下给出一个MATLAB程序来描述牛顿迭代的步骤:
其中,X是方程组解的初值,f为等式组右侧函数,J是等式组左侧Jacobian矩阵。

function X = Newton_iter(X,C,F)
% 光滑牛顿迭代
MXtimes=20;
for iter=1:MXtimes
% 计算jacobian矩阵
J=jacobian(C,F,X);
%计算右侧函数
F_val=F(X);
%牛顿迭代公式更新X
X=X-J\F_val;
end
end
其中jacobian函数返回计算出的jacobian矩阵和右侧方程组函数:
上面提到了求Jacobia矩阵时需要用到一个Ua函数,这个函数表达式如下:
function x=Ua(C)
eps=1.0e-6; %步长定义
x=eps*C/norm(C); %求计算步长
end
可以看到,牛顿迭代是利用Taylor展开式来建立接近原始方程解的方程组来解决求解非线性方程组收敛的情况,大致步骤是通过jacobian矩阵求出右侧方程函数值,然后利用函数求得x值,最后逐步收敛至原解。

牛顿插值matlab实现

牛顿插值matlab实现

牛顿插值matlab实现
牛顿插值是一种利用已知数据点构造插值多项式的方法。

在Matlab中,可以使用Newton插值函数`interp1()`来实现。

下面是一个示例代码,展示了如何使用Matlab实现牛顿插值:
```matlab
% 已知数据点
x = [1, 2, 3, 4, 5];
y = [4, 3, 2, 1, 5];
% 牛顿插值
xi = 2.5; % 待插值的点
yi = interp1(x, y, xi, 'nearest'); % 最近邻插值
disp(['插值点 (', num2str(xi), ',', num2str(yi), ')']);
% 绘制插值多项式和原始数据点
xx = linspace(min(x), max(x), 100); % 插值点
yy = interp1(x, y, xx, 'nearest'); % 插值多项式
plot(x, y, 'o', xx, yy, '-')
legend('原始数据', '插值多项式');
```
在上面的代码中,我们首先定义了已知的数据点x和y。

然后
使用`interp1()`函数进行插值,传入待插值点xi,选择插值方
法为最近邻插值。

最后,我们可以通过绘制插值多项式和原始数据点来可视化结果。

请注意,牛顿插值法还有其他插值方法,如线性插值、多项式插值等,在`interp1()`函数的第四个参数中可以选择合适的方法。

matlab中的牛顿插值

matlab中的牛顿插值

matlab中的牛顿插值在MATLAB中,你可以使用牛顿插值方法来生成一个多项式,用于逼近一组离散数据点。

牛顿插值多项式通常用于曲线拟合和数据插值的任务。

以下是在MATLAB中执行牛顿插值的步骤:1.准备数据:首先,准备你的离散数据点,包括x值和相应的y值。

这些数据点将用于生成插值多项式。

2.计算差商:使用牛顿插值的关键是计算差商(divided differences)。

差商用于构建插值多项式的系数。

在MATLAB中,你可以使用`divdif`函数来计算差商。

```matlabx=[x1,x2,x3,...];%x值y=[y1,y2,y3,...];%相应的y值coefficients=divdif(x,y);```3.构建插值多项式:一旦你计算出差商,你可以使用这些差商来构建牛顿插值多项式。

可以使用`poly2sym`函数将差商转化为多项式对象。

```matlabp=poly2sym(coefficients,x);```4.绘制插值曲线:你可以使用插值多项式对象`p`来绘制插值曲线,以查看如何逼近原始数据。

```matlabx_interp=linspace(min(x),max(x),100);%用于插值的新x值y_interp=subs(p,x_interp);%计算插值多项式的y值plot(x,y,'o',x_interp,y_interp);```这些步骤将帮助你在MATLAB中执行牛顿插值,以生成一个多项式,用于逼近给定的离散数据点。

这个插值多项式可以用于估算原始数据点之间的值,以获得更平滑的曲线。

MATLAB作业拉格朗日三阶样条插值函数牛顿插值

MATLAB作业拉格朗日三阶样条插值函数牛顿插值

Lagrange插值M函数syms xx0=[0,1,2];y0=[1,2,3];n=length(x0);for i=1:na=1;for j=1:nif j~=ia=expand(a*(x-x0(j)));endendb=1;for k=1:nif k~=ib=b*(x0(i)-x0(k));endendA(i)=expand(a/b);endL=0;for p=1:nL=L+y0(p)*A(p);endL>> LanguageL =x + 1三阶样条插值M函数function m=naspline(x,y,dy0,dyn,xx)n=length(x)-1;h=diff(x);lemda=h(2/n)./(h(1:n-1)+h(2:n));mu=1-lemda;g=3*(lemda.*diff(y(1:n))./h(1:n-1)+mu.*diff(y(2:n+1))./h(2:n)); g(1)=g(1)-lemda(1)*dy0;g(n-1)=g(n-1)-mu(n-1)*dyn;dy=nachase(lemda,2*ones(1:n-1),mu,g);m=[dy0;dy;dyn];if nargin>=5s=zeros(size(xx));for i=1:nif i==1,kk=find(xx<=x(2));elseif i==nkk=find(xx>x(n));elsekk=find(xx>x(i)&xx<=x(i+1));endxbar=(xx(kk)-x(i))/h(i);s(kk)=alpha0(xbar)*y(i)+alpha1(xbar)*y(i+1)+...h(i)*beta0(xbar)*m(i)+h(i)*beta1(xbar)*m(i+1);endm=s;endfunction x=nachase(a,b,c,d)n=length(a);for k=2:nb(k)=b(k)-a(k)/b(k-1)*c(k-1);d(k)=d(k)-a(k)/b(k-1)*d(k-1);endx(n)=d(n)/b(n);for k=n-1:-1:1x(k)=(d(k)-c(k)*x(k+1))/b(k);endx=x(:);function y=alpha0(x)y=2*x.^3-3*x.^2+1;function y=alpha1(x)y=-2*x.^3+3*x.^2;function y=beta0(x)y=x.^3-2*x.^2+x;function y=beta1(x)y=x.^3-x.^2;naspline([-1 0 1],[-1 0 1],0,-1)ans =1.7500-1.0000>> naspline([-1 0 1],[-1 0 1],0,-1,-1:0.25:1)ans =-1.0000 -0.9258 -0.7188 -0.4023 0 0.4492 0.8438 1.06641.0000ans =Columns 1 through 5-1.0000 -0.9258 -0.7188 -0.4023 0 Columns 6 through 90.4492 0.8438 1.0664 1.0000牛顿插值多项式function yi=Newton(x,y,xi)n=length(x);m=length(y);if n~=merror;return;end%计算均差表YY=zeros(n);Y(:,1)=y';for k=1:n-1for i=1:n-kif abs(x(i+k)-x(i))<epserror;return;endY(i,k+1)=(Y(i+1,k)-Y(i,k))/(x(i+k)-x(i));endend%计算牛顿插值公式yi=0;for i=1:nz=1;for k=1:i-1z=z*(xi-x(k));endyi=yi+Y(1,i)*z;endEnd>>format compact>> x=pi*[1/6 1/4 1/3];y=[0.5 0.7071 0.866];xi=2*pi/9;0.550.60.650.70.750.450.50.550.60.650.70.75>> yi=Newton(x,y,xi)yi =0.6434>>fplot(‘sin ’,[pi/6 pi/4 pi/3]);hold on;>>plot(x,y,’o ’xi,0.6434,’rv ’);hold off;牛顿迭代M 函数function x=nanewton(fname,dfname,x0,e,N) if nargin<5,N=500;endif nargin<4,e=1e-4;endx=x0;x0=x+2*e;k=0;while abs(x0-x)>e&k<N,k=k+1;x0=x;x=x0-feval(fname,x0)/feval(dfname,x0); disp(x)endif k==N,warning('已达迭代次数上限');end >> fun=inline('x^3-x-1');dfun=inline('3*x^2-1'); >> nanewton(fun,dfun,1.5,0.5e-3)1.34781.32521.3247ans =1.32470.550.60.650.70.750.450.50.550.60.650.70.75。

matlab中牛顿迭代法

matlab中牛顿迭代法

在MATLAB中使用牛顿迭代法求解函数的根(零点)通常需要定义目标函数及其导数,并进行迭代计算。

以下是一个简单的示例:
假设要解的方程为 f(x) = x^3 - 2x - 5,可以定义该函数及其导数如下:
```matlab
% 定义目标函数及其导数
f = @(x) x^3 - 2*x - 5;
df = @(x) 3*x^2 - 2;
% 初值
x0 = 2; % 初始猜测值
% 迭代计算
tol = 1e-6; % 精度要求
max_iter = 100; % 最大迭代次数
for iter = 1:max_iter
x1 = x0 - f(x0) / df(x0); % 牛顿迭代公式
if abs(x1 - x0) < tol
break;
end
x0 = x1;
end
root = x1;
fprintf('方程的根为: %f\n', root);
```
在这个示例中,我们首先定义了目标函数 `f` 及其导数 `df`,然后选择了一个初始猜测
值 `x0`。

接下来,我们使用牛顿迭代公式进行迭代计算,直到满足一定的精度要求为止。

请注意,牛顿迭代法可能会因为初值选择不当而导致无法收敛,或者收敛到错误的根,因此在实际应用中需要谨慎选择初值,并对迭代过程进行适当的监控和调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档