几种实用的低电压冗余电源方案设计
高压低压配电柜的电源冗余和备份策略
高压低压配电柜的电源冗余和备份策略在现代工业生产中,配电柜扮演着不可或缺的角色,它负责将高压电源转化为低压电源,为电气设备提供稳定可靠的电能。
然而,电力供应的中断或故障可能会对生产造成严重影响,因此采取电源冗余和备份策略是必要的。
本文将探讨高压低压配电柜的电源冗余和备份策略。
一、电源冗余策略为了保证连续供电和可靠性,高压低压配电柜通常采用冗余电源策略。
冗余电源是指为主电源提供备用电源,以便在主电源故障时能够切换到备用电源。
常见的冗余电源策略主要有以下几种:1. N+1冗余N+1冗余是指在所需电源数量(N)的基础上增加一个备用电源。
例如,如果一个配电柜需要两个电源供电,那么采用N+1冗余策略将需要三个电源。
这种策略的好处是在主电源故障时可以无缝切换到备用电源,确保电力供应的连续性。
2. 2N冗余2N冗余是指为每个电源提供一个备份电源。
这种策略需要两个完全独立的电源系统,并保证每个电源都能满足全部负荷需求。
与N+1冗余相比,2N冗余的可靠性更高,但成本也更高。
3. N+N冗余N+N冗余是指为每个电源提供一个备份电源,并将负荷均匀分配给所有电源。
这种策略在主电源故障时,所有备份电源都能够均衡承担负荷。
尽管具备一定的冗余能力,但与2N冗余相比,N+N冗余的可靠性较低。
二、电源备份策略除了冗余电源策略外,配电柜还需要采取电源备份策略,以应对特定情况下的电力中断。
常见的备份策略主要有以下几种:1. UPS(不间断电源)备份UPS是一种用于提供短暂备份电源的设备,主要用于应对短时间的电源中断。
它通过电池或超级电容器储存电能,并在主电源中断时立即切换到备份电源,以保证电气设备的连续供电。
UPS备份可以为敏感设备提供充足的电力供应,避免数据丢失和生产中断。
2. 发电机备份对于长时间的电力中断,发电机备份是一种可靠的选择。
发电机可以自动或手动启动,为配电柜提供稳定的备用电源。
它通常通过柴油或天然气燃料驱动,可以持续供电数小时甚至数天。
电源系统实现冗余的几种方式
电源系统实现冗余的几种方式电源系统实现冗余的几种方式目前,尽管配电系统已经相当可靠,但是考虑到重要数据的处理和存储,许多公司采用UPS来进行对服务器、数据中心等设备的保护。
目的是为了确保重要设备可以应对突发性的电源故障。
本文主要介绍了以下几种实现电源系统冗余的方式:1。
单机/并机满载冗余方式:UPS接在电网与负载之间对负载进行保护,是最基本、最简单的保护模式。
如果UPS出故障,或者负载过载,UPS就会切换到旁路方式运行。
负载就在市电直通方式下运行,为了对UPS进行维修,尽快排除故障,一般采用外部旁路(维修旁路盘)对UPS进行隔离,以便在负载不断电的方式下进行UPS的维修。
但是这种方式有其局限性,主要是当负载在UPS工作在旁路方式下时,缺乏可靠的电源保护。
2。
隔离冗余方式:隔离冗余方式是指一台或者多台UPS作为第一级电源保护设备,另外一台机器作为二级电源,备用使用。
一级电源有各自的负载总线,二级电源为所有一级电源设备提供旁路电源。
工作时二级电源空载运行,但是,在一个周波的时间内要求它可以承担从0%到100%的负载。
当一级电源从市电模式切换到旁路模式时,转换开关会自动将其与二级电源断开。
3。
并联冗余方式:并联冗余方式一般由2台或者多台相同功率的UPS组成,负载均分,这种方式也被称为N+1冗余方式,为负载提供的电源总容量是单台电源容量的2倍。
这种工作方式与单机工作方式及并机满载冗余方式相比更加可靠,如果其中一台UPS出现故障,它即自动退出并机队列,剩下机器则继续为负载供电。
4。
分布式冗余方式:分布式冗余方式是目前业内公认的最可靠及可行的工作方式,整个系统内部的UPS各自独立,适用的负载例如:机房内的双电源服务器、精密仪器等。
此种冗余方式最基本的配置是2台UPS,独立输入,不共享数据,但是因为均分负载,因此仍然是并联运行。
5。
分区电源分配方式:在一套UPS配电系统中,从UPS到其最终保护的负载之前,通过其下口的各分配电柜和其它的电气开关之间会有一个较长的能量通路,其间就存在着一些有可能导致整个系统出现问题的故障点,理想的UPS电源系统应该是UPS的输出直接连接后端需要保护的关键设备,在分区电源系统中,UPS更加靠近负载,在几种电源系统冗余方式中,它的可靠性及可用性级别最高。
服务器的冗余电源技术doc
冗余电源是高可用系统中关键的部分。
在最简单的解决方案中,两只电源可以利用二极管来通过或门输出以驱动负载。
这样,这两只电源既可以共同工作,也可以一只工作,一只备用。
场效应晶体管(FET)ORing控制器是一款更实用的解决方案,因为它避免了二极管电压降、功率损耗以及热损耗。
因此我们可以用低电压损失MOSFET来配置新颖经济的系统。
在这里我们将讨论几个服务器冗余电源配置的示例。
服务器的冗余电源技术高可用系统的电源总线可能采用OR或者N+1配置,或者两者同时采用。
通常来说,因为存在正向压降及其带来的热损耗,所以在低电压、高电流的应用中我们不采用二极管。
因此人们更倾向于采用FETORing技术。
然而,采用高度集成和分立式设计的MOSFSET控制器本身也存在很多不足之处。
在图1中,MOSFET两端的差分电压VAC是由控制器监控的,控制器是根据VAC来设置MOSFET的闸极电压的。
在MOSFET开启和关闭时的实际开关点电压以及控制的方法和速度决定了控制器成功地模拟二极管的性能和稳定性。
TPS2410控制器是专门为服务器应用而设计的。
服务器的负载通常是低电压、相对稳定的高电流,不允许出现流向失效电源 (failedpowersupply)的反向电流。
下面我们将讨论一些有关冗余电源配置的示例。
示例中采用了图1中带方框的二级管符号来表示N通道 MOSFET和控制器的简图。
图 1、“带框的二级管”表示控制器和MOSFET的简图OR配置图2显示了一款简单的ORing电源控制器。
通常,在刀片服务器上的主电源总线为正12伏。
其他电源轨上的OR布线也是如此,甚至包括CPU的内核电压,它们通常是0.8到1.8伏。
计算机内核电压太低,无法使用二极管。
图 2、简单电源的OR这个例子当中的组件位置没有标出。
设计人员可以把系统分区然后在电源或者刀片服务器上找到ORing电路。
并联的MOSFET控制器的栅极关断电流足以驱动MOSFET栅极。
国产电源冗余方案
国产电源冗余方案引言在现代电子设备中,电源的稳定供应对于设备的正常运行至关重要。
为了保证设备在电源故障或异常情况下仍能继续工作,冗余电源方案应运而生。
本文将介绍一种国产电源冗余方案,以保障设备的稳定供电。
1. 冗余电源的概念冗余电源是指在电力系统中,通过增加备用电源来提高设备的可用性。
当主电源出现故障时,备用电源会立即接管供电,保证设备的可靠运行。
冗余电源方案在各种关键设备中广泛应用,包括服务器、网络交换机、工控系统等。
2. 国产电源冗余方案2.1. 冗余电源模块国产电源冗余方案采用模块化设计,主要包括主电源模块和备用电源模块。
主电源模块负责主要供电功能,备用电源模块作为互换备份电源。
2.2. 智能切换功能国产电源冗余方案还带有智能切换功能,能够检测主电源的状态并在发生故障时切换至备用电源。
切换过程一般在几毫秒级完成,保证设备的连续供电。
2.3. 多路输出为了满足不同设备的供电需求,国产电源冗余方案通常配备多个输出接口。
这些接口可以根据需要配置为直流输出或交流输出,以适应不同设备的供电要求。
2.4. 故障报警功能国产电源冗余方案的备用电源模块通常带有故障报警功能。
一旦备用电源出现异常,如电流过载、电压过高或过低等,系统会立即发出警报,以提醒用户处理故障。
2.5. 热插拔设计为了方便维护和升级,国产电源冗余方案采用了热插拔设计。
用户可以在设备运行的情况下更换备用电源模块,无需停机维护,提高了系统的可靠性和可用性。
3. 应用案例3.1. 服务器冗余电源服务器通常需要保证高可用性,因此冗余电源方案在服务器中得到广泛应用。
国产电源冗余方案可以提供双电源输入,以保证服务器在一台电源故障时仍能正常工作。
3.2. 工控系统冗余电源工控系统对电源供应的稳定性要求较高。
国产电源冗余方案在工控系统中可以提供备用电源的持续供电,以确保工控设备在主电源故障时继续正常运行。
3.3. 网络交换机冗余电源网络交换机的稳定供电对于网络的正常运行至关重要。
几种实用的低电压冗余电源方案设计
几种实用的低电压冗余电源方案设计摘要通过对电源冗余的系统介绍和分析,指出传统方案和替代方案的优缺点。
着重说明了在新的低电压冗余电源方案设计中MOSFET不同于常规的应用原理,并且根据不同的需求给出了几种以LTC4416、PI2121、LTC4352、LTC4350、TPC2412为代表的典型应用电路方案,说明了其中重点电路的原理。
关键词冗余电源热备份 MOSFET引言对于一些需要长时间不间断操作、高可靠的系统,如基站通信设备、监控设备、服务器等,起着重要作用。
往往需要高可靠的电源供应。
冗余电源设计是其中的关键部分,在高可用系统中冗余电源一般配置2个以上电源。
当1个电源出现故障时,其他电源可以立刻投入,不中断设备的正常运行。
这类似于UPS电源的工作原理:当市电断电时由电池顶替供电。
冗余电源的区别主要是由不同的电源供电。
电源冗余有交流220 V及各种直流电压的应用,本文主要介绍低压直流(如DC 5 V、DC12 V等)的冗余电源方案设计。
1 冗余电源介绍电源冗余一般可以采取的方案有容量冗余、冗余冷备份、并联均流的N+1备份、冗余热备份等方式。
容量冗余是指电源的最大负载能力大于实际负载,这对提高可靠性意义不大。
冗余冷备份是指电源由多个功能相同的模块组成,正常时由其中一个供电,当其故障时,备份模块立刻启动投入工作。
这种方式的缺点是电源切换存在时间间隔,容易造成电压豁口。
并联均流的N+1备份方式是指电源由多个相同单元组成,各单元通过或门二极管并联在一起,由各单元同时向设备供电。
这种方案在1个电源故障时不会影响负载供电,但负载端短路时容易波及所有单元。
冗余热备份是指电源由多个单组成,并且同时工作,但只由其中一个向设备供电,其他空载。
主电源故障时备份电源可以立即投入,输出电压波动很小。
本文主要介绍后两种方案的设计。
2 传统冗余电源方案传统的冗余电源设计方案是由2个或多个电源通过分别连接二极管阳极,以“或门”的方式并联输出至电源总线上。
低电压反激电源设计方案
低电压反激电源设计方案电源设计对于电子系统的性能和稳定性有着至关重要的作用。
其中一种常见的设计方案是低电压反激电源。
本文将介绍低电压反激电源的设计方案及其相关问题。
低电压反激电源设计方案低电压反激电源是一种采用反激变压器技术的电源设计方案,其输入电压通常为AC220V,输出电压通常为DC5V至DC24V。
常用的IC 包括TOPSwitch、UCC28600、ICE2A0565等。
① 输入滤波电路为了保证电源的稳定性和抑制电磁干扰,输入端需要加入滤波电路。
常用的组成为:X2级安全电容,二极管桥整流电路,电容滤波电路和NTC电感式温度控制器等。
② 自启动电路在输入AC电源端不需要使用开关时,需要加入自启动电路。
TOPSwitch系列产品具有自启动电路,UCC28600和ICE2A0565需要外接电路加以实现。
③ 反激变压器反激变压器是低电压反激电源的核心。
其通过互感性能将输入电压转换为输出电压。
常常采用EE型矩形磁芯设计。
在EE型变压器中,X1是输入绕组,X2是输出绕组。
两个绕组的电流通过空气隙耦合,使整个系统达到了适当的功率转换。
④ 控制电路控制电路是实现低电压反激电源工作的关键。
在消除潜在共模电压和电磁干扰方面,具有较好的稳定性和抗干扰能力。
常使用高端品牌的反激IC TOPSwitch系列产品,可提供电流和电压两种调节模式。
⑤ 输出电路输出电路连接在变压器的输出端。
配合适当大小的二极管扼流圈和电容,可保证稳定的DC输出,同时也可以降低输出电压波动。
常见问题及解决方案问题一:输出电压波动大解决方案:增加大电容的电源过滤电容、加大输出线圈的扼流电感电阻、加强输出电压的控制电路。
问题二:温度过高解决方案:采用高温材料,如高温电容和磁芯,在变压器环节加入散热器等。
问题三:输出电流波动大解决方案:增加输出电容容量、加大扼流电感电阻、调节控制电路等。
总结低电压反激电源是一种经典的电源设计方案。
其优点在于功率转换效率高、输出电压稳定、工作可靠。
三种双电源的配置方案
三种双电源的配置方案
双电源配置是指在计算机主机中安装两个供电设备,可以在一
个出现故障时保持系统的运行。
以下是三种双电源的配置方案:
1. 独立冗余双电源配置方案
在独立冗余双电源配置方案中,两个电源是独立的,每个电源
可以单独供电。
如果其中一个电源发生故障,另一个电源可以继续
提供电力,保持系统运转。
该配置方案需要两个电源插座,并且需
要两个供电线路。
2. 联合双电源配置方案
在联合双电源配置方案中,两个电源连接在一起,并通过电源
连接器和主板相连。
如果其中一个电源故障,另一个电源可以自动
接管。
该配置方案只需要一个供电线路和一个电源插座,因此更加
经济实惠。
3. 高可靠性双电源配置方案
高可靠性双电源配置方案是一种采用高级冗余技术的方案。
该
方案适用于对系统可靠性要求极高的应用场景。
两个电源连接在一起,并通过电源连接器和主板相连。
在该配置下,每个电源都可以
单独供电,因此如果其中一个电源故障,系统可以继续运行。
此外,该方案还包括了电源重组,独立开关和出线保护等技术来保证系统
的可靠性。
总的来说,双电源配置方案可以提高系统的可靠性和稳定性,为企业和个人带来更好的用户体验和更高的工作效率。
选择何种配置方案应根据实际需要和预算情况来决定。
低压隔离电源方案
低压隔离电源方案
低压隔离电源方案是指将输入电压转换为低压电压并隔离输出电路的一种电源方案。
常见的低压隔离电源方案有以下几种:
1. 电源变压器:使用变压器将输入电压降低到较低的电压水平,并隔离输入和输出电路,以确保输出电路的安全性和稳定性。
2. 直流-直流转换器:使用直流-直流转换器将输入直流电压转
换为所需的低压直流电压,并通过隔离元件(如光电耦合器或变压器)实现输入和输出电路的隔离。
3. 开关电源:采用开关电源的PWM控制技术,将输入电压转
换成高频脉冲信号,通过变压器将其转换为所需的低压电压,并通过输出滤波电路获得稳定的输出电压。
4. 线性稳压器:采用线性稳压器将输入电压转换为稳定的输出电压,通过线性稳压器内部的电子元件来实现输入输出电路的隔离。
这些低压隔离电源方案可以根据具体的应用场景和要求选择使用,以满足不同的功率、效率和可靠性要求。
构建低电压负电源热插拔电路的三种方案
构建低电压负电源热插拔电路的三种方案考虑到市场上的许多热插拔IC不能支持负电源设计,本文讨论了三种构建低电压负电源热插拔电路的解决方案。
其中两种方案需要配合正电源使用,而第三种方案可以用于仅有负电源供电的系统。
类似文章发表于2008年7月的Power Electronics Technology。
引言许多系统要求支持带电插拔,除了正电源供电系统外,有些负电源(-5V或-5.2V)设计也提出了同样的要求。
热插拔应用中,可以很容易得到适当的低电压、正电源热插拔控制器,但却很难找到合适的针对负电源设计的低电压热插拔器件。
由于大多数需要负电源低电压热插拔控制的系统中同样也使用正电源低电压热插拔控制器,可以借助正电源构建一个负电压热插拔控制方案。
本文提供了两个用于+5V/-5.2V的双电源供电系统的热插拔方案,一种方案利用两个芯片分别控制每个通道;另一种则使用单个控制器IC保护两个通道。
第三种方案采用单个芯片实现-5.2V单电源的热插拔保护。
三种方案均提供带电插拔、启动延时、浪涌电流抑制等功能,但只有一种方案具备过压检测和断路器功能。
图1所示的两芯片方案在负电源和正电源通道都提供有独立的断路器功能,图2和图3所示的单芯片方案支持浪涌电流控制功能,但在负电源通道上不具备限流和断路器功能。
两芯片方案图1所示电路提供完备的热插拔功能,为+5V和-5.2V电源提供限流、断路器功能。
电路采用MAX4272低电压正电源控制器支持+5V通道的热插拔,由于无法找到用于低电压的负电源热插拔控制器,我们使用了MAX5900高压负电源控制器支持-5.2V通道。
将MAX5900的接地端连接到+5V电源,+10.2V的电源压差能够满足MAX5900的-9V至-100V供电范围要求。
由于MAX5900具有-9V的最低供电电压,所以在本设计中选择了这款器件。
除MAX4272外,也可以选择其它低电压正电源控制器用于本设计,但MAX4272在8引脚封装内集成了全面的功能,因此在本设计中选择这款器件用于正电源的热插拔控制。
冗余电源设计原理
优点:
(1):瞬时期间有较稳定的均流效果 (2):精确的输出电压调整率。
缺点:
提高模块化的困难
冗余开关电源均流设计方案及线路分析
B、按均流误差讯号方式分: (1)、平均电流法:
工作特点: • 利用电阻将每一部电源模块输出电流平均,此平均电流讯号提供给每 一部电源模块作为共同电流参考命令。 优点:
(1):系统较稳定且均流准确度高 (2):均流控制抗噪声免疫力佳。
优点:
(1):系统有较佳的故障容忍度 (2):易扩充及实现模块化。
缺点:
(1):瞬时时电流分配较差 (2):均流控制易发生错误
(3):均流排抗噪声能力差。
冗余开关电源均流设计方案及线路分析
五、自动主仆法CS-BUS相互干扰在线路上的改进: A、机台CS-BUS相互干扰原因分析:
当仆模块的电流增加超越主模块时,其主、仆的角色将会互换,但是如果每个模块的电流太接近的话将会造成角色互 换的动作太过于频繁而产生输出电流低频振荡。
4、缺点:
(1):较差的负载调整能力 (2):在不同负载需求下均流效果比较差
冗余开关电源均流设计方案及线路分析
四、主动均流法: 1、架构方框图:
2、原理特征:
• 机台间能获得彼此间输出电流的信息,而其输出电流的信息传递的管道称为均流母线(Currintsharing bus, CS_Bus)。这个均流母线的功用是提供一电流参考讯号,使得每一个并联的模块能够根 据此电流参考讯号来调整本身的控制讯号,最后使负载电流能平均分散到每一部并联的模块。
4、主动均流法的分类: A、按控制架构分: (1)、外回路调整架构:
工作特点:
每一个电源模块本身已经有一个电流回路当作是内回路用来改善系统的动态响应以及稳定度, 另外,有一个电压外回路来调整模块的输出电压。使用外回路并联电源模块,只需在每一 个电源模块电压回路外,加入一个响应较慢的均流回路利用模块的输出电流的误差来调整 外部电压回路的参考值,此调整动作将持续到负载电流被平均分配至每一个模块为止。
冗余电源方案
冗余电源方案在现代生活中,电力供应的稳定性对于各行各业都至关重要。
一旦出现停电或电力波动,就会导致生产线停产、数据丢失以及严重影响生活质量。
为了保障电力供应的可靠性,人们常常采用冗余电源方案来应对各种突发情况。
本文将探讨冗余电源方案的原理、分类以及应用。
冗余电源方案的原理在于通过多重电源来提供电力供应。
这种方案的核心思想是,当主要电源出现故障或不稳定时,备用电源将自动接管,以确保电力供应的连续性。
冗余电源方案可以应用于各种场景,包括工业生产、数据中心、医院以及居民用电等。
下面将介绍一些常见的冗余电源方案。
第一种冗余电源方案是双路供电。
这种方案通过同时连接两个独立的电源,将其并联供电。
当其中一个电源出现故障时,另一个电源将无缝接管,保障电力供应的连续性。
双路供电方案可以广泛应用于机房、数据中心等对电力供应要求极高的场所。
第二种冗余电源方案是备用电池。
这种方案主要应用于对电力供应要求极高且停电时间短暂的场景,如关键设备或紧急照明系统。
备用电池通过连接到主电源上,当主电源中断时,备用电池将立即接管供电,以确保电力供应的连续性。
备用电池的容量和寿命将直接影响其供电时间和可靠性。
第三种冗余电源方案是UPS不间断电源。
UPS不间断电源广泛应用于各种对电力供应要求极高的场合,如数据中心、核电站等。
UPS不间断电源通过连接到主电源和负载之间,实时监测电力波动和停电情况。
当主电源中断时,UPS将立即接管供电,保证负载设备的正常运行。
UPS不间断电源的容量和稳定性将直接影响其供电时间和负载能力。
除了上述几种常见方案外,还有一些更复杂的冗余电源方案,如额定功率冗余(N+1)、并行冗余、径流冗余等。
这些方案主要应用于对电力供应要求极高且冗余程度高的场所,如医院手术室、国际机场等。
冗余电源方案的应用有助于提高电力供应的稳定性和可靠性。
然而,仅仅依靠冗余电源并不能解决所有电力供应问题。
正确的安装和维护,合理的设计和规划都是不可或缺的。
冗余电源并联方案
冗余电源并联方案概述冗余电源并联方案是根据可靠性要求,将多个电源设备连接在一起,提供额外的备用电力,以防止主电源故障导致系统中断。
在工业控制、通信、数据中心等领域中,冗余电源方案被广泛应用,确保系统的稳定性和连续运行。
本文将介绍常见的冗余电源并联方案,包括主备电源、N+1冗余电源和2N冗余电源,并探讨其适用场景、优缺点及实施方法。
主备电源主备电源是最常见的冗余电源方案之一。
主备电源由一个主电源和一个备用电源组成,当主电源发生故障时,备用电源会自动接管并提供电力。
主备电源方案的实现可以通过使用静态切换设备或者自动切换设备。
适用场景主备电源方案适用于对系统可靠性要求较低的场景,如普通办公环境、家庭电力供应等。
在这些场景下,主备电源能够提供基本的备用电力,保证短暂的停电不会对系统造成重大影响。
优点•简单易实施,成本较低;•适用于可靠性要求较低的场景;缺点•切换过程中可能发生瞬时电流过大,对设备造成损坏;•无法实现零中断切换,可能造成短暂停电;实施方法主备电源的实施方法如下:1.选择合适的主电源和备用电源,保证其参数匹配;2.安装静态切换设备或自动切换设备,将主电源和备用电源连接在一起;3.设定切换条件,当主电源发生故障或不稳定时,备用电源自动接管电力供应。
N+1冗余电源N+1冗余电源方案是将多个电源并联在一起,其中N个为工作电源,1个为备用电源。
当任意一个工作电源发生故障时,备用电源会自动接管其负载,以保证系统的连续供电。
适用场景N+1冗余电源方案适用于可靠性要求较高,但成本相对较低的场景。
在这些场景下,N+1冗余电源可以提供更高的可用性,但相对于2N冗余电源方案来说,成本较低。
优点•较高的可靠性和可用性,可以保证系统连续供电;•相对于2N冗余电源方案来说,成本较低;缺点•对电源设备的选型和配网有一定要求,需要预留备用电源接口;•当备用电源接管负载时,会有负载不均衡的情况发生;实施方法N+1冗余电源方案的实施方法如下:1.确定所需的工作电源数量和备用电源的型号及容量;2.配置并联电源设备的输入和输出,保证负载均衡,并预留备用电源接口;3.配置切换设备,监控工作电源的状态,当发生故障时,自动切换至备用电源。
低压ups方案
低压ups方案在现代社会中,电力供应的稳定性和可靠性对各行业的正常运转至关重要。
然而,电力网络的稳定度常常受到外界因素的干扰,例如自然灾害、设备故障等。
为了应对这些潜在的问题,低压UPS(不间断电源)方案应运而生。
低压UPS方案旨在提供一种可靠的备用电源,以保持关键设备和系统的正常运转。
它通过将设备与电池组连接起来,在电力中断时自动切换到电池供电,以确保持续的电力供应。
在本文中,我们将介绍低压UPS方案的原理、应用领域和选择要点。
1. 低压UPS方案的原理低压UPS方案的原理基于电力系统的冗余设计。
它由主机、电池组、智能监控系统和电路保护设备组成。
当主机检测到电力中断时,它会自动切换电源,将电力供应转变为电池供电,以保证关键设备的正常工作。
2. 低压UPS方案的应用领域低压UPS方案被广泛应用于各行各业,尤其是对电力供应要求较高的领域。
以下是一些主要的应用领域:2.1 数据中心:数据中心需要高度稳定的电力供应,以保证服务器和网络设备的正常运行。
2.2 医疗设施:医疗设施对电力的稳定性要求极高,以确保医疗设备、手术室以及患者监护设备的供电不受干扰。
2.3 通信基站:通信基站是维持通信网络运行的关键环节,对电力的连续供应要求非常严格。
2.4 工业自动化:在工业自动化中,低压UPS方案可确保生产线和关键设备在电力中断时不间断运行。
3. 选择低压UPS方案的要点当选择低压UPS方案时,以下要点应予以考虑:3.1 系统容量:根据需求确定UPS系统的容量,确保其能够支持关键设备的电力需求。
3.2 转换时间:选择具有较短转换时间的低压UPS方案,以确保关键设备在电力中断时能够立即切换到备用电源。
3.3 可扩展性:考虑未来的扩展需求,选择具有良好可扩展性的低压UPS方案,以便随着业务的增长进行升级。
3.4 可靠性:选择知名品牌和可靠的供应商,以确保低压UPS方案的质量和售后服务。
总结:低压UPS方案是应对电力中断和供电不稳定的有效解决方案。
开关电源冗余方案
开关电源冗余方案
嘿,朋友们!今天咱来聊聊开关电源冗余方案。
你们知道吗,这就好比是给电路系统上了一道保险!
比如说,你正在家里舒舒服服地看电视,突然停电了!哎呀,那得多扫
兴啊!这时候要是有开关电源冗余方案,就像是有个备用轮胎一样,能让一切继续正常运转。
想象一下,电源就像是一辆汽车的引擎,要是没有冗余,一旦出问题,
那不就抛锚在路上了吗?而有了冗余方案,就等于给这辆车加了个强大的保障。
我之前碰到过一个情况,一个公司因为电源出问题,整个系统都瘫痪了,那损失可惨重了!大家都急得团团转。
要是他们早有开关电源冗余方案,哪会有这么多麻烦事呢?
咱再打个比方,开关电源冗余方案就像是战场上的预备队。
前面的战士
万一受伤了或者累了,预备队能马上顶上去,保持战斗力不减弱啊!
在一些重要的场合,比如医院的手术室,要是电源突然断了,那可是关乎人命的事儿啊!这时候开关电源冗余方案不就太重要了嘛!
所以啊,朋友们,开关电源冗余方案真的是太有必要啦!它能在关键时刻救场,让一切都顺顺利利的。
不要等到出了问题才后悔莫及呀!赶紧行动起来,为你的电路系统加上这道可靠的保险吧!这可是关乎稳定与安全的大事,绝对不能马虎!我的观点就是,不管是哪里,都应该重视开关电源冗余方案,它能带来实实在在的安心和保障!。
低电压、低功耗模拟电路设计方案
低电压、低功耗模拟电路设计方案低电压、低功耗模拟电路设计方案随着亚微米、深亚微米技术和系统芯片(SOC)技术的日益成熟,功耗已经成为模拟电路设计中首要考虑的问题,低电压低功耗集成电路设计渐渐成为主流。
因为MOS晶体管的衬底或者与源极相连,或者连接到VDD或VSS,所以经常被用作一个三端设备。
由于未来CMOS技术的阈值电压并不会远低于现有标准,于是采用衬底驱动技术进行模拟电路设计就成为较好的解决方案。
衬底驱动技术的原理是:在栅极和源极之间加上足够大的固定电压,以形成反型层,输入信号加在衬底和源极之间,这样阈值电压就可以减小或从信号通路上得以避开。
衬底驱动MOS晶体管的原理类似于结型场效应晶体管,也就是一个耗尽型器件,它可以工作在负、零、甚至略微正偏压条件下。
由于衬底电压影响与反型层(即导电沟道)相连的耗尽层厚度,通过MOS晶体管的体效应改变衬底电压就能调制漏极电流。
应用衬底驱动技术建立一些基本的模拟电路标准模块,通过举例来说明衬底驱动技术在模拟电路设计中的使用。
1 简单和增强型衬底驱动电流镜简单的衬底驱动电流镜结构即本文提出的低电压电流镜如图1(b)所示,这种电流镜用衬底-漏极连接代替传统简单电流镜结构里的栅极-漏极连接。
当然,M3和M4通过衬底连接而不是栅极,而N型MOS 管M3和M4的栅极应施加一个合适的正向偏置电压。
这种简单衬底驱动电流镜的缺陷是输入输出电流呈非线性,这是由于在栅极驱动电流镜中输出晶体管M4工作在饱和状态。
为了解决这个问题,使用了一种替代配置,如图1(c)。
晶体管M7被作为一个二极管,连接在M5和M6这两个晶体管的栅极和衬底之间。
M7被当做简单的电压源使用,当输入电流Iin为零时晶体管M6工作在饱和状态而M5则不会。
一旦输入电流开始增大时,增强型衬底驱动电流镜中晶体管M5就会比简单衬底驱动电流镜中的M3早进入饱和状态,因此具有更好的线性度。
由于这样连接可以同时驱动栅。
低成本高可靠供电方案
传统的IT系统UPS供电方案
方案1:UPS单机供电。
这是UPS供电方案中最简单的一种。其工作原理为:
1. 正常时由UPS主回路经整流、逆变双转换后对负载供电;
2. 当整流器出现故障或输入电源消失时,由后备蓄电池组逆变转换给负载供电;
3. 当逆变器出现故障或后备电池无电时,转静态旁路由市电进行供电。
方案5:UPS 1+1并机双母线冗余方案(参见图2)。
方案中每一套系统由4台UPS组成两个独立的1+1并机方案,两套独立的并机系统组成的双路不间断冗余供电方案为双电源负载提供双路电源,同时通过UPS同步器和STS静态高速切换开关为单电源负载提供两路冗余电源。工作原理是:
1. 两套独立的UPS发生 1+1并机系统为双电源负载提供两路电源,同时通过STS静态高速切换开关,为单电源负载提供两路冗余电源。
3. 在UPS系统维修或升级时,可通过选择开关将系统降级为普通双路双母线供电系统,启动手动维修旁路,利用发电机或其他经过处理的干净电源为系统供电。
与以前的方案相比较,本方案有如下特点:
2. 在正常设计情况下,一路UPS故障时即意味着该路断电,现有的案例已证明,该种情况下对双电源设备有影响,有造成设备重启的可能。
3. 一路UPS故障单路供电时,若供电电路对应的电源模块出现故障,虽该设备另一电源模块是完好的,该设备也会断电。
4. UPS同步器和STS静态高速切换开的引入增加了系统建设的投资。
3. 当逆变器出现故障或后备电池无电时,转静态旁路由备机进行供电;当UPS主机需要维护时,整个系统仍可由旁路的备机系统承担负载。
缺点:转备机供电时,备机负载率从零骤增至全负载,负载跃变率过大造成备机可靠性下降。
几种实用的低电压冗余电源方案设计
几种实用的低电压冗余电源方案设计
张晓健;李志新
【期刊名称】《单片机与嵌入式系统应用》
【年(卷),期】2009(000)011
【摘要】通过对电源冗余的系统介绍和分析,指出传统方案和替代方案的优缺点.着重说明了在新的低电压冗余电源方案设计中MOSFET不同于常规的应用原理,并且根据不同的需求给出了几种以LTC4416、PI2121、LTC4352、LTC4350、TPC2412为代表的典型应用电路方案,说明了其中重点电路的原理.
【总页数】4页(P8-11)
【作者】张晓健;李志新
【作者单位】郑州威科姆电子科技有限公司;河南海华工程建设监理公司
【正文语种】中文
【中图分类】TP3
【相关文献】
1.冗余电源技术在机载二次电源系统中的应用 [J], 王斌;杨郑浩;邰永红
2.基于DBR的双馈风力机组低电压穿越方案设计 [J], 成红兵;袁炜;周伟波;徐继刚;卢仁宝
3.多电源自助设备中的电源管理方案设计探讨 [J], 王龙林
4.大中型发电机组保安电源三电源切换方案设计 [J], 韩冰; 丁刘元; 刘军
5.基于串联电压补偿的配电网低电压治理方案设计 [J], 雷司宇;谭聪;何琦;彭海超
因版权原因,仅展示原文概要,查看原文内容请购买。
FPGA_电源的方案设计
FPGA_电源的方案设计FPGA电源的方案设计在数字电路设计中,FPGA(现场可编程门阵列)已成为越来越重要的核心元件。
由于FPGA具有高度的可编程性和灵活性,使其在各种应用领域中得到广泛应用。
然而,在FPGA运行过程中,电源管理问题成为了一个关键的考虑因素。
本文将探讨FPGA电源的方案设计,包括设计原理、具体方案和注意事项等方面。
FPGA电源的设计原理FPGA内部由大量的逻辑单元组成,这些逻辑单元对电源的要求较高。
为了保证FPGA的正常运行,我们需要设计一个稳定、高效、低噪声的电源系统。
这一系统应具有以下特点:1、稳定性:电源系统应提供稳定、连续的电压和电流,以确保FPGA 内部逻辑单元的稳定运行。
2、高效性:电源系统应具有较高的转换效率,以减少能源浪费和设备发热问题。
3、低噪声:电源系统应具有较低的噪声,以避免对FPGA内部逻辑单元的干扰,从而提高系统的可靠性。
具体方案设计在设计FPGA电源的方案时,我们需要根据实际需求进行定制。
以下是一些具体方案的设计步骤:1、确定电源种类和数量:根据FPGA的规格书,确定所需的电源种类和数量。
例如,某些FPGA需要一个5V的主电源,以及其他较低电压的辅助电源。
2、确定电源质量:为了确保FPGA的稳定运行,我们需要选择具有较高电源质量指标的电源模块。
这些指标包括电压稳定度、负载稳定度、电压纹波等。
3、电源布局和布线:在电路板设计中,合理的电源布局和布线能够显著提高电源系统的性能。
应尽量减小电源线的长度,并采用合理的电源平面结构,以提高电源系统的稳定性和效率。
4、降噪和EMC措施:为了降低电源噪声和电磁干扰(EMC),可以采取一系列措施,如加装滤波器、接地屏蔽、优化电路设计等。
这些措施有助于提高FPGA系统的可靠性和稳定性。
注意事项在设计和实施FPGA电源方案时,还有一些需要注意的事项:1、考虑到FPGA逻辑单元的动态功耗,应在设计中加入功耗管理机制,如动态电压调整和时钟频率调整等。
低压ups方案
低压UPS方案引言随着电力供应不稳定问题日益突出,低压UPS(不间断电源)方案在许多领域中得到了广泛应用。
低压UPS方案通过稳定电力供应,保障设备的安全运行,避免因电力波动或停电导致的损坏或数据丢失。
本文将介绍低压UPS方案的基本概念和工作原理,以及其在不同场景中的应用。
低压UPS方案的基础知识在了解低压UPS方案之前,我们首先需要了解UPS的基本工作原理。
UPS是一种能够在电力中断或电压波动时提供稳定电力的设备。
它主要由三部分组成:整流器、电池和逆变器。
整流器将交流电转换为直流电并充电至电池,逆变器则将电池的直流电转换为交流电以供设备使用。
低压UPS方案的主要特点是其输入端电压范围广泛,通常在100V至260V之间。
这意味着它能够适应供电电压的波动,保持输出电压稳定。
此外,低压UPS 方案通常具有高效的能量转换率,能够最大程度地减小能量损失。
低压UPS方案的应用场景1. 家庭电力保护在家庭环境中,频繁的电力中断可能导致家电设备损坏或数据丢失。
低压UPS 方案可以提供稳定的电力供应,在电力中断时自动切换为备用电源,保护家庭电器的正常运行。
此外,低压UPS方案还可以提供电池备份时间,以便用户在电力中断时有足够的时间保存工作或关闭设备。
2. 商业应用在商业环境中,稳定的电力供应是保证各种设备和系统正常运行的基本要求。
低压UPS方案可以为商业建筑提供可靠的电力保护,防止因电压波动或电力中断而引起的数据丢失或设备损坏。
此外,低压UPS方案还可以提供附加的保护功能,如电压调整、过电压保护和过载保护。
3. 工业应用在工业领域中,许多关键设备和系统对稳定的电力供应有较高的要求。
低压UPS方案可以满足这些要求,为工厂、矿山、医疗设施等提供可靠的电力保护。
此外,低压UPS方案还可以与智能监控系统集成,实现实时监测和报警功能,帮助用户迅速发现和解决潜在问题。
低压UPS方案的优势低压UPS方案相比其他UPS方案具有以下优势:1.输入电压范围广泛,适应性强。
几种实用的低电压冗余电源方案设计
几种实用的低电压冗余电源方案设计低电压冗余电源方案设计是为了确保设备在电源故障情况下仍能持续运行的一种设计方案。
下面介绍几种实用的低电压冗余电源方案设计。
1.双电源供电方案:这是最基本的低电压冗余电源方案设计。
系统由两个电源同时供电,若其中一个电源发生故障,则系统可以自动切换到备用电源进行供电。
备用电源可以是电池组或者发电机组,确保系统在电源故障时仍能持续供电。
2.电池组供电方案:电池组作为备用电源,提供独立的电源供应。
在主电源发生故障时,电池组立即接管供电,确保系统持续运行。
电池组需要进行定期维护和监控,以确保其正常工作。
3.UPS(不间断电源)供电方案:UPS采用电池组作为备用电源,同时具备稳压、稳频和过载保护功能。
UPS可以与主电源并联供电,当主电源正常时,UPS将对其进行稳压和稳频处理;当主电源发生故障时,UPS立即切换到电池供电,确保系统持续供电。
4.多路电源供电方案:多路电源供电方案中,系统由多个电源同时供电,每个电源负责供电系统中的一部分负载。
当其中一个电源发生故障时,其他电源可以继续供电,确保系统不受影响。
该方案可以提高系统供电的可靠性和稳定性。
5.并联供电方案:并联供电方案中,多个电源并联供电系统。
每个电源都能够独立供电整个系统的负载。
当其中一个电源发生故障时,其他电源可以接管负载进行供电,确保系统不间断运行。
并联供电方案可以提供更高的供电可靠性和容灾能力。
在低电压冗余电源方案设计中,还需要考虑电源切换的速度、过载保护、过电压保护、电源管理和监控等问题,以确保整个系统的稳定运行。
同时,对备用电源的维护和监控也是非常重要的,以确保备用电源在需要时能够正常工作。
综上所述,以上是几种实用的低电压冗余电源方案设计,不同的方案可以根据系统需求和特点进行选择和组合。
在设计时,需要综合考虑供电可靠性、成本、容灾能力等因素,以满足系统的运行需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种实用的低电压冗余电源方案设计引言对于一些需要长时间不间断操作、高可靠的系统,如基站通信设备、监控设备、服务器等,往往需要高可靠的电源供应。
冗余电源设计是其中的关键部分,在高可用系统中起着重要作用。
冗余电源一般配置2个以上电源。
当1个电源出现故障时,其他电源可以立刻投入,不中断设备的正常运行。
这类似于UPS电源的工作原理:当市电断电时由电池顶替供电。
冗余电源的区别主要是由不同的电源供电。
电源冗余有交流220 V及各种直流电压的应用,本文主要介绍低压直流(如DC 5 V、DC 12 V等)的冗余电源方案设计。
1 冗余电源介绍电源冗余一般可以采取的方案有容量冗余、冗余冷备份、并联均流的N+1备份、冗余热备份等方式。
容量冗余是指电源的最大负载能力大于实际负载,这对提高可靠性意义不大。
冗余冷备份是指电源由多个功能相同的模块组成,正常时由其中一个供电,当其故障时,备份模块立刻启动投入工作。
这种方式的缺点是电源切换存在时间间隔,容易造成电压豁口。
并联均流的N+1备份方式是指电源由多个相同单元组成,各单元通过或门二极管并联在一起,由各单元同时向设备供电。
这种方案在1个电源故障时不会影响负载供电,但负载端短路时容易波及所有单元。
冗余热备份是指电源由多个单元组成,并且同时工作,但只由其中一个向设备供电,其他空载。
主电源故障时备份电源可以立即投入,输出电压波动很小。
本文主要介绍后两种方案的设计。
2 传统冗余电源方案传统的冗余电源设计方案是由2个或多个电源通过分别连接二极管阳极,以“或门”的方式并联输出至电源总线上。
如图1所示。
可以让1个电源单独工作,也可以让多个电源同时工作。
当其中1个电源出现故障时,由于二极管的单向导通特性,不会影响电源总线的输出。
在实际的冗余电源系统中,一般电流都比较大,可达几十A。
考虑到二极管本身的功耗,一般选用压降较低、电流较大的肖特基二极管,比如SR1620~SR1660(额定电流16 A)。
通常这些二极管上还需要安装散热片,以利于散热。
3 传统方案与替代方案的比较使用二极管的传统方案电路简单,但有其固有的缺点:功耗大、发热严重、需加装散热片、占用体积大。
由于电路中通常为大电流,二极管大部分时间处于前向导通模式,它的压降所引起的功耗不容忽视。
最小压降的肖特基二极管也有0.45 V,在大电流时,例如12 A,就有5 W的功耗,因此要特别处理散热问题。
现在新的冗余电源方案是采用大功率的MOSFET管来代替传统电路中的二极管。
MOSFET的导通内阻可以到几mΩ,大大降低了压降损耗。
在大功率应用中,不仅实现了效率更高的解决方案,而且由于无需散热器,所以节省了大量的电路板面积,也减少了设备的散热源。
应用电路中MOSFET需要有专业芯片的控制。
目前,TI、Linear等各大公司都推出了一些成熟的该类芯片。
4 新方案中MOSFET的特殊应用MOSFET在新的冗余电源方案中是关键器件。
由于与常规电路中的应用不同,很多人对MOSFET的认识都存在一定误区。
为了方便后续电路的介绍,下面对其特殊之处作以说明。
首先,MOSFET符号中的箭头并不代表实际电流流动方向。
在三极管应用中,电流方向与元件符号的箭头方向相同,因此很多人以为MOSFET也是如此。
其实MOSFET与三极管不同,它的箭头方向只是表示从P极板指向N极板,与电流方向无关,如图2所示。
其次,应注意MOSFET中二极管的存在。
如图2所示,N沟道MOSFET中源极S接二极管的阳极,P沟道MOS-FET中漏极D接二极管的阳极。
因此,在大多数把MOSFET当作开关使用的电路中,对于N沟道MOSFET,电流是从漏极流向源极,栅极G接高电压导通;对于P沟道MOSFET,电流是从源极流向漏极,栅极G接低电压导通,否则由于二极管的存在,栅极的控制就不能关断电流通路。
最后,应注意MOSFET的电流流动方向是双向的,不同于三极管的单向导通。
对于MOSFET的导电特性,大多数资料、文献及器件的数据手册中只给出了单向导电特性曲线,大多数应用也只是利用了它的单向导电特性;而对于其双向导电特性,则鲜有文献介绍。
实际上,MOS-FET为电压控制器件,通过栅极电压的大小改变感应电场生成的导电沟道的厚度,从而控制漏极电流的大小。
以N沟道MOSFET为例,当栅极电压小于开启电压时,无论源、漏极的极性如何,内部背靠背的2个PN结中,总有1个是反向偏置的,形成耗尽层,MOSFET不导通。
当栅极电压大于开启电压时,漏极和源极之间形成N型沟道,而N型沟道只是相当于1个无极性的等效电阻,且其电阻很小,此时如果在漏、源极之间加正向电压,电流就会从漏极流向源极,这是通常采用的一种方式;而如果在漏、源极之间加反向电压,电流则会从源极流向漏极,这种方式很少用到。
在冗余电源的应用电路中,MOSFET的连接方向与常规不同。
以N沟道管为例,连接电路应如图3所示。
如果电源输入电压高于负载电源电压,即 Vi>Vout,电流由Vi流向Vout。
由于是冗余电源应用,负载电源电压Vout可能会高于电源输入电压Vi,这时由外部电路控制MOSFET 栅极关断源、漏通路,同时由于内部二极管的反向阻断作用,使负载电源不能倒流回输入电源。
如果需要通过控制信号直接控制关断MOSFET通路,上述的单管就无法实现,因为关断MOSFET沟道之后,内部的二极管还存在单向通路。
这时需要如图4所示的2个背靠背反向连接的MOSFET电路,只有这样才能主动地关断电流通路。
5 几种实用冗余电源方案设计本文主要讨论的是DC 5 V、DC 12 V之类的低压冗余电源设计。
针对不同的功能、成本需求,下面给出几个设计方案实例。
5.1 简单的冗余电源方案使用Linear公司的LTC4416可以设计1个简单的2路电源冗余方案,如图5所示。
图中用1个LTC4416芯片连接2个外置P沟道MOSFET控制2路电源输入,是非常简单的方案。
它使用2个MOSFET代替2个二极管实现了“或”的作用,MOSFET的压降一般为20~30 mV,因此功率损耗非常小,不会产生太多热量。
该电路的工作原理是,LTC4416在2路输入电源的电压相同(差值小于100 mV)时,通过G1、G2控制2个MOSFET同时导通,使2路输入同时给负载提供电流。
当输入电源电压不同时,输出电源电压可能高于某路输入电源电压,这时LTC4416可以防止输出向输入倒灌电流。
这是因为芯片一直监测输入与输出之间的电压差,当输出侧电压比输入侧电压高25 mV时,芯片控制G1或G2立即关断MOSFET,防止电流倒流。
在防止倒流方面,其他控制芯片也是类似的原理。
LTC4416还有2个控制端E1、E2,可以用外部信号主动控制2路电源的通断,也可以通过电阻分压来监测输入电压的高低,来控制某路电源的导通。
具体方法可参阅芯片数据手册。
该芯片也适合于1路输入电源电压高、1路输入电源电压低的应用,如“电源+电池”的应用。
需要注意的是,要让芯片主动去关断1路电源,外部MOSFET必须使用“背靠背”的方案,如图4所示。
另外,使用TI公司的TPS2412可以构成多路输入电源方案,这种方案需要为每路输入电源配置1片TPS2412。
如图6所示,每个芯片通过外部控制1 个MOSFET来模拟1个二极管的“或输入”。
芯片的A、C引脚分别为输入、输出电源电压检测引脚,VDD为芯片供电电源,RSET通过配置不同的外接电阻来调节MOS-FET导通的速度,也可以悬空。
由该芯片可以构成多于2路的电源冗余方案。
5.2 带过、欠压检测的冗余电源方案图7是由2个P12121芯片构成的带过压、欠压检测的双路冗余电源方案。
P12121为Vicor(怀格)公司的一款电源冗余专用芯片,由于其内部集成有24 A、1.5 mΩ的MOSFET,因此外部电路非常简单。
芯片OV为过压检测引脚,高于0.5 V时MOSFET自动切断;UV为欠压检测引脚,低于0.5 V时MOSFET切断,FT为状态输出引脚,VC为芯片工作电源引脚。
使用P12121也可以灵活地构成多路输入电源方案。
5.3 热插拔及过、欠压保护的冗余电源方案LTC4352是一种除了过压、欠压保护外,还具备防护电源热插拔浪涌电流的单路冗余电源芯片。
图8所示为LTC4352构成的单路冗余电源电路,多个这样的电路并联可以构成多路冗余电源方案。
图中OV、UV分别为过压、欠压检测,该电路通过CPO悬空使芯片不能快速通断MOSFET,依靠欠压检测使 GATE引脚在电源上电后延迟开通MOSFET,由R1、C组成的阻容网络使电源输出的电压上升速度减慢,R2则有效防止了Q的开关振荡,从而实现了一定的热插拔浪涌电流保护功能。
5.4 均流控制的冗余电源方案若要使不同的输入电源同时承担负载电流(即均流控制),需要外加一个前提,即各输入电源的电压能够通过控制信号被外部调节,以达到各电源电压基本相同的目的。
通过LTC4350控制这种电源,可以实现均流的功能。
图9是1个应用例图,图中“SHARE BUS”是各芯片共用的分配总线,该电路主要通过检测电源通路上的电流来调节输入电源的电压,达到各模块均衡提供电流的目的。
RSENSE为电流检测电阻,LTC4350检测该电阻两端的电压,内部放大后与GAIN引脚的电压比较,根据比较结果再通过IOUT引脚的模拟输出控制输入电源的电压变化,以达到调整该路电源输出电流的目的。
另外,UV、OV引脚分别为欠压、过压检测引脚,LTC4350通过检测这两个引脚的电压可以控制MOSFET的关断,实现欠压保护和过压保护的功能。