--圆柱、圆锥、圆台和球ppt课件

合集下载

课件7:1.1.3 圆柱、圆锥、圆台和球

课件7:1.1.3 圆柱、圆锥、圆台和球


成的 圆面
周而形成的
曲面 所围成 (4)侧面:不垂直于轴的边旋转而
成的曲面
的几何体叫作
圆台
(5)母线:无论转到什么位
置,这条边都叫作侧面的母线
图形
以半圆的直径所在直线为旋转轴,_半__球__面_
旋转一周形成的旋转体叫做球体,简称
球 球.半圆的圆心叫做球的_球__心__,半圆的
半径叫做球的半径,半圆的直径叫做球的 球常用球心字母进行
4x cm,作圆锥的轴截面如图所示:
在 Rt△SOA 中,O′A′∥OA,∴SA′∶SA=O′A′∶OA.
即(y-10)∶y=x∶4x,
解得:y=1313,∴母线长为
1 133
cm.
考点三 简单的组合体问题 [例3] 观察下列几何体,分析它们是由哪些基本几何体组成的, 并说出主要结构特征.
[解] 图①是由长方体及四棱锥组合而成的,图②是由球、棱柱、 棱台组合而成的.
SA=coSsO30°=
2 =4 3
3
3(cm).
2
∴S△ASB=21SO·2AO=4 3 3(cm2).
∴圆锥的母线长为43 3 cm,圆锥的轴截面的面积为43 3 cm2.
[通一类]
2.把一个圆锥截成圆台,已知圆台的上、下底面半径之比为1∶4,
母线长是10 cm,求圆锥的母线长.
[解] 设圆锥的母线长为 y cm,圆台上、下底面半径分别为 x cm,
(4)侧面: 不垂直于轴 的边旋转而
成的曲面
的几何体叫做圆

(5)母线:无论转到什么位 置, 这条边都叫做侧面的母线
图形
名称 结构特征
相关概念
以直角梯形 (1)轴:旋转轴叫做所ห้องสมุดไป่ตู้成的几何

基本立体图形 第2课时—圆柱、圆锥、圆台、球-高一数学课件(人教A版2019必修第二册)

基本立体图形 第2课时—圆柱、圆锥、圆台、球-高一数学课件(人教A版2019必修第二册)
8.1基本立体图形
第2课时 圆柱、圆锥、圆台、球
圆柱、圆锥、圆台的结构特征
这些几何体 是如何形成 的?它们的 结构特征是
什么?
一、 圆柱的结构特征:
旋转轴 1、定义:以矩形的一边
底面
所在直线为旋转轴,其余
A′
O′
三边旋转形成的曲面所围 成的旋转体叫做圆柱。
(1)旋转轴叫做圆柱的轴。
(2)垂直于轴的边旋转而成的 圆面叫做圆柱的底面。
母 线
A
O B
轴 成的旋转体叫做圆锥。
侧 (1)旋转轴叫做圆锥的轴。 面 (2) 垂直于轴的边旋转而成
的圆面叫做圆锥的底面。 (3)不垂直于轴的边旋转而
成的曲面叫做圆锥的侧面。
(4)无论旋转到什么位置,不垂直于轴的边都叫做圆 锥的母线。
S

侧面
B
O
母线
A
底面
2、圆锥的表示法:用表示它的轴的字母表 示,如圆锥SO。
圆锥的截面图 轴截面 横截面 斜截面 斜截面
三、圆台的结构特征:
1、定义:用一个平行于圆锥底面的平面去 截圆锥,底面与截面之间的部分,这样的几 何体叫做圆台。
上底面

O'
侧面
O
母线 下底面
2、圆台的表示法:用表示它的轴的字母 表示,如圆台OO′。
思考?
圆柱、圆锥和圆台都是旋转体,当底面发 生变化时,它们能否互相转化?
上底扩大
上底缩小
四、球的结构特征:
1、定义:以半圆的直径所在直线为旋转轴,半 圆面旋转一周形成的几何体,叫做球体。
A
半径
球心
O
B 2、球的表示法:用表示球心的字母表示,
如球O .

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)

AA’’
叫做圆柱的侧面。

(4)无论旋转到什么位置,不垂直于轴 线
的边都叫做圆柱的母线。
O’ B’
A
O
B
矩 形
轴 侧 面 底面
3
2.圆柱的表示:用表示它的轴的字母表示,如圆柱OO1。
3.圆柱与棱柱统称为柱体。
O


棱 柱 圆 柱


O1
母 线

底面
4
二、圆锥的结构特征 1.定义:以直角三角形的直角边所在直线为旋转轴,
1.1.6旋转体的结构特征
——圆柱、圆锥、圆台、球
1
旋转一周。。。
矩形
直角三角形
直角梯形
半圆
圆柱
圆锥
圆台

2
一、圆柱的结构特征
圆柱O定1义:以矩形的一边所在直线为旋转轴,
其余三边旋转形成的曲面所围成的旋转体叫做圆柱。
(1)旋转轴叫做圆柱的轴。
(2) 垂直于轴的边旋转而成的圆面叫
O
做圆柱的底面。
(3)平行于轴的边旋转而成的曲面
B
O
E
O
16 C
题型一、旋转体的概念
例 下列叙述中正确的是____③____.(填序号)
①以直角三角形的一边为轴旋转所得的旋转体是圆锥; ②以直角梯形的一腰为轴旋转所得的旋转体是圆台; ③圆锥截去一个小圆锥后剩余部分是圆台; ④用一个平面去截圆锥,得到一个圆锥和一个圆台.
[解题过程] ①中以直角三角形的直角边为轴旋 转所得的旋转体是圆锥,以斜边为轴旋转所得的旋 转体是两个圆锥的组合体.故①不正确. ②中以直角梯形中垂直于底边的腰为轴旋转所得 的旋转体是圆台,以不垂直底边的腰为轴旋转所得 的旋转体是圆柱和圆锥的组合体,故②不正确. ③正确.

03《圆柱、圆锥、圆台和球》课件(新人教B版必修2)

03《圆柱、圆锥、圆台和球》课件(新人教B版必修2)

(5)轴截面是等腰三角 形.
O B
底面
圆台的结构特征 如何描述它们具有的共同结构特征?
圆台 圆柱、圆锥可以看
作是由矩形或三角形绕 用一个平行于圆锥底面的 其一边旋转而成,圆台 平面去截圆锥,底面与截面之 是否也可看成是某图形 间的部分是圆台. 绕轴旋转而成? O’
O
圆台的性质: ①圆台的轴通过两底面圆的圆心,并 且与底面垂直. ②圆台的母线长都相等. ③平行于底面的截面都是圆. ④轴截面(经过圆台轴的平面截圆台所得的 截面)是全等的等腰梯形,腰长就是母线长.
O P
Q
例2.我国首都靠近北纬40°纬线。求北纬 40°纬线的长度约等于多少km(地球半径 约为6 370km).
K
A
A
40°
O
B
轴截面
O
B
解:如图,A是北纬40°纬线上的一点,AK是它的 半径,所以OK⊥AK.设c是北纬40°的纬线长, 因为∠AOB=∠OAK=40°,所以 c =2π·AK = 2π·OAcosOAK
如何描述右图的几何结构特征?
圆锥的结构特征
圆锥
以直角三角形的一条直角边 所在直线为旋转轴,其余两边旋 转形成的曲面所围成的几何体叫 做圆锥.
S
顶点
性质 (1)底面是圆 母 (2)侧面展开图是以母线长为半径的扇形 线 (3)母线相交于顶点 (4)平行于底面的截面是与底 面平行且半径不相等的圆
A
轴 侧 面
(4)经过球面上不同的两点只能作一个大圆. (5)球半径是5,截面圆半径为3,则球心到截 面圆所在平面的距离为4.
( ( × )
√)
经度纬度
经度的定义
纬度的定义
地球的经度
经度纬度

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)
其余两边旋转而成的曲面所围成的几何体叫做圆锥。 S
母线
(1)旋转轴叫做圆锥的轴。
侧面
(2) 垂直于轴的边旋转而成的曲面叫做圆锥
的底面。
直角三角形
O
A
(3)不垂直于轴的边旋转而成的曲面叫做圆锥
的侧面。
底面
(4)无论旋转到什么位置不垂直于轴的边都叫

做圆锥的母线。
5
2.圆锥的表示:用表示它的轴的字母表示,如圆锥SO。
扇环
延长线交于一点

不可 展开

平行于底面 与两底面是平行且 平行于底面且半
的截面 半径相等的圆
径不相等的圆
轴截面
矩形
等腰三角形
与两底面是平行但 全体截
半径不相等的圆 面都是
等腰梯形
圆圆
29
达 1.(2014•福建)以边长为1的正方形的一边所在所在直线为旋转轴,将该正
标 方形旋转一周所得圆柱的侧面积等于( A )
25
课堂小结
以上我们学习了柱、锥、台、球等简单几何体的结构特征.
26
简单几何体的结构特征
柱体
锥体
台体

棱柱 圆柱 棱锥 圆锥
棱台 圆台
27
棱柱、棱锥、棱台的结构特征比较
结构特征
棱柱
棱锥
棱台
定义
底面
侧面
侧棱
平行于底面 的截面
过不相邻两 侧棱的截面
两底面是全等 的多边形 平行四边形
平行且相等
与两底面是全等 的多边形
平行四边形
多边形 三角形
两底面是相似的 多边形
梯形
相交于顶点 延长线交于一点
与底面是相似 的多边形

《认识球和圆柱》PPT课件

《认识球和圆柱》PPT课件
球形容器、球形建筑等, 利用球的几何特性实现特 定功能。
03
圆柱的基本认识
圆柱的定义和性质
圆柱的定义
圆柱是由两个平行且相等 的圆面以及连接它们的侧 面围成的几何体。
圆柱的性质
圆柱的底面是圆,侧面是 曲面,展开后是一个矩形。
圆柱的轴
连接圆柱两个底面圆心的 直线段叫做圆柱的轴。
圆柱的表面积和体积
圆柱的表面积
性质
交线的形状取决于球与圆柱的相对位置和大小关系。当球的半径小于或等于圆柱的底面半径 时,交线是一个封闭的椭圆;当球的半径大于圆柱的底面半径时,交线是一个封闭的曲线, 但不是椭圆。
示例
展示不同情况下球与圆柱的交线,并解释其形状和性质。
05
球和圆柱在生活中的应用
建筑中的球和圆柱
建筑设计
球体和圆柱体的独特形状和美学特性使它们成为建筑设计的常见元 素,如圆顶建筑、圆柱形的柱子等。
机械零件的设计中,以实现转动和传动功能。
02
航空航天
在航空航天领域,球体和圆柱体的形状被用于制造飞行器的零部件,如
球形燃料箱、圆柱形火箭筒等,以满足特定的工程需求。
03
精密制造
在精密制造中,球体和圆柱体的高精度加工对于保证产品质量和性能至
关重要,如精密轴承、高精度导轨等。
06
总结与展望
课程总结
1 2
球的表面积和体积
球的表面积公式
S = 4πr²,其中r为球的半径。
球的体积公式
V = (4/3)πr³,其中r为球的半径。
球的应用举例
01
02
03
体育运动
如足球、篮球等球类运动, 球的形状和性质对运动表 现有重要影响。
天体物理

圆柱,圆锥,圆台和球的结构特征PPT49页

圆柱,圆锥,圆台和球的结构特征PPT49页
圆柱,圆锥,圆台和球的结构特征
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

例析
例2 如右图,圆柱的底面直径和高都等于球的直径, 求球与圆
柱的体积之比.
解:(1)设球的半径为R,则圆柱的底面半径
为R,高为2R.
4 3
因为 V球
R ,V 圆柱
R2 2R 2 R3
3
所以 V球 : V圆柱
2
3
问题:球的表面积与圆柱的侧面积之比呢?
R O
练习
题型一:圆柱、圆锥、圆台的表面积
例1.(1)已知圆柱的上、下底面的中心分别为1 ,2 ,过直线1 2 的平面截该圆

2.若圆柱的底面圆的直径与圆柱的高相等,则圆柱的侧面展开图是正方形. (
答案:√,×.
辨析2:若圆柱的底面半径为1,母线长为2,则它的侧面积为(
A.2
答案:D.
B.3
C.
D.4
).

新知探索
割 圆 术
早在公元三世纪,我国数学家刘徽为推
导圆的面积公式而发明了“倍边法割圆术”.
他用加倍的方式不断增加圆内接正多边形的
∴ = 5,∴ = × (2 + 6) × 5 + × 22 + × 62 = 40 + 4 + 36 = 80.
练习
题型二:圆柱、圆锥、圆台的体积
例2.(1)若一个圆柱与圆锥的高相等,且轴截面面积也相等,则圆柱与圆锥的体积
之比是(
).
A.1
B.1:2
C. 3:2
D.3:4
的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体
积为_____.
解:设上、下底面半径,母线长分别为,,.
作1 ⊥ 于点,则1 = 3,∠1 = 60°.
又∠1 = 90°,∴∠1 = 60°,∴ =

8.1.2圆柱、圆锥、圆台、球、简单组合体的结构特征课件(人教版)

8.1.2圆柱、圆锥、圆台、球、简单组合体的结构特征课件(人教版)

O
B
圆锥SO
基本立体图形
圆台的相关概念
用平行于圆锥底面的平面去截圆锥,底面与截面之
间部分叫做圆台.
S
★ 圆台的轴:

圆锥的轴 (SO);
★ 圆台的底面:

圆锥的底面和截面;(圆面O与圆面O′) 面
A′
O′
B′
★ 圆台的侧面:
A
圆锥的侧面在底面和截面之间的部分; 母线
★ 圆台的母线:
圆锥的母线在底面和截面之间的部分;(AA′、BB′)
图形360°得到几何体②;
基本立体图形
思考: (1)与圆柱底面平行的平面截圆柱所得截面的形状为_________;
圆柱的轴截面(过圆柱的轴的截面) 的形状为_________;
基本立体图形
思考: (2)圆锥的轴截面的形状为_________;
过圆锥的顶点的截面的形状为_________;
基本立体图形
基本立体图形
【练习】描述下列组合体的结构特征
【解析】图①所示的几何体是由两个圆台拼接而成的组合体; 图②所示的几何体是由一个圆台挖去一个圆锥得到的组合体; 图③所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.
基本立体图形
【例2】如图,将直角梯形ABCD绕边AB所在的直线旋转一周,由此形成 的几何体是由哪些简单几何体组成的? 【解析】画出形成的几何体如图所示.
8.1 基本立体图形
基本立体图形
复习回顾
1.空间几何体
空间几何体:如果只考虑物体的形状和大小,而不考虑其它因素, 那么这些由物体抽象出来的空间图形就叫做空间几何体。 多面体:由若干平面多边形围成的几何体叫做多面体,围成多面体 的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体 的棱;棱与棱的公共点叫做多面体的顶点.

圆柱、圆锥、圆台和球ppt课件

圆柱、圆锥、圆台和球ppt课件
面圆的面积是3 6 cm2,则球心到截面圆
圆心的距离是 8cm .
O Rd
r Oˊ P
精选ppt
四.组合体 由柱、锥、台、球等基本几何体组合而 成的几何体称为组合体。组合体可以通过 把它们分解为一些基本几何体来研究
一般地,简单组合体的构成有那几
种基本形式?
拼接,截割
精选ppt
例2.指出图⑴,⑵中的几何体是由 哪些简单几何体构成的?
判断题:
(1)在圆柱的上下底面上各取一点,这两点的
连线是圆柱的母线.
()
(2)圆台所有的轴截面是全等的等腰梯形. ( ) (3)与圆锥的轴平行的截面是等腰三角形. ( )
例1 .用一个平行于圆锥底面的平面截这个圆锥,截得圆台上 下底面半径的比是1 :4,截去的圆锥的母线长是3cm,求圆 台的母线长.
直的两个平面分别截球面得到两个圆,若两圆的公共
弦长为2,则两圆的圆心距等于 C( )
A. 1
B. 2
C. 3
D. 2
【分析】 此题可运用特殊位置法化难为易
【解析】可设其中一个平面α过球心O, 则平面α截球得到一个大圆.设公共弦为AB, 则AB为另一个截面圆的直径,即AB的中点为其圆心,
d = 22 12 3 精选ppt
精选ppt
课堂小结
• 1.球的定义及有关概念. • 2.球的截面性质. • 3.球面距离。 • 4.旋转体及组合体的定义。 • 5.球的表面积和体积公式
精选ppt
下课
精选ppt
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
拼接,截割
精选ppt
正方体的外接球
D A
D A11

圆柱、圆锥、圆台、球、简单组合体的结构特征 课件

圆柱、圆锥、圆台、球、简单组合体的结构特征  课件

【解析】 (1)几何体①是由圆锥和圆台组合而成的.可旋转如 下图(a)180°得到几何体①.
(2)几何体②是由一个圆台,从上而下挖去一个圆锥而得到,且 圆锥的顶点恰为圆台底面圆的圆心.
可旋转如下图(b)360°得到几何体②.
(3)几何体③是由一个四棱锥与一个四棱柱组合而成,且四棱锥 的底面与四棱柱底面相同.
该截面所成的角是 60°,则该截面的面积是( )
A.π
B.2π
C.3π D.2 3π
解析:因为 OA 与该截面所成的角是 60°,所以截面圆半径 r
=12OA=1,故截面的面积 S=π. 答案:A
3.正方形 ABCD 绕对角线 AC 所在直线旋转一周所得组合体 的结构特征是________.
解析:由圆锥的定义知是两个同底的圆锥形成的组合体. 答案:两个同底的圆锥组合体
类型三 旋转体的侧面展开图 [例 3]
如图,底面半径为 1,高为 2 的圆柱,在 A 点有一只蚂蚁,现 在这只蚂蚁要围绕圆柱由 A 点爬到 B 点,问蚂蚁爬行的最短距离是 多少?
【解析】
把圆柱的侧面沿 AB 剪开,然后展开成为平面图形——矩形, 如图所示,连接 AB′,则 AB′即为蚂蚁爬行的最短距离.
到什么位置,不垂直于 轴的边都叫作圆柱侧
面的母线
图中圆柱表示为圆柱 O′O
圆锥
轴:旋转轴叫作圆锥的
轴;底面:垂直于轴的
以直角三角形的一条 直角边所在直线为旋 转轴,其余两边旋转形 成的面所围成的旋转
体叫作圆锥
边旋转而成的圆面叫 作圆锥的底面;侧面: 直角三角形的斜边旋 转而成的曲面叫作圆 锥的侧面;母线:无论 旋转到什么位置,不垂
【解析】 (1)不正确,因为当直角三角形绕斜边所在直线旋转 得到的旋转体就不是圆锥,而是两个同底圆锥的组合体;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
判断题:
课堂练习
(1)在圆柱的上下底面上各取一点,这两点的
连线是圆柱的母线.
()
(2)圆台所有的轴截面是全等的等腰梯形. ( ) (3)与圆锥的轴平行的截面是等腰三角形. ( )
填空题: (1)用一张6×8的矩形纸卷成一个圆柱,其轴截
面的面积为__4_8__/ ___.
(2)圆台的上下底面的直径分别为2cm,10cm,
D A
C B
19
课堂练习
如图,将平行四边形ABCD绕AB边所在的直线旋转一周, 由此形成的几何体是由哪些简单几何体构成的?
D A
C B
20
数学运用
例2.指出图中的几何体是由哪些简单几何体构成的?
21
数学运用
例2.指出图中的几何体是由哪些简单几何体构成的?
22
课堂练习
指出图中的几何体是由哪些简单几何体构成的?
径叫做球的直径。

想 用一个平面去截球体得到的截
一 面是什么图形?
想 ?
性质3:用一个平面去截球体 得到的截面是一个圆。
14
旋转轴 母线
建构数学
母线
母线
旋转面
圆柱面
圆锥面
旋转面: 一般地,一条平面曲线绕它所在的平
面内的一条定直线旋转所成的曲面.
旋转体: 封闭的旋转面围成的几何体.
15
拓展延伸
类比棱柱、棱锥、棱台的生成过程,认识圆柱、圆锥、 圆台的结构特征.
高为3cm,则圆台母线长为__5_c_m___.
24
回顾小结
• (1)圆柱、圆锥、圆台和球的概念 • (2)运动变化、类比联想的观点 • (3)分解复杂的组合体
25
课外作业
1.请同学们课后找一找生活中具有圆柱、圆锥、 圆台和球几何结构特征的实物. 2.观察生活中的一些组合体可以分割成我们学 习过的哪些简单的几何体 .
26
课堂练习
如图,将平行四边形ABCD绕AB边所在的直线旋转一周, 由此形成的几何体是由哪些简单几何体构成的?
D A
C B
27
圆柱
圆锥
圆台
实 验10
绘图04.gsp
建构数学
轴 底面
母线
圆柱
圆锥
圆台
轴: 旋转前不动的一边所在的直线.
底面: 垂直于轴的边旋转所成的圆面.
Hale Waihona Puke 侧面: 不垂直于轴的边旋转所成的曲面.
母线: 不垂直于轴的边.
11
建构数学
表示方法:
s o
o
o
o'
o'
o'
圆柱oo' 圆锥so' 圆台oo'
球o
12
建构数学
16
拓展延伸
类比圆的定义认识球的结构特征.
O
O
圆: 平面内和一个定点距离等于定长的点的集合. 球: 空间中和一个定点距离等于定长的点的集合.
17
数学运用
例1.如图,将直角梯形ABCD绕AB边所在的直线 旋转一周,由此形成的几何体是由哪些简单几何 体构成的?
D
C
A
B
18
课堂练习
如图,将平行四边形ABCD绕AB边所在的直线旋转一周, 由此形成的几何体是由哪些简单几何体构成的?
圆柱、圆锥、圆台和球
1
情境引入
我 们 生 活 的 几 何 空 间
2
情境引入 一个形的世界,我处处离不开你.
3
情境引入
4
情境引入
5
情境引入
6
情境引入
7
学生活动 问题:观察这些几何体,它们有什 么共同特点或生成规律?
8
建构数学
矩形
直角三角形
直角梯形
半圆
圆柱
圆锥
圆台

9
建构数学
分别以矩形、直角三角形的直角边、直角梯形垂直 于底边的腰所在的直线为旋转轴,其余各边旋转而成的 曲面所围成的几何体, 分别叫做圆柱,圆锥,圆台。
想 一
1.平行于圆柱,圆锥,圆台的 底面的截面是什么图形?
想 2.过圆柱,圆锥,圆台的旋转
? 轴的截面是什么图形?
性质1:平行于底面的截面都是圆。 性质2:过轴的截面(轴截面)分别是全等的矩
形,等腰三角形,等腰梯形。
实 验13
建构数学

球面: 半圆弧旋转所成的曲面.
其中半圆的圆心叫做球的球心,半
圆的半径叫做球的半径,半圆的直
相关文档
最新文档