圆柱圆锥圆台

合集下载

圆柱、圆锥、圆台的结构特征

圆柱、圆锥、圆台的结构特征
1.1.3圆柱、圆锥、 圆台和球
观察下面的几何体与多面体有什么不同。
一.旋转体的概念
由一个平面图形绕着一条直线旋转产生的 曲面所围成的几何体叫做旋转体,这条直线 叫做旋转体的轴。比如常见的旋转体有圆柱、 圆锥、圆台和球.
知识探究(一):圆柱的结构特征
思考1:如图所示的空间几何体叫做圆 柱,那么圆柱是怎样形成的呢?
A A
C
B
C
B
D
探究 问题:侧面都是等边三角形的棱锥不可能是( D
A. 三棱锥 B. 四棱锥 C.五棱锥 D.六棱锥

问题1:有两个面互相平行, 其余各面都是四边形的几何体是 棱柱吗? 答:不一定是.如右图所 示,不是棱柱. 问题2:有两个面互相平行, 其余各面都是平行四边形的几 何体是棱柱吗? 答:不一定是.如右图所 示,不是棱柱.
思考2:以直角三角形的一条直角边所在 直线为旋转轴,其余两边旋转形成的面 所围成的旋转体叫做圆锥,那么如何定 义圆锥的轴、底面、侧面、母线?
顶点
轴 母线
底面
侧面
母线
旋转轴叫做圆锥的轴,垂直于轴的边旋转 而成的圆面叫做圆锥的底面,斜边旋转而 成的曲面叫做圆锥的侧面,斜边在旋转中 的任何位置叫做圆锥侧面的母线.
母线
母线
底面
思考3:平行于圆柱底面的截面,经过 圆柱任意两条母线的截面分别是什么图 形?
思考4:经过圆柱的轴的截面称为轴截面, 你能说出圆柱的轴截面有哪些基本特征 吗?
知识探究(三):圆锥的结构特征
思考1:将一个直角三角形以它的一条直 角边为轴旋转一周,那么其余两边旋转 形成的面所围成的旋转体是一个什么样 的空间图形?
上底面
侧面
母线

下底面

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2
解:当球内切于正方体时用料最省 此时棱长=直径=5cm
答:至少要用纸150cm2
练习
解析 设球 O 的半径为 r,则圆柱的底面半径为 r, 高为 2r,所以VV12=π43rπ2·r23r=32.
三、课堂小结:
1.圆柱、圆锥、圆台的表面积公式
1).圆柱 2).圆锥
S 2r 2 rl
S r 2 rl
如果圆台的上、下底面半径分别为r和R,母线长为l,你能计算它的
表面积吗?
r O’
RO
圆台的侧面展开图是扇环
x x
r 'O’
rO
xl r x r' l rr' x r'
xl 1 r 1 x r'
x r' l r r'
∵圆台侧面展开图是一个扇环
S侧面积
1 2
2 r( x
l)
1 2
2 r
'
x
r( x l ) r ' x rx rl r ' x
A
B
D
C
A1 D1
B1 C1
变式 球的内接长方体的长、宽、高分别为3、2、 3 ,求此球体的表面积 和体积。
分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们 中心重合,则长方体对角线与球的直径相等。
内切球问题
例题3 把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸? 分析:用料最省时,球与正方体有什么位置关系? 球内切于正方体
解:一个浮标的表面积为
2π×0.15×0.6 + 4π×0.152 =0.8478(m2) 所以给1000个这样的浮标涂防水漆约需涂料
0.8478×0.5×1000 =423.9(kg).

圆柱圆锥圆台体积和表面积

圆柱圆锥圆台体积和表面积

【解题提示】把PEFQ的体积表示出来.由于△EFQ中,EF=1,Q到EF的距离为侧面的对角线长,故选择△EFQ为底面.点P到△EFQ的距离,即是点P到对角面A1B1CD的距离.
【解析】选D.S△EFQ= ×1×2 = 点P到平面EFQ的距离为 z, VP-EFQ= S△EFQ·h= z. 因此体积只与z有关,而与x,y无关.
C
B
D
A
E
(2009·山东高考)一空间几何 体的三视图如图所示,则该几何体 的体积为( ) 2π+2 4π+2 2π+ 4π+
PART THREE
知能巩固提高
一、选择题(每题5分,共15分) 1.(2010·北京高考)如图,正方体ABCD- A1B1C1D1的棱长为2,动点E、F在棱A1B1 上,动点P,Q分别在棱AD,CD上,若 EF=1,A1E=x,DQ=y, DP=z(x,y,z大 于零),则四面体PEFQ的体积( ) (A)与x,y,z都有关 (B)与x有关,与y,z无关 (C)与y有关,与x,z无关 (D)与z有关,与x,y无关
(5分)在正方体的八个顶点中,有四个顶点恰好是正四面体的顶点,则正方体的表面积与此正四面体的表面积之比为 ( ) (B) (C) (D)
【解析】选A.如图,设正方体的棱长为a, 则正四面体A—B1D1C的所有棱长均为 a. 正方体的表面积S1=6a2, 正四面体的表面积S2=4× ×( a)2 =2 a2. ∴S1∶S2=6a2∶2 a2= ∶1.
三、解答题(6题12分,7题13分,共25分) 6.(2010·南阳高一检测)如图,一个圆锥的 底面半径为2 cm,高为6 cm,在其中有一个高 为x cm的内接圆柱. (1)试用x表示圆柱的侧面; (2)当x为何值时,圆柱的侧面积最大?

圆柱、圆锥、圆台和球

圆柱、圆锥、圆台和球

似三角形的性质得
3 r 3 l 4r
解得l=9.
所以,圆台的母线长为9cm.
例2. 我国首都北京靠近北纬40度。
求北纬40度纬线的长度约为多少千米 (地球半径约为6370千米)?
解:如图,设A是北纬40°圈上一点,AK 是它的半径,所以 OK⊥AK,
设c是北纬40°的纬线长, 因为∠OAK= ∠AOB = 40°,
3.表示方法:用表示它的轴的字母表示, 如圆柱OO’ .
4.有关性质: (1)用平行于底面的平面去截,截面都 是圆。 (2)圆柱、圆锥、圆台的轴截面分别是 全等的矩形、全等的等腰三角形、全等的 等腰梯形;
5.侧面展开图:
(1)圆柱的侧面展开图是矩形。 (2)圆锥的侧面展开图是扇形. (3)圆台的侧面展开图是扇环.
所以 c=2π·AK=2π·OA·cos∠OAK =2π·OA·cos40° ≈2×3.1416×6370×0.7660 ≈3.066×104(km),
即北纬40°的纬线长约为3.066×104km.
练习: 1、圆柱的轴截面是正方形,它的面
h
积为9 ,求圆柱的高与底面的周长。
(h=3, c=2πr=3π)
即O到截面圆心O1的距离;
(4)大圆与小圆:球面被经过球心的平面截 得的圆叫做球的大圆, 被不经过球心的平面截得的圆叫做球 的
小圆;
5.球面距离:在球面
上,两点之间的最短距
离就是经过这两点的大
A
圆在这两点间的一段劣
弧的长度。这个弧长叫 B
做两点的球面距离。
O
三.旋转体的概念
由一个平面图形绕着一条直线旋转产生的 曲面所围成的几何体叫做旋转体,这条直线 叫做旋转体的轴。比如常见的旋转体有圆柱、 圆锥、圆台和球.

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)

AA’’
叫做圆柱的侧面。

(4)无论旋转到什么位置,不垂直于轴 线
的边都叫做圆柱的母线。
O’ B’
A
O
B
矩 形
轴 侧 面 底面
3
2.圆柱的表示:用表示它的轴的字母表示,如圆柱OO1。
3.圆柱与棱柱统称为柱体。
O


棱 柱 圆 柱


O1
母 线

底面
4
二、圆锥的结构特征 1.定义:以直角三角形的直角边所在直线为旋转轴,
1.1.6旋转体的结构特征
——圆柱、圆锥、圆台、球
1
旋转一周。。。
矩形
直角三角形
直角梯形
半圆
圆柱
圆锥
圆台

2
一、圆柱的结构特征
圆柱O定1义:以矩形的一边所在直线为旋转轴,
其余三边旋转形成的曲面所围成的旋转体叫做圆柱。
(1)旋转轴叫做圆柱的轴。
(2) 垂直于轴的边旋转而成的圆面叫
O
做圆柱的底面。
(3)平行于轴的边旋转而成的曲面
B
O
E
O
16 C
题型一、旋转体的概念
例 下列叙述中正确的是____③____.(填序号)
①以直角三角形的一边为轴旋转所得的旋转体是圆锥; ②以直角梯形的一腰为轴旋转所得的旋转体是圆台; ③圆锥截去一个小圆锥后剩余部分是圆台; ④用一个平面去截圆锥,得到一个圆锥和一个圆台.
[解题过程] ①中以直角三角形的直角边为轴旋 转所得的旋转体是圆锥,以斜边为轴旋转所得的旋 转体是两个圆锥的组合体.故①不正确. ②中以直角梯形中垂直于底边的腰为轴旋转所得 的旋转体是圆台,以不垂直底边的腰为轴旋转所得 的旋转体是圆柱和圆锥的组合体,故②不正确. ③正确.

人教版数学必修第二册8.3.2圆柱、圆锥、圆台、球的表面积和体积课件

人教版数学必修第二册8.3.2圆柱、圆锥、圆台、球的表面积和体积课件

(2)半径和球心是球的关键要素,把握住这两点,计算球的表
面积或体积的相关题目也就易如反掌了.
跟踪训练
1. (1)两个球的半径相差1,表面积之差为28π,则它们的
364
体积和为________;
3
设大、小两球半径分别为R,r,则由题意可得
− =1
R=4
42 − 4 2 = 28
r=3
∵棱长为a,∴BE=
3
2
3
a× = a.
2
3
3
∴在Rt△ABE中,AE=
2

2
3

6
a.
3
设球心为O,半径为R,则(AE-R)2+BE2=R2,
∴R=
6
6 2
3
a,∴S球=4π×( a) = πa2.
4
4
2
2. 设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个
球面上,则该球的表面积为( B )
∴R=2.
4
3
∴V= πR3=
32
.
3
5.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个
半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这
时容器中水的深度.
由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.
根据切线的性质知,当球在容器内时,水深CP为3r,水面的半径AC
3
2
12
总结提升
1.正方体的内切球
球与正方体的六个面都相切,称球为正方体的内切球,此时球的

2
半径为r1= ,过在一个平面上的四个切点作截面如图.
总结提升
2.长方体的外接球

圆柱、圆锥、圆台的概念和性质

圆柱、圆锥、圆台的概念和性质
3.掌握它们侧面积的计算公式,能综合应用这些公式计算有关图形的面积, 提高学生综合应用知识的能力。
完整版ppt
1
(三)德育渗透点
1.圆柱、圆锥、圆台的形成是通过平面图形的旋转而得到,即通过运动的 形式来给出定义.教学过程要结合实际注意培养学生掌握运用运动变化的观 点来分析问题.
2.圆柱、圆锥及圆台的共同属性是,都由平面多边形旋转而得到,因此平 面图形之间的关系决定了它们之间的关系.教学过程要注意培养学生抓住它 们的内在联系来把握它们的变化,帮助学生树立联系变化的辩证唯物主义观 点.
二、教学重点、难点、疑点及解决办法
1.教学重点:圆柱、圆锥、圆台的概念、性质及侧面积公式.
2.教学难点:圆柱、圆锥、圆台的直观图的画法.
3.教学疑点:直观图为什么用正等测法,而不用斜二测法,通过比较让学 生明白用正等测法的便利.
三、课时安排
2课时.
完整版ppt
2
四、教与学的过程设计
第一课时 圆柱、圆锥、圆台的概念、性质及直观图的画法
完整版ppt
6
例1 把一个圆锥截成圆台,已知圆台的上、下底面半径是1∶4,母线长 是10cm,求圆锥的母线长.
分析:如图2-28,△O'OA是圆锥轴截面的一半,则直角梯形COAB是圆台 轴截面的一半,由BC∥AO易得O'B∶O'A=BC∶AO=1∶4
(具体解答请同学们阅读课本)
师:(小结).注意“还台于锥”以及利用平行式相似来解决问题.
的任意一对相垂直的直径变为椭圆的一对直径(它们称为椭圆的共扼直
径).既然圆的直观图是椭圆,为方便起见,今后我们可以直接用椭圆模板或
椭圆的近似画法来画.
完整版ppt
8
例3 一个圆锥的底面半径是1.6cm,在它的内部有一个底面半径为0.7cm, 高为1.5cm的内接圆柱,画出它们的直观图.

圆柱、圆锥、圆台的表面积和体积

圆柱、圆锥、圆台的表面积和体积
求圆锥的侧面积。
导学
探索新知
圆台的表面积
S 表面积 S上底面积 S下底面积 S 侧面积
2
2

S上底 =πr ,S下底 =πr .
r O′
l
r
O
(r′、r分别是上、下底面
半径,l是母线长)
圆台的侧面展开图是扇环
导学
圆台的表面积
探索新知
x
2πr
x
2πr
O′ r
l
O
r
(r′、r分别是上、
8.3.2 圆柱、圆锥、圆台表面积和体积
预学
棱柱、棱锥、棱台的表面积:围成它们的各个面的
面积的和,即侧面积+底面积
那你认为圆柱、圆锥、圆台的表面积又是怎样的呢?
S
O'
r O
l
O'
l
r O
r'
l
rO
圆柱、圆锥、圆台的表面积是围成它们的各个面的
面积和,即 S 表 S 底 S 侧
导学
探索新知
1、 圆柱、圆锥、圆台表面积
圆锥的表面积
探索新知
S 表面积 S 底面积 S 侧面积
S底 =πr
S
l
2πr
2
1
扇形的面积公式 : S扇形 = lr
2
(r是扇ห้องสมุดไป่ตู้所在圆半径,l是弧长)
r
O
(r是底面半径,l是
母线长)
S圆锥 =πr +πrl πr (r l )
2
互学
例题讲解
例1、将一个边长分别为4π,8π的矩形卷成一个圆
圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 (

圆柱、圆锥、圆台和球

圆柱、圆锥、圆台和球
12345
课堂小结
KE TANG XIAO JIE
1.知识清单: (1)圆柱、圆锥、圆台的结构特征. (2)球的结构特征. (3)复杂空间图形的结构特征. 2.方法归纳:分类讨论、转化与化归. 3.常见误区:同一平面图形以不同的轴旋转形成的旋转体一般是不 同的.
4 课时对点练
PART FOUR
基础巩固
√B.圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都
可以构成直角三角形 C.在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线
√D.圆柱的任意两条母线所在的直线是互相平行的
解析 由圆柱、圆锥、圆台的定义及母线的性质可知BD正确,AC错误.
二、复杂的空间图形的结构特征
例2 请描述如图所示的空间图形是如何形成的.
知识点二 球

定义
相关概念
图形及表示
半圆绕着它的直径所在 的直线旋转一周所形成 球心:半圆的 圆心, 球 的曲面叫作球面,球面 半径:半圆的 半径, 围成的空间图形叫作球 直径:半圆的_直__径__
如图可记作:球O 体,简称球
知识点三 旋转面与旋转体
一条平面曲线绕它所在平面内的 一条定直线 旋转所形成的曲面叫作旋 转面,封闭的旋转面围成的空间图形称为 旋转体 .圆柱、圆锥、圆台和 球都是特殊的旋转体.
反思 感悟
(1)判断简单旋转体结构特征的方法 ①明确由哪个平面图形旋转而成; ②明确旋转轴是哪条直线. (2)简单旋转体的轴截面及其应用 ①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋 转体结构特征的关键量; ②在轴截面中解决简单旋转体问题体现了化空间图形为平面图 形的转化思想.
跟踪训练1 (多选)下列说法,正确的是 A.圆柱的母线与它的轴可以不平行

9.13 圆柱圆锥与圆台

9.13 圆柱圆锥与圆台

二、圆柱、圆锥与圆台的性质 名称
平行于底面的截面
圆 全等的矩形 等腰三角形 等腰梯形
轴截面
侧面积
S圆柱侧=cl 2rl
1 S 侧 cl r l 2
1 1 V圆锥= Sh r 2 h 3 3
1 S 侧 (c c' )l (r r ' ) l 2
全面积
体积
画法:第一步:以点o作为原点,按正等轴侧画法画出x轴、y轴、 z轴. z
o x y
第二步:画底面.以原点o作为圆心,在原来的圆上画上一些与直径 平行的弦,相应地画一些与y轴平行的线段,其长度等于对应的弦长,而 且使x轴平分这些弦.然后把这些弦的端点用一条光滑曲线联结起来,便 得到圆锥的底面的直观图.
9.13 圆柱、圆锥与圆台
一、概念:
1.圆柱的概念
• 圆柱:以矩形的一边所在的直线为轴,其余三边绕 这根轴旋转一周形成的曲面所围成的几何体叫圆柱.
2.圆锥的概念
圆锥:以直角三角形的一条直角边所在的直线为轴,其 余两边绕这根轴旋转一周形成的曲面所围成的几何体叫圆 锥.
3.圆台的概念
圆台:直角梯形垂直于底边的腰所在直线为轴,其余三 边绕这根轴旋转一周形成的曲面所围成的几何体叫圆台.
第三步:在z轴上取一点S使 so 2.5cm
第四步:从点S作圆锥侧面的左右现两条对称的母线,如图.
z
s
s
o
o
x y
第五步:把看得见的线用实线,被遮档的线挡的线改为虚线,把x轴、y 轴、z轴在圆锥外面的部分擦掉.
课堂练习:
课堂小结:
P178 1、2
1. 旋转体的概念 2. 旋转体的主要性质 3. 用正等轴测画法画旋转体的 直观图.

第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册

第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册

19
课堂精炼
【训练 3】
π
如图所示,在梯形 ABCD 中,∠ABC= ,AD∥BC,BC=2AD
2
=2AB=2,将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的
几何体的体积为(
5
A. π
3
4
B. π
3
2
C. π
3
)
D.2π
解析
由题意,旋转而成的几何体是圆柱,挖去一个圆
锥(如图),
又 BD=A1D·tan 60°=3 3,∴R+r=3 3,
∴R=2 3,r= 3,又 h=3,
1
1
2
2
∴V 圆台= πh(R +Rr+r )= π×3×[(2 3)2+
3
3
2 3× 3+( 3)2]=21π.
∴圆台的体积为 21π.
答案
10
21π
关于旋转体面积、体积等计
算问题,一般重点考察几何
体的轴截面,将立体问题平
面积与两底面积之和
题型二
求圆柱、圆锥、圆台的体积
数 学
7
知识梳理
2.柱体、锥体、台体的体积公式
V 柱体= sh (S 为底面面积,h 为柱体高);
V 锥体=

sh

(S 为底面面积,h 为锥体高);
1
V 台体= (S′+ S′S+S)h(S′,S 分别为上、下底面面积,h 为台体高).
3
8
课堂精讲
8.3.2 第一课时 圆柱、圆
锥、圆台的表面积和体积
数 学
1
题型一
求圆柱、圆锥、圆台的表面积
数 学
2
知识梳理
1.圆柱、圆锥、圆台的表面积和体积

圆柱、圆锥、圆台的几何特征课件

圆柱、圆锥、圆台的几何特征课件

底面
圆锥的底部是一个圆面, 称为底面。
圆锥的定义与基本元素
01
02
03
04
侧面
连接底面和顶点的曲面,称为 侧面。
母线
连接底面和顶点的线段,称为 母线。

通过底面的圆心与顶点连接的 直线,称为轴。
顶点
圆锥顶部的点,称为顶点。
圆锥的侧面展开图
侧面展开图是一个扇形,扇形的半径 等于圆锥的母线长,扇形的弧长等于 圆锥底面的周长。
认为圆柱、圆锥、圆台的定义只是简 单地描述了它们的形状,而忽略了它 们是由平面曲线(圆)绕固定直线 (轴)旋转而成的立体几何图形。
误区二
对于圆柱、圆锥、圆台的定义中涉及 的术语理解不准确,如“母线”、“ 轴”、“底面”等。
关于公式应用的误区
误区一
在应用圆柱、圆锥、圆台的表面积和体积公式时3
圆台的几何特征
圆台的定义与基本元素
定义
圆台是由一个大的圆平面(下底)和一个小的 圆平面(上底)以及连接两圆的侧面所围成的
几何体。
01
下底
较大的圆形平面。
03

上底和下底之间的垂直距离。
05
02
上底
较小的圆形平面。
04
侧面
连接上底和下底的曲面。
06
母线
连接上底和下底边缘的线段。
圆台的侧面展开图
圆柱的体积公式
V = πr^2h,其中r为底面半径,h为高。 体积等于底面积乘以高。
典型例题解析
例题1
已知圆柱的底面半径为3,高为4,求圆柱的表面积和体积。
解析
根据公式S = 2πr^2 + 2πrh和V = πr^2h,代入r = 3,h = 4,即可求出表面积和体积。

圆柱、圆锥、圆台

圆柱、圆锥、圆台

垂直于侧棱并与每条 侧棱都相交的截面 经过旋转轴的截面 过高的中点平行于 底面的截面
轴截面
中截面
棱柱、棱锥、棱台 圆柱、圆锥、圆台
七、小结
一、常见旋转体—圆柱、圆锥、圆台由来及相关概念
用表示轴的字母来表示 二、圆柱、圆锥、圆台的表示法:
三、圆柱、圆锥、圆台的性质: 性质1:平行于底面的截面都是圆 性质2:圆柱的轴截面是全等的矩形 圆锥的轴截面是全等的等腰三角形 圆锥的轴截面是全等的等腰梯形
说明:在解题过程中,如果问题都集中在某个截 面上,为了直观起见,不妨将该截面移出来单独研究, 这种将立体问题转化为平面问题的方法在今后应用极为 广泛,必须牢牢掌握并能熟练运用。
回顾小结


(1)圆柱、圆锥、圆台和球的概念
(2)运动变化、类比联想的观点

(3)分解复杂的组合体
课外作业
1.请同学们课后找一找生活中具有圆柱、圆锥、 圆台和球几何结构特征的实物.
O S
O’
O
O
O
记作:
记作:
记作:
圆柱O’O
圆锥SO
圆台O’O
四、圆柱、圆锥、圆台的性质
性质1: 平行于底面的截面都是圆,
过旋转轴的截面 称为旋转体的轴截面 定 义:
性质2:圆柱的轴截面是 全等的 矩形 圆锥的轴截面是 全等的 等腰三角形 圆台的轴截面是 全等的 等腰梯形 S
O’
O’
O
O
O
建构数学
∵⊙O’ ∥ ⊙O ∴O’A’ ∥OA
= ∴⊿ O’SA’O’ A’ ︰OA SA’ ︰SA (∴ ∽⊿ SAO )
即: x :4x = (y-10)︰ y 4 (y-10) = y y =

《圆柱、圆锥、圆台》课件1 (北师大版必修2)

《圆柱、圆锥、圆台》课件1 (北师大版必修2)

(l 32 (5 1) 2 5)
h
l
圆柱、圆锥、圆台的平行于底的截面是什么图形? 它的面积的大小与底面面积有什么关系?
求证:平行于圆锥底面的截面 与底面的面积比,等于顶点到 截面的距离与圆锥高的平方比 证明:由相似三角形的性质得
s
r
o1
r so1 R so r 2 so12 2 2 R so S截 r 2 so12 2 2 S底 R so
o R
例: 把一个圆锥截成圆台,已知 圆台上、下底面半径分别是1:4, 母线长是10cm,求圆锥的母线长。
x 4x
解:设圆锥的母线长为y,圆台的 上、下底面半径分别是x、4x,
由相似三角形的性质得,
y 10 x y 4x
10
即 4( y 10) y
3y=40
40 y (cm ) 3 40 即圆锥母线长为 cm . 3
3、圆柱、圆锥、圆台的母线、底面半径与高的关系? 作业:P209 习题2 1,5
圆柱、圆锥、圆台
名 称 侧 面 展 开 图 圆柱 圆锥 圆台
c l l
c/
l
c
c
侧 面 积
ห้องสมุดไป่ตู้
S侧=cl=2πrl
S侧=
1 cl 2
=πrl
S侧=
1 (c c / )l 2
=π(r+r/)l
设圆台的母线长为l,上、下底面的周长
为c/、c,半径分别是r/、r,求圆台的侧面积 解:S圆台侧 1 c(l x) 1 c / x
r
/
x c/ c
l
2 2 1 [cl (c c / ) x]. 2

r

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

例析
例2 如右图,圆柱的底面直径和高都等于球的直径, 求球与圆
柱的体积之比.
解:(1)设球的半径为R,则圆柱的底面半径
为R,高为2R.
4 3
因为 V球
R ,V 圆柱
R2 2R 2 R3
3
所以 V球 : V圆柱
2
3
问题:球的表面积与圆柱的侧面积之比呢?
R O
练习
题型一:圆柱、圆锥、圆台的表面积
例1.(1)已知圆柱的上、下底面的中心分别为1 ,2 ,过直线1 2 的平面截该圆

2.若圆柱的底面圆的直径与圆柱的高相等,则圆柱的侧面展开图是正方形. (
答案:√,×.
辨析2:若圆柱的底面半径为1,母线长为2,则它的侧面积为(
A.2
答案:D.
B.3
C.
D.4
).

新知探索
割 圆 术
早在公元三世纪,我国数学家刘徽为推
导圆的面积公式而发明了“倍边法割圆术”.
他用加倍的方式不断增加圆内接正多边形的
∴ = 5,∴ = × (2 + 6) × 5 + × 22 + × 62 = 40 + 4 + 36 = 80.
练习
题型二:圆柱、圆锥、圆台的体积
例2.(1)若一个圆柱与圆锥的高相等,且轴截面面积也相等,则圆柱与圆锥的体积
之比是(
).
A.1
B.1:2
C. 3:2
D.3:4
的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体
积为_____.
解:设上、下底面半径,母线长分别为,,.
作1 ⊥ 于点,则1 = 3,∠1 = 60°.
又∠1 = 90°,∴∠1 = 60°,∴ =

新人教A版高中数学必修2课件:8.1 第二课时 圆柱、圆锥、圆台、球与简单组合体的结构特征

新人教A版高中数学必修2课件:8.1 第二课时 圆柱、圆锥、圆台、球与简单组合体的结构特征

矩形的一边 所在直线
以直角三角形 的一条直角边 所在直线
以直角梯形的直角 腰所在直线
以半圆的直 径所在直线
[典例 1] 下列说法正确的是
()
A.圆锥的底面是圆面,侧面是曲面
B.用一张扇形的纸片可以卷成一个圆锥
C.一个物体上、下两个面是相等的圆面,那么它一定是一个圆柱
D.球面上四个不同的点一定不在同一平面内
解:因为△ABC 为等边三角形, 所以 BC=6,所以 l=2π×3=6π. 根据底面圆的周长等于展开后扇形的弧长,得:6α=6π. 故 α=π,则 ∠B′AC=π2, 所以 B′P= 36+9=3 5(m), 所以小猫所经过的最短路程是 3 5 m.
∴dd11+ -dd22= =13, 此方程组无解.
分析以上解题过程是否正确,若不正确,你能找出错因吗?
提示:平行截面有两种情况:在球心的两侧或同侧,以上解答漏掉一种情况. 正解如下: (1)平行截面在球心的同侧时,如图. 由(d1-d2)(d1+d2)=3.又 d1-d2=1, ∴d1+d2=3.∴dd11+ -dd22= =31, , 解得dd12= =21, . ∴R= r21+d21= 5+4=3,即球的半径等于 3. (2)同错解.故所求球的半径等于 3.
【对点练清】 1.若将本例选项 B 中的平面图形旋转一周,试说出它形成的几何体的结构特征.
解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转 后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的 几何体如图所示.通过观察可知,该几何体是由一个圆锥、一 个圆台和一个圆柱自上而下拼接而成的.
2.描述下列几何体的结构特征.
2.如图所示,有一个底面半径为 1,高为 2 的圆柱体,在 A 点 处有一只蚂蚁,现在这只蚂蚁要围绕圆柱表面由 A 点爬到 B 点,问蚂蚁爬行的最短距离是多少? 解:把圆柱的侧面沿 AB 剪开,然后展开成为平面图 形——矩形,如图所示,连接 AB′,则 AB′即为 蚂蚁爬行的最短距离. ∵AA′为底面圆的周长,∴AA′=2π×1=2π. 又 AB=A′B′=2, ∴AB′= A′B′2+AA′2= 4+2π2=2 1+π2, 即蚂蚁爬行的最短距离为 2 1+π2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档