圆柱圆锥圆台
合集下载
圆柱、圆锥、圆台的结构特征
1.1.3圆柱、圆锥、 圆台和球
观察下面的几何体与多面体有什么不同。
一.旋转体的概念
由一个平面图形绕着一条直线旋转产生的 曲面所围成的几何体叫做旋转体,这条直线 叫做旋转体的轴。比如常见的旋转体有圆柱、 圆锥、圆台和球.
知识探究(一):圆柱的结构特征
思考1:如图所示的空间几何体叫做圆 柱,那么圆柱是怎样形成的呢?
A A
C
B
C
B
D
探究 问题:侧面都是等边三角形的棱锥不可能是( D
A. 三棱锥 B. 四棱锥 C.五棱锥 D.六棱锥
)
问题1:有两个面互相平行, 其余各面都是四边形的几何体是 棱柱吗? 答:不一定是.如右图所 示,不是棱柱. 问题2:有两个面互相平行, 其余各面都是平行四边形的几 何体是棱柱吗? 答:不一定是.如右图所 示,不是棱柱.
思考2:以直角三角形的一条直角边所在 直线为旋转轴,其余两边旋转形成的面 所围成的旋转体叫做圆锥,那么如何定 义圆锥的轴、底面、侧面、母线?
顶点
轴 母线
底面
侧面
母线
旋转轴叫做圆锥的轴,垂直于轴的边旋转 而成的圆面叫做圆锥的底面,斜边旋转而 成的曲面叫做圆锥的侧面,斜边在旋转中 的任何位置叫做圆锥侧面的母线.
母线
母线
底面
思考3:平行于圆柱底面的截面,经过 圆柱任意两条母线的截面分别是什么图 形?
思考4:经过圆柱的轴的截面称为轴截面, 你能说出圆柱的轴截面有哪些基本特征 吗?
知识探究(三):圆锥的结构特征
思考1:将一个直角三角形以它的一条直 角边为轴旋转一周,那么其余两边旋转 形成的面所围成的旋转体是一个什么样 的空间图形?
上底面
侧面
母线
轴
下底面
观察下面的几何体与多面体有什么不同。
一.旋转体的概念
由一个平面图形绕着一条直线旋转产生的 曲面所围成的几何体叫做旋转体,这条直线 叫做旋转体的轴。比如常见的旋转体有圆柱、 圆锥、圆台和球.
知识探究(一):圆柱的结构特征
思考1:如图所示的空间几何体叫做圆 柱,那么圆柱是怎样形成的呢?
A A
C
B
C
B
D
探究 问题:侧面都是等边三角形的棱锥不可能是( D
A. 三棱锥 B. 四棱锥 C.五棱锥 D.六棱锥
)
问题1:有两个面互相平行, 其余各面都是四边形的几何体是 棱柱吗? 答:不一定是.如右图所 示,不是棱柱. 问题2:有两个面互相平行, 其余各面都是平行四边形的几 何体是棱柱吗? 答:不一定是.如右图所 示,不是棱柱.
思考2:以直角三角形的一条直角边所在 直线为旋转轴,其余两边旋转形成的面 所围成的旋转体叫做圆锥,那么如何定 义圆锥的轴、底面、侧面、母线?
顶点
轴 母线
底面
侧面
母线
旋转轴叫做圆锥的轴,垂直于轴的边旋转 而成的圆面叫做圆锥的底面,斜边旋转而 成的曲面叫做圆锥的侧面,斜边在旋转中 的任何位置叫做圆锥侧面的母线.
母线
母线
底面
思考3:平行于圆柱底面的截面,经过 圆柱任意两条母线的截面分别是什么图 形?
思考4:经过圆柱的轴的截面称为轴截面, 你能说出圆柱的轴截面有哪些基本特征 吗?
知识探究(三):圆锥的结构特征
思考1:将一个直角三角形以它的一条直 角边为轴旋转一周,那么其余两边旋转 形成的面所围成的旋转体是一个什么样 的空间图形?
上底面
侧面
母线
轴
下底面
8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2
解:当球内切于正方体时用料最省 此时棱长=直径=5cm
答:至少要用纸150cm2
练习
解析 设球 O 的半径为 r,则圆柱的底面半径为 r, 高为 2r,所以VV12=π43rπ2·r23r=32.
三、课堂小结:
1.圆柱、圆锥、圆台的表面积公式
1).圆柱 2).圆锥
S 2r 2 rl
S r 2 rl
如果圆台的上、下底面半径分别为r和R,母线长为l,你能计算它的
表面积吗?
r O’
RO
圆台的侧面展开图是扇环
x x
r 'O’
rO
xl r x r' l rr' x r'
xl 1 r 1 x r'
x r' l r r'
∵圆台侧面展开图是一个扇环
S侧面积
1 2
2 r( x
l)
1 2
2 r
'
x
r( x l ) r ' x rx rl r ' x
A
B
D
C
A1 D1
B1 C1
变式 球的内接长方体的长、宽、高分别为3、2、 3 ,求此球体的表面积 和体积。
分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们 中心重合,则长方体对角线与球的直径相等。
内切球问题
例题3 把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸? 分析:用料最省时,球与正方体有什么位置关系? 球内切于正方体
解:一个浮标的表面积为
2π×0.15×0.6 + 4π×0.152 =0.8478(m2) 所以给1000个这样的浮标涂防水漆约需涂料
0.8478×0.5×1000 =423.9(kg).
答:至少要用纸150cm2
练习
解析 设球 O 的半径为 r,则圆柱的底面半径为 r, 高为 2r,所以VV12=π43rπ2·r23r=32.
三、课堂小结:
1.圆柱、圆锥、圆台的表面积公式
1).圆柱 2).圆锥
S 2r 2 rl
S r 2 rl
如果圆台的上、下底面半径分别为r和R,母线长为l,你能计算它的
表面积吗?
r O’
RO
圆台的侧面展开图是扇环
x x
r 'O’
rO
xl r x r' l rr' x r'
xl 1 r 1 x r'
x r' l r r'
∵圆台侧面展开图是一个扇环
S侧面积
1 2
2 r( x
l)
1 2
2 r
'
x
r( x l ) r ' x rx rl r ' x
A
B
D
C
A1 D1
B1 C1
变式 球的内接长方体的长、宽、高分别为3、2、 3 ,求此球体的表面积 和体积。
分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们 中心重合,则长方体对角线与球的直径相等。
内切球问题
例题3 把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸? 分析:用料最省时,球与正方体有什么位置关系? 球内切于正方体
解:一个浮标的表面积为
2π×0.15×0.6 + 4π×0.152 =0.8478(m2) 所以给1000个这样的浮标涂防水漆约需涂料
0.8478×0.5×1000 =423.9(kg).
圆柱圆锥圆台体积和表面积
【解题提示】把PEFQ的体积表示出来.由于△EFQ中,EF=1,Q到EF的距离为侧面的对角线长,故选择△EFQ为底面.点P到△EFQ的距离,即是点P到对角面A1B1CD的距离.
【解析】选D.S△EFQ= ×1×2 = 点P到平面EFQ的距离为 z, VP-EFQ= S△EFQ·h= z. 因此体积只与z有关,而与x,y无关.
C
B
D
A
E
(2009·山东高考)一空间几何 体的三视图如图所示,则该几何体 的体积为( ) 2π+2 4π+2 2π+ 4π+
PART THREE
知能巩固提高
一、选择题(每题5分,共15分) 1.(2010·北京高考)如图,正方体ABCD- A1B1C1D1的棱长为2,动点E、F在棱A1B1 上,动点P,Q分别在棱AD,CD上,若 EF=1,A1E=x,DQ=y, DP=z(x,y,z大 于零),则四面体PEFQ的体积( ) (A)与x,y,z都有关 (B)与x有关,与y,z无关 (C)与y有关,与x,z无关 (D)与z有关,与x,y无关
(5分)在正方体的八个顶点中,有四个顶点恰好是正四面体的顶点,则正方体的表面积与此正四面体的表面积之比为 ( ) (B) (C) (D)
【解析】选A.如图,设正方体的棱长为a, 则正四面体A—B1D1C的所有棱长均为 a. 正方体的表面积S1=6a2, 正四面体的表面积S2=4× ×( a)2 =2 a2. ∴S1∶S2=6a2∶2 a2= ∶1.
三、解答题(6题12分,7题13分,共25分) 6.(2010·南阳高一检测)如图,一个圆锥的 底面半径为2 cm,高为6 cm,在其中有一个高 为x cm的内接圆柱. (1)试用x表示圆柱的侧面; (2)当x为何值时,圆柱的侧面积最大?
圆柱、圆锥、圆台和球
似三角形的性质得
3 r 3 l 4r
解得l=9.
所以,圆台的母线长为9cm.
例2. 我国首都北京靠近北纬40度。
求北纬40度纬线的长度约为多少千米 (地球半径约为6370千米)?
解:如图,设A是北纬40°圈上一点,AK 是它的半径,所以 OK⊥AK,
设c是北纬40°的纬线长, 因为∠OAK= ∠AOB = 40°,
3.表示方法:用表示它的轴的字母表示, 如圆柱OO’ .
4.有关性质: (1)用平行于底面的平面去截,截面都 是圆。 (2)圆柱、圆锥、圆台的轴截面分别是 全等的矩形、全等的等腰三角形、全等的 等腰梯形;
5.侧面展开图:
(1)圆柱的侧面展开图是矩形。 (2)圆锥的侧面展开图是扇形. (3)圆台的侧面展开图是扇环.
所以 c=2π·AK=2π·OA·cos∠OAK =2π·OA·cos40° ≈2×3.1416×6370×0.7660 ≈3.066×104(km),
即北纬40°的纬线长约为3.066×104km.
练习: 1、圆柱的轴截面是正方形,它的面
h
积为9 ,求圆柱的高与底面的周长。
(h=3, c=2πr=3π)
即O到截面圆心O1的距离;
(4)大圆与小圆:球面被经过球心的平面截 得的圆叫做球的大圆, 被不经过球心的平面截得的圆叫做球 的
小圆;
5.球面距离:在球面
上,两点之间的最短距
离就是经过这两点的大
A
圆在这两点间的一段劣
弧的长度。这个弧长叫 B
做两点的球面距离。
O
三.旋转体的概念
由一个平面图形绕着一条直线旋转产生的 曲面所围成的几何体叫做旋转体,这条直线 叫做旋转体的轴。比如常见的旋转体有圆柱、 圆锥、圆台和球.
旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)
AA’’
叫做圆柱的侧面。
母
(4)无论旋转到什么位置,不垂直于轴 线
的边都叫做圆柱的母线。
O’ B’
A
O
B
矩 形
轴 侧 面 底面
3
2.圆柱的表示:用表示它的轴的字母表示,如圆柱OO1。
3.圆柱与棱柱统称为柱体。
O
柱
体
棱 柱 圆 柱
侧
面
O1
母 线
轴
底面
4
二、圆锥的结构特征 1.定义:以直角三角形的直角边所在直线为旋转轴,
1.1.6旋转体的结构特征
——圆柱、圆锥、圆台、球
1
旋转一周。。。
矩形
直角三角形
直角梯形
半圆
圆柱
圆锥
圆台
球
2
一、圆柱的结构特征
圆柱O定1义:以矩形的一边所在直线为旋转轴,
其余三边旋转形成的曲面所围成的旋转体叫做圆柱。
(1)旋转轴叫做圆柱的轴。
(2) 垂直于轴的边旋转而成的圆面叫
O
做圆柱的底面。
(3)平行于轴的边旋转而成的曲面
B
O
E
O
16 C
题型一、旋转体的概念
例 下列叙述中正确的是____③____.(填序号)
①以直角三角形的一边为轴旋转所得的旋转体是圆锥; ②以直角梯形的一腰为轴旋转所得的旋转体是圆台; ③圆锥截去一个小圆锥后剩余部分是圆台; ④用一个平面去截圆锥,得到一个圆锥和一个圆台.
[解题过程] ①中以直角三角形的直角边为轴旋 转所得的旋转体是圆锥,以斜边为轴旋转所得的旋 转体是两个圆锥的组合体.故①不正确. ②中以直角梯形中垂直于底边的腰为轴旋转所得 的旋转体是圆台,以不垂直底边的腰为轴旋转所得 的旋转体是圆柱和圆锥的组合体,故②不正确. ③正确.
人教版数学必修第二册8.3.2圆柱、圆锥、圆台、球的表面积和体积课件
(2)半径和球心是球的关键要素,把握住这两点,计算球的表
面积或体积的相关题目也就易如反掌了.
跟踪训练
1. (1)两个球的半径相差1,表面积之差为28π,则它们的
364
体积和为________;
3
设大、小两球半径分别为R,r,则由题意可得
− =1
R=4
42 − 4 2 = 28
r=3
∵棱长为a,∴BE=
3
2
3
a× = a.
2
3
3
∴在Rt△ABE中,AE=
2
−
2
3
=
6
a.
3
设球心为O,半径为R,则(AE-R)2+BE2=R2,
∴R=
6
6 2
3
a,∴S球=4π×( a) = πa2.
4
4
2
2. 设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个
球面上,则该球的表面积为( B )
∴R=2.
4
3
∴V= πR3=
32
.
3
5.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个
半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这
时容器中水的深度.
由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.
根据切线的性质知,当球在容器内时,水深CP为3r,水面的半径AC
3
2
12
总结提升
1.正方体的内切球
球与正方体的六个面都相切,称球为正方体的内切球,此时球的
2
半径为r1= ,过在一个平面上的四个切点作截面如图.
总结提升
2.长方体的外接球
圆柱、圆锥、圆台的概念和性质
3.掌握它们侧面积的计算公式,能综合应用这些公式计算有关图形的面积, 提高学生综合应用知识的能力。
完整版ppt
1
(三)德育渗透点
1.圆柱、圆锥、圆台的形成是通过平面图形的旋转而得到,即通过运动的 形式来给出定义.教学过程要结合实际注意培养学生掌握运用运动变化的观 点来分析问题.
2.圆柱、圆锥及圆台的共同属性是,都由平面多边形旋转而得到,因此平 面图形之间的关系决定了它们之间的关系.教学过程要注意培养学生抓住它 们的内在联系来把握它们的变化,帮助学生树立联系变化的辩证唯物主义观 点.
二、教学重点、难点、疑点及解决办法
1.教学重点:圆柱、圆锥、圆台的概念、性质及侧面积公式.
2.教学难点:圆柱、圆锥、圆台的直观图的画法.
3.教学疑点:直观图为什么用正等测法,而不用斜二测法,通过比较让学 生明白用正等测法的便利.
三、课时安排
2课时.
完整版ppt
2
四、教与学的过程设计
第一课时 圆柱、圆锥、圆台的概念、性质及直观图的画法
完整版ppt
6
例1 把一个圆锥截成圆台,已知圆台的上、下底面半径是1∶4,母线长 是10cm,求圆锥的母线长.
分析:如图2-28,△O'OA是圆锥轴截面的一半,则直角梯形COAB是圆台 轴截面的一半,由BC∥AO易得O'B∶O'A=BC∶AO=1∶4
(具体解答请同学们阅读课本)
师:(小结).注意“还台于锥”以及利用平行式相似来解决问题.
的任意一对相垂直的直径变为椭圆的一对直径(它们称为椭圆的共扼直
径).既然圆的直观图是椭圆,为方便起见,今后我们可以直接用椭圆模板或
椭圆的近似画法来画.
完整版ppt
8
例3 一个圆锥的底面半径是1.6cm,在它的内部有一个底面半径为0.7cm, 高为1.5cm的内接圆柱,画出它们的直观图.
完整版ppt
1
(三)德育渗透点
1.圆柱、圆锥、圆台的形成是通过平面图形的旋转而得到,即通过运动的 形式来给出定义.教学过程要结合实际注意培养学生掌握运用运动变化的观 点来分析问题.
2.圆柱、圆锥及圆台的共同属性是,都由平面多边形旋转而得到,因此平 面图形之间的关系决定了它们之间的关系.教学过程要注意培养学生抓住它 们的内在联系来把握它们的变化,帮助学生树立联系变化的辩证唯物主义观 点.
二、教学重点、难点、疑点及解决办法
1.教学重点:圆柱、圆锥、圆台的概念、性质及侧面积公式.
2.教学难点:圆柱、圆锥、圆台的直观图的画法.
3.教学疑点:直观图为什么用正等测法,而不用斜二测法,通过比较让学 生明白用正等测法的便利.
三、课时安排
2课时.
完整版ppt
2
四、教与学的过程设计
第一课时 圆柱、圆锥、圆台的概念、性质及直观图的画法
完整版ppt
6
例1 把一个圆锥截成圆台,已知圆台的上、下底面半径是1∶4,母线长 是10cm,求圆锥的母线长.
分析:如图2-28,△O'OA是圆锥轴截面的一半,则直角梯形COAB是圆台 轴截面的一半,由BC∥AO易得O'B∶O'A=BC∶AO=1∶4
(具体解答请同学们阅读课本)
师:(小结).注意“还台于锥”以及利用平行式相似来解决问题.
的任意一对相垂直的直径变为椭圆的一对直径(它们称为椭圆的共扼直
径).既然圆的直观图是椭圆,为方便起见,今后我们可以直接用椭圆模板或
椭圆的近似画法来画.
完整版ppt
8
例3 一个圆锥的底面半径是1.6cm,在它的内部有一个底面半径为0.7cm, 高为1.5cm的内接圆柱,画出它们的直观图.
圆柱、圆锥、圆台的表面积和体积
求圆锥的侧面积。
导学
探索新知
圆台的表面积
S 表面积 S上底面积 S下底面积 S 侧面积
2
2
S上底 =πr ,S下底 =πr .
r O′
l
r
O
(r′、r分别是上、下底面
半径,l是母线长)
圆台的侧面展开图是扇环
导学
圆台的表面积
探索新知
x
2πr
x
2πr
O′ r
l
O
r
(r′、r分别是上、
8.3.2 圆柱、圆锥、圆台表面积和体积
预学
棱柱、棱锥、棱台的表面积:围成它们的各个面的
面积的和,即侧面积+底面积
那你认为圆柱、圆锥、圆台的表面积又是怎样的呢?
S
O'
r O
l
O'
l
r O
r'
l
rO
圆柱、圆锥、圆台的表面积是围成它们的各个面的
面积和,即 S 表 S 底 S 侧
导学
探索新知
1、 圆柱、圆锥、圆台表面积
圆锥的表面积
探索新知
S 表面积 S 底面积 S 侧面积
S底 =πr
S
l
2πr
2
1
扇形的面积公式 : S扇形 = lr
2
(r是扇ห้องสมุดไป่ตู้所在圆半径,l是弧长)
r
O
(r是底面半径,l是
母线长)
S圆锥 =πr +πrl πr (r l )
2
互学
例题讲解
例1、将一个边长分别为4π,8π的矩形卷成一个圆
圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 (
导学
探索新知
圆台的表面积
S 表面积 S上底面积 S下底面积 S 侧面积
2
2
S上底 =πr ,S下底 =πr .
r O′
l
r
O
(r′、r分别是上、下底面
半径,l是母线长)
圆台的侧面展开图是扇环
导学
圆台的表面积
探索新知
x
2πr
x
2πr
O′ r
l
O
r
(r′、r分别是上、
8.3.2 圆柱、圆锥、圆台表面积和体积
预学
棱柱、棱锥、棱台的表面积:围成它们的各个面的
面积的和,即侧面积+底面积
那你认为圆柱、圆锥、圆台的表面积又是怎样的呢?
S
O'
r O
l
O'
l
r O
r'
l
rO
圆柱、圆锥、圆台的表面积是围成它们的各个面的
面积和,即 S 表 S 底 S 侧
导学
探索新知
1、 圆柱、圆锥、圆台表面积
圆锥的表面积
探索新知
S 表面积 S 底面积 S 侧面积
S底 =πr
S
l
2πr
2
1
扇形的面积公式 : S扇形 = lr
2
(r是扇ห้องสมุดไป่ตู้所在圆半径,l是弧长)
r
O
(r是底面半径,l是
母线长)
S圆锥 =πr +πrl πr (r l )
2
互学
例题讲解
例1、将一个边长分别为4π,8π的矩形卷成一个圆
圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 (
圆柱、圆锥、圆台和球
12345
课堂小结
KE TANG XIAO JIE
1.知识清单: (1)圆柱、圆锥、圆台的结构特征. (2)球的结构特征. (3)复杂空间图形的结构特征. 2.方法归纳:分类讨论、转化与化归. 3.常见误区:同一平面图形以不同的轴旋转形成的旋转体一般是不 同的.
4 课时对点练
PART FOUR
基础巩固
√B.圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都
可以构成直角三角形 C.在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线
√D.圆柱的任意两条母线所在的直线是互相平行的
解析 由圆柱、圆锥、圆台的定义及母线的性质可知BD正确,AC错误.
二、复杂的空间图形的结构特征
例2 请描述如图所示的空间图形是如何形成的.
知识点二 球
球
定义
相关概念
图形及表示
半圆绕着它的直径所在 的直线旋转一周所形成 球心:半圆的 圆心, 球 的曲面叫作球面,球面 半径:半圆的 半径, 围成的空间图形叫作球 直径:半圆的_直__径__
如图可记作:球O 体,简称球
知识点三 旋转面与旋转体
一条平面曲线绕它所在平面内的 一条定直线 旋转所形成的曲面叫作旋 转面,封闭的旋转面围成的空间图形称为 旋转体 .圆柱、圆锥、圆台和 球都是特殊的旋转体.
反思 感悟
(1)判断简单旋转体结构特征的方法 ①明确由哪个平面图形旋转而成; ②明确旋转轴是哪条直线. (2)简单旋转体的轴截面及其应用 ①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋 转体结构特征的关键量; ②在轴截面中解决简单旋转体问题体现了化空间图形为平面图 形的转化思想.
跟踪训练1 (多选)下列说法,正确的是 A.圆柱的母线与它的轴可以不平行
课堂小结
KE TANG XIAO JIE
1.知识清单: (1)圆柱、圆锥、圆台的结构特征. (2)球的结构特征. (3)复杂空间图形的结构特征. 2.方法归纳:分类讨论、转化与化归. 3.常见误区:同一平面图形以不同的轴旋转形成的旋转体一般是不 同的.
4 课时对点练
PART FOUR
基础巩固
√B.圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都
可以构成直角三角形 C.在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线
√D.圆柱的任意两条母线所在的直线是互相平行的
解析 由圆柱、圆锥、圆台的定义及母线的性质可知BD正确,AC错误.
二、复杂的空间图形的结构特征
例2 请描述如图所示的空间图形是如何形成的.
知识点二 球
球
定义
相关概念
图形及表示
半圆绕着它的直径所在 的直线旋转一周所形成 球心:半圆的 圆心, 球 的曲面叫作球面,球面 半径:半圆的 半径, 围成的空间图形叫作球 直径:半圆的_直__径__
如图可记作:球O 体,简称球
知识点三 旋转面与旋转体
一条平面曲线绕它所在平面内的 一条定直线 旋转所形成的曲面叫作旋 转面,封闭的旋转面围成的空间图形称为 旋转体 .圆柱、圆锥、圆台和 球都是特殊的旋转体.
反思 感悟
(1)判断简单旋转体结构特征的方法 ①明确由哪个平面图形旋转而成; ②明确旋转轴是哪条直线. (2)简单旋转体的轴截面及其应用 ①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋 转体结构特征的关键量; ②在轴截面中解决简单旋转体问题体现了化空间图形为平面图 形的转化思想.
跟踪训练1 (多选)下列说法,正确的是 A.圆柱的母线与它的轴可以不平行
9.13 圆柱圆锥与圆台
二、圆柱、圆锥与圆台的性质 名称
平行于底面的截面
圆 全等的矩形 等腰三角形 等腰梯形
轴截面
侧面积
S圆柱侧=cl 2rl
1 S 侧 cl r l 2
1 1 V圆锥= Sh r 2 h 3 3
1 S 侧 (c c' )l (r r ' ) l 2
全面积
体积
画法:第一步:以点o作为原点,按正等轴侧画法画出x轴、y轴、 z轴. z
o x y
第二步:画底面.以原点o作为圆心,在原来的圆上画上一些与直径 平行的弦,相应地画一些与y轴平行的线段,其长度等于对应的弦长,而 且使x轴平分这些弦.然后把这些弦的端点用一条光滑曲线联结起来,便 得到圆锥的底面的直观图.
9.13 圆柱、圆锥与圆台
一、概念:
1.圆柱的概念
• 圆柱:以矩形的一边所在的直线为轴,其余三边绕 这根轴旋转一周形成的曲面所围成的几何体叫圆柱.
2.圆锥的概念
圆锥:以直角三角形的一条直角边所在的直线为轴,其 余两边绕这根轴旋转一周形成的曲面所围成的几何体叫圆 锥.
3.圆台的概念
圆台:直角梯形垂直于底边的腰所在直线为轴,其余三 边绕这根轴旋转一周形成的曲面所围成的几何体叫圆台.
第三步:在z轴上取一点S使 so 2.5cm
第四步:从点S作圆锥侧面的左右现两条对称的母线,如图.
z
s
s
o
o
x y
第五步:把看得见的线用实线,被遮档的线挡的线改为虚线,把x轴、y 轴、z轴在圆锥外面的部分擦掉.
课堂练习:
课堂小结:
P178 1、2
1. 旋转体的概念 2. 旋转体的主要性质 3. 用正等轴测画法画旋转体的 直观图.
第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册
19
课堂精炼
【训练 3】
π
如图所示,在梯形 ABCD 中,∠ABC= ,AD∥BC,BC=2AD
2
=2AB=2,将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的
几何体的体积为(
5
A. π
3
4
B. π
3
2
C. π
3
)
D.2π
解析
由题意,旋转而成的几何体是圆柱,挖去一个圆
锥(如图),
又 BD=A1D·tan 60°=3 3,∴R+r=3 3,
∴R=2 3,r= 3,又 h=3,
1
1
2
2
∴V 圆台= πh(R +Rr+r )= π×3×[(2 3)2+
3
3
2 3× 3+( 3)2]=21π.
∴圆台的体积为 21π.
答案
10
21π
关于旋转体面积、体积等计
算问题,一般重点考察几何
体的轴截面,将立体问题平
面积与两底面积之和
题型二
求圆柱、圆锥、圆台的体积
数 学
7
知识梳理
2.柱体、锥体、台体的体积公式
V 柱体= sh (S 为底面面积,h 为柱体高);
V 锥体=
sh
(S 为底面面积,h 为锥体高);
1
V 台体= (S′+ S′S+S)h(S′,S 分别为上、下底面面积,h 为台体高).
3
8
课堂精讲
8.3.2 第一课时 圆柱、圆
锥、圆台的表面积和体积
数 学
1
题型一
求圆柱、圆锥、圆台的表面积
数 学
2
知识梳理
1.圆柱、圆锥、圆台的表面积和体积
圆柱、圆锥、圆台的几何特征课件
底面
圆锥的底部是一个圆面, 称为底面。
圆锥的定义与基本元素
01
02
03
04
侧面
连接底面和顶点的曲面,称为 侧面。
母线
连接底面和顶点的线段,称为 母线。
轴
通过底面的圆心与顶点连接的 直线,称为轴。
顶点
圆锥顶部的点,称为顶点。
圆锥的侧面展开图
侧面展开图是一个扇形,扇形的半径 等于圆锥的母线长,扇形的弧长等于 圆锥底面的周长。
认为圆柱、圆锥、圆台的定义只是简 单地描述了它们的形状,而忽略了它 们是由平面曲线(圆)绕固定直线 (轴)旋转而成的立体几何图形。
误区二
对于圆柱、圆锥、圆台的定义中涉及 的术语理解不准确,如“母线”、“ 轴”、“底面”等。
关于公式应用的误区
误区一
在应用圆柱、圆锥、圆台的表面积和体积公式时3
圆台的几何特征
圆台的定义与基本元素
定义
圆台是由一个大的圆平面(下底)和一个小的 圆平面(上底)以及连接两圆的侧面所围成的
几何体。
01
下底
较大的圆形平面。
03
高
上底和下底之间的垂直距离。
05
02
上底
较小的圆形平面。
04
侧面
连接上底和下底的曲面。
06
母线
连接上底和下底边缘的线段。
圆台的侧面展开图
圆柱的体积公式
V = πr^2h,其中r为底面半径,h为高。 体积等于底面积乘以高。
典型例题解析
例题1
已知圆柱的底面半径为3,高为4,求圆柱的表面积和体积。
解析
根据公式S = 2πr^2 + 2πrh和V = πr^2h,代入r = 3,h = 4,即可求出表面积和体积。
圆柱、圆锥、圆台
垂直于侧棱并与每条 侧棱都相交的截面 经过旋转轴的截面 过高的中点平行于 底面的截面
轴截面
中截面
棱柱、棱锥、棱台 圆柱、圆锥、圆台
七、小结
一、常见旋转体—圆柱、圆锥、圆台由来及相关概念
用表示轴的字母来表示 二、圆柱、圆锥、圆台的表示法:
三、圆柱、圆锥、圆台的性质: 性质1:平行于底面的截面都是圆 性质2:圆柱的轴截面是全等的矩形 圆锥的轴截面是全等的等腰三角形 圆锥的轴截面是全等的等腰梯形
说明:在解题过程中,如果问题都集中在某个截 面上,为了直观起见,不妨将该截面移出来单独研究, 这种将立体问题转化为平面问题的方法在今后应用极为 广泛,必须牢牢掌握并能熟练运用。
回顾小结
•
•
(1)圆柱、圆锥、圆台和球的概念
(2)运动变化、类比联想的观点
•
(3)分解复杂的组合体
课外作业
1.请同学们课后找一找生活中具有圆柱、圆锥、 圆台和球几何结构特征的实物.
O S
O’
O
O
O
记作:
记作:
记作:
圆柱O’O
圆锥SO
圆台O’O
四、圆柱、圆锥、圆台的性质
性质1: 平行于底面的截面都是圆,
过旋转轴的截面 称为旋转体的轴截面 定 义:
性质2:圆柱的轴截面是 全等的 矩形 圆锥的轴截面是 全等的 等腰三角形 圆台的轴截面是 全等的 等腰梯形 S
O’
O’
O
O
O
建构数学
∵⊙O’ ∥ ⊙O ∴O’A’ ∥OA
= ∴⊿ O’SA’O’ A’ ︰OA SA’ ︰SA (∴ ∽⊿ SAO )
即: x :4x = (y-10)︰ y 4 (y-10) = y y =
《圆柱、圆锥、圆台》课件1 (北师大版必修2)
(l 32 (5 1) 2 5)
h
l
圆柱、圆锥、圆台的平行于底的截面是什么图形? 它的面积的大小与底面面积有什么关系?
求证:平行于圆锥底面的截面 与底面的面积比,等于顶点到 截面的距离与圆锥高的平方比 证明:由相似三角形的性质得
s
r
o1
r so1 R so r 2 so12 2 2 R so S截 r 2 so12 2 2 S底 R so
o R
例: 把一个圆锥截成圆台,已知 圆台上、下底面半径分别是1:4, 母线长是10cm,求圆锥的母线长。
x 4x
解:设圆锥的母线长为y,圆台的 上、下底面半径分别是x、4x,
由相似三角形的性质得,
y 10 x y 4x
10
即 4( y 10) y
3y=40
40 y (cm ) 3 40 即圆锥母线长为 cm . 3
3、圆柱、圆锥、圆台的母线、底面半径与高的关系? 作业:P209 习题2 1,5
圆柱、圆锥、圆台
名 称 侧 面 展 开 图 圆柱 圆锥 圆台
c l l
c/
l
c
c
侧 面 积
ห้องสมุดไป่ตู้
S侧=cl=2πrl
S侧=
1 cl 2
=πrl
S侧=
1 (c c / )l 2
=π(r+r/)l
设圆台的母线长为l,上、下底面的周长
为c/、c,半径分别是r/、r,求圆台的侧面积 解:S圆台侧 1 c(l x) 1 c / x
r
/
x c/ c
l
2 2 1 [cl (c c / ) x]. 2
⑴
r
【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册
例析
例2 如右图,圆柱的底面直径和高都等于球的直径, 求球与圆
柱的体积之比.
解:(1)设球的半径为R,则圆柱的底面半径
为R,高为2R.
4 3
因为 V球
R ,V 圆柱
R2 2R 2 R3
3
所以 V球 : V圆柱
2
3
问题:球的表面积与圆柱的侧面积之比呢?
R O
练习
题型一:圆柱、圆锥、圆台的表面积
例1.(1)已知圆柱的上、下底面的中心分别为1 ,2 ,过直线1 2 的平面截该圆
)
2.若圆柱的底面圆的直径与圆柱的高相等,则圆柱的侧面展开图是正方形. (
答案:√,×.
辨析2:若圆柱的底面半径为1,母线长为2,则它的侧面积为(
A.2
答案:D.
B.3
C.
D.4
).
)
新知探索
割 圆 术
早在公元三世纪,我国数学家刘徽为推
导圆的面积公式而发明了“倍边法割圆术”.
他用加倍的方式不断增加圆内接正多边形的
∴ = 5,∴ = × (2 + 6) × 5 + × 22 + × 62 = 40 + 4 + 36 = 80.
练习
题型二:圆柱、圆锥、圆台的体积
例2.(1)若一个圆柱与圆锥的高相等,且轴截面面积也相等,则圆柱与圆锥的体积
之比是(
).
A.1
B.1:2
C. 3:2
D.3:4
的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体
积为_____.
解:设上、下底面半径,母线长分别为,,.
作1 ⊥ 于点,则1 = 3,∠1 = 60°.
又∠1 = 90°,∴∠1 = 60°,∴ =
新人教A版高中数学必修2课件:8.1 第二课时 圆柱、圆锥、圆台、球与简单组合体的结构特征
矩形的一边 所在直线
以直角三角形 的一条直角边 所在直线
以直角梯形的直角 腰所在直线
以半圆的直 径所在直线
[典例 1] 下列说法正确的是
()
A.圆锥的底面是圆面,侧面是曲面
B.用一张扇形的纸片可以卷成一个圆锥
C.一个物体上、下两个面是相等的圆面,那么它一定是一个圆柱
D.球面上四个不同的点一定不在同一平面内
解:因为△ABC 为等边三角形, 所以 BC=6,所以 l=2π×3=6π. 根据底面圆的周长等于展开后扇形的弧长,得:6α=6π. 故 α=π,则 ∠B′AC=π2, 所以 B′P= 36+9=3 5(m), 所以小猫所经过的最短路程是 3 5 m.
∴dd11+ -dd22= =13, 此方程组无解.
分析以上解题过程是否正确,若不正确,你能找出错因吗?
提示:平行截面有两种情况:在球心的两侧或同侧,以上解答漏掉一种情况. 正解如下: (1)平行截面在球心的同侧时,如图. 由(d1-d2)(d1+d2)=3.又 d1-d2=1, ∴d1+d2=3.∴dd11+ -dd22= =31, , 解得dd12= =21, . ∴R= r21+d21= 5+4=3,即球的半径等于 3. (2)同错解.故所求球的半径等于 3.
【对点练清】 1.若将本例选项 B 中的平面图形旋转一周,试说出它形成的几何体的结构特征.
解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转 后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的 几何体如图所示.通过观察可知,该几何体是由一个圆锥、一 个圆台和一个圆柱自上而下拼接而成的.
2.描述下列几何体的结构特征.
2.如图所示,有一个底面半径为 1,高为 2 的圆柱体,在 A 点 处有一只蚂蚁,现在这只蚂蚁要围绕圆柱表面由 A 点爬到 B 点,问蚂蚁爬行的最短距离是多少? 解:把圆柱的侧面沿 AB 剪开,然后展开成为平面图 形——矩形,如图所示,连接 AB′,则 AB′即为 蚂蚁爬行的最短距离. ∵AA′为底面圆的周长,∴AA′=2π×1=2π. 又 AB=A′B′=2, ∴AB′= A′B′2+AA′2= 4+2π2=2 1+π2, 即蚂蚁爬行的最短距离为 2 1+π2.