初中数学一元二次方程部分知识框架图如下

合集下载

初中数学《一元二次方程》主题单元教学设计以及思维导图

初中数学《一元二次方程》主题单元教学设计以及思维导图

一元二次方程主题单元设计主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg 文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操作见《2013学员教师远程研修手册》。

)主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.过程与方法:(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合整式中的有关概念介绍一元二次方程的概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方在学习活动中获得成功的体验,建立学好数学的信心。

专题问题设计1、用观察检验法估计一元二次方程的解2、配方法的一般形式是什么?配方法的一般步骤3、公式法的公式是什么?b2-4ac>0,b2-4ac=0,b2-4ac<0的解的情况?4、因式分解法的一般思路是什么?5、一元二次方程如何选择方程的解法?所需教学环境和教学资源信息化资源:计算机常规资源:教材、多媒体课件、几何画板课件教学支撑环境:多媒体教室学习活动设计第一课时用配方法解一元二次方程活动1:用配方法解一元二次方程(二次项的系数为1)1、用配方法解下列关于x的方程(1)x2-8x+1=0 (2)x2-2x-=0问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=(这个方程一定有解吗?什么情况下有解?)活动2:用公式法解一元二次方程1、用公式法解下列方程.(1)2x2-x-1=0 (2)x2+1.5=-3x3、要求学生对知识整体认识的基础上,对知识进行巩固提高4、整理自己的想法和做法,在小组内表述自己的探索过程和结论.活动3:拓展提高:某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程。

九年级数学上册一元二次方程应用一元二次方程课件北师大版

九年级数学上册一元二次方程应用一元二次方程课件北师大版

答案
(x-1);
1 2
x(x-1);
1 2
x(x-1)=28;x2-x-56=0;x1=8,x2=-7;x=8;8
解析 设应邀请x支球队参赛,则每队共打(x-1)场比赛,比赛总场数用代
数式表示为 1 x(x-1).
2
根据题意,可列出方程 1 x(x-1)=28.
2
整理,得x2-x-56=0, 解得 x1=8,x2=-7. 合乎实际意义的解为 x=8. 答:应邀请 8支球队参赛.
销售单价/元
x
销售量y/件
销售玩具获得的利润W/元
(2)在(1)问的条件下,若商场获得了10 000元的销售利润,求该玩具的销 售单价应定为多少元.
分析 (1)由销售单价每涨1元,就会少售出10件玩具,得y=600-(x-40)×10= 1 000-10x,W=(1 000-10x)(x-30)=-10x2+1 300x-30 000; (2)令-10x2+1 300x -30 000=10 000,解这个方程即可求出x的值.
A.7 m
图2-6-1 B.8 m
C.9 m
D.10 m
答案 A 设原正方形空地的边长为x m,依题意得(x-3)·(x-2)=20,解得x1 =7,x2=-2(不合题意,舍去),∴原正方形空地的边长为7 m.故选A.
3.已知一个两位数,个位上的数字比十位上的数字少4,这个两位数十位和个
位交换位置后,新两位数与原两位数的积为1 612,那么这个两位数是 ( )
4.某市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛
一场),计划安排28场比赛,应邀请多少支球队参加比赛?学习以下解答过
程,并完成填空.

中考数学一元二次方程知识点总结

中考数学一元二次方程知识点总结

中考数学一元二次方程知识点总结知识框架知识点、概念总结1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2.一元二次方程有四个特点: (1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。

(4)将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0)3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。

一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。

4.一元二次方程的解法 (1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±−=,当b<0时,方程没有实数根。

(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. (3)公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。

2) 未知数的最高次数是2.3) 是方程。

4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。

2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。

3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。

4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。

5) 二次函数图像法,当时,方程有没有实数根。

3、应用1) 一元二次方程可用于解某些求值题。

2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。

知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。

要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。

解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。

解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。

选择哪种方法要根据具体情况而定。

直接开平方法是解形如x²=a的方程的方法,解为x=±√a。

配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。

《一元二次方程》的知识结构框架图

《一元二次方程》的知识结构框架图

一、《一元二次方程》的知识结构框架图二、本章知识点概括1、相关概念(1)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

(2)一元二次方程的一般形式:ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

(3)一元二次方程的根:一元二次方程的解也叫一元二次方程的根。

用“夹逼”法估算出一元二次方程的根的取值范围.一次方程:一元一次方程,二元一次方程,三元方程整式方程二次方程:一元二次方程,二元二次方程*(4)有理方程高次方程:分式方程2、降次——解一元二次方程(1)配方法:通过配成完全平方形式来解一元二次方程的方法,叫配方法.配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.其步骤是:①方程化为一般形式;②移项,使方程左边为二次项和一次项,右边为常数项;③化二次项系数为1;④配方,方程两边都加上一次项系数一半的平方,使方程左边是完全平方式,从而原方程化为(mx+n)2=p的形式;⑤如果p≥0就能够用开平方降次来求出方程的解了,如果p<0,则原方程无实数根。

(2)公式法:利用求根公式解一元二次方程的方法叫公式法.其方法为:先将一元二次方程化为一般形式ax2+bx+c=0,当⊿=b2-4ac≥0时,•将a、b、c代入求根公式x=a2ac 4bb2-±-(b2-4ac≥0)就得到方程的根.(3)分解因式法:先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而降次.这种解法叫做因式分解法.步骤是:①通过移项将方程右边化为0;②通过因式分解将方程左边化为两个一次因式乘积;③令每个因式等于0,得到两个一元一次方程;④解这两个一元一次方程,得一元二次方程的解。

3、一元二次方程根的判别式(1)⊿=b 2-4ac 叫一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式。

初中数学知识框架及知识点之间的联系

初中数学知识框架及知识点之间的联系

初中数学知识框架及知识点之间的联系初中数学六册书共29个章节,每个章节难度不同,在中考中占的分数值不同,在学校学习期间学习时间也不相同,对学生的要求也不同。

(1)有理数,这个章节是小学与初中的衔接,也是初中数学的开篇和基础部分,初中的一些数学基础概念和知识点都在这一章节中体现,这个章节考试一般只有5分左右,但是知识点和概念对整个中学阶段的学习非常的重要,比如,绝对值,幂运算,在以后的高中数学学习中扔然会有所涉及,高中不会详细讲解,初中打好基础是关键,学习好这一章节对后面整个数学的分类比较清晰,如果基础知识和基础的概念不到位,学习实数的时候还要重新回顾这一章节的内容,不但时间上不允许,还可能导致学习新知识的掉队。

(2)整式的加减,本章节对基础概念和计算的要求比较高,基础概念一定要搞明白什么是单项式,什么是多项式,什么是同类项以及他们之间的区别和联系,计算的时候要认真仔细,是初中第一次接触较为复杂的计算,为以后的计算打下一个良好的基础,以后解一元一次方程,分式方程,因式分解都需要合并同类项。

(3)一元一次方程,本章节是方程的基础,以后要学习的二元一次方程及二元一次方程组,三元一次方程,一元二次方程,最终都要化简成一元一次方程来解答,关于一元一次方程的解法一定要熟练,不然会影响以后方程的学习,如果这章节的内容掌握的很熟练,二元一次方程,一元二次方程,分式方程只需要掌握化成一元一次方程的解法即可(4)图形的认识,几何的基础,考试中一般不会直接体现,但是后面几何中一些角,线段,射线的概念正在本章中体现,这一章节主要是概念的训练,弄清楚各个概念之间的区别与联系,是几何的入门知识,对平行线和三角形问题有相当重要的帮助。

(5)相交线与平行线,本章知识是几何的开端,这一章节教授一些几何的基本性质和几何的证明方法与步骤,是后面证明题书写的模板,也是关系到后面几何证明过程能不能得到满分的关键,要认真学习,一旦本章知识不过关,后面几何证明会出现对而不全,得不到满分。

初中数学中考第十七讲一元二次方程知识点分析

初中数学中考第十七讲一元二次方程知识点分析

第十七讲:一元二次方程知识梳理知识点1. 一元二次方程的概念 重点:掌握一元二次方程的概念 难点:判断方程是否为一元二次方程 1、一元二次方程的概念只含有一个未知数,并且未知数的最高次数是2 的整式方程叫做一元二次方程。

2、关于x 的一元二次方程的一般形式ax 2+bx+c=0,(a ≠0),其中a 为二次项系数,b 为一次项系数,c 为常数项。

例1. .下列方程中是一元二次方程的是( )①20x =②243(25)x x =-③2111x x =++④213x -=2=⑥2545(2)(1)x x x x -=+-A . ①②③⑥B . ①②④⑥C . ①②④D . ②③④⑥ 解题思路:根据一元二次方程的概念 答案:B 例2将下列方程化成一元二次方程的一般形式,1.(1)(2)61x x x ++=+2.2(2)(2)2(3)x x x +-=- 解题思路:根据一元二次方程的一般形式ax 2+bx+c=0,(a ≠0) , 例2、1.: 2.:223261310x x x x x ++=+-+=2222242(69)42121812220x x x x x x x x -=-+-=-+-+= 练习1. 当a 时,方程2(1)(21)10a x a x ++--=是关于x 的一元二次方程;当a 时,方程22(5)740a x x a ++-=是关于x 的一元二次方程.221)0x x -+=答案:1.1a ≠-,a 为任意实数2.22)20x x -++=知识点2. 一元二次方程的解法重点:掌握一元二次方程的解法难点:熟练解一元二次方程灵活运用四种解法解一元二次方程:一元二次方程的一般形式:a2x+bx+c=0(a≠0) 四种解法:直接开平方法,配方法,公式法,因式分解法,公式法:x= (b2-4ac≥0)注意:掌握一元二次方程求根公式的推导;主要数学方法有:配方法,换元法,“消元”与“降次”。

初中数学一元二次方程部分知识框架图如下

初中数学一元二次方程部分知识框架图如下

初中数学一元二次方程部分知识框架图如下 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中数学一元二次方程部分知识框架图如下:第一:一元二次方程的基本解法解一元二次方程的基本思路通过“降次”把一元二次方程转化为一元一次方程求解。

1.直接开平方法:对形如(x+a)2 =b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

①等号左边是一个数的平方的形式而等号右边是一个非负数。

②降次的实质是由一个一元二次方程转化为两个一元一次方程。

③方法是根据平方根的意义开平方。

2.配方法:用配方法解一元二次方程:ax2 +bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2 =b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,则原方程无解.2依据:配方法的理论依据是完全平方公式a2;+b2;±2ab=(a±b)2;关键:配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。

3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是(b2 -4ac≥0)。

步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2 -4ac的值,当b2 -4ac≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。

①将方程右边化为0;②将方程左边分解为两一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。

5.图像解法:元二次方程的根的几何意义是二次函数的图像(为一条抛物线)与x轴交点的X坐标。

人教版初中数学各册知识框架图

人教版初中数学各册知识框架图

七年级数学(上)知识点第一章、有理数第二章、整式的加减第三章、一元一次方程第四章、图形的认识初步七年级数学(下)知识点)(无限不循环小数负无理数正无理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、ΛΛΛΛ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数第五章、相交线与平行线第六章、实数第七章:平面直角坐标系第八章、二元一次方程组第九章、不等式与不等式组第十章、数据的收集、整理与描述八年级数学(上)知识点第十一章:三角形第十二章、全等三角形全面调查抽样调查收集数据描述数据整理数据分析数据得出结论第十三章、轴对称第十四章、整式的乘除与分解因式 1.同底数幂的乘法法则: nm nmaa a +=⋅(m,n 都是正数)2.. 幂的乘方法则:mn n m a a =)((m,n 都是正数)⎩⎨⎧-=-).(),()(,为奇数时当为偶数时当一般地n a n a a nn n3. 整式的乘法 (1) 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式: 22))((b a b a b a -=-+ 5.完全平方公式: 2222)(b ab a b a +±=±6. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m aa a -=÷ (a ≠0,m 、n 都是正数,且m>n).7.整式的除法单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.分解因式的一般方法:1. 提公共因式法2. 运用公式法3.十字相乘法分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。

第22章 一元二次方程 复习学案

第22章  一元二次方程 复习学案

第二十二章一元二次方程复习学案一、学习目标;1、理解一元二次方程的意义。

2、能熟练掌握一元二次方程的四种解法,会选择适当的方法解方程,进一步体会相互之间的关系及其“转化”的思想。

3、能熟练分析数量之间的关系,列出一元二次方程来解应用题。

二、中考热点:本章的应用性较强,本章内容一直是命题的热点,填空题、选择题有,解答题也有,单独出现或和其他内容结合出现.三、本章知识框架图:四、知识点与方法:(一)定义:方程两边都是,只含有个未知数,且未知数的最高次是,这样的方程叫做一元二次方程。

一般形式:。

温馨提示:对有关一元二次方程定义的题目,要充分考虑定义的四个条件,千万不要忽视二次项系数不为0。

练习:1、若方程(a-1)x12 a+5x-3=0是关于x的一元二次方程,则a= 。

2、已知方程2(m+1)x2 +4mx+3m-2 = 0 是关于x的一元二次方程,那么m的取值范围是3、下列方程中,是关于x的一元二次方程的是()A.()()12132+=+x xB.02112=-+xx C.02=++c bx ax D. 1222-=+x x x4、把方程21+x =33-x 2化为一般形式 。

5、方程(1-3x )(x +3)= 2x 2 + 1 是一元二次方程吗?如果是请把它化成一般形式是 ,它的二次项是 ,一次项是 , 常数项是 。

(二)一元二次方程的判别式:(1)当 时,方程有两个不相等.....的实数根; (2)当 时,方程有两个相等....的实数根; (3)当 时,方程没有实数根.....。

温馨提示:一元二次方程0c bx ax 2=++(a ≠0)的根的判别式正反都成立.其作用有:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.练习:1、方程012=--kx x 的根的情况是( )(A )方程有两个不相等的实数根 (B )方程有两个相等的实数根(C )方程没有实数根 (D )方程的根的情况与k 的取值有关2、、若一元二次方程 2x (kx -4)-x 2+6=0 无实数根,则k 的最小整数值是( ) A 、-1 B 、2 C 、3 D 、43、(07,成都)下列方程中,有两个不相等实数根的是A.240x += B.24410x x -+= C.230x x ++= D.2210x x +-=4、(08,威海)关于x 的一元二次方程()220x mx m -+-=的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定5、(08,资阳)a 、b 、c 分别是三角形的三边,则方程()022=++++b a cx x b a 的根的情况是A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根6、关于x 的方程22(21)10m x m x +++=有实根,求的取值范围。

初中数学知识点及结构图(新人教版)

初中数学知识点及结构图(新人教版)

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

【全】初中数学 一元二次方程知识点总结

【全】初中数学 一元二次方程知识点总结

一元一次方程一.知识框架二.知识概念1.含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解2.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.等式的性质:性质1、等式两边加(或减)同一个数(或式子),结果仍相等。

2、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

4.一元一次方程解法的一般步骤:整理方程…… 去分母…… 去括号…… 移项…… 合并同类项…… 系数化为 1 …… (检验方程的解).5.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”.(3)步骤: 设未知数。

‚找出相等的数量关系,ƒ根据相等关系列方程,解决问题。

6.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=πR 2h.。

(完整版)初中数学知识点框架图

(完整版)初中数学知识点框架图
1.行程问题:
2.工程(效)问题:
3. 增长率问题:(增长率与负增长率)
8.分配与方案问题:
1.线段图示法:
常用方法2.列表法:
3.直观模型法:
解法:(借助数轴)
4.最佳方案问题
5.最后一个分配问题
第三部分《函数与图象》知识点
3平行于x轴,y轴的线段长度的求法(大坐标减小坐标)
4不共线的几点围成的多边形的面积求法(割补法)
完全平方公式:(a b)2a22ab b2
乘法运算
混合运算:
单项式
多项式
多项式;多项式多项式
单项式
括号优先
分式的定义:分母中含可变字母
分式分式有意义的条件:分母不为零
分式值为零的条件:分子为零,分母不为零 分式的性质:a冬卫;a2(通分与约分的根据)
b b m b b m
通分、约分,加、减、乘、除
分式的运算和“+治先化简再求值(整式与分式的通分、符号变化) 简求 整体代换求值
x
1区域性:k>0时,图像在一、三象限;k<0时,图像在二、四象限.
k>0在每个象限内,y随x的增大而减小;
2增减性
反比例函数 性质k<0在每个象限内,y随x的增大而减小.
3恒值性:(图形面积与k值有关)
4 对称性:既是轴对称图形,又是中心对称图形.
求交点:(联立函数表达式解方程组求交点坐标,还可由图像比较函数的大小)
定义与解:
元一次方程 解法步骤:去分母、去括号、移项、合并同类项、系数化为1.
应用:确定类型、找出关键量、数量关系
定义与解:
解法:代入消元法、加减消元法
简单的三元一次方程组:
简单的二元二次方程组:

初中数学各年级教材知识体系框架及教材各章节简介

初中数学各年级教材知识体系框架及教材各章节简介

初中数学各年级教材知识体系框架及教材各章节简介(一)体系框架(7~9年级)(二)体例结构各章基本结构如下:各节结构根据内容需要而确定,基本上包括以下部分:人教版数学七年级上各章节简介“第一章有理数”简介(新)本章是第三学段教科书的第一章,既承接前两个学段的内容,又为进一步学习打下基础。

本章主要内容是有理数的有关概念及其运算。

首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的运算。

本章教学时间约需19课时,具体安排如下:1.1 正数和负数约2课时1.2 有理数约4课时1.3 有理数的加减法约4课时1.4 有理数的乘除法约4课时1.5 有理数的乘方约3课时数学活动小结约2课时一、教科书内容和课程学习目标本章知识结构框图如下:引入负数是实际的需要,也是学习第三学段数学内容,特别是数与代数内容的需要。

引进数轴可以把有理数用数轴上的一个点直观地表示出来,从而可以直观地介绍相反数、绝对值,同时为用数轴引进有理数的加法法则与乘法法则作准备。

引入相反数的概念,一方面,可以加深对相反意义的量的认识,另一方面,可以为学习绝对值、有理数减法等作准备。

引入绝对值的的概念,可以加深对有理数的认识:一个有理数由符号与绝对值确定。

两个负数比较大小,有理数运算也要借助绝对值这个概念。

本章的重点是有理数的运算。

加法与乘法都是在介绍运算法则——着重是符号法则的基础上,进行基本运算,然后结合具体例子引入运算律,并运用运算律简化运算。

减法与除法,则是着重介绍如何向加法与乘法转化,从而利用加法与乘法的运算法则、运算律进行运算。

乘方是几个相同因数的乘积,也就可以利用乘法运算。

科学记数法与乘方有关,因而可进一步加以介绍。

近似数在实际问题中有广泛的应用,有必要在本章作进一步的认识。

利用计算器计算分两次安排,一次在加减乘除运算之后,一次在乘方运算之后。

学会了使用计算器进行有理数运算,较复杂的计算就可以用计算器完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学一元二次方程部分知识框架图如下:
第一:一元二次方程的基本解法
解一元二次方程的基本思路通过“降次”把一元二次方程转化为一元一次方程求解。

1.直接开平方法:对形如(x+a)2?=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。

①等号左边是一个数的平方的形式而等号右边是一个非负数。

②降次的实质是由一个一元二次方程转化为两个一元一次方程。

③方法是根据平方根的意义开平方。

2.配方法:用配方法解一元二次方程:ax2?+bx+c=0(k≠0)的一般步骤是:
①化为一般形式;
②移项,将常数项移到方程的右边;
③化二次项系数为1,即方程两边同除以二次项系数;
④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2?=b的形式;
⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,则原方程无解.
依据:配方法的理论依据是完全平方公式a?2;+b?2;±2ab=(a±b)?2;
关键:配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。

3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是
(b2?-4ac≥0)。

步骤:
①把方程转化为一般形式;
②确定a,b,c的值;
③求出b2?-4ac的值,当b2?-4ac≥0时代入求根公式。

4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。

①将方程右边化为0;
②将方程左边分解为两一次因式的乘积;
③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.
因式分解的方法:提公因式、公式法、十字相乘法。

5.图像解法:元二次方程的根的几何意义是二次函数的图像(为一条抛物线)与x轴交点的X坐标。

相关文档
最新文档