八年级数学上册一元一次不等式的应用练习题
初中数学浙教版八年级上册第3章《一元一次不等式》测试卷含答案解析和双向细目表-八上3
浙教版数学八年级上册第3章《一元一次不等式》测试考生须知:●本试卷满分120分,考试时间100分钟。
●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。
●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。
●保持清洁,不要折叠,不要弄破。
一.选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 下列是不等式的是( ) A.2x+yB.3x>11C.2x+3=7D.x 2y 22.若x <0,xy ≥0,则y 的取值范围是( ) A.y >0B.y <0C.y ≥0D.y ≤03.关于x 的不等式12-4x >0的非负整数解共有( )个。
A.2B.3C.4D.54.“x 的3倍与x 的相反数的差不小于1”,用不等式表示为( ) A.3x-x ≥1 B.3x-(-x )≥1 C.3x-x >1D.3x-(-x )>15.不等式125323-+≤+x x 的解集表示在数轴上是( ) A.B. C. D.6.如果关于x 的不等式(a+2020)x-a >2020的解集为x <1,那么a 的取值范围是( ) A .a >-2020B.a <-2020C.a >2020D.a <20207.已知关于x 、y 的方程组⎩⎨⎧=--=+ay x ay x 343,其中-3≤a ≤1,给出下列说法:①当a=1时,方程组的解也是x+y=2-a 方程的解;②当a=-2时,x 、y 的值互为相反数;③若x ≤1,则1≤y ≤4;④⎩⎨⎧-==14y x 是方程组的解.其中说法正确的是( ) A.①②③④B.①②③C.②④D.②③8.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜。
甲说:“至少12元。
”乙说“至多10元。
”丙说“至多8元.”小明说:“你们三个人都说错了。
八年级数学上册3.3一元一次不等式同步练习(新版)浙教版【含解析】
3.3 一元一次不等式一、选择题(共10小题;共50分)1. 一个一元一次不等式组的解集在数轴上表示如图所示,该不等式组的解集是( )A. −1≤x<3B. −1<x≤3C. x≥−1D. x<32. 某电梯标明“载客不超过13人”,若载客人数为x,x为自然数,则“载客不超过13人”用不等式表示为 ( )A. x<13B. x>13C. x≤13D. x≥133. 下列不等式中,是一元一次不等式的为( )A. 3(1−x)+x<4x+2B. y2−y+1<0C. 12+13=16D. 2x+3<2x+44. 某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A. 103块B. 104块C. 105块D. 106块5. 下列不等式中,一元一次不等式有( )① x>−3② xy≥1③ x2<3④ x2−x3≤1⑤ x+1x>1A. 1个B. 2个C. 3个D. 4个6. 不等式x+2<6的正整数解有 ( )A. 1个B. 2个C. 3个D. 4个7. 三角形的三边长分别为6,1−3a,10,则a的取值范围是 ( )A. −6<a<−3B. 5<a<1C. −5<a<−1D. a>−1或a<−58. 不等式3x≤2(x−1)的解集为 ( )A. x≤−1B. x≥−1C. x≤−2D. x≥−29. 由于油价下调,从 2015 年1 月 22 日起,北京市取消出租车燃油附加费.出租车的收费标准是:起步价13元(即行驶距离不超过3千米都需付13元车费),超过3千米以后,每增加1千米,加收2.3元(不足1千米按1千米计).上周某人从北京市的甲地到乙地,经过的路程是x千米,出租车费为36元,那么x的最大值可能是( )A. 11B. 12C. 13D. 1410. 正五边形广场ABCDE的边长为80米,甲、乙两个同学做游戏,分别从A、C两点处同时出发,沿A−B−C−D−E−A的方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,则两人第一次刚走到同一条边上时 ( )A. 甲在顶点A处B. 甲在顶点B处C. 甲在顶点C处D. 甲在顶点D处二、填空题(共10小题;共50分)11. 写出一个解为x≥1的一元一次不等式.12. 不等式1−2x>0的解集是.13. 不等式−12x+3<0的解集是.14. 下列式子:① −5<0;② 2x=3;③ 3x−1>2;④ 4x−2y≤0;⑤ x2−3x+2>0;⑥x−2y.其中属于不等式的是.属于一元一次不等式的是.(填序号)15. 小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.16. 为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,最多用资金购买书桌、书架等设施.17. 若(m−2)x2m+1−1>5是关于x的一元一次不等式,则m=.18. 小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元.那么小明最多能买支钢笔.19. 若∣2x+1∣+∣2x−1∣>a对任意实数x恒成立,则a的取值范围是.20. 不等式∣x+1∣+∣x−2∣<7的整数解有个.三、解答题(共5小题;共65分)21. 不等式的解集x<3与x≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.22. 解不等式:2x−13≤3x+24−1,并把解集表示在数轴上.23. 某广播电视信息网络股份有限公司现有600户申请了安装有线电视的待装业务,此外每天平均有20户新申请安装的业务,设该公司每个有线电视安装小组每天能安装10户,如果要在5天内完成全部待装业务,那么该公司至少需要安排多少个有线电视安装小组同时进行安装?24. 我们规定:对于有理数a,符号[a]表示不大于a的最大整数.例如:[4.7]=4,[3]=3,[−π]=−4.Ⅰ如果[a]=−2,那么a的取值范围是.Ⅱ如果[x+12]=3,求满足条件的所有正整数x.25. 某公司组织员工外出旅游.甲、乙两家旅行社为了吸引更多的顾客,分别推出了旅游的团体优惠办法.甲旅行社的优惠办法是:买4张全票,其余人按原价的五折收费;乙旅行社的优惠办法是:一律按原价的六折收费.已知这两家旅行社的原价均为a元,且在旅行过程中的各种服务质量相同.如果你是该公司的负责人,你会选择哪家旅行社?答案第一部分1. A2. C3. A4. C5. B6. C7. C8. C9. C 10. D第二部分11. x−1≥012. x<1213. x>614. ①③④⑤;③15. 316. 750017. 018. 1319. a<220. 6第三部分21. 如图1所示,x<3的解集是小于3的所有数,在数轴上表示出来是空心圆圈,不包括3这个数;而x≤3的解集是小于或等于3的所有数,在数轴上表示出来是实心圆点,包括3这个数,把它们表示在数轴上如图2所示:22. 去分母,得4(2x−1)≤3(3x+2)−12,去括号,得8x−4≤9x+6−12,移项,得8x−9x≤6−12+4,合并同类项,得−x≤−2,把x的系数化为1,得x≥2.在数轴上表示为:23. 设公司安排x个小组同时安装.依题意,得5×10x≥600+20×5.x≥14.答:该公司至少需要安排14个小组同时进行安装.24. (1)−2≤a<−1.<4,(2)根据题意得:3≤x+12解得:5≤x<7,则满足条件的所有正整数为5,6.25. 设旅游人数为x人,则甲旅行社收费为[0.5a(x−4)+4a]元,乙旅行社收费为0.6ax元.①当0.5a(x−4)+4a<0.6ax时,解得x>20,所以当旅游人数超过20人时,选择甲旅行社更合算;②当0.5a(x−4)+4a=0.6ax时,解得x=20,所以当旅游人数是20人时,可任意选择;③当0.5a(x−4)+4a>0.6ax时,解得x<20,所以当旅游人数少于20人时,选择乙旅行社更合算.。
湘教版八年级数学上册作业课件 第4章 一元一次不等式(组) 一元一次不等式的应用
3.(4分)(醴陵市月考)某超市花费1 140元购进苹果100千克, 销售中有5%的正常损耗,为避免亏本(其它费用不考虑), 售价至少定为多少元/千克? 设售价为x元/千克,根据题意所列不等式正确的是( )A A.100(1-5%)x≥1 140 B.100(1-5%)x>1 140 C.100(1-5%)x<1 140 D.100(1-5%)x≤1 140
5.(4分)某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车
多6辆,那么现在15天的产量就超过了原来20天的产量,请写出原来每天生 产汽车x辆应满足的不等式为___1_5_(_x_+__6_)>__2_0_x_.
6.小明和爸爸妈妈三人玩跷跷板.三人的体重一共为168千克,爸爸坐在跷 跷板的一端,体重只有妈妈一半的小明和妈妈一同坐在跷跷板的另一端,这 时爸爸那端仍然着地.若设小明的体重为x千克,则妈妈的体重为__千2x克,爸 爸的体重为___(_1_6_8_-__x_-__2千x) 克,根据小明和妈妈的体重之和___<爸爸的体重 (填“>”或“=”或“<”), 即可得出关于x的关系式为___x_+__2_x_<__1_6_8_-__x_-___2,x 解得x<___2_8.
11.(南京中考)铁路部门规定旅客免费携带行李箱的 长、宽、高之和不超过160 cm, 某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm, 长与宽的比为3∶2,则该行李箱的长的最大值为____7c8m.
三、解答题(共45分) 12.(15分)(长沙中考)为建设“秀美幸福之市”,长沙市绿化提质改造工程 正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某 段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元. (1)若购买两种树苗的总金额为90 000元,求需购买甲、乙两种树苗各多少 棵? (2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种 树苗多少棵?
解一元一次不等式专项练习 (80题,附答案)
解一元一次不等式专项练习(80 题、附答案)(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x ﹣≤2﹣.(3)2(x﹣1)+2<5﹣3(x+1)(4).(5)﹣<1;(6)3﹣(3y﹣1)≥(3+y)(7)x ﹣≥﹣1(8)﹣>﹣1 (9)﹣1≤.(10)﹣3x+2≤8.(11)﹣3x﹣4≥6x+2.(12)﹣8x﹣6≥4(2﹣x)+3.(13)(14)(15).(16)2(x﹣1)<﹣3(1﹣x)(17)≤﹣1 (18)10﹣3(x﹣2)≤2(x+1)(19)﹣2≤.(20)﹣3x>2(21)x >﹣x﹣2(22)3(x+1)<4(x﹣2)﹣3 (23)≤1.(24)≥;(25)﹣>﹣2.(26)5x﹣4>3x+2(27)4(2x﹣1)>3(4x+2)(28)≤(29)﹣2≥.(30)4(x﹣1)+3≥3x;(31)2x﹣3<;(32)≤1.(33)3[x﹣2(x﹣2)]>6+3 (34)(35)(36).(37)3(x+2)﹣8≥1﹣2(x﹣1);(38)>;(39)≤;(40)<.(41)3(2x﹣3)≥2(x﹣4)(42)≥0(43)7(1﹣2x)>10﹣5(4x﹣3)(44).(45)﹣<0;(46)1﹣≤﹣x.(47)5x﹣12≤2(4x﹣3);(48)≥x﹣2.(49)4x﹣2(3+x)<0 (50)﹣≥0.(51)3x﹣2<﹣4(x﹣5);(52)﹣1<<2.(53);(54).(55)5x+15>4x﹣13(56)≤.(57)7(4﹣x)﹣2(4﹣3x)<4x;(58)10﹣4(x﹣3)≥2(x﹣1);(59)3[x﹣2(x﹣2)]>x﹣3(x﹣3);(60)(2x﹣1)+x﹣1+(1﹣2x)≤0;(61)﹣y ﹣;(62).(63)x(x+1)>(x﹣2)2;(64).(65)3(y﹣3)<7y﹣4(66)﹣21<6﹣3x≤9.(67);(68);(69)0.5x+3(1﹣0.2x)≥0.4x﹣0.6;(70)x ﹣<1﹣;(71)2[x﹣(x﹣1)+2]<1﹣x;(72).(73)3x﹣7<5x﹣3;(74).(75)(76)(77)≤.(78)3x﹣9≤0;(79)2x﹣5<5x﹣2;(80)2(﹣3+x)>3(x+2);参考答案:(1)3(x+2)﹣8≥1﹣2(x﹣1),3x+6﹣8≥1﹣2x+2,3x+2x≥1+2﹣6+8,5x≥5,x≥1;(2)x ﹣≤2﹣,6x﹣3(x﹣1)≤12﹣2(x+2),6x﹣3x+3≤12﹣2x﹣4,3x+2x≤8﹣3,5x≤5,x≤1(3)2(x﹣1)+2<5﹣3(x+1)2x﹣2+2<5﹣3x﹣3,2x+3x<5﹣3+2﹣2,5x<2,x,(4),3(1+x)≤2(2x﹣1)+6,3+3x≤4x﹣2+6,3x﹣4x≤﹣2+6﹣3,﹣x≤1,x≥﹣1(5)去分母得,2x﹣3(x﹣1)<6,去括号得,2x﹣3x+3<6,移项、合并同类项得,﹣x<3,把x的系数化为1得,x>﹣3.(6)去分母得,24﹣2(3y﹣1)≥5(3+y),去括号得,24﹣6y+2≥15+5y,移项、合并同类项,﹣11y≥﹣11,把x的系数化为1得,y≤1(7)去分母得,6x﹣2(2x﹣1)≥3(2+x)﹣6去括号得,6x﹣4x+2>6+3x﹣6,移项得,6x﹣8x﹣3x>6﹣6﹣2,合并同类项得,﹣5x>﹣2,把x的系数化为1得,x <﹣,(8)去分母得,6(2x﹣1)﹣4(2x+5)>3(6x﹣1),去括号得,12x﹣6﹣8x﹣20>18x﹣3,移项得,12x﹣8x﹣18x>﹣3+6+20,合并同类项得,﹣14x>23,把x的系数化为1得,x <﹣,(9)分子与分母同时乘以10得,﹣1≤,去分母得,2(2x﹣1)﹣6≤3(5x+2),去括号得,4x﹣2﹣6≤15x+6,移项得,4x﹣15x≤6+2+6,合并同类项得,﹣11x≤14,把x的系数化为1得,x ≥﹣(10)移项合并得:﹣3x≤6,解得:x≥﹣2,(11)移项合并得:9x≤﹣6,解得:x ≤﹣,(12)去括号得:﹣8x﹣6≥8﹣4x+3,移项合并得:﹣4x≥17,解得:x ≤﹣(13)去分母得:4x﹣8>6x+2,移项合并得:﹣2x>10,解得:x<﹣5;(14)去分母得:2x﹣4x+1<3,移项合并得:﹣2x<2,解得:x>﹣1;(15)去分母得:12+3x﹣6≥8x+8,移项合并得:5x≥﹣2,解得:x ≤﹣(16)去括号得,2x﹣2≤﹣3+3x,移项得,2x﹣3x≤﹣3+2,合并同类项得,﹣x≤﹣1把x的系数化为1得,x≥1,(17)去分母得,3(2﹣3x)≤2x﹣1﹣6,去括号得,6﹣9x≤3x﹣7,移项得,﹣9x﹣3x≤﹣7﹣6,合并同类项得,﹣12x≤13,x的系数化为1得,x ≥﹣,(18)去括号得,10﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣10﹣6,合并同类项得,﹣5x≤﹣24把x的系数化为1得,x ≥﹣,(19)去分母得,2(1﹣5x)﹣24≤3(3﹣x)去括号得,2﹣10x﹣24≤9﹣3x,移项得,﹣10x+3x≤9﹣2+24,合并同类项得,﹣7x≤31,x的系数化为1得,x ≥﹣(20)﹣3x>2,解得:x <﹣;(21)去分母得:x>﹣2x﹣6,解得:x>﹣2;(22)去括号得:3x+3<4x﹣8﹣3,解得:x>14;(23)去分母得:2(2x﹣1)﹣3(5x+1)≤6,去括号得: 4x﹣2﹣15x﹣3≤6,解得: x≥﹣1(24)去分母得,3(x+4)≥﹣2(2x+1),去括号得,3x+12≥﹣4x﹣2,移项、合并同类项得,7x≥﹣14,把x的系数化为1得,x ≥﹣.(25)去分母得,4(x﹣1)﹣3(2x+5)>﹣24,去括号得,4x﹣4﹣6x﹣15>﹣24,移项、合并同类项得,﹣2x>﹣5,把x的系数化为1得,x <(26)移项得,5x﹣3x>2+4,合并同类项得,2x>6,把x的系数化为1得,x>3.(27)去括号得,8x﹣4>12x+6,移项得,8x﹣12x>6+4,合并同类项得,﹣4x>10,把x的系数化为1得,x<﹣.(28)去分母得,3(4x﹣1)≤1﹣5x,去括号得,12x﹣3≤1﹣5x,移项得,12x+5x≤1+3,合并同类项得,17x≤4,把x的系数化为1得,x ≤.(29)去分母得,2(5x+1)﹣24≥3(x﹣5),去括号得,10x+2﹣24≥3x﹣15,移项得,10x﹣3x≥﹣15﹣2+24,合并同类项得,7x≥7,把x的系数化为1得,x≥1(30)去括号得,4x﹣4+3≥3x,移项得,4x﹣3x≤4﹣3,合并同类项得,x≤1,(31)去分母得,3(2x﹣3)<x+1,去括号得,6x﹣9<x+1,移项得,6x﹣x<1+9,合并同类项得,5x<10,x的系数化为1得,x<2,(32)去分母得,2(2x﹣1)﹣(9x+2)≤6,去括号得,4x﹣2﹣9x﹣2≤6,移项得,4x﹣9x≤6+2+2,合并同类项得,﹣5x≤10,x的系数化为1得,x≥﹣2(33)3[x﹣2(x﹣2)]>6+3x解:去小括号,3[x﹣3x+4]>6+3x合并,3[﹣x+4]>6+3x去中括号,﹣3x+12>6+3x移项,合并,﹣6x>﹣6化系数为1,x<1.(34)解:去分母,2(2x﹣5)≤3(3x+1)﹣8x去括号,4x﹣10≤9x+3﹣8x移项合并,3x≤13化系数为1,x ≤.(35)解:去分母,3(2﹣x)﹣3(x﹣5)>2(﹣4x+1)+8 去括号,6﹣9x﹣3x+15>﹣8x+2+8移项合并,﹣4x>﹣11化系数为1,x <.(36)解:利用分数基本性质化小数分母为整数去括号,4x﹣1﹣10x+7>2﹣4x移项合并,﹣2x>﹣4化系数为1,x<2(37)去括号,得:3x+6﹣8≥1﹣2x+2,移项、合并同类项,得:5x≥5,系数化成1得:x≥1;(38)去分母,得:3(x﹣3)﹣6>2(x﹣5),去括号,得:3x﹣9﹣6>2x﹣10,移项、合并同类项得:x>5;(39)去分母,得:6x﹣3(x﹣1)≤12﹣2(x+2),去括号,得:6x﹣3x+3≤12﹣2x﹣4,移项、合并同类项得:5x≤5系数化成1得:x≤1;(40)去分母,得:6x﹣3x<6+x+8﹣2(x+1),去括号,得:6x﹣3x<6+x+8﹣2x﹣2,移项得:6x﹣3x﹣x+2x<6﹣2+8合并同类项得:4x<12系数化成1得:x<3(41)去括号,得6x﹣9≥2x﹣8,移项,得6x﹣2x≥﹣8+9,合并同类项,得4x≥1,两边同除以4,得x ≥,(42)去分母,得4﹣8x≥0,移项得﹣8x≥﹣4,两边同除以﹣8,得x ≤,(43)去括号,得7﹣14x>10﹣20x+15,移项,得﹣14x+20x>10+15﹣7,合并同类项得6x>18,两边同除以6得x>3,(44)去分母,得2x+6<﹣6x﹣3(x+10),去括号,得2x+6<﹣6x﹣3x﹣30,移项,得2x+6x+3x<﹣30﹣6,合并同类项,得11x<﹣36,两边同除以11得x <﹣(45)去分母得:2(2x+1)﹣(5﹣2x)<0,去括号得:4x+2﹣5+2x<0,移项合并得:6x<3,解得:x <,表示在数轴上,如图所示:;(46)去分母得:6﹣2(x﹣1)≤3(2x+3)﹣6x,去括号得:6﹣2x+2≤6x+9﹣6x,移项合并得:﹣2x≤1,解得:x ≥﹣(47)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(48)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1(49)去括号得4x﹣6﹣2x<0,移项、合并同类项得2x<6,系数化为1得x<3;这个不等式的解集在数轴上表示如图1:(50)去分母得3(2x﹣3)﹣4(x﹣2)≥0,去括号得6x﹣9﹣4x+8≥0,移项、合并同类项得2x≥1,系数化为1得x≥0.5(51)3x﹣2<﹣4(x﹣5);去括号得3x﹣2<﹣4x+20,移项得3x+4x<20+2合并同类项得7x<22未知项的系数化为1得x <,(52)﹣1<<2,去分母得﹣3<2﹣x<6,移项得﹣3﹣2<﹣x<6﹣2,合并同类项得﹣5<﹣x<4未知项的系数化为1得﹣4<x<5(53)去分母得,2(x﹣1)﹣3(x+4)>﹣12,去括号得,2x﹣2﹣3x﹣12>﹣12,移项、合并同类项得﹣x<2,化系数为1得x<﹣2.(54)去分母得,(x﹣2)﹣3(x﹣1)<3,去括号得,x﹣2﹣3x+3<3,移项、合并同类项得﹣2x<2,化系数为1得x>﹣120.解:(55)移项,得:5x﹣4x>﹣13﹣15,合并同类项,得:x>﹣28;(56)去分母,得:2(2x﹣1)≤3x﹣4,去括号,得:4x﹣2≤3x﹣4,移项,得:4x﹣3x≤﹣4+2,合并同类项,得:x≤﹣2(57)去括号得,28﹣7x﹣8+6x<4x,移项得,﹣7x+6x﹣4x<8﹣28,合并同类项得,﹣5x<﹣20,系数化为1得,x>4.(58)去括号得,10﹣4x+12≥2x﹣2,移项得,﹣4x﹣2x≥﹣2﹣10﹣12,合并同类项得,﹣6x≥﹣24,系数化为1得,x≤4.(59)去括号得,3x﹣6x+12>x﹣3x+9,移项得,x﹣6x﹣x+4x>9﹣12,合并同类项得,﹣3x>﹣3,系数化为1得,x<1.(60)去分母得,(2x﹣1)+3x﹣3+(1﹣2x)≤0,去括号得,2x﹣1+3x﹣3+1﹣2x≤0,移项得,2x+3x﹣2x≤3+1﹣1,合并同类项得,3x≤3,系数化为1得,x>1.(61)去分母得,﹣10y﹣5(y﹣1)≥20﹣2(y+2),去括号得,﹣10y﹣5y+5≥20﹣2y﹣4,移项得,﹣10y﹣5y+2y≥20﹣4﹣5,合并同类项得,﹣13y≥11,系数化为1得,y ≤﹣.(62)去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,系数化为1得,x<﹣9(63)由原不等式,得x2+x>x2﹣4x+4,移项、合并同类项,得5x>4,不等式两边同时除以5,得x >,即原不等式的解集是x >;(64)由原不等式,得﹣17x+1<12﹣10x,移项、合并同类项,得﹣7x<11,不等式两边同时除以﹣7(不等号的方向发生改变),得x >﹣,即原不等式的解集是x >﹣(65)去括号,得:3y﹣9<7y﹣4,移项,得:3y﹣7y<9﹣4,即﹣4y<5,;(66)﹣21<6﹣3x≤9两边同时减去6再除以﹣3,不等号的方向改变,得:﹣1≤x<9(67)去分母得,2(1﹣2x)≥4﹣3x,去括号得,2﹣4x≥4﹣3x,移项得,﹣4x+3x≥4﹣2,合并同类项得,﹣x≥2,化系数为1得,x≤﹣2;(68)去分母得,2(x+4)﹣3(3x﹣1)<6,去括号得,2x+8﹣9x+3<6,移项得,2x﹣9x<6﹣8﹣3,合并同类项得,﹣7x<﹣5,化系数为1得,x >;(69)去括号得,0.5x+3﹣0.6x≥0.4x﹣0.6,移项得,0.5x﹣0.6x﹣0.4x≥﹣0.6﹣3,合并同类项得,﹣0.5x≥﹣3.6,化系数为1得,x≤7.2.(70)去分母得,6x﹣3x﹣(x+8)<6﹣2(x+1),去括号得,6x﹣3x﹣x﹣8<6﹣2x﹣2,移项得,6x﹣3x﹣x+2x<6﹣2+8,合并同类项得,4x<12,化系数为1得,x<3;(71)去括号得,2x﹣2x+2+4<1﹣x,移项得,2x﹣2x+x<1﹣2﹣4,合并同类项得,x<﹣5;(72)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,化系数为1得,x≥﹣1(73)移项合并得:﹣2x<4,解得:x>﹣2;(74)去分母得:3(x+5)﹣2(2x+3)≥12,去括号得:3x+15﹣4x﹣6≥12,移项合并得:﹣x≥3,解得:x≤﹣3(75)原不等式的两边同时乘以6,得2x+6>21﹣3x,移项,合并同类项,得5x>15,不等式的两边同时除以5,得x>3,∴原不等式的解集是x>3.(76)原不等式的两边同时乘以6,得8x+2≤14﹣x,移项,合并同类项,得9x≤16,不等式的两边同时除以9,得x≤;所以,原不等式的解集是x≤;(77)原不等式的两边同时乘以6,得8﹣2x≤9,移项,合并同类项,得﹣2x≤1,不等式的两边同时除以﹣2,得x≥﹣,所以,原不等式的解集是x≥﹣(78)移项得,3x≤9,x的系数化为1得,x≤3.(79)移项得,2x﹣5x<﹣2+5,合并同类项得,﹣3x<3,把x的系数化为1得,x>﹣1.。
浙教版八年级数学上册《3.4一元一次不等式组在实际生活中的应用》同步练习含答案
一元一次不等式组在实际生活中的应用一、解答题。
1.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?二、选择题。
2.如图是测量一颗玻璃球体积的过程:(1)将300mL的水倒进一个容量为500mL的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在(1mL水的体积为1cm3)()A.20cm3以上,30cm3以下B.30cm3以上,40cm3以下C.40cm3以上,50cm3以下D.50cm3以上,60cm3以下3.小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买()支笔.A.1 B.2 C.3 D.44.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,则她至少要答对()A.10道题B.12道题C.13道题D.16道题5.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%三、填空题(共2小题,每小题3分,满分6分)7.一罐饮料净重500克,罐上注有“蛋白质含量≥0.4%”,则这罐饮料中蛋白质的含量至少为克.8.小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是立方米.四、解答题。
9.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.10.为了加强公民节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的,该市自来水收费见价目表.例如:某居民元月份用水9吨,则应收水费2×6+4×(9﹣6)=24元每月用水量(吨)单价不超过6吨 2元/吨超过6吨,但不超过10吨的部分4元/吨超过10吨部分 8元/吨(1)若该居民2月份用水12.5吨,则应收水费多少元?(2)若该居民3、4月份共用15吨水(其中4月份用水多于3月份)共收水费44元(水费按月结算),则该居民3月、4月各用水多少吨?11.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?12.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):实际花费130 290 (x)累计购物在甲商场127 …在乙商场126 …(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?一元一次不等式组在实际生活中的应用参考答案与试题解析一、解答题。
八年级数学上册一元一次不等式专题卷(附答案)
八年级数学上册一元一次不等式专题卷(附答案)评卷人得分一、选择题(题型注释)1.如果不等式组无解,那么m 的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤52.不等式组840312xx-⎩≤-⎧⎨>的解集在数轴上表示为()3.如果不等式无解,则b的取值范围是()A.b>﹣2 B.b<﹣2 C.b≥﹣2 D.b≤﹣24.不等式2x﹣6<0的解集是()A.x>3 B.x<3 C.x>﹣3 D.x<﹣35.已知不等式组,其解集在数轴上表示正确的是()6.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2 D.-3≤b<-27.不等式组的解集在数轴上表示为()A. B .C . D.8.在数轴上表示不等式组202(1)1xx x+>⎧⎨-≤+⎩的解集,正确的是()A. B. C . D.9.不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<310.如果不等式组有解,那么m的取值范围是()A.m>8 B.m<8 C.m≥8 D.m≤811.已知不等式组1x a x >⎧⎨≥⎩的解集是x ≥1,则a 的取值范围是( ) A .a <1 B .a ≤1 C .a ≥1 D .a >1 评卷人得分二、填空题(题型注释) 12.学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记﹣4分,八年级一班代表的得分目标为不低于88分,则这个队至少要答对 道题才能达到目标要求.13.不等式组⎩⎨⎧-≤->+x x x 81212的最大整数解是 .14.不等式组的解集为 .15.不等式组10241x x x +⎧⎨+-⎩>≥的解集为 . 16.定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为 。
湘教版数学八年级上册第4章4.3一元一次不等式的应用同步练习题(含答案)
第4章4.3一元一次不等式的应用同步练习题(含答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.x与5的和的一半是非负数用不等式可以表示为()A. B. C. D.2.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是( )A. -3<b<-2B. -3<b≤-2C. -3≤b≤-2D. -3≤b<-23.某次知识竞赛共有20道题,答对一题得10分,答错或不答均扣5分,小玉得分超过95分,他至少要答对()道题.A. 12B. 13C. 14D. 154.如图的宣传单为莱克印刷公司设计与印刷卡片计价方式的说明,妮娜打算请此印刷公司设计一款母亲节卡片并印刷,她再将卡片以每张15元的价格贩售.若利润等于收入扣掉成本,且成本只考虑设计费与印刷费,则她至少需印多少张卡片,才可使得卡片全数售出后的利润超过成本的2成?()A. 112B. 121C. 134D. 1435.两条纸带,较长的一条长23 cm,较短的一条长15 cm.把两条纸带剪下同样长的一段后,剩下的两条纸带中,要求较长的纸带的长度不少于较短的纸带长度的两倍,那么剪下的长度至少是( )A. 6 cmB. 7 cmC. 8 cmD. 9 cm6.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买()A. 3支笔B. 4支笔C. 5支笔D. 6支笔7.某种家用电器的进价为800元,出售的价格为1 200元,后来由于该电器积压,为了促销,商店准备打折销售,但要保证利润率不低于5%,则至多可以打()A. 6折B. 7折C. 8折D. 9折8.小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本()本.A. 7B. 6C. 5D. 49.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A. 11道B. 12道C. 13道D. 14道10.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤二、填空题(共8题;共24分)11.某药品说明书上标明药品保存的温度是(10±4) ℃,设该药品合适的保存温度为t ℃,则t的取值范围是________.12.一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,甲同学答对25道题,答错5道题,则甲同学得________分;若得分不低于60分者获奖,则获奖者至少应答对________道题.13.某校男子100m跑的记录是12s,在今年的校田径运动会上,肖华的100m跑成绩是ts,打破了该校男子100m跑的记录。
含详细解析答案初中数学一元一次不等式组解法练习40道.pdf
初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。
一元一次不等式练习题(含五篇)
一元一次不等式练习题(含五篇)第一篇:一元一次不等式练习题一元一次不等式练习题解下列不等式,并把解集在数轴上表示出来:(1)3x-2>2x+1(2)3(x+3)<5(x-1)+7(3)2x-19<7x+3126(4)3x-2(9-x)>3(7+2x)-(11-6x).(5)2(3x-1)-3(4x+5)≤x-4(x-7)(6)2(x-1)-x>3(x-1)-3x-5.(7)3[y-2(y-7)]≤4yxx+1x-1x+43y+17y-32(y-2)-≥-2>1(8)15-(7+5x)≤2x+(5-3x).(9(10-1<+11+323515322x+1x-22x+1x-22x+1x-3->1(13)-(x+1)>-2(14)->-1(15)->2(12)23323-23--223-x)-(x+1)≤-2(18)-3>(16)-3>(17)(223(19)2x-x11x+1x-2x+1x-21-x≥-(20)4-2x≤--x(21)-≥-1(22)-≥-1 2222323417.求不等式8(1-x)≤5(4-x)+3的负整数解.一元一次不等式练习题解下列不等式,并把解集在数轴上表示出来:(1)3x-2>2x+1(2)3(x+3)<5(x-1)+7(3)2x-19<7x+3126(4)3x-2(9-x)>3(7+2x)-(11-6x).(5)2(3x-1)-3(4x+5)≤x-4(x-7)(6)2(x-1)-x>3(x-1)-3x-5.(7)3[y-2(y-7)]≤4yxx+1x-1x+43y+17y-32(y-2)-≥-2>1(8)15-(7+5x)≤2x+(5-3x).(9(10-1<+11+323515322x+1x-22x+1x-22x+1x-3->1(13)-(x+1)>-2(14)->-1(15)->2(12)23323-23--223-x)-(x+1)≤-2(18)-3>(16)-3>(17)(223(19)2x-x11x+1x-2x+1x-21-x≥-(20)4-2x≤--x(21)-≥-1(22)-≥-1 2222323417.求不等式8(1-x)≤5(4-x)+3的负整数解.第二篇:解一元一次不等式练习题1、判断下列式子是否一元一次不等式:(是的打√,否的打╳)(1)7>4(2)3x ≥ 2x+1(3)2>0(4)x+y>1(5)x2+3>2xx1、解下列的一元一次不等式(并在数轴上表示出来,自己画数轴)(1)x-5<0(2)x+3 ≥ 4(3)3x > 2x+1(4)-2x+3 >-3x+1(1)2x > 1(2)–2x ≤ 1(3)2x >-1(4)22x>2(5)-x>-2(6)-x>2 33(1)2(x+3)<7(2)3x-2(x+1)>0(3)3x-2(x-1)>0(4)-(x-1)>04、下列的一元一次不等式(1)xx+1xx2x+1x-2xx>1(3)->1(4)->1 >(2)+323223231、解下列不等式12(1)-x>-(2)-(x+1)>-2(3)-x>2+x232x+1x-2->-1(4)-(x+1)>-2(5)323-2x+1x-3->2(7)-3(6)-23> 2已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围第三篇:一元一次不等式和分式练习题复习题(1)1、已知2-a和3-2a的值的符号相反,那么a的取值范围是:2、.当m________时,不等式(2-m)x<8的解集为x>82-m.3、生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,若现在所需要的时间为b小时,则____________< b <_____________.4、若干学生分宿舍,每间 4 人余 20 人,每间 8 人有一间不空也不满,则宿舍有()间.A、5B、6C、7D、85、x为何值时,代数式-6、设关于x的不等式组⎨⎧2x-m>2⎩3x-2m<-13(x+1)的值比代数式-3的值大.无解,求m的取值范围.7、某公司经营甲、乙两种商品,每件甲种商品进价12万元,•售价14.5万元.每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.•现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?8、当x时,分式1a1bxx-4x+2无意义;当x时,分式x-4x+2的值为零.9、已知-=3,求2a+3ab-2ba-2ab-b的值。
初中数学一元一次不等式的应用专项练习题(解答题 附答案)
(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?
10.某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且乙厂单独完成60万只口罩的生产比甲厂单独完成多用5天.
13.某服装专卖店计划购进 两种型号的精品服装.已知2件A型服装和3件B型服装共需4600元;1件A型服装和2件B型服装共需2800元.
(1)求 型服装的单价;
(2)专卖店要购进 两种型号服装60件,其中A型件数不少于B型件数的2倍,如果B型打七五折,那么该专卖店至少需要准备多少货款?
14.在广深高速公路改建工程中,某路段长4000米,由甲、乙两个工程队拟在30天内(含30天)合作完成,已知甲工程队每天比乙工程队多完成50米,如果甲、乙两工程队一起合作完成1500米所用时间与甲工程队单独完成1000米所用时间相同.
560
650
720
770
800
810
810
3.某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.
(1)购买一个足球、一个篮球各需多少元?
(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?
4.冰封文教店用1200元购进了甲、乙两种钢笔,已知甲种钢笔进价为每支12元,乙种钢笔进价为每支10元.在销售时甲种钢笔售价为每支15元,乙种钢笔售价为每支12元,全部售完后共获利270元.
(1)求冰封文教店购进甲、乙两种钢笔各多少支?
初中数学一元一次不等式的应用专项练习题6(填空 附答案)
14.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴餐效率,巫溪中学实践小组对食堂就餐情况进行调研后发现:在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部的人数各是一个固定值,并且发现若开一个窗口,45分钟可使等待的人都能买到午餐,若同时开2个窗口,则需30分钟.还发现,若能在15分钟内买到午餐,那么在单位时间内,去小卖部就餐的人就会减少80%.在学校总人数一定且人人都要就餐的情况下,为方便学生就餐,总务处要求食堂在10分钟内卖完午餐,至少要同时开多少______个窗口.
2.甲从一个鱼摊买三条鱼,平均每条a元,又从另一个鱼摊买了两条鱼,平均每条b元,后来他又以每条 元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是___(填a>b或a<b或a=b).
3.某班有40个同学,同时参加一场数学考试,已知该次考试的平均分为80分,则不及格(小于60分)的学生最多有__________个.(注意:所有的分数都是整数)
8.为了举行班级晚会,小王准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每副22元.如果购买金额不超过200元,且买的球拍尽可能多,那么小王应该买_____副球拍.
9.某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于________环(每次射击的环数为整数且最多是10环).
(1)加工成罐头的苹果数量为吨,直接出售的苹果数量为吨.(用含x的代数式表示)(2)求y与x之间的函数关系式,并求出自变量的取值范围.
湘教版2020--2021学年八年级数学上册第4章《一元一次不等式(组)》应用题专项训练
湘教版2020--2021学年八年级数学上册第4章《一元一次不等式(组)》应用题专项训练一.选择题(共8小题,每小题3分,共24分)1.妈妈将某服饰店的促销活动内容告诉爸爸后,爸爸假设某一商品的定价为x 元,并列出关系式为0.8(2100)1500x -<,则下列哪一项可能是妈妈告诉爸爸的内容( )A .买两件等值的商品可减100元,再打2折,最后不到1500元B .买两件等值的商品可打2折,再减100元,最后不到1500元C .买两件等值的商品可减100元,再打8折,最后不到1500元D .买两件等值的商品可打8折,再减100元,最后不到1500元2.x 的2倍不大于3与x 的差的一半,将其表示成不等式为( )A .12(3)2x x <-B .12(3)2x x -C .12(3)2x x >-D .12(3)2x x - 3.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x 题,可列不等式为( )A .105(20)80x x --B .105(20x x +- )80C .105(20)80x x -->D .105(20x x +- )80>4.某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x 分钟,以下所列不等式正确的是( )A .9032480x ⨯+B .9032480x ⨯+C .9032480x ⨯+<D .9032480x ⨯+>5.某校20名同学去工厂进行暑假实践活动,每名同学每天可以加工甲种零件5个或乙种零件4个,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元,若要使车间每天获利不低于1800元,加工乙种零件的同学至少为( )A .11B .12C .13D .146.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x 人,则可列不等式组为( )A .8(1)5128x x -<+<B .05128x x <+<C .05128(1)8x x <+--<D .85128x x <+<7.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3200元,且购买篮球的数量不少于足球数量的一半,若每个篮球80元,每个足球50元.求共有几种购买方案?设购买篮球x 个,可列不等式组( )A .2508050(50)3200x x x x -⎧⎨+-<⎩B .1(50)28050(50)3200x x x x ⎧>-⎪⎨⎪+-<⎩ C .1(50)28050(50)3200x x x x ⎧-⎪⎨⎪+-⎩ D .1(50)25080(50)3200x x x x ⎧-⎪⎨⎪+-⎩8.某商店计划用不超过2000元的资金,购进甲、乙两种单价分别为30元、60元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利5元、15元,两种商品均售完.若所获利润大于380元,则该店进货方案有( )A .3种B .4种C .5种D .6种二.填空题(共8小题,每小题3分,共24分)9.小明要从甲地到乙地,两地相距1.8千米,已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为 . 10.“2与y 的5倍的差不小于7”用不等式表示是 .11.某品牌电脑的成本为2200元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,请依据题意列出关于x 的不等式: .12.某次数学竞赛活动,共有20道选择题,评分办法是:答对一题得5分,答错一题扣1分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对 题,成绩才能在80分以上.13.鱼缸里饲养A 、B 两种鱼,A 种鱼的生长温度C x ︒的范围是2028x ,B 种鱼的生长温度C x ︒的范围是1925x ,那么鱼缸里的温度C x ︒应该控制在 范围内.14.武汉东湖高新开发区某企业新增了一个项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.设购买A 种型号的污水处理设备x 台,可列不等式组 .15.某公司组织旅游活动,如果租用50座的客车m辆恰好坐满,如果租用70座客车可少租1辆,并且有一辆有剩余座位,且剩余座位不足20个,则m的值为.16.小静带着100元钱去文具店购买日记本,到文具店她发现该文具店对日记本正在开展“满100减30”的促销活动.即购买日记本的费用达到或超过100元就可以少付30元.小静通过计算发现,在该店买6个日记本的费用比买5个日记本的费用低.请你计算一个日记本的价格可以是元.(设日记本的价格为正整数,请写出所有可能的结果)三.解答题(共7小题,满分52分,其中17、19每小题6分,18、20、21、22、23每小题8分)17.期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元,已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过225元,求至多需要购买多少个甲种笔记本?18.水是人类的生命之源,为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:(1)小王家今年3月份用水20吨,要交水费元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)如果小王家5月份用水水费计划不超过67元,则小王家5月份最多可用水多少吨?19.某街道组织志愿者活动,选派志愿者到小区服务.若每一个小区安排4人,那么还剩下78人;若每个小区安排8人,那么最后一个小区不足8人,但不少于4人.求这个街道共选派了多少名志愿者?20.三水某工厂最近准备复工复产,需要面向社会招聘A,B两个工种的工人共150人.现要求B 工种的人数不少于A工种人数的2倍,且B工种的人数比A工种人数多出的数量不超过54人.请回答以下问题:(1)若设A工种工人人数为x,那么B工种工人人数为;(2)请利用不等式的知识求出招聘的所有方案;(3)若A,B两个工种的工人的月工资分别是5000和8000元,怎样招聘可使每月所付的工资总额最少,最少工资总额是多少?21.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?22.在今年的新冠疫情期间,政府紧急组织一批物资送往武汉.现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱?(2)现计划租用A、B两种货车共10辆,一次性将所有物资送到群众手中,已知A种货车最多可装食品40箱和矿泉水10箱,B种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案?(3)在(2)条件下,A种货车每辆需付运费600元,B种货车每辆需付运费450元,政府应该选择哪种方案,才能使运费最少?最少运费是多少?23.某爱心公司捐资购买了120吨物资打算运往山区,现有甲、乙两种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车都满载,但不超载)(1)若全部物资都用甲、乙两种车型来运送,需运费9100元,问分别需甲、乙两种车型各几辆?(2)公司计划用甲、乙两种车型同时参与运送,且总运费控制在8600元以内,有几种用车方案?每种用车方案各需要多少元?湘教版2020--2021学年八年级数学上册第4章《一元一次不等式(组)》应用题专项训练一.选择题(共8小题)1.C . 2.B . 3.A . 4.A . 5.C . 6.C . 7.C . 8.A .二.填空题(共8小题)9. 21090(15)1800x x +- . 10. 257y - .11. 2800220022005%10x ⨯-⨯ . 12. 17 . 13. 2025x . 14. 1210(8)89200160(8)1380x x x x +-⎧⎨+-⎩. 15. 4 . 16. 17,18,19 . 三.解答题(共7小题)17.期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元,已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过225元,求至多需要购买多少个甲种笔记本?【解】:(1)设购买一个甲种笔记本需x 元,购买一个乙种笔记本需y 元,依题意,得:15202505x y x y +=⎧⎨-=⎩, 解得:105x y =⎧⎨=⎩. 答:购买一个甲种笔记本需10元,购买一个乙种笔记本需5元.(2)设购买m 个甲种笔记本,则购买(35)m -个乙种笔记本,依题意,得:(102)50.8(35)225m m -+⨯-, 解得:1214m , 又m 为非负整数,m ∴的最大值为21.答:至多需要购买21个甲种笔记本.18.水是人类的生命之源,为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费(155)a b+元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)如果小王家5月份用水水费计划不超过67元,则小王家5月份最多可用水多少吨?【解】:(1)15(2015)155a b a b+-=+(元),(2)依题意,得:15(2115)4815(2515)(2725)570a ba b+-=⎧⎨+-+-⨯=⎩,解得:23ab=⎧⎨=⎩,答:a的值为2,b的值为3.(3)设小王家5月份用水x吨(25)x>,依题意,得:152(2515)35(25)67x⨯+-⨯+-,解得:26.4x,答:小王家5月份最多可用水26.4吨.19.某街道组织志愿者活动,选派志愿者到小区服务.若每一个小区安排4人,那么还剩下78人;若每个小区安排8人,那么最后一个小区不足8人,但不少于4人.求这个街道共选派了多少名志愿者?【解】:设共到x个小区服务,则共有志愿者(478)x+人,依题意,得:4788(1)44788x xx x+-+⎧⎨+<⎩,解得:19.520.5x<,又x为正整数,20x∴=,478158x∴+=.答:这个街道共选派了158名志愿者.20.三水某工厂最近准备复工复产,需要面向社会招聘A,B两个工种的工人共150人.现要求B 工种的人数不少于A工种人数的2倍,且B工种的人数比A工种人数多出的数量不超过54人.请回答以下问题:(1)若设A工种工人人数为x,那么B工种工人人数为(150)x-人;(2)请利用不等式的知识求出招聘的所有方案;(3)若A,B两个工种的工人的月工资分别是5000和8000元,怎样招聘可使每月所付的工资总额最少,最少工资总额是多少?【解】:(1)A工种工人人数为x,A,B两个工种的工人共150人,B∴工种工人人数为(150)x-(人),(2)由题意可得150215054x xx x-⎧⎨-+⎩,解得:4850x,x为整数,48x∴=或49或50,∴方案一、招聘A工种工人人数为48人,B工种工人人数为102人,方案二、招聘A工种工人人数为49人,B工种工人人数为101人,方案三、招聘A工种工人人数为50人,B工种工人人数为100人;(3)方案一、工资总额50004880001021056000=⨯+⨯=元,方案二、工资总额50004980001011053000=⨯+⨯=元,方案三、工资总额50005080001001050000=⨯+⨯=元,答:招聘招聘A工种工人人数为50人,B工种工人人数为100时,工资总额最少,最少工资总额是1050000元.21.长沙市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品2件,乙种纪念品3件,需要400元;若购进甲种纪念品3件,乙种纪念品5件,需要650元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共70件,其中乙种纪念品的数量不少于40件,考虑到资金周转,用于购买这70件纪念品的资金不能超过5750元,那么该商店共有几种进货方案?【解】:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元,依题意,得:2340035650x yx y+=⎧⎨+=⎩,解得:50100xy=⎧⎨=⎩.答:购进甲种纪念品每件需50元,购进乙种纪念品每件需100元.(2)设购进乙种纪念品m件,则购进甲种纪念品(70)m-件,依题意,得:4050(70)1005750mm m⎧⎨-+⎩,解得:4045m,又m为正整数,m∴可以为40,41,42,43,44,45,∴该商店共有6种进货方案.22.在今年的新冠疫情期间,政府紧急组织一批物资送往武汉.现已知这批物资中,食品和矿泉水共410箱,且食品比矿泉水多110箱.(1)求食品和矿泉水各有多少箱?(2)现计划租用A、B两种货车共10辆,一次性将所有物资送到群众手中,已知A种货车最多可装食品40箱和矿泉水10箱,B种货车最多可装食品20箱和矿泉水20箱,试通过计算帮助政府设计几种运输方案?(3)在(2)条件下,A种货车每辆需付运费600元,B种货车每辆需付运费450元,政府应该选择哪种方案,才能使运费最少?最少运费是多少?【解】:(1)设食品有x箱,矿泉水有y箱,依题意,得:410110x yx y+=⎧⎨-=⎩,解得:260150xy=⎧⎨=⎩.答:食品有260箱,矿泉水有150箱.(2)设租用A种货车m辆,则租用B种货车(10)m-辆,依题意,得:4020(10)2601020(10)150m mm m+-⎧⎨+-⎩,解得:35m,又m为正整数,m∴可以为3,4,5,∴共有3种运输方案,方案1:租用A种货车3辆,B种货车7辆;方案2:租用A种货车4辆,B 种货车6辆;方案3:租用A种货车5辆,B种货车5辆.(3)选择方案1所需运费为600345074950⨯+⨯=(元),选择方案2所需运费为600445065100⨯+⨯=(元),选择方案3所需运费为600545055250⨯+⨯=元).495051005250<<,∴政府应该选择方案1,才能使运费最少,最少运费是4950元.23.某爱心公司捐资购买了120吨物资打算运往山区,现有甲、乙两种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车都满载,但不超载)(1)若全部物资都用甲、乙两种车型来运送,需运费9100元,问分别需甲、乙两种车型各几辆?(2)公司计划用甲、乙两种车型同时参与运送,且总运费控制在8600元以内,有几种用车方案?每种用车方案各需要多少元?【解】:(1)设需甲种车型x 辆,乙种车型y 辆,依题意有5101204007009100x y x y +=⎧⎨+=⎩①②, 解得145x y =⎧⎨=⎩. 故需甲种车型14辆,乙种车型5辆;(2)设需甲车型a 辆,乙车型b 辆,依题意有5101204007008600a b a b +=⎧⎨+⎩, 解得4a ,10b ,a ,b 是正整数,4a ∴=,10b =,需要4004700108600⨯+⨯=(元);2a =,11b =,需要4002700118500⨯+⨯=(元);故有两种运送方案:①甲车型4辆,乙车型10辆,需要8600元;②甲车型2辆,乙车型11辆,需要8500元.。
八年级上册数学-一元一次不等式应用题集锦
八年级上册数学-一元一次不等式应用题集锦.1、一元一次不等式应用题集锦1.1、混合糖果问题甲种糖果每千克价格为20元,乙种糖果每千克价格为18元。
现在要将8千克甲种糖果和若干千克乙种糖果混合,使得总价不超过400元,且糖果总量不少于15千克。
问:混合的乙种糖果最多是多少?最少是多少?1.2、安排宿舍问题某中学为八年级寄宿学生安排宿舍。
每间宿舍可以住4人或8人。
如果每间住4人,则会有20人无法安排宿舍;如果每间住8人,则会有一间宿舍不满也不空。
问:这个中学有多少间宿舍?可以安排多少名学生住宿?1.3、水产养殖问题一块水面每亩年租金为500元,每亩水面可以混合投入4千克蟹苗和20千克虾苗。
蟹苗每千克价格为75元,饲养费用为525元,当年可获得1,400元收益;虾苗每千克价格为15元,饲养费用为85元,当年可获得160元收益。
问:1)租用n亩水面的年租金共需多少元?2)每亩水面混合养殖蟹虾的年利润是多少?(利润=收益-成本)3)XXX现有资金25,000元,他准备向银行贷款不超过25,000元,用于蟹虾混合养殖。
已知银行贷款的年利率为8%。
问:XXX应该租多少亩水面,向银行贷款多少元,才能使年利润超过35,000元?1.4、课外读物问题某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。
如果每人送3本,则还有8本余下;如果每人送5本,最后一人得到的课外读物不足3本。
设该校买了m本课外读物,有x名学生获奖。
问:1)用含x的代数式表示m;2)该校获奖人数和所买课外读物的本数分别是多少?1.5、蔬菜种植问题有10名菜农,每人可以种3亩甲种蔬菜或2亩乙种蔬菜。
已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元。
现在要使总收入不低于15.6万元,应该如何安排人员?1.6、出租车费用问题某出租车起价为10元,行驶路程在5公里以内需付10元车费。
超过5公里后,每增加1公里加价1.2元(不足1公里按1公里计算)。
八年级上册数学-一元一次不等式应用题及答案
八年级上册数学-一元一次不等式应用题及答案一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。
1、某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分。
(1)小明考了68分,那么小明答对了多少道题?(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?2、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不式表示)?(2)若规定该城市每天用于处理垃圾的费用不超过7370元,则甲厂每天处理垃圾至少需多少时间?5、某汽车租凭公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元。
(1)符合公司要求的购买方案有几种?请说明理由(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应该选择以上哪种购买方案?6、(2012•益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.7、荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2 500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.答案:1、设小明答对x题5x-3(20-x)=68x=162 设小亮答对y题70≤5y-3(20-y)≤9016.25≤y≤18.75所以y=17或182、6*(x-1)<4x+19<6x(2) 9.5<x<12.5x=10 59人x=11 63人x=12 67人3、解:设导火线的长度为x厘米,可列不等式:400÷5<x÷1.2,解得x>96厘米4、解:(1)设甲、乙两厂同时处理,每天需x小时.得:(55+45)x=700,(3分)解得:x=7(小时)(2分)答:甲、乙两厂同时处理,每天需7小时.(2)设甲厂需要y小时.由题知:甲厂处理每吨垃圾费用为55055=10元,乙厂处理每吨垃圾费用为49545=11元.则有550y+11(700-55y)≤7370,解得:y≥6.答:甲厂每天处理垃圾至少需要6小时.5、1)设轿车要购买x辆,那么面包车要购买(10-x)辆,由题意,得7x+4(10-x)≤55,解得x≤5. 又因为x≥3,则x=3、4或5. 所以购车方案有三种:方案一:轿车3辆,面包车7辆;方案二:轿车4辆,面包车6辆;方案三:轿车5辆,面包车5辆. (2)方案一的日租金为:3×200+7×110=1370(元);方案二的日租金为:4×200+6×110=1460(元);方案三的日租金为:5×200+5×110=1550(元). 所以为保证日租金不低于1500元,应选择方案三6、(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得:80x+60(17-x )=1220,解得:x=10,∴17-x=7,答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17-x)棵,根据题意得:17-x<x,解得:x>812,购进A、B两种树苗所需费用为80x+60(17-x)=20x+1020,则费用最省需x取最小整数9,此时17-x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A种树苗9棵,B 种树苗87、解:(1)设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z辆,租用乙型汽车(6﹣z)辆.由题意得解得2≦z≦4由题意知,z为整数∴z=2或z=3或z=4∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.方案一的费用是800×2+850×4=5000(元);方案二的费用是800×3+850×3=4950(元);方案三的费用是800×4+850×2=4900(元)5000>4950>4900所以最低运费是4900元答:共有三种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.。
初中数学一元一次不等式的应用综合练习5(附答案)
初中数学一元一次不等式的应用综合练习5(附答案)1.等腰三角形的周长为16cm且三边均为整数,底边可能的取值有()个.A.1 B.2 C.3 D.42.如图,修正带是一种白色不透明颜料,涂在纸上可以遮盖错字,为学习和工作提供了方便.某品牌修正带原零售价为每个5元,恒诚文具店为学生们推出两种优惠方案,第一种方案:“凡一次性购买两个以上(含两个),两个按原价,其余按原价的五折付款”;第二种方案:“凡一次性购买两个以上(含两个),全部按原价的七折付款”.在购买数量相同的情况下,若要使第一种方案付款更少,则至少需要购买修正带()A.4个B.5个C.6个D.7个3.某种服装的进价为200元,出售时标价为300元,由于换季,商店准备打折销售,但要保持利润不低于20%,那么至多打()A.6折B.7折C.8折D.9折4.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?5.小明有1元和5角两种硬币共12枚,这些硬币的总币值小于8元.(1)根据题意,甲、乙两名同学分别列出尚不完整的不等式如下:甲:x+ <8乙:0.5x+ <8根据甲、乙两名同学所列的不等式,请你分别指出未知数x表示的意义,然后在横线上补全甲、乙两名同学所列的不等式:甲1:x表示乙1:x表示;(2)求小明可能有几枚5角的硬币.(写出完整的解答过程)6.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?7.倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?8.某书店用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在书店购买甲种图书的数量比用1400元购买乙种图书的数量少10本.(1)甲乙两种图书的销售单价分别是多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?最大利润是多少?(购进的两种图书全部销售完)9.2019年4月23日是第24个世界读书日.为了推进中华传统文化教育,营造浓郁的读书氛围,某校举办了“让读书成为习惯,让书香飘满校园”主题活动,为此特为七年级两个班级订购了一批新的图书.七年级两个班级订购图书的情况如下表:四大名著/套老舍文集/套总费用/元七年级(1)班 2 4 460七年级(2)班 3 2 530(1)求四大名著和老舍文集每套各是多少元?(2)学校准备再购买四大名著和老舍文集共10套,总费用不超过800元,求学校最多能买几套四大名著?10.2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?11.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划最多用41万元购买8台这两种型号的机器人,则该公司该如何购买,才能使得每小时的分拣量最大?12.初一五班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)学校决定派该班30名学生勤工俭学,练习制作乐高零件,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少需要派多少名男学生?13.春节期间,某商场计划购进甲、乙两种商品,两种商品进价分别为30元、70元,商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,设购进甲商品x件,这100件商品的销售总利润为y元.(1)求y与x的函数关系式;(2)请你设计获利最大的进货方案,并求出最大利润.14.我市某中学计划购进若干个甲种规格的排球和乙种规格的足球. 如果购买20个甲种规格的排球和15个乙种规格的足球,一共需要花费2050元;如果购买10个甲种规格的排球和20个乙种规格的足球,一共需要花费1900元。
一元一次不等式 浙教版八年级数学上册同步练习(含答案)
初中数学浙教版八年级上册第三章3.3一元一次不等式练习题一、选择题1.已知2a+3x=6,要使x是负数,则a的取值范围是()A. a>3B. a<3C. a<−3D. −3<a<32.满足不等式x+1>0的最小整数解是()A. −1B. 0C. 1D. 23.已知关于x的分式方程3x−1+m1−x=1的解是非负数,则m的取值范围是()A. m<4B. m<4,且m≠3C. m≤4D. m≤4,且m≠34.不等式3−x2>x的解为()A. x<1B. x<−1C. x>1D. x>−15.已知关于x的分式方程a−2x+1=1的解是负数,则a的取值范围是()A. a<1B. a>1且a≠2C. a<3D. a<3且a≠26.不等式4x+12>0的解集在数轴上表示正确的是()A. B.C. D.7.不等式x+2≥3的解集在数轴上表示正确的是()A. B.C. D.8.下列方程或不等式的解法正确的是()A. 由2x>−4,得x<−2B. 由−x>5,得x>−5C. 由−x=5,得x=5D. 由−12x≤3,得x≥−69.已知关于x的不等式(a−1)x>1,可化为x<1a−1,试化简|1−a|−|a−2|,正确的结果是()A. −2a−1B. −1C. −2a+3D. 110.关于x的一元一次方程4x−m+1=3x−1的解是非负数,则m的取值范围是()A. m≥2B. m>2C. m≤2D. m<2二、填空题11.若关于x的不等式3m−2x<5的解集是x>2,则实数m的值为________.12.(1)若关于x的不等式4x+a3>1的解都是不等式−2x+13<0的解,则a的取值范围是;(2)已知不等式2x+a≤−2(x−a)的正整数解是x=1,2,则a的取值范围是.13.不等式3−2x>7的解集为______.14.用不等式表示“x的2倍与3的和不大于2”为______.15.“a的一半与1的差不大于5”用不等式表示为______.三、解答题16.某学校为改进学校教室空气质量,决定引进一批空气净化器,已知有A,B两种型号可供选择,学校要求每台空气净化器必须多配备一套滤芯以便及时更换.已知每套滤芯的价格为200元,若购买20台A型和15台B型净化器共花费80000元;购买10台A型净化器比购买5台B型净化器多花费10000元;(1)求两种净化器的价格各多少元?(2)若学校购买两种空气净化器共40台,且A型净化器的数量不多于B型净化器数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.17.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/辆和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.18.甲、乙两个工程队同时参与一项工程建设,共同施工15天完成该项工程的2,乙队3另有任务调走,甲队又单独施工30天完成了剩余的工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若乙队参与该项工程施工的时间不超过13天,则甲队至少施工多少天才能完成该项工程?19.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?答案和解析1.【答案】A【解析】解:原方程变形为:3x=6−2a,∴x=2−23a;∵x<0,∴2−23a<0,即−23a<−2;∴a>3故选:A.本题应对方程进行化简,得出x关于a的表示式,然后根据x<0求出a的取值范围.本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.2.【答案】B【解析】解:∵x+1>0,∴x>−1,则不等式的最小整数解为0,故选:B.先移项得出不等式的解集,在此范围内确定不等式的最小整数解可得.本题考查的是解一元一次不等式,在解答此类题目是要注意,不等式的两边同时除以一个负数时不等号的符号要改变,这是此类题目的易错点.3.【答案】D【解析】解:3x−1+m1−x=1,3 x−1−mx−1=1,3−m=x−1,x=4−m,∵解是非负数,∴x≥0,∴4−m≥0,m≤4,∵x−1≠0,∴x≠1,∴4−m≠1,m≠3,∴m≤4,且m≠3,故选:D.首先去分母,计算出x=4−m,再根据解是非负数可得4−m≥0,x−1≠0,进而可得4−m≠1,再解即可.此题主要考查了分式方程的解,关键是注意分式方程有解时,最简公分母不为零.4.【答案】A>x,【解析】解:3−x23−x>2x,3>3x,x<1,故选:A.去分母、移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式,注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.5.【答案】D【解析】解:去分母得:a−2=x+1.解得:x=a−3.∵方程的解为负数,且x+1≠0,∴a−3<0且a−3+1≠0.∴a<3且a≠2.∴a的取值范围是a<3且a≠2.故选:D.先求得分式方程的解,然后再解不等式即可,需要注意分式方程的分母不为0.本题主要考查的是解分式方程、解一元一次不等式,明确分式的分母不为0是解题的关键.6.【答案】C【解析】解:不等式4x+12>0,移项得:4x>−12,解得:x>−3,故选:C.不等式移项,把x系数化为1,求出解集,表示在数轴上即可.此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,求出不等式的解集是解本题的关键.7.【答案】D【解析】解:x≥3−2,x≥1,故选:D.根据解一元一次不等式基本步骤:移项、合并同类项可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.8.【答案】D【解析】解:A、由2x>−4,得x>−2;故错误;B、由−x>5,得x<−5,故错误;C、由−x=5,得x=−5;故错误;x≤3,得x≥−6,故正确.D、由−12故选:D.根据等式的基本性质和不等式的性质,可得答案.本题考查了等式的基本性质和不等式的性质,熟练掌握等式的基本性质和不等式的性质是解题的关键.9.【答案】B,【解析】解:∵(a−1)x>1可化为x<1a−1∴a−1<0,解得a<1,则原式=1−a−(2−a)=1−a−2+a=−1,故选:B.由不等式的基本性质3可得a−1<0,即a<1,再利用绝对值的性质化简可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.10.【答案】A【解析】解:4x−m+1=3x−1,4x−3x=−1−1+m,x=−2+m,∵解是非负数,∴−2+m≥0,解得:m≥2,故选:A.首先利用含m的式子表示x,再根据解为负数可得x<0,进而得到−2+m≥0,再解不等式即可.此题主要考查了解一元一次方程和一元一次不等式,关键是能正确用含m的式子表示x.11.【答案】3【解析】【分析】本题主要考查了一元一次不等式的解法.解一元一次不等式的一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.首先求出不等式的解集,然后与x>2比较,就可以得出m的值.【解答】解:解不等式3m−2x<5,得x>3m−52,又∵此不等式的解集是x>2,∴3m−52=2,∴m=3.故答案为3.12.【答案】(1)a≤5(2)8≤a<12【解析】(1)【分析】本题考查了解一元一次不等式,能得出关于a的一元一次不等式是解此题的关键.先求出每个不等式的解集,根据已知得出关于a的不等式,求出不等式的解集即可.【解答】解:解不等式4x+a3>1得:x>3−a4,解不等式−2x+13<0得:x>−12,∵关于x的不等式4x+a3>1的解集都是不等式−2x+13<0的解,∴3−a4≥−12,解得:a≤5,所以当a≤5时,关于x的不等式4x+a3>1的解集都是不等式−2x+13<0的解.故答案为a≤5.(2)【分析】本题主要考查一元一次不等式的整数解,解答此题要先求出不等式的解集,再根据整数解的情况确定a的取值范围.本题要求熟练掌握不等式及不等式的解法,准确的理解整数解在不等式解集中的意义,并会逆推式子中有关字母的取值范围.先求出不等式的解集,再根据整数解为1,2逆推a的取值范围.【解答】解:不等式2x+a≤−2(x−a)的解集是x≤a4,因为正整数解是1,2,∴2≤a4<3,即a的取值范围是8≤a<12.故答案为8≤a<12.13.【答案】x<−2【解析】解:3−2x>7移项得:−2x>7−3,合并同类项:−2x>4,解得:x<−2.故答案为:x<−2.直接利用不等式的解法进而得出答案.此题主要考查了解一元一次不等式,正确掌握解题方法是解题关键.14.【答案】2x+3≤2【解析】解:由题意得:2x+3≤2,故答案为:2x+3≤2.首先表示“x的2倍”为2x,再表示“与3的和”为2x+3,最后表示“不大于2”可得2x+3≤2.此题主要考查了由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.15.【答案】12a−1≤5【解析】解:“a的一半与1的差不大于5”用不等式表示为12a−1≤5,故答案为:12a−1≤5.“a的一半”即12a,“与1的差”即12a−1,根据“不大于5”即“≤5”可得答案.本题主要考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.16.【答案】解:设每台A 型净化器的价格为a 元,每台B 型净化器的价格为b 元,由题意,的{20(a +200)+15(b +200)=8000010(a +200)−5(b +200)=10000, 解得{a =2000b =2200, 每台A 型净化器的价格为2000元,每台B 型净化器的价格为2200元;(2)设购买台A 型净化器x 台,B 型净化器为(40−x)台,总费用为y 元,由题意,得x ≤3(40−x),解得x ≤30,y =(2000+200)x +(2200+200)(40−x),化简,得y =−200x +96000,∵−200<0,y 随x 的增大而减小,当x =30时,y 取最小值,y =−200×30+96000=90000,40−x =10,买台A 型净化器30台,B 型净化器为10台,最少费用为90000元.【解析】本题考查了一次函数的应用,利用一次函数的性质−200<0,y 随x 的增大而减小是解题关键.(1)设每台A 型空气净化器的价格为a 元,每台B 型空气净化器的价格为b 元,根据给定条件“销售20台A 型和15台B 型空气净化器共花费80000元,10台A 型比5台B 型空气净化器多花费10000元,可列出关于a 、b 的二元一次方程组,解方程组即可得出结论;(2)根据一函数的性质,可得答案.17.【答案】解:(1)设大货车用x 辆,则小货车用(18−x)辆,根据题意得 14x +8(18−x)=192,解得x =8,18−x =18−8=10.答:大货车用8辆,小货车用10辆.(2)设运往甲地的大货车是a 辆,那么运往乙地的大货车就应该是(8−a)辆,运往甲地的小货车是(10−a)辆,运往乙地的小货车是10−(10−a)辆,w=720a+800(8−a)+500(10−a)+650[10−(10−a)],=70a+11400(0≤a≤8且为整数);(3)14a+8(10−a)≥96,解得a≥83,又∵0≤a≤8,∴3≤a≤8且为整数.∵w=70a+11400,k=70>0,w随a的增大而增大,∴当a=3时,w最小,此时10−a=7,8−a=5,10−(10−a)=3,最小值为:w=70×3+11400=11610(元).答:使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.【解析】本题主要考查了一次函数和一元一次不等式的应用等知识.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.(1)根据大、小两种货车共18辆,以及两种车所运的货物的和是192吨,据此即可列方程或方程组即可求解;(2)首先表示出每种车、每条路线的费用,总运费为w元就是各个费用的和,据此即可写出函数关系式;(3)根据运往甲地的红薯不少于96吨,即可列出不等式求得a的范围,再根据a是整数,即可确定a的值,根据(2)中的函数关系,即可确定w的最小值,确定运输方案.18.【答案】解::(1)因甲队单独施工30天完成该项工程的13,所以甲队单独施工90天完成该项工程.设乙队单独施工需要x天才能完成该项工程,则(1x +190)×15=23.解得x=30.经检验x=30是所列方程根.(2)设甲队施工y天完成该项工程,则1−y90≤1330.解得y≥51.所以y最小值=51.答:(1)若乙队单独施工,需要30天才能完成该项工程;(2)甲队至少施工51多少天才能完成该项工程.【解析】(1)两队需同时施工15天,利用甲队单独施工30天完成该项工程的13,进而利用总工作量为1得出等式求出答案;(2)利用甲队参与该项工程施工的时间不超过13天,得出不等式求出答案.此题主要考查了分式方程的应用以及一元一次不等式的应用,正确得出关系式是解题关键.19.【答案】解:(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,依题意,得:8x+0.3=5x,解得:x=0.5,经检验,x=0.5是原方程的解,且符合题意,∴x+0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤506.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.【解析】(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,根据数量=总价÷单价结合用8元购买大本作业本的数量与用5元购买小本作业本的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设大本作业本购买m本,则小本作业本购买2m本,根据总价=单价×数量结合总费用不超过15元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.。
初中数学一元一次不等式的应用综合练习2(附答案)
初中数学一元一次不等式的应用综合练习2(附答案)1.把一些书分给几名同学,若______;若每人分11本,则有剩余.依题意,设有x 名同学,可列不等式()7811x x +>,则横线的信息可以是( )A .每人分7本,则剩余8本B .每人分7本,则可多分8个人C .每人分8本,则剩余7本D .其中一个人分7本,则其他同学每人可分8本2.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( )A .6折B .7折C .8折D .9折 3.“x 的2倍与3的差不大于8”列出的不等式是( )A .2x 38-≤B .2x 38-≥C .2x 38-<D .2x 38-> 4.某中学的高中部在A 校区,初中部在B 校区,学校学生会计划在3月12日植树节当天安排部分学生到郊区公园参加植树活动.已知A 校区的每位高中学生往返车费是6元,B 校区的每位初中学生往返的车费是10元,要求初、高中均有学生参加,且参加活动的初中学生比参加活动的高中学生多4人,本次活动的往返车费总和不超过210元,求初、高中最多各有多少学生参加.5. 某超市分别以每盏150元,190元的进价购进A ,B 两种品牌的护眼灯,下表是近两天的销售情况.(1)求A ,B 两种品牌护眼灯的销售价;(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B 品牌的护眼灯最多采购多少盏?6.京东商城A 品牌电脑的定价是a 元/台,最近,该商城对A 品牌电脑举行团购促销活动,设有两种优惠方案,方案一:不论团购数量,每台均按定价的九折销售;方案二:若团购数量不超过5台,每台按定价销售,若团购数量超过5台,超过的部分每台按定价的八折销售,某校为了创建义务教育管理标准化的需要,决定从京东商城团购A 品牌电脑x 台(x >5).(1)当x=12时,应选择哪种方案,该校购买费用最少?最少费用是多少元?(结果用含a的代数式表示)(2)若该校采用方案一购买比方案二购买更合算,求x的最大值.7.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.8.风筝又称“纸鸢”、“鸢儿”,放风筝是民间传统游戏之一,也是清明时节人们所喜爱的活动.小李打算抓住这一机遇,以每个20元的成本制作了30个风筝,再以每个40元的价格售出,很快就被一抢而空,于是小李计划加紧制作第二批风筝.(1)预计第二批风筝的成本是每个15元,仍以原价出售,若两批风筝的总利润不低于2850元,则第二批至少应该制作多少个风筝?(2)在实际制作过程中,小李按照(1)中风筝的最低数量进行制作,但制作风筝的成本比预期的15元多了a%(a>10),于是小李决定将售价也提高a%,附近的商户受到小李的启发,也纷纷卖起了风筝,在市场冲击下,小李实际还剩下12a%的风筝没卖出去,但仍然比第一次获利多1668元,求a的值.9.某商场购进A、B两种型号的智能扫地机器人共60个,这两种机器人的进价、售价如表所示.(1)若恰好用掉14.4万元,那么这两种机器人各购进多少个?(2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的总利润不少于53000元,问至少需购进B 型智能扫地机器人多少个?10.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?11.某电器超市销售每台进价分别为200元,170元的A ,B 两种型号的电风扇,表中是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A ,B 两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.12.问题提出:我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过作差、变形,并利用差的符号来确定它们的大小,要比较代数式M 、N 的大小,只要作出它们的差M N -,若0M N ->,则M N >.若0M N -=,则M N =.若0M N -<,则M N <.问题解决:如图,试比较图①、图②两个矩形的周长1C 、2C 的大小()b c >;主图形得:12()242C a b c b a b c =+++=++;22(3)224C a c b c a b c =-++=++,122422242()C C a b c a b c b c -=++---=-,∵b c >,∴2()0b c ->,则12C C >;类比应用:(1)用材料介绍的“作差法”比较2631x x ++与2532x x +-的大小;联系拓展:(2)小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图3所示(其中0b a c >>>),售货员分别可按图4、图5、图6三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.13.某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本) 销售时段销售数量销售收入A 种型号种型号 第一周3台 4台 1200元 第二周 5台 6台 1900元 (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.14.某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元.(1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进的这种水果全部售完,利润不低于1240元,则每千克这种水果的标价至少是多少元?15.4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.(1)求甲、乙两种图书的单价各是多少元?(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?16.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.17.“六一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:小强:阿姨,我有10元,我想买一盒饼干和一袋牛奶.阿姨:小朋友,本来你用10元钱买一盒饼干是有剩的,但是要再买一袋牛奶钱就不够了,不过今天是儿童节,饼干打九折,两样东西请你拿好,还要找你8角钱.如果每盒饼干和每袋牛奶的标价分别是x元,y元,请你根据以上信息,回答下列问题:(1)找出x与y之间的关系式;(2)求出每盒饼干和每袋牛奶的标价.18.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3120元.问第一次降价后至少要售出该种商品多少件?19.某书店老板去图书批发市场购买某种图书,第一次用500元购书若干本,很快售完由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用900元所购该书的数量比第一次的数量多了10本.(1)求第一次购书每本多少元?(2)如果这两次所购图书的售价相同,且全部售完后总利润不低于25%,那么每本图书的售价至少是多少元?20.某公司分两次采购甲、乙两种商品,具体情况如下:(1)求甲、乙商品每件各多少元?(2)公司计划第三次采购甲、乙两种商品共31件,要求花费资金不超过475元,问最多可购买甲商品多少件?21.某文具店用1200元购进了A、B两种羽毛球拍.已知A种羽毛球拍进价为每副12元,B种羽毛球拍进价为每副10元.文教店在销售时A种羽毛球拍售价为每副15元,B种羽毛球拍售价为每副12元,全部售完后共获利270元.(1)求这个文教店购进A、B两种羽毛球拍各多少副?(2)若该文教店以原进价再次购进A、B两种羽毛球拍,且购进A种羽毛球拍的数量不变,而购进B种羽毛球拍的数量是第一次的2倍,B种羽毛球拍按原售价销售,而A 种羽毛球拍降价销售.当两种羽毛球拍销售完毕时,要使再次购进的羽毛球拍获利不少于340元,A种羽毛球拍最低售价每副应为多少元?22.列不等式解应用题:某车间有20名工人.每人每天可加工甲种零件5个或乙种零件4个,在这20名工人中,派一部分人加工甲种零件,其余人加工乙种零件.已知每加工一个甲种零件获利16元,每加工一个乙种零件可获利24元.若要使车间每天获利不低于1800元,问至少要派多少人加工乙种零件?三、填空题23.根据数量关系:x的5倍加上1是正数,可列出不等式:__________.24.一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果张明需要100本笔记本,则张明购买______本会出现多买比少买反而付钱少的情况.(写出所有的情况)25.若三角形三边长为3,2x+1,10,则x的取值范围是______.26.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.27.“九月已经霜,蟹肥菊桂香”,古往今来,每至农历九月,蟹都是人们翘首以待的珍馐.某大闸蟹养殖户十月捕捞了第一批成熟的大闸蟹,并以每只相同的价格(价格为整数)批发给某经销商.十一月该养殖户捕捞了第二批成熟的大闸蟹,这次决定与某电商合作,将这批大闸蟹根据品质及重量分为A(小蟹)、B(中蟹)、C(大蟹)三类,每类按照不同的单价(价格都为整数)网上销售,若2只A类蟹、1只B类蟹和3只C 类蟹的价格之和正好是第一批蟹8只的价格,而6只A类蟹、3只B类蟹和2只C类蟹的价格之和正好是第一批蟹12只的价格,且A类蟹与B类蟹每只的单价之比为3:4,根据市场有关部门的要求A、B、C三类蟹的单价之和不低于40元、不高于60元,则第一批大闸蟹每只价格为________元.28.用不等式表示“2x与3的差不小于x的一半” __________________.29.某种笔记本原售价是每本5元,凡一次购买两本或以上可享受优惠价格,第1种:两本按原价,其余按七折优惠;第2种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第1种比第2种更优惠,则至少购买笔记本________________本.30.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价______元出售该商品.参考答案1.B【解析】【分析】根据不等式的意义即可求解.【详解】由7(x+8)>11x可知条件为:每人分7本,则可多分8个人.故本题选B .【点睛】本题主要考察了不等式的意义,学生们熟练掌握即可求解.2.B【解析】【分析】设打了x折,用售价×折扣-进价得出利润,根据利润率不低于5%,列不等式求解.【详解】解:设打了x折,由题意得900×0.1x-600≥600×5%,解得:x≥7.答:最低可打7折.故选B.【点睛】本题考查一元一次不等式的应用,解题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.3.A【解析】【分析】x的2倍即2x,不大于8即≤8,据此列不等式.【详解】解:根据题意,得2x-3≤8.故选:A.【点睛】本题考查列一元一次不等式,解题的关键是读懂题意,注意抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.4.初中最多有14名学生参加,高中最多有10名学生参加.【解析】试题分析:设参加活动的高中生x人,初中生(x+4)人,根据限制关系“初中生的往返车费+高中生的往返车费≤210”列不等式进行求解即可得.试题解析:设高中有x名学生参加,初中有(x+4)名学生参加,依题意,得6x+10(x+4)≤210,解得x≤1058,∵x为整数,∴x最多为10,∴x+4=14,答:初中最多有14名学生参加,高中最多有10名学生参加.【点睛】本题考查了一元一次不等式的应用,解题的关键是读懂题意,找到题中的不等关系列不等式进行解答.5.(1)A品牌为210元/盏,B品牌为260元/盏.(2)10盏.【解析】【分析】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,根据总价=单价×数量结合两天的销售情况,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,根据总价=单价×数量结合总费用不超过4900元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,依题意,得:2680 341670x yx y+=⎧⎨+=⎩,解得:210260 xy=⎧⎨=⎩.答:A品牌护眼灯的销售价为210元/盏,B品牌护眼灯的销售价为260元/盏.(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,依题意,得:150(30-m)+190m≤4900,解得:m≤10.答:B品牌的护眼灯最多采购10盏.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.6.(1)应选方案二,该校购买费用最少,最少费用是10.6a元;(2)x的最大值为9【解析】【分析】(1)根据两个方案的优惠政策,分别求出购买12台所需费用,比较后即可得出结论;(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.【详解】解:(1)当x=12时:方案一:12×90%a=10.8a(元),方案二:5a+7×80%a=10.6a(元),∵10.6a<10.8a,∴应选方案二,该校购买费用最少,最少费用是10.6a元.(2)依题意得:90%ax<5a+(x-5)×80%a,解得x <10,∵x 为整数,∴x 的最大值为9.【点睛】本题考查了一元一次不等式的应用,解题的关键是:(1)根据优惠方案,列式计算;(2)找准不等量关系,正确列出一元一次不等式.7.(1)每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)产品件数增加后,每次运费最少需要1120元.【解析】【分析】(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件,根据表中的数量关系列出关于x 和y 的二元一次方程组,解之即可,(2)设增加m 件A 产品,则增加了(8-m )件B 产品,设增加供货量后得运费为W 元,根据(1)的结果结合图表列出W 关于m 的一次函数,再根据“总件数中B 产品的件数不得超过A 产品件数的2倍”,列出关于m 的一元一次不等式,求出m 的取值范围,再根据一次函数的增减性即可得到答案.【详解】解:(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件, 根据题意得:4525120030201200300x y x y +⎧⎨+-⎩==, 解得:1030x y ⎧⎨⎩==, 答:每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)设增加m 件A 产品,则增加了(8-m )件B 产品,设增加供货量后得运费为W 元, 增加供货量后A 产品的数量为(10+m )件,B 产品的数量为30+(8-m )=(38-m )件, 根据题意得:W=30(10+m )+20(38-m )=10m+1060,由题意得:38-m≤2(10+m ),解得:m≥6,即6≤m≤8,∵一次函数W随m的增大而增大∴当m=6时,W最小=1120,答:产品件数增加后,每次运费最少需要1120元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.8.(1)第二批至少应该制作90个风筝;(2)a的值是20.【解析】【分析】(1)根据题意可以列出相应的不等式,从而可以解答本题;(2)根据题意可以列出相应的方程,从而可以解答本题.【详解】解:(1)设第二批制作x个风筝,(40﹣15)x+(40﹣20)×30≥2850,解得,x≥90,答:第二批至少应该制作90个风筝;(2)[40(1+a%)﹣15(1+a%)]×90(1﹣12a%)﹣15(1+a%)×90×12a%﹣(40﹣20)×30=1668,解得,a=20或a=5(舍去),答:a的值是20.【点睛】本题考查一元二次方程的应用和一元一次不等式的应用,解答关键是明确题意,找出所求问题需要的条件,利用方程和不等式的思想解答.9.(1)购进A型智能扫地机器人20个,购进B型智能扫地机器人40个;(2)至少需购进B型智能扫地机器人17个.【解析】【分析】(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据总价=单价×数量结合购进A、B两种型号的智能扫地机器人60个共花费14.4万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60-m)个,根据总利润=单台利润×购进数量结合总利润不少于53000元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中最小的整数即可得出结论.【详解】解:(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据题意得:60 20002600144000x yx y+=⎧⎨+=⎩,解得:2040 xy=⎧⎨=⎩.答:购进A型智能扫地机器人20个,购进B型智能扫地机器人40个.(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60-m)个,根据题意得:(3700-2600)m+(2800-2000)(60-m)≥53000,解得:m≥503.∵m为整数,∴m≥17.答:至少需购进B型智能扫地机器人17个.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.10.(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为x元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x元,则:16006000 32x x⨯=+解得:8x=经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则:()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.11.(1) A ,B 两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A 种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1800元,4台A 型号10台B 型号的电扇收入3100元,列方程组求解; (2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a 的值为20,不符合(2)的条件,可知不能实现目标.【详解】(1)设A ,B 两种型号电风扇的销售单价分别为x 元/台、y 元/台.依题意,得3518004103100x y x y +=⎧⎨+=⎩解得250210x y =⎧⎨=⎩答:A ,B 两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A 种型号的电风扇a 台,则采购B 种型号的电风扇(30-a )台.依题意,得200a +170(30-a )≤5400,解得a ≤10.答:A 种型号的电风扇最多能采购10台.(3)依题意,有(250-200)a +(210-170)(30-a )=1400,解得a =20.∵a ≤10,∴在(2)的条件下超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.12.(1)22 631532x x x x ++>+-;(2) 图5的方法用绳最短,图6的方法用绳最长【解析】【分析】(1)根据两个代数式之差大于0,即可做出判断;(2)分别表示出图4的捆绑绳长为L 1,图5的捆绑绳长为L 2,图6的捆绑绳长为L 3,进而表示出它们之间的差,即可得出大小关系.【详解】(1)2631x x ++-(2532x x +-)22631532x x x x =++--+23x =+,因为20x ≥,所以230x +>,所以22631532x x x x ++>+-;(2)设图4的捆绑绳长为L 1,则L 1222242448a b c a b c =⨯+⨯+⨯=++,设图5的捆绑绳长为L 2,则L 2222222444a b c a b c =⨯+⨯+⨯=++,设图6的捆绑绳长为L 3,则L 3322232646a b c a b c =⨯+⨯+⨯=++,∵L 1-L 2()44844440a b c a b c c =++-++=>,∴L 1>L 2,∵L 3-L 2()646444220a b c a b c a c =++-++=+>,∴L 3-L 1=()()6464482a b c a b c a c ++-++=-,∵a c >,∴()20a c ->,∴L 3>L 1.∴第二种方法用绳最短,第三种方法用绳最长.【点睛】本题主要考查了整式的混合运算以及不等式的性质,根据已知表示出绳长再利用绳长之差比较是解决问题的关键.13.(1)A 、B 两种型号电风扇的销售单价分别为200元、150元;(2)超市最多采购A 种型号电风扇37台时,采购金额不多于7500元;(3)能,方案有两种:当a=36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当a=37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得得到方程,求解即可得到答案.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台.由题意得160a+120(30﹣a )≤7500,求解即可得到答案.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a )>1850,解得:a >35,由于a≤3712,且a 应为整数,所以在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种.【详解】解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:341200561900x y x y +=⎧⎨+=⎩,解得:200{150x y ==, 答:A 、B 两种型号电风扇的销售单价分别为200元、150元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台.依题意得:160a+120(30﹣a )≤7500,解得:a≤3712. 答:超市最多采购A 种型号电风扇37台时,采购金额不多于7500元.(3)根据题意得:(200﹣160)a+(150﹣120)(50﹣a )>1850,解得:a >35,∵a≤3712,且a应为整数,∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a=36时,采购A种型号的电风扇36台,B种型号的电风扇14台;当a=37时,采购A种型号的电风扇37台,B种型号的电风扇13台.【点睛】本题考查二元一次方程组和一元一次不等式的应用,解题的关键是读懂题意,设未知数,找出合适的等量关系和不等式.14.(1)该商店第一次购进水果100千克;(2)每千克这种水果的标价至少是16元.【解析】【分析】(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据每千克的价格比第一次购进的价格贵了2元,列出方程求解即可;(2)设每千克水果的标价是y元,然后根据两次购进水果全部售完,利润不低于1240元列出不等式,然后求解即可得出答案.【详解】解:(1)设该商店第一次购进这种水果x千克,则第二次购进这种水果2x千克.由题意,得1000240022x x+=,解得100x=.经检验,100x=是所列方程的解且符合题意.答:该商店第一次购进水果100千克.(2)设每千克这种水果的标价是y元,则()100100220200.5100024001240y y+⨯-⋅+⨯≥++,解得16y≥.答:每千克这种水果的标价至少是16元.【点睛】此题考查了分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系与不等关系是解决问题的关键15.(1)甲种图书的单价为30元/本,乙种图书的单价为45元/本;(2)乙种图书最多能买。
八年级数学上册一元一次不等式的应用练习题
八年级数学上册一元一次不等式的应用练习题:第1-3题一、(分配问题)1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数有多少2、解放军某连队在一次执行任务时,准备将战士编成8个组,如果每组人数比预定人数多1名,那么战士人数将超过100人,则预定每组分配战士的人数要超过多少人3、把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本学生有多少人5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间 8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个有鸡多少只7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1) 如果有x间宿舍,那么可以列出关于x的不等式组:(2) 可能有多少间宿舍、多少名学生你得到几个解它符合题意吗二、(积分问题)1、某次数学测验共20道题(满分100分)。
评分办法是:答对1道给5分,答错1道扣2分,不答不给分。
某学生有1道未答。
那么他至少答对几道题才能及格2、在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不底于60分,至少要答对多少道题目3、一次知识竞赛共有15道题。
竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册一元一次不等式的应用练习题
一、(分配问题)
1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数有多少?
2、解放军某连队在一次执行任务时,准备将战士编成8个组,如果每组人数比预定人数多1名,那么战士人数将超过100人,则预定每组分配战士的人数要超过多少人?
3、把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?
4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?
5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?
8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:
(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?
二、(积分问题)
2、在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不底于60分,至少要答对
多少道题目?
3、一次知识竞赛共有15道题。
竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。
结果神箭队有2道题没答,飞艇队
答了所有的题,两队的成绩都超过了90分,两队分别至少答对了几
道题?
4、在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?
5.有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球都记作数2,每一个红球都记作
数3,则总数为60,求白球和红球各几个?
三、(比较问题)
2、李明有存款600元,王刚有存款2000元,从本月开始李明每月存款500元,王刚每月存款200元,试问到第几个月,李明的存
款能超过王刚的存款。
3、暑假期间,两名家长计划带领若干名学生去旅游,他们联系
了报价为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费。
假设这两位家长至带领多少名学生去旅游,他们应该选择甲旅行社?
四、(行程问题)
1、抗洪抢险,向险段运送物资,共有120公里原路程,需要1
小时送到,前半小时已经走了50公里后,后半小时速度多大才能保
证及时送到?
2、爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度
是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?
4、抗洪抢险,向险段运送物资,共有120公里原路程,需要1
小时送到,前半小时已经走了50公里后,后半小时速度多大才能保
证及时送到?
五、(车费问题)
1、出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按
1km计),现在某人乘这种出租汽车从甲地到乙地支付车费17.2元,
从甲地到乙地的路程超过多少km?
2、某种出租车的收费标准是:起步价7元(即行驶距离不超过
3km都需要7元车费),超过3km,每增加1km,加收2.4元(不足
1km按1km计)。
某人乘这种出租车从A地到B地共支付车费19元。
设此人从A地到B地经过的路程最多是多少km?
六、(工程问题)
1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至
少要比原计划多完成多少方土?
4、某车间有组装1200台洗衣机的任务,若最多用8天完成,每天至少要组装多少台?
七、(浓度问题)
1、在1千克含有40克食盐的海水中,在加入食盐,使他成为浓度不底于20%的食盐水,问:至少加入多少食盐?
八、(增减问题)
1、一根长20cm的弹簧,一端固定,另一端挂物体。
在弹簧伸长后的长度不超过30cm的限度内,每挂1㎏质量的物体,弹簧伸长
0.5cm.求弹簧所挂物体的最大质量是多少?
2、几个同学合影,每人交0.70元,一张底片0.68元,扩印一
张相片0.5元,每人分一张,将收来的钱尽量用完,这张照片上的
同学至少有多少个?
3、某人点燃一根长度为25㎝的蜡烛,已知蜡烛每小时缩短5㎝,几个小时以后,蜡烛的长度不足10㎝?
九、(销售问题)
1、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商
品的25%。
(1)试求该商品的进价和第一次的售价;
(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价
应不低于多少元?
2.水果店进了某中水果1t,进价是7元/kg。
售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。
如果要使总利润不
低于2000元,那么余下的水果可以按原定价的几折出售?
十(数字问题)
1.有一个两位数,其十位上的数比个位上的数小2,已知这个两
位数大于20且小于40,求这个两位数
方案选择与设计
1.某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:
原料
维生素C及价格甲种原料乙种原料
维生素C/(单位/千克)600100
原料价格/(元/千克)84
现配制这种饮料10千克,要求至少含有4200单位的维生素C,
并要求购买甲、乙两种原料的费用不超过72元,
(1)设需用千克甲种原料,写出应满足的不等式组。
(2)按上述的条件购买甲种原料应在什么范围之内?
2.红星公司要招聘A、B两个工种的工人150人,A、B工种的工
人的月工资分别为600和1000元,现要求B工种的人数不少于A工
种人数的2倍,那么招聘A工种工人多少时,可使每月所付的工资
最少?此时每月工资为多少元?
3.某工厂接受一项生产任务,需要用10米长的铁条作原料。
现
在需要截取3米长的铁条81根,4米长的铁条32根,请你帮助设
计一下怎样安排截料方案,才能使用掉的10米长的铁条最少?最少
需几根?
4.某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的
投入资金和已获利30000元进行再投资,到这学期结束时再投资又
可获利4.8%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的0.2%作保管费,问:
(1)当该批产品投入资金是多少元时,方案一和方案二的获利是
一样的?
(2)按所需投入资金的多少讨论方案一和方案二哪个获利多。
5.某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该
园林除保留原来的售票方法外,还推出了一种“购买年票”的方法。
年票分为A、B、C三种:A年票每张120元,持票进入不用再
买门票;B类每张60元,持票进入园林需要再买门票,每张2元,C
类年票每张40元,持票进入园林时,购买每张3元的门票。
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用
80元花在该园林的门票上,试通过计算,找出可使进入该园林的次
数最多的购票方式。
(2)求一年中进入该园林至少多少时,购买A类年票才比较合算。
6.某城市平均每天处理垃圾700吨,有甲和乙两个处理厂处理,已知甲每小时可处理垃圾55吨,需要费用550元,乙厂每小时可处理垃圾45吨,需要费用495员。
如果规定该城市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少要多少吨?。