电容器与电容-带电粒子在电场中的运动
高考物理一轮复习 第六章《电容器与电容带电粒子在电场中的运动》试题
权掇市安稳阳光实验学校第六章第三讲带电粒子在电场中的运动一、单项选择题(本题共5小题,每小题7分,共35分)1.如图1所示,从F处释放一个无初速的电子向B板方向运动,指出下列对电子运动的描述中错误的是(设电源电动势为E) ( )[A.电子到达B板时的动能是E eVB.电子从B板到达C板动能变化量为零C.电子到达D板时动能是3E eVD.电子在A板和D板之间做往复运动解析:由电池的接法知:A板带负电,B板带正电,C板带正电,D板带负电,所以A、B板间有向左的电场,C、D板间有向右的电场,B、C板间无电场,由动能定理知:电子到达B板时的动能为E eV,到达D板时的动能为零,在B、C板间做匀速直线运动,总之电子能在A板和D板间往复运动,所以错误选项为C.答案:C2.如图2所示,静止的电子在加速电压U1的作用下从O 经P板的小孔射出,又垂直进入平行金属板间的电场,在偏转电压U2的作用下偏转一段距离.现使U1加倍,要想使电子的运动轨迹不发生变化,应该 ( )A.使U2加倍B.使U2变为原来的4倍C.使U2变为原来的2倍D.使U2变为原来的1/2[解析:要使电子的运动轨迹不变,则应使电子进入偏转电场后任一水平位移x所对应的偏转距离y保持不变.由y=12at2=12·qU2md·(xv0)2=qU2x22mv02d和qU1=12mv02,得y=U2x24U1d,可见在x、y一定时,U2∝U1.所以选项A正确.答案:A3.(2010·厦门模拟)如图3所示,质量相同的两个带电粒子P 、Q以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正射入,Q 从下极板边缘处射入,它们最 后打在同一点(重力不计),则从开始射入到打到上板的过程中( )A .它们运动的时间t Q >t PB .它们运动的加速度a Q <a P[C .它们所带的电荷量之比q P ∶q Q =1∶2D .它们的动能增加量之比ΔE k P ∶ΔE k Q =1∶2解析:设P 、Q 两粒子的初速度为v 0,加速度分别为a P 和a Q ,粒子P 到上极板的距离是h /2,它们做类平抛运动的水平距离为l .则对P ,由l =v 0t P ,h 2=12a P t P 2,得到a P=hv 02l 2;同理对Q ,l =v 0t Q ,h =12a Q t Q 2,得到a Q =2hv 02l 2.由此可见t P =t Q ,a Q =2a P ,而a P =q P E m ,a Q =q Q Em,所以q P ∶q Q =1∶2.由动能定理,它们的动能增加量之比ΔE k P ∶ΔE k Q =ma P h2∶ma Q h =1∶4.综上所述,C 项正确. 答案:C4.如图4所示,一平行板电容器中存在匀强电场,电场沿竖直方向.两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒 子a 和b ,从电容器边缘的P 点(如图)以相同的水平速度射入两平行板之间.测得a 和b 与电容器极板的撞击点到入射点之间的水平距离之比为[1∶2,若不计重力,则a 和b 的比荷之比是 ( )A .1∶2B .1∶8C .2∶1D .4∶1 解析:带电粒子受到的电场力F =Eq ,产生的加速度a =F m =Eqm,在电场中做类平抛运动的时间t =2d a,位移x=v0t ,x1x2=m1q1m2q2,所以q1m1q2m2=x22x12=41,D正确.答案:D5.如图5所示,一个平行板电容器,板间距离为d,当对其加上电压后,A、B两板的电势分别为+φ和-φ,下述结论错误的是( ) A.电容器两极板间可形成匀强电场,电场强度大小为E=φ/dB.电容器两极板间各点的电势,有的相同,有的不同;有正的,有负的,有的为零C.若只减小两极板间的距离d,该电容器的电容C要增大,极板上带的电荷量Q也会增加D.若有一个电子水平射入穿越两极板之间的电场,则电子的电势能一定会减小解析:由题意可知,两板间电压为2φ,电场强度为E=2φd,A错误;板间与板平行的中线上电势为零,中线上方电势为正,下方电势为负,故B正确;由C∝εr Sd知,d减小,C增大,由Q=CU知,极板带电荷量Q增加,C正确;电子水平射入穿越两极板之间的电场时,电场力一定对电子做正功,电子的电势能一定减小,D正确.答案:A[二、双项选择题(本题共5小题,共35分.在每小题给出的四个选项中,只有两个选项正确,全部选对的得7分,只选一个且正确的得2分,有选错或不答的得0分)6.(2010·泰安质检)传感器是一种采集信息的重要器件,图6所示是一种测定压力的电容式传感器.当待测压力F作用于可动膜片电极上时,以下说法中正确的是 ( )A.若F向上压膜片电极,电路中有从a到b的电流B.若F向上压膜片电极,电路中有从b到a的电流C.若F向上压膜片电极,电路中不会出现电流D.若电流表有示数,则说明压力F 发生变化解析:F向上压膜片电极,使得电容器两板间的距离减小,电容器的电容增加,又因电容器两极板间的电压不变,所以电容器的电荷量增加,电容器继续充电.综上所述,选项B、D正确.答案:BD7.(2008·宁夏高考)如图7所示,C为中间插有电介质的电容器,a和b为其两极板,a板接地;P和Q为两竖直放置的平行金属板,在两板间用绝缘线悬挂一带电小球;P板与b板用导线相连,Q板接地.开始时悬线静止在竖直方向,在b板带电后,悬线偏转了角度α.在以下方法中,能使悬线的偏角α变大的是( )[来A.缩小ab间的距离B.加大ab间的距离C.取出a、b两极板间的电介质D.换一块形状大小相同、介电常数更大的电介质解析:已知电容器C带电荷量不变,a、Q两板均接地,电势为零,b、P 两板电势相等.当ab间距离缩小时,电容器C的电容变大,电压U变小,即b、P 两板电势减小,即P、Q间电压减小,电场强度E减小,悬线偏角α减小,所以A 错误,B正确.取出a、b两极板间电介质时,电容器C的电容变小,电压U变大,悬线偏角α增大,所以C正确.当换一块介电常数更大的电介质时,电容器C的电容变大,电压U变小,悬线偏角α减小,所以D错误.答案:BC8.如图8所示,示波管是示波器的核心部件,它由电子枪、偏转电极和荧光屏组成.如果在荧光屏上P点出现亮斑,那么示波管中的( )A.极板X应带正电 B.极板X′应带正电C.极板Y应带正电 D.极板Y′应带正电解析:由荧光屏上亮斑的位置可知,电子在XX′偏转电场中向X极板方向偏转,故极板X带正电,A正确,B错误;电子在YY′偏转电场中向Y极板方向偏转,故极板Y带正电,C正确,D错误.答案:AC9.(2009·四川高考)如图9所示,粗糙程度均匀的绝缘斜面下方O点处有一正点电荷,带[来负电的小物体以初速度v 1从M点沿斜面上滑,到达N 点时速度为零,然后下滑回到[来M点,此时速度为v2(v2<v1).若小物体电荷量保持不变,OM=ON,则( )A.小物体上升的最大高度为v12+v22 4gB.从N到M的过程中,小物体的电势能逐渐减小C.从M到N的过程中,电场力对小物体先做负功后做正功D.从N到M的过程中,小物体受到的摩擦力和电场力均是先增大后减小解析:因为OM=ON,M、N两点位于同一等势面上,所以从M到N的过程中,电场力对小物体先做正功再做负功,电势能先减小后增大,B、C错误;因为小物体先[来靠近正点电荷后远离正点电荷,所以电场力、斜面压力、摩擦力都是先增大后减小,D正确;设小物体上升的最大高度为h,摩擦力做功为W,在上升过程、下降过程根据动能定理得-mgh+W=0-12mv12 ①mgh+W=12mv22,②联立①②解得h=v12+v224g,A正确.答案:AD10.如图10所示,D是一只理想二极管,电流只能从a流向b,而不能从b流向a.平行板电容器的A、B两极板间有一电荷,在P点处于静止状态.以E表示两极板间的电场强度,U表示两极板间的电压,E p表示电荷在P点的电势能.若保持极板B 不动,将极板A 稍向上平移,则下列说法中正确的是() A .E 变小 B .U 变大C .E p 变大D .电荷仍保持静止解析:B 板不动而A 板上移,则电容器的电容减小,本应放电,但由于二极管的单向导电性使电容器不能放电,带电量不变而极板间场强不变,电荷仍保持静止,A错D 正确;而极板间电压U =Ed 变大,B 正确;由于场强E 不变,则U PB=Ed PB 不变,故E p 不变,C 错误. 答案:BD三、非选择题(本题共2小题,共30分)11.(15分)(2010·北京东城模拟)如图11所示为一真空示波管的示意图,电子从灯丝K 发 出(初速度可忽略不计),经灯丝与A 板间的电压U 1加速,从A 板中心孔沿中心线KO 射出,然后进入两块平行金属板M 、N 形成的偏转电场中(偏转电场可视为匀强电场), 电子进入M 、N 间电场时的速度与电场方向垂直,电子经过偏转电场后打在荧光屏上的P 点.已知M 、N 两板间的电压为U 2,两板间的距离为d ,板长为L ,电子的质量为m ,电荷量为e ,不计电子受到的重力及它们之间的相互作用力. (1)求电子穿过A 板时速度的大小; (2)求电子从偏转电场射出时的侧移量;(3)若要使电子打在荧光屏上P 点的上方,可采取哪些措施? 解析:(1)设电子经电压U 1加速后的速度为v 0,由动能定理 eU 1=12mv 02-0解得v 0=2eU 1m(2)电子以速度v 0进入偏转电场后,垂直于电场方向做匀速直线运动,沿电场方向做[来初速度为零的匀加速直线运动.设偏转电场的电场强度为E,电子在偏转电场中运动的时间为t,加速度为a,电子离开偏转电场时的侧移量为y.由牛顿第二定律和运动学公式t =L v0F =ma,F=eE,E=U2 da=eU2 mdy =12at2解得y=U2L2 4U1d(3)由y=U2L24U1d可知,减小加速电压U1和增大偏转电压U 2均可增大y值,从而使电子打到屏上的位置在P点上方.答案:(1) 2eU1m(2)U2L24U1d(3)减小加速电压U1和增大偏转电压U212.(15分)(2010·鞍山模拟)在场强为E=100 V/m的竖直向下的匀强电场中有一块水平放置的足够大的接地金属板,在金属板的正上方,高为h=0.8 m处有一个小的放射源放[来在一端开口的铅盒内,如图12所示.放射源以v0=200 m/s的初速度向水平面以下各个方向均匀地释放质量为m=2×10-15 kg、电荷量为q=+10-12 C的带电粒子.粒子最后落在金属板上.不计粒子重力,试求:(1)粒子下落过程中电场力做的功;(2)粒子打在金属板上时的动能;(3)计算落在金属板上的粒子图形的面积大小.(结果保留两位有效数字)解析:(1)粒子在下落过程中电场力做的功W=Eqh=100×10-12×0.8 J=8×10-11 J(2)粒子在整个运动过程中仅有电场力做功,由动能定理得W=E k2-E k1E k2=8×10-11 J+2×10-15×2002/2 J=1.2×10-10 J(3)粒子落到金属板上的范围是一个圆.设此圆的半径为r,只有当粒子的初速度与电场的方向垂直时粒子落在该圆的边缘上,由运动学公式得h=12at2=Eq2mt2代入数据求得t≈5.66×10-3 s圆半径r=v0t≈1.13 m圆面积S=πr2≈4.0 m2.答案:(1)8×10-11 J (2)1.2×10-10 J (3)4.0 m2。
高中物理电容公式带电粒子在电场中的运动
高中物理电容公式带电粒子在电场中的运动
下面是高中物理电容器常见公式,以及带电粒子在电场中的运动问题
1、带电粒子在电场中的加速公式是):
W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 其中(Vo=0)
2、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏
转(不考虑重力作用的情况下)
在垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
在平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
带电小球接触后,电量分配3、两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
常见电场的电场线分布要求熟记〔[第二册P98];
电容单位换算:1F=106μF=1012PF;
电子伏(eV)是能量的单位,1eV=1.60×10-19J;。
高三物理电容器与电容带电粒子在电场中的运动作业
电容器与电容带电粒子在电场中的运动一、选择题(本题共8小题,每小题8分,共64分。
其中1~3题为单选,4~8题为多选)1. (2020·北京市东城区一模)如图所示,电容器上标有“80 V1000 μF”字样。
下列说法正确的是()A.电容器两端电压为0时其电容为零B.电容器两端电压为80 V时才能存储电荷C.电容器两端电压为80 V时储存的电荷量为0.08 CD.电容器两端电压低于80 V时其电容小于1000 μF答案 C解析电容表征电容器容纳电荷的本领大小,与电压U和电量Q无关,给定的电容器电容C一定,故A、D错误;由于电容一定,由Q=CU可知,电容器两端只要有电压,电容器就能存储电荷,故B错误;由Q=CU可知,电容器两端电压为80 V时储存的电荷量为Q=1000×10-6×80 C=0.08 C,故C正确。
2.(2018·北京高考) 研究与平行板电容器电容有关因素的实验装置如图所示,下列说法正确的是()A.实验前,只用带电玻璃棒与电容器a板接触,能使电容器带电B.实验中,只将电容器b板向上平移,静电计指针的张角变小C.实验中,只在极板间插入有机玻璃板,静电计指针的张角变大D.实验中,只增加极板带电量,静电计指针的张角变大,表明电容增大答案 A解析 用带电玻璃棒与电容器a 板接触,由于静电感应,从而在b 板感应出等量的异号电荷,从而使电容器带电,故A 正确;根据平行板电容器的电容决定式C =εr S 4πkd ,将电容器b 板向上平移,即正对面积S 减小,则电容C 减小,根据C =Q U 可知,电荷量Q 不变,则电压U 增大,则静电计指针的张角变大,故B 错误;根据电容的决定式C =εr S 4πkd ,只在极板间插入有机玻璃板,则相对介电常数εr 增大,则电容C 增大,根据C =Q U 可知,电荷量Q 不变,则电压U 减小,则静电计指针的张角变小,故C 错误;电容与电容器所带的电荷量无关,故电容C 不变,故D 错误。
(整理)电容器、带电粒子在电场中的运动问题
电容器、带电粒子在电场中的运动问题二、学习目标:1、知道电容器电容的概念,会判断电容器充、放电过程中各个物理量的变化情况。
2、建立带电粒子在匀强电场中加速和偏转问题的分析思路,熟悉带电粒子在电场中的运动特点。
3、重点掌握与本部分内容相关的重要的习题类型及其解法。
考点地位:带电粒子在电场中的加速与偏转是高考的重点和难点,题型涉及全面,既可以通过选择题也可以通过计算题的形式进行考查,题目综合性很强,能力要求较高,在高考试题中常以压轴题的形式出现,知识面涉及广,过程复杂,对于电容器的考查,因其本身与诸多的电学概念联系而一直处于热点地位,考题多在电容器的决定式及电容器的动态分析上选材。
09年全国Ⅱ卷第19题、福建卷15题、天津卷第5题、08年重庆卷第21题、上海单科卷14题、海南卷第4题、07年广东卷第6题通过选择题形式进行考查,09年四川卷25题、广东卷20题、浙江卷23题、安徽卷23题、08年上海卷23题、07年重庆卷第24题、四川卷第24题、上海卷第22题均通过大型综合计算题的形式进行考查。
三、重难点解析: (一)电容和电容器: 1、电容:(1)定义:电容器所带的电荷量(是指一个极板所带电荷量的绝对值)与电容器两极板间电压的比值.(2)公式:C =Q/U. 单位:法拉,1F=.pF 10F 10126=μ(3)物理意义:电容反映电容器容纳电荷的本领的物理量,和电容器是否带电无关. (4)制约因素:电容器的电容与Q 、U 的大小无关,是由电容器本身情况决定,对一个确定的电容器,它的电容是一定的,与电容器是否带电及带电多少无关。
注意:由U QC =知,对确定的电容器,Q 与U 成正比,比值不变;对不同的电容器,U相同时,Q 越大,则C 越大,因此说C 是反映电容器容纳电荷本领的物理量。
2、平等板电容器(1)决定因素:C 与极板正对面积、介质的介电常数成正比,与极板间距离成反比。
(2)公式:kd 4/S C πε=,式中k 为静电力常量。
第三节 电容器与电容 带电粒子在电场中的运动
(2)用功能观点分析:电场力对带电粒子做的功等于 用功能观点分析: 用功能观点分析
带电粒子动能的增量 , 即○ qU = 1mv2- 1mv2。 25 ○ 0
24
2
2
2.如下图所示,在A板附近有一电子由静止开始向 板运 .如下图所示, 板附近有一电子由静止开始向B板运 板附近有一电子由静止开始向 板时的速率, 动,则关于电子到达B板时的速率,下列解释正确的是 则关于电子到达 板时的速率 下列解释正确的是( A.两板间距越大,加速的时间就越长,则获得的速率越大 .两板间距越大,加速的时间就越长, B.两板间距越小,加速度就越大,则获得的速率越大 .两板间距越小,加速度就越大, C.与两板间的距离无关,仅与加速电压U有关 C.与两板间的距离无关,仅与加速电压U有关 D.以上解释都不正确 . )
同时电场能转化为其他形式的能。 同时电场能转化为其他形式的能。
2.电容 . (1)定义:电容器所带的⑩ 电荷量 定义:电容器所带的 ⑩ 定义 ⑪ 与电容器两极板间的
电势差
的比值。 的比值。
Q (2)公式: C=⑫ U 公式: = 公式
=⑬
∆Q ∆U
。
(3)物理意义: 电容是表示电容器⑭ 容纳 电荷本领的物理量。 物理意义:电容是表示电容器⑭ 电荷本领的物理量。 物理意义 (4)单位: (4)单位:⑮ 法拉 , 符号⑯ F 。与其他单位间的换算关系为: 符号⑯ 与其他单位间的换算关系为: 单位 1 F=⑰ 106 µF=⑱ 1012 pF。 = = 。 3.平行板电容器 . (1)影响因素: 平行板电容器的电容与极板⑲ 正对面积 影响因素:平行板电容器的电容与极板⑲ 影响因素 成正比, 成正比,
【解题切点】 搞清电路连接方式,电容器中什么量不发生变化, 解题切点】 搞清电路连接方式,电容器中什么量不发生变化, 小球所受电场力如何变化? 小球所受电场力如何变化? 解析】 当电路接通后,对小球受力分析:小球受重力、 【解析】 当电路接通后,对小球受力分析:小球受重力、电场力和 悬线的拉力F三个力的作用,其中重力为恒力,当电路稳定后, 悬线的拉力 三个力的作用,其中重力为恒力,当电路稳定后,R1中 三个力的作用 没有电流,两端等电势,因此电容器两极板电压等于R 两端电压, 没有电流,两端等电势,因此电容器两极板电压等于 0两端电压, 不变, 变化时,电容器两极板电压不变,板间电场强度不变, 当R2不变,R1变化时,电容器两极板电压不变,板间电场强度不变, 小球所受电场力不变, 不变 不变, 、 两项错 若保持R 不变, 两项错。 小球所受电场力不变,F不变,C、D两项错。若保持 1不变,缓慢 增大R 两端电压减小,电容器两端电压减小,内部电场减弱, 增大 2,R0两端电压减小,电容器两端电压减小,内部电场减弱, 小球受电场力减小, 变小 变小。 项正确。 小球受电场力减小,F变小。故B项正确。 项正确 【答案】 B 答案】 【发散思维】 在分析平行板电容器的电容与其他参量的动态变化 发散思维】 有两个技巧: 确定不变量 确定不变量, 选择合适公式 选择合适公式。 时,有两个技巧:(1)确定不变量,(2)选择合适公式。
2012 电容器与电容 带电粒子在电场中的运动学案
2012电容器与电容 带电粒子在电场中的运动学案【知识梳理】一、电容器与电容 一、电容器 1.电容器(1)组成:由两个彼此____又相互____的导体组成. (2)带电量:一个极板所带电量的_______. (3)电容器的充、放电充电:使电容器带电的过程,充电后电容器两板上带等量的_________,电容器中储存______ 放电:使充电后的电容器失去电荷的过程,放电过程中______转化为其他形式的能. 2.电容(1)定义:电容器所带的________与电容器两极板间的电势差U 的比值.(2)定义式:_____.(3)物理意义:表示电容器________本领大小的物理量. (4)单位:法拉(F)1F =____________μF =____________pF.3.平行板电容器(1)影响因素:平行板电容器的电容与________成正比,与介质的________成正比,与____________成反比.(2)决定式:C =εS4πkd,其中k 为静电力常量,ε为相对介电常数.4、关于电容器两类典型问题分析方法:(1)首先确定不变量,若电容器充电后断开电源,则 不变;若电容器始终和直流电源相连,则 不变。
(2)当决定电容器大小的某一因素变化时,用公式 判断电容的变化。
(3)用公式 分析Q 和U 的变化。
(4)用公式 分析平行板电容两板间场强的变化。
一、带电粒子的加速1.带电粒子在电场中的加速带电粒子沿与电场线平行的方向进入电场,带电粒子将做________运动.有两种分析方法:(1)用动力学观点分析:a =qE m ,E =U d ,v 2-v 20=2ad .(2)用功能观点分析:粒子只受电场力作用,电场力做的功等于物体动能的变化.qU =12mv 2-12mv 2二、带电粒子的偏转由物体做曲线运动的条件可知:。
其中最简单的就是加速度方向与速度方向垂直。
如右图所示,在真空中水平放置一对金属板Y 和Y ′间的电压为U ,现有一质量为m 、电荷量为q 的带电粒子以水平速度v 0射入电场中,则: 1、带电粒子的运动形式带电粒子沿极板方向作速度为v 0的匀速直线运动,即x =o v t ;垂直于极板方向作初速度为零的匀加速直线运动,即212y at ==212Uq t dm;粒子的合运动为匀变速曲线运动(类平抛L2、带电粒子在垂直于板方向偏移的距离为y =222oUql dmv 。
专题七 第3讲 电容器与电容带电粒子在电场中的运动
)
C.电阻 R 中有从 a 流向 b 的电流 D.电阻 R 中有从 b 流向 a 的电流 图 7-3-4
解析: 图中电容器被充电, 极板带正电, 极板带负电. A B 根 εS 据平行板电容器的大小决定因素 C∝ d 可知,当增大电容器两 极板间距离 d 时,电容 C 变小.由于电容器始终与电池相连, Q 电容器两极板间电压 UAB 保持不变,根据电容的定义 C=U , AB 当 C 减小时电容器两极板所带电荷量 Q 减小,A 极板所带正电 荷的一部分从 a 到 b 经电阻 R 流向电源正极,即电阻 R 中有从 a 流向 b 的电流.
D.电容器的电容不随所带电荷量及两极板间的电势差的
变化而变化
Q 解析:本题主要考查电容的定义式C=—,即C与Q、U U
皆无关,Q 与 U 成正比. 答案:D
2.(双选)图 7-3-4 所示的是一个由电池、电阻 R、电键 S 与平行板电容器组成的串联电路,电键闭合,在增大电容器
两极板间距离的过程中(
6 12
距离 正比,与两极板的_____成反比,并且跟板间插入的电介质有关.
εS (2)公式:C=______ 4πkd
4.平行板电容器的动态分析 (1)两种情况:①保持两极板与电源相连,则电容器两极板 电压 电量 间_____不变.②充电后断开电源,则电容器的_____不变.
Q εS (2)三个公式:①C=U;②U=Ed;③C=4πkd. (3)方法:找不变量与变化量之间的公式来决定要比较的量
运动、减速运动至速度为零;如此反复运动,每次向左运动的 距离大于向右运动的距离,最终打在 A 板上,所以B 正确.
3T 若 <t0<T,带正电粒子先加速向A 板运动、再减速运动至 4 速度为零;然后再反方向加速运动、减速运动至速度为零;如 此反复运动,每次向左运动的距离小于向右运动的距离,最终 打在B 板上,所以C 错误.若T<t0< 9T ,带正电粒子先加速向B 8
新课标全国高考考前复习物理 6.3 电容器和电容 带电粒子在电场中的运动
新课标全国高考考前复习物理6.3 电容器和电容 带电粒子在电场中的运动1.如图6-3-1所示是某个点电荷电场中的一根电场线,在线上O 点由静止释放一个自由的负电荷,它将沿电场线向B 点运动.下列判断中正确的是 ( ).A .电场线由B 指向A ,该电荷做加速运动,加速度越来越小B .电场线由B 指向A ,该电荷做加速运动,其加速度大小的变化不能确定C .电场线由A 指向B ,该电荷做匀速运动D .电场线由B 指向A ,该电荷做加速运动,加速度越来越大解析 在由电场线上O 点由静止释放一个自由的负电荷,它将沿电场线沿B 点运动,受 电场力方向由A 指向B ,则电场线方向由B 指向A ,该负电荷做加速运动,其加速度大 小的变化不能确定.选项B 正确. 答案 B2. 如图6-3-2所示是测定液面高度h 的电容式传感器示意图,E 为电源,G 为灵敏电流计,A 为固定的导体芯,B 为导体芯外面的一层绝缘物质,C 为导电液体.已知灵敏电流计指针偏转方向与电流方向的关系为:电流从左边接线柱流进电流计,指针向左偏.如果在导电液体的深度h 发生变化时观察到指针正向左偏转,则 ( ).A .导体芯A 所带电荷量在增加,液体的深度h 在增大B .导体芯A 所带电荷量在减小,液体的深度h 在增大C .导体芯A 所带电荷量在增加,液体的深度h 在减小D .导体芯A 所带电荷量在减小,液体的深度h 在减小解析 电流计指针向左偏转,说明流过电流计G 的电流由左→右,则导体芯A 所带电荷 量在减小,由Q =CU 可知,芯A 与液体形成的电容器的电容减小,则液体的深度h 在 减小,故D 正确. 答案 D3.静电计是在验电器的基础上制成的,用其指针张角的大小来定性显示其金属球与外壳之间的电势差大图6-3-1图6-3-2小.如图6-3-3所示,A 、B 是平行板电容器的两个金属板,G 为静电计.开始时开关S 闭合,静电计指针张开一定角度,为了使指针张开的角度增大些,下列采取的措施可行的是( ).图6-3-3A .断开开关S 后,将A 、B 分开些 B .保持开关S 闭合,将A 、B 两极板分开些C .保持开关S 闭合,将A 、B 两极板靠近些D .保持开关S 闭合,将变阻器滑动触头向右移动解析 要使静电计的指针张开角度增大些,必须使静电计金属球和外壳之间的电势差增 大,断开开关S 后,将A 、B 分开些,电容器的带电荷量不变,电容减小,电势差增大, A 正确;保持开关S 闭合,将A 、B 两极板分开或靠近些,静电计金属球和外壳之间的 电势差不变,B 、C 均错误;保持开关S 闭合,将滑动变阻器滑动触头向右或向左移动, 静电计金属球和外壳之间的电势差不变,D 错误. 答案 A4.如图6-3-4所示,一带电小球以水平速度射入接入电路中的平行板电容器中,并沿直线 打在屏上O 点,若仅将平行板电容器上极板平行上移一些后,让带电小球再次从原位置水平射入并能打在屏上,其他条件不变,两次相比较,则再次射入的带电小球( ).A .将打在O 点的下方B .将打在O 点的上方C .穿过平行板电容器的时间将增加D .达到屏上动能将增加解析 由题意知,上极板不动时,小球受电场力和重力平衡,平行板电容器上移后,两 极板间电压不变,电场强度变小,小球再次进入电场,受电场力减小,合力方向向下, 所以小球向下偏转,将打在O 点下方,A 项正确,B 项错误;小球的运动时间由水平方图6-3-4向的运动决定,两次通过时水平速度不变,所以穿过平行板电容器的时间不变,C 项错 误;由于小球向下偏转,合力对小球做正功,小球动能增加,所以D 项正确. 答案 AD5.如图6-3-5所示,地面上某区域存在着竖直向下的匀强电场,一个质量为m 的带负电的小球以水平方向的初速度v 0由O 点射入该区域,刚好通过竖直平面中的P 点,已知连线OP 与初速度方向的夹角为45°,则此带电小球通过P 点时的动能为 ( ). A .mv 02B.12mv 02C .2mv 02D.52mv 02解析 由题意可知小球到P 点时水平位移和竖直位移相等,即v 0t =12v Py t ,合速度v P =v 02+v Py 2=5v 0E kP =12mv P 2=52mv 02,故选D(等效思维法).答案 D6.如图6-3-6所示,电子由静止开始从A 板向B 板运动,当到达B 极板时速度为v ,保持两板间电压不变,则 ( ).A .当增大两板间距离时,v 也增大B .当减小两板间距离时,v 增大C .当改变两板间距离时,v 不变D .当增大两板间距离时,电子在两板间运动的时间也增大解析 电子从静止开始运动,根据动能定理,从A 运动到B 动能的变化量等于电场力做 的功.因为保持两个极板间的电势差不变,所以末速度不变,平均速度不变,若两板间 距离增加,时间变长.图6-3-6图6-3-5答案 CD7.如图6-3-7所示,从炽热的金属丝漂出的电子(速度可视为零),经加速电场加速后从两极板中间垂直射入偏转电场.电子的重力不计.在满足电子能射出偏转电场的条件下,下述四种情况中,一定能使电子的偏转角变大的是( ).A .仅将偏转电场极性对调B .仅增大偏转电极间的距离C .仅增大偏转电极间的电压D .仅减小偏转电极间的电压 解析 设加速电场电压为U 0,偏转电压为U ,极板长度为L ,间距为d ,电子加速过程 中,由U 0q =mv 022,得v 0=2U 0qm,电子进入极板后做类平抛运动,时间t =L v 0,a =Uq dm,v y =at ,tan θ=v y v 0=UL2U 0d,由此可判断C 正确.(类平抛模型)答案 C8.如图6-3-8所示,一带电荷量为q 的带电粒子以一定的初速度由P 点射入匀强电场,入射方向与电场线垂直.粒子从Q 点射出电场时,其速度方向与电场线成30°角.已知匀强电场的宽度为d ,P 、Q 两点的电势差为U ,不计重力作用,设P 点的电势为零.则下列说法正确的是( ).A .带电粒子在Q 点的电势能为-Uq B .带电粒子带负电图6-3-7图6-3-8C .此匀强电场的电场强度大小为E =23U3dD .此匀强电场的电场强度大小为E =3U 3d解析 根据带电粒子的偏转方向,可判断B 错误;因为P 、Q 两点的电势差为U ,电场 力做正功,电势能减少,而P 点的电势为零,所以A 正确;设带电粒子在P 点时的速度 为v 0,在Q 点建立直角坐标系,垂直于电场线为x 轴,平行于电场线为y 轴,由曲线运 动的规律和几何知识求得带电粒子在y 轴方向的分速度为v y =3v 0.带电粒子在y 轴方向 上的平均速度为v y =3v 02;带电粒子在y 轴方向上的位移为y 0,带电粒子在电场中的 运动时间为t ,y 0=3v 02t ,d =v 0t ,得y 0=3d 2,由E =U y 0得E =23U 3d,C 正确,D 错误. 答案 AC9.如图6-3-9所示,A 板发出的电子经加速后,水平射入水平放置的两平行金属板间,金属板间所加的电压为U ,电子最终打在荧光屏P 上,关于电子的运动,则下列说法中正确的是( ).A .滑动触头向右移动时,其他不变,则电子打在 荧光屏上的位置上升B .滑动触头向左移动时,其他不变,则电子打在荧光屏上的位置 上升C .电压U 增大时,其他不变,则电子打在荧光屏上的速度大小不变D .电压U 增大时,其他不变,则电子从发出到打在荧光屏上的速度变大解析 设加速电压为U 0,进入偏转电场时的速度大小为v 0,则电子经加速电场:eU 0=12mv 02① 偏转电场中:L =v 0t② y =12×Uedmt 2③图6-3-9eU d y =12mv 2-12mv 02④由①②③得y =L 2U 4dU 0.当滑动触头向右滑动时,U 0变大,y 变小, 所以选项A 错,B 对. 由①②③④得12mv 2=L 2U 2e4d 2U 0+eU 0当U 增大时,12mv 2增大,电子打到屏上的速度变大,故选项C 错,D 对.答案 BD10.M 、N 是某电场中一条电场线上的两点,若在M 点释放一个初速度为零的电子,电子仅受电场力作用,并沿电场线由M 点运动到N 点,其电势能随位移变化的关系如图6-3-10所示,则下列说法正确的是 ( ).A .电子在N 点的动能小于在M 点的动能B .该电场有可能是匀强电场C .该电子运动的加速度越来越小D .电子运动的轨迹为曲线解析 电子仅受电场力的作用,电势能与动能之和恒定,由图像可知电子由M 点运动到N 点,电势能减小,动能增加,A 选项错误;分析图像可得电子的电势能随运动距离的增大,减小的越来越慢,即经过相等距离电场力做功越来越少,由W =qE Δx 可得电场强 度越来越小,B 选项错误;由于电子从M 点运动到N 点电场力逐渐减小,所以加速度逐 渐减小,C 选项正确;电子从静止开始沿电场线运动,可得MN 电场线为直线,由运动 与力的关系可得轨迹必为直线,D 选项错误. 答案 C11.如图6-3-11甲所示,静电除尘装置中有一长为L 、宽为b 、高为d 的矩形通道,其前、后面板使用绝缘材料,上、下面板使用金属材料.图6-3-26乙是装置的截面图,上、下两板与电压恒定的高压直流电源相连.质量为m 、电荷量为-q 、分布均匀的尘埃以水平速度v 0进入矩形通道,当带负电的尘埃碰到下板后其所带电荷被中和,同时被收集.通过调整两板间距d 可以改变收集效率η.当d =d 0时,η为81%(即离下板0.81d 0范围内的尘埃能够被收集).不计尘埃的重力及尘埃之间的相互作用.图6-3-10图6-3-11(1)求收集效率为100%时,两板间距的最大值d m ; (2)求收集效率η与两板间距d 的函数关系.解析 (1)收集效率η为81%,即离下板0.81 d 0的尘埃恰好到达下板的右端边缘,设高压 电源的电压为U ,则在水平方向有L =v 0t① 在竖直方向有0.81d 0=12at2② 其中a =F m =qE m =qUmd 0③当减小两板间距时,能够增大电场强度,提高装置对尘埃的收集效率.收集效率恰好为 100%时,两板间距即为d m .如果进一步减小d ,收集效率仍为100%.因此,在水平方向有L =v 0t④ 在竖直方向有d m =12a ′t2⑤ 其中a ′=F ′m =qE ′m =qU md m⑥ 联立①②③④⑤⑥式可得d m =0.9d 0⑦(2)当d >0.9d 0时,设距下板x 处的尘埃恰好到达下板的右端 边缘,此时有x =12qU md ⎝ ⎛⎭⎪⎫L v 0 2⑧ 根据题意,收集效率为η=x d⑨联立①②③⑧⑨式可得η=0.81⎝ ⎛⎭⎪⎫d 0d 2.答案 (1)0.9d 0 (2)η=0.81⎝ ⎛⎭⎪⎫d 0d 212.如图6-3-12所示,长L =1.2 m 、质量M =3 kg 的木板静止放在倾角为37°的光滑斜面上,质量m =1 kg 、带电荷量q =+2.5×10-4C 的物块放在木板的上端,木板和物块间的动摩擦因数μ=0.1,所在空间加有一个方向垂直斜面向下、场强E =4.0×104N/C 的匀强电场.现对木板施加一平行于斜面向上的拉力F =10.8 N .取g =10 m/s 2,斜面足够长.求: (1)物块经多长时间离开木板? (2)物块离开木板时木板获得的动能.(3)物块在木板上运动的过程中,由于摩擦而产生的内能.解析 (1)物块向下做加速运动,设其加速度为a 1,木板的加速度为a 2,则由牛顿第二定 律对物块:mg sin 37°-μ(mg cos 37°+qE )=ma 1 对木板:Mg sin 37°+μ(mg cos 37°+qE )-F =Ma 2 又12a 1t 2-12a 2t 2=L 得物块滑过木板所用时间t =2s .(2)物块离开木板时木板的速度v 2=a 2t =3 2 m/s. 其动能为E k2=12Mv 22=27 J.(3)由于摩擦而产生的内能为(程序思维法)Q =Fs 相对=μ(mg cos 37°+qE )·L =2.16 J.答案 (1) 2 s (2)27 J (3)2.16 J图6-3-12。
高考物理一轮总复习 第七章 第3讲 电容器与电容 带电粒子在电场中的运动(含解析)
电容器与电容 带电粒子在电场中的运动[基础知识·填一填][知识点1] 电容器及电容 1.电容器(1)组成:由两个彼此 绝缘 又相互靠近的导体组成. (2)带电荷量:一个极板所带电荷量的 绝对值 . (3)电容器的充、放电①充电:使电容器带电的过程,充电后电容器两极板带上等量的 异种电荷_ ,电容器中储存电场能.②放电:使充电后的电容器失去电荷的过程,放电过程中 电能 转化为其他形式的能.2.电容(1)定义:电容器所带的 电荷量 与两个极板间的 电势差 的比值. (2)定义式: C =Q U.(3)单位:法拉(F)、微法(μF)、皮法(pF).1 F = 106μF= 1012pF. (4)意义:表示电容器 容纳电荷 本领的高低.(5)决定因素:由电容器本身物理条件(大小、形状、相对位置及电介质)决定,与电容器是否 带电 及 电压 无关.3.平行板电容器的电容(1)决定因素:正对面积、介电常数、两板间的距离. (2)决定式: C =εr S4πkd.判断正误,正确的划“√”,错误的划“×”.(1)电容器所带的电荷量是指每个极板所带电荷量的代数和.(×) (2)电容器的电容与电容器所带电荷量成反比.(×) (3)放电后的电容器电荷量为零,电容也为零.(×) [知识点2] 带电粒子在电场中的运动 1.加速问题(1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20.(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.偏转问题(1)条件分析:不计重力的带电粒子以速度v 0垂直于电场线方向飞入匀强电场. (2)运动性质: 匀变速曲线 运动. (3)处理方法:利用运动的合成与分解. ①沿初速度方向:做 匀速 运动.②沿电场方向:做初速度为零的 匀加速 运动. 判断正误,正确的划“√”,错误的划“×”. (1)带电粒子在匀强电场中只能做类平抛运动.(×)(2)带电粒子在电场中,只受电场力时,也可以做匀速圆周运动.(√) (3)带电粒子在电场中运动时重力一定可以忽略不计.(×) [知识点3] 示波管1.装置:示波管由电子枪、偏转电极和荧光屏组成,管内抽成真空,如图所示. 2.原理(1)如果在偏转电极XX ′和YY ′之间都没有加电压,则电子枪射出的电子沿直线传播,打在荧光屏 中心 ,在那里产生一个亮斑.(2)YY ′上加的是待显示的 信号电压 ,XX ′上是机器自身产生的锯齿形电压,叫做扫描电压.若所加扫描电压和信号电压的周期相同,就可以在荧光屏上得到待测信号在一个周期内变化的图象.[教材挖掘·做一做]1.(人教版选修3-1 P32第1题改编)(多选)如图所示,用静电计可以测量已充电的平行板电容器两极板之间的电势差U ,电容器已带电,则下列判断正确的是( )A .增大两极板间的距离,指针张角变大B .将A 板稍微上移,静电计指针张角变大C .若将玻璃板插入两板之间,则静电计指针张角变大D .若减小两板间的距离,则静电计指针张角变小解析:ABD [电势差U 变大(小),指针张角变大(小).电容器所带电荷量一定,由公式C =εr S 4πkd 知,当d 变大时,C 变小,再由C =QU得U 变大;当A 板上移时,正对面积S 变小,C 也变小,U 变大;当插入玻璃板时,C 变大,U 变小;而两板间的距离减小时,C 变大,U 变小,所以选项A 、B 、D 正确.]2.(人教版选修3-1 P39第2题改编)两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edhU B .edUhC.eU dhD.eUh d解析:D [电子从O 点到A 点,因受电场力作用,速度逐渐减小.根据题意和图示判断,电子仅受电场力,不计重力.这样,我们可以用能量守恒定律来研究问题,即12mv 20=eU OA .因E =U d ,U OA =Eh =Uh d ,故12mv 20=eUhd,故选项D 正确.] 3.(人教版选修3-1 P39第4题改编)如图所示,含有大量11H 、21H 、42He 的粒子流无初速度进入某一加速电场,然后沿平行金属板中心线上的O 点进入同一偏转电场,最后打在荧光屏上.下列有关荧光屏上亮点分布的说法正确的是( )A .出现三个亮点,偏离O 点最远的是11H B .出现三个亮点,偏离O 点最远的是42He C .出现两个亮点 D .只会出现一个亮点 答案:D4.(人教版选修3-1 P36思考与讨论改编)如图是示波管的原理图,它由电子枪、偏转电极(XX ′和YY ′)、荧光屏组成.管内抽成真空.给电子枪通电后,如果在偏转电极XX ′和YY ′上都没有加电压,电子束将打在荧光屏的中心O 点.(1)带电粒子在 __________ 区域是加速的,在 ________ 区域是偏转的. (2)若U YY ′>0,U XX ′=0,则粒子向 ________ 板偏转,若U YY ′=0,U XX ′>0,则粒子向 ________ 板偏转.答案:(1)Ⅰ Ⅱ (2)Y X考点一 平行板电容器的动态分析[考点解读]1.两类典型问题(1)电容器始终与恒压电源相连,电容器两极板间的电势差U 保持不变. (2)电容器充电后与电源断开,电容器两极板所带的电荷量Q 保持不变. 2.动态分析思路 (1)U 不变①根据C =Q U =εr S4πkd 先分析电容的变化,再分析Q 的变化.②根据E =U d分析场强的变化. ③根据U AB =Ed 分析某点电势变化. (2)Q 不变①根据C =Q U =εr S4πkd先分析电容的变化,再分析U 的变化.②根据E =U d=4k πQεr S分析场强变化.[典例赏析][典例1] (多选)如图所示,平行板电容器与直流电源连接,下极板接地,一带电油滴位于电容器中的P 点且处于静止状态,现将上极板竖直向上移动一小段距离,则( )A .带电油滴将沿竖直方向向上运动B .P 点电势将降低C .电容器的电容减小,极板带电荷量减小D .带电油滴的电势能保持不变[解析] BC [电容器与电源相连,两极板间电压不变,下极板接地,电势为0.油滴位于P 点处于静止状态,因此有mg =qE .当上极板向上移动一小段距离时,板间距离d 增大,由C =εr S 4πkd 可知电容器电容减小,板间场强E 场=Ud 减小,油滴所受的电场力减小,mg>qE ,合力向下,带电油滴将向下加速运动,A 错;P 点电势等于P 点到下极板间的电势差,由于P 到下极板间距离h 不变,由φP =ΔU =Eh 可知,场强E 减小时P 点电势降低,B 对;由C =Q U可知电容器所带电荷量减小,C 对;带电油滴所处P 点电势下降,而由题图可知油滴带负电,所以油滴电势能增大,D 错.]分析平行板电容器动态变化的三点关键1.确定不变量:先明确动态变化过程中的哪些量不变,是电荷量保持不变还是极板间电压不变.2.恰当选择公式:灵活选取电容的决定式和定义式,分析电容的变化,同时用公式E =U d分析极板间电场强度的变化情况.3.若两极板间有带电微粒,则通过分析电场力的变化,分析其运动情况的变化.[题组巩固]1.(2016·全国卷Ⅰ)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上,若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变解析:D [据C =εr S4πkd 可知,将云母介质移出电容器,C 变小,电容器接在恒压直流电源上,电压不变,据Q =CU 可知极板上的电荷量变小,据E =U d可知极板间电场强度不变,故选D.]2.(2018·北京卷) 研究与平行板电容器电容有关因素的实验装置如图所示.下列说法正确的是( )A .实验前,只用带电玻璃棒与电容器a 板接触,能使电容器带电B .实验中,只将电容器b 板向上平移,静电计指针的张角变小C .实验中,只在极板间插入有机玻璃板, 静电计指针的张角变大D .实验中,只增加极板带电荷量,静电计指针的张角变大,表明电容增大解析:A [当用带电玻璃棒与电容器a 板接触,由于静电感应,从而在b 板感应出等量的异种电荷,从而使电容器带电,故选项A 正确;根据电容器电容的决定式:C =εr S 4πkd ,将电容器b 板向上平移,即正对面积S 减小,则电容C 减小,根据C =QU可知, 电荷量Q 不变,则电压U 增大,则静电计指针的张角变大,故选项B 错误;根据电容器电容的决定式:C =εr S4πkd,只在极板间插入有机玻璃板,则介电常数εr 增大,则电容C 增大,根据C =Q U可知, 电荷量Q 不变,则电压U 减小,则静电计指针的张角减小,故选项C 错误;根据C =Q U可知,电荷量Q 增大,则电压U 也会增大,而电容由电容器本身决定,C不变,故选项D 错误.]考点二 带电粒子在电场中的直线运动[考点解读]1.做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学观点分析a =qE m ,E =Ud,v 2-v 20=2ad .3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 2非匀强电场中:W =qU =E k2-E k1.[典例赏析][典例2] (2019·湖南长沙模拟)如图所示,在A 点固定一正电荷,电荷量为Q ,在离A 高度为H 的C 处由静止释放某带同种电荷的液珠,开始运动瞬间向上的加速度大小恰好等于重力加速度g .已知静电力常量为k ,两电荷均可看成点电荷,不计空气阻力.求:(1)液珠的比荷;(2)液珠速度最大时离A 点的距离h ;(3)若已知在点电荷Q 的电场中,某点的电势可表示成φ=kQr,其中r 为该点到Q 的距离(选无限远的电势为零).求液珠能到达的最高点B 离A 点的高度r B .[解析] (1)设液珠的电荷量为q ,质量为m ,由题意知,当液珠在C 点时k QqH2-mg =mg 比荷为q m =2gH 2kQ(2)当液珠速度最大时,k Qq h2=mg 得h =2H(3)设BC 间的电势差大小为U CB ,由题意得U CB =φC -φB =kQ H -kQr B对液珠由释放处至液珠到达最高点(速度为零)的全过程应用动能定理得qU CB -mg (r B -H )=0即q ⎝ ⎛⎭⎪⎫kQ H -kQr B -mg (r B -H )=0解得:r B =2H ,r B =H (舍去). [答案] (1)2gH 2kQ(2)2H (3)2H带电体在匀强电场中的直线运动问题的解题步骤[题组巩固]1.(多选)如图所示,带电小球自O 点由静止释放,经C 孔进入两水平位置的平行金属板之间,由于电场的作用,刚好下落到D 孔时速度减为零.对于小球从C 到D 的运动过程,已知从C 运动到CD 中点位置用时t 1,从C 运动到速度等于C 点速度一半的位置用时t 2,下列说法正确的是( )A .小球带负电B .t 1<t 2C .t 1>t 2D .将B 板向上平移少许后小球可能从D 孔落下解析:AB [由题图可知,A 、B 间的电场强度方向向下,小球从C 到D 做减速运动,受电场力方向向上,所以小球带负电,选项A 正确;由于小球在电场中受到的重力和电场力都是恒力,所以小球做匀减速直线运动,其速度图象如图所示,由图可知,t 1<t 2,选项B 正确,C 错误;将B 板向上平移少许时两板间的电压不变,根据动能定理可知,mg (h +d )-qU =0,mg (h +x )-qUx d ′=0,联立得x =h h +d -d ′d ′<d ′,即小球不到D 孔就要向上返回,所以选项D 错误.]2.(2017·江苏卷)如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点.由O 点静止释放的电子恰好能运动到P 点.现将C 板向右平移到P ′点,则由O 点静止释放的电子( )A .运动到P 点返回B .运动到P 和P ′点之间返回C .运动到P ′点返回D .穿过P ′点解析:A [设A 、B 板间的电势差为U 1,B 、C 间电势差为U 2,板间距为d ,电场强度为E ,第一次由O 点静止释放的电子恰好能运动到P 点,根据动能定理得:qU 1=qU 2=qEd ,将C 板向右移动,B 、C 板间的电场强度:E =U 2d =Q C 0d =4πkQεr S不变,所以电子还是运动到P 点速度减小为零,然后返回,故A 正确,B 、C 、D 错误.]考点三 带电粒子在匀强电场中的偏转[考点解读]1.运动规律(1)沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0b.不能飞出电容器:y =12at 2=qU 2mdt 2,t =2mdyqU(2)沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =qUmd离开电场时的偏移量:y =12at 2=qUl 22mdv2离开电场时的偏转角:tan θ=v y v 0=qUl mdv202.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 2y =12at 2=12·qU 1md ·⎝ ⎛⎭⎪⎫l v 02tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.[典例赏析][典例3] 如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L =0.4 m ,两板间距离d =4×10-3m ,有一束由相同带电微粒组成的粒子流,以相同的速度v 0从两板中央平行极板射入,开关S 闭合前,两板不带电,由于重力作用微粒能落到下极板的正中央,已知微粒质量为m =4×10-5kg ,电荷量q =+1×10-8C ,g 取10 m/s 2.求:(1)微粒入射速度v 0为多少?(2)为使微粒能从平行板电容器的右边射出电场,电容器的上极板应与电源的正极还是负极相连?所加的电压U 应取什么范围?[审题指导] 开关闭合前,微粒做平抛运动,开关闭合后,微粒做类平抛运动,两个过程的分析方法相同,都要用到运动的合成与分解.[解析] (1)开关S 闭合前,由L 2=v 0t ,d 2=12gt 2可解得v 0=L2gd=10 m/s. (2)电容器的上极板应接电源的负极.当所加的电压为U 1时,微粒恰好从下板的右边缘射出,即d 2=12a 1⎝ ⎛⎭⎪⎫L v 02, 又a 1=mg -qU 1dm,解得U 1=120 V当所加的电压为U 2时,微粒恰好从上极板的右边缘射出,即d 2=12a 2⎝ ⎛⎭⎪⎫L v 02, 又a 2=q U 2d-mg m,解得U 2=200 V所以120 V ≤U ≤200 V.[答案] (1)10 m/s (2)与负极相连,120 V ≤U ≤200 V带电粒子在电场中偏转问题求解通法1.解决带电粒子先加速后偏转模型的通法:加速电场中的运动一般运用动能定理qU =12mv 2进行计算;在偏转电场中的运动为类平抛运动,可利用运动的分解进行计算;二者靠速度相等联系在一起.2.计算粒子打到屏上的位置离屏中心的距离Y 的四种方法: (1)Y =y +d tan θ(d 为屏到偏转电场的水平距离).(2)Y =⎝ ⎛⎭⎪⎫L2+d tan θ(L 为电场宽度). (3)Y =y +v y ·d v 0.(4)根据三角形相似Y y =L2+d L2.[题组巩固]1.(多选)如图所示,带电荷量之比为q A ∶q B =1∶3的带电粒子A 、B 以相等的速度v 0从同一点出发,沿着跟电场强度垂直的方向射入平行板电容器中,分别打在C 、D 点,若OC =CD ,忽略粒子重力的影响,则( )A .A 和B 在电场中运动的时间之比为1∶2 B .A 和B 运动的加速度大小之比为4∶1C .A 和B 的质量之比为1∶12D .A 和B 的位移大小之比为1∶1解析:ABC [粒子A 和B 在匀强电场中做类平抛运动,水平方向由x =v 0t 及OC =CD 得,t A ∶t B =1∶2,选项A 正确;竖直方向由h =12at 2得a =2ht 2,它们沿竖直方向下落的加速度大小之比为a A ∶a B =4∶1,选项B 正确;根据a =qE m 得m =qEa,故m A ∶m B =1∶12,选项C 正确;A 和B 的位移大小不相等,选项D 错误.]2.(2016·北京卷23题改编)如图所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m ,电荷量为e ,加速电场电压为U 0,偏转电场可看做匀强电场,极板间电压为U ,极板长度为L ,板间距为d .(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U =2.0×102 V ,d =4.0×10-2m ,m =9.1×10-31 kg ,e =1.6×10-19 C ,g =10 m/s 2. 解析:(1)根据动能定理,有eU 0=12mv 20, 电子射入偏转电场时的初速度v 0=2eU 0m 在偏转电场中,电子的运动时间Δt =Lv 0=L m 2eU 0加速度a =eE m =eU md偏转距离Δy =12a (Δt )2=UL 24U 0d(2)只考虑电子所受重力和电场力的数量级,有重力 G =mg ≈10-29 N 电场力F =eUd ≈10-15 N由于F ≫G ,因此不需要考虑电子所受的重力.答案:(1) 2eU 0m UL 24U 0d(2)见解析 思想方法(十四) 电容器在现代科技生活中的应用[典例] (多选)目前智能手机普遍采用了电容触摸屏,电容触摸屏是利用人体的电流感应进行工作的,它是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂一层ITO(纳米铟锡金属氧化物),夹层ITO 涂层作为工作面,四个角引出四个电极,当用户手指触摸电容触摸屏时,手指和工作面形成一个电容器,因为工作面上接有高频信号,电流通过这个电容器分别从屏的四个角上的电极中流出,且理论上流经四个电极的电流与手指到四个角的距离成比例,控制器通过对四个电流比例的精密计算来确定手指位置.对于电容触摸屏,下列说法正确的是( )A.电容触摸屏只需要触摸,不需要压力即能产生位置信号B.使用绝缘笔在电容触摸屏上也能进行触控操作C.手指压力变大时,由于手指与屏的夹层工作面距离变小,电容变小D.手指与屏的接触面积变大时,电容变大[解析]AD [据题意知,电容触摸屏只需要触摸,由于流经四个电极的电流与手指到四个角的距离成比例,控制器就能确定手指的位置,因此不需要手指有压力,故A正确;绝缘笔与工作面不能形成一个电容器,所以不能在电容屏上进行触控操作,故B错误;手指压力变大时,由于手指与屏的夹层工作面距离变小,电容将变大,故C错误;手指与屏的接触面积变大时,电容变大,故D正确.][题组巩固]1.(2019·汕头模拟)图示为某电容传声器结构示意图,当人对着传声器讲话,膜片会振动.若某次膜片振动时,膜片与极板距离增大,则在此过程中( ) A.膜片与极板间的电容增大B.极板所带电荷量增大C.膜片与极板间的电场强度增大D.电阻R中有电流通过解析:D [根据C=εr S4πkd可知,膜片与极板距离增大,膜片与极板间的电容减小,选项A错误;根据Q=CU可知极板所带电荷量减小,因此电容器要通过电阻R放电,所以选项D正确,B错误;根据E=Ud可知,膜片与极板间的电场强度减小,选项C错误.]2.(多选)电容式加速度传感器的原理如图所示,质量块左、右侧连接电介质、轻质弹簧,弹簧与电容器固定在外框上,质量块可带动电介质移动,改变电容.则( ) A.电介质插入极板间越深,电容器电容越小B.当传感器以恒定加速度运动时,电路中有恒定电流C.若传感器原来向右匀速运动,突然减速时弹簧会压缩D.当传感器由静止突然向右加速时,电路中有顺时针方向的电流解析:CD [由C =εr S 4πkd知,电介质插入越深,εr 越大,即C 越大,A 错;当传感器以恒定加速度运动时,电介质相对电容器静止,电容不变,电路中没有电流,B 错;传感器向右匀速运动,突然减速时,质量块由于惯性相对传感器向右运动,弹簧压缩变短,C 对;传感器由静止突然向右加速时,电介质相对电容器向左运动,εr 增大,C 增大,电源电动势不变,由C =Q U 知,Q 增大,上极板电荷量增大,即电路中有顺时针方向的电流,D 对.。
2023届高考物理一轮复习学案 8.3 电容器带电粒子在电场中的运动
第3节电容器带电粒子在电场中的运动学案基础知识:一、电容器及电容1.电容器(1)组成:由两个彼此绝缘又相互靠近的导体组成。
(2)带电荷量:一个极板所带电荷量的绝对值。
(3)电容器的充、放电充电:使电容器带电的过程,充电后电容器两极板带上等量的异种电荷,电容器中储存电场能。
放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能。
2.电容(1)定义:电容器所带的电荷量与电容器两极板间的电势差的比值。
(2)定义式:C=Q U。
(3)物理意义:表示电容器容纳电荷本领大小的物理量。
(4)单位:法拉(F),1 F=106μF=1012 pF。
3.平行板电容器的电容(1)影响因素:平行板电容器的电容与极板的正对面积成正比,与电介质的相对介电常数成正比,与极板间距离成反比。
(2)决定式:C=εr S4πkd,k为静电力常量。
二、带电粒子在匀强电场中的运动1.做直线运动的条件(1)初速度v0≠0粒子所受合外力F合=0,粒子做匀速直线运动。
(2)初速度v0≠0粒子所受合外力F合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动。
2.偏转(1)运动情况:如果带电粒子以初速度v0垂直场强方向进入匀强电场中,则带电粒子在电场中做类平抛运动,如图所示。
(2)处理方法:将粒子的运动分解为沿初速度方向的匀速直线运动和沿电场力方向的匀加速直线运动。
根据运动的合成与分解的知识解决有关问题。
(3)基本关系式:运动时间t=lv0,加速度a=Fm=qEm=qUmd,偏转量y=12at2=qUl22md v 20,偏转角θ的正切值:tan θ=v yv0=atv0=qUlmd v 20。
三、示波管1.示波管的构造①电子枪,②偏转电极,③荧光屏。
(如图所示)2.示波管的工作原理(1)YY′偏转电极上加的是待显示的信号电压,XX′偏转电极上是仪器自身产生的锯齿形电压,叫作扫描电压。
(2)观察到的现象①如果在偏转电极XX′和YY′之间都没有加电压,则电子枪射出的电子沿直线运动,打在荧光屏中心,产生一个亮斑。
2013年广东物理一轮【第六章第三讲电容器与电容+带电粒子在电场中的运动】
B.电阻R中没有电流
C.电容器两极板间的电场强度增大 D.电阻R中有从b 流向a的电流
解析:增大电容器两极板间距离,电容减小;开关闭 合,电压不变,由Q=CU知Q减小,上极板带正电,正 电荷返回电源正极,R中电流方向从a流向b. 答案:A
3.一平行板电容器两极板间距为 d,极板面积为 S,电 ε0 S 容为 d ,其中 ε0 是常量.对此电容器充电后断开电 源.当增加两板间距时,电容器极板间 A.电场强度不变,电势差变大 B.电场强度不变,电势差不变 C.电场强度减小,电势差不变 D.电场强度减小,电势差减小 ( )
解析:电容器充电后断开,故电容器的带电荷量不变,当 ε0S 增大两极板间的距离时,由 C= d 可知,电容器的电容变 Q U U Q 小,由 U=C 可知电压变大,又由 E= d 可得 E= d =Cd= Q Q = ,所以电场强度不变,A 正确. ε0S ε0S dd
答案:A
[典例启迪] [例2] (2011· 毫州模拟)如图6-3-9 所示,真空中水平放置的两个相同
答案:A
4. 如图6-3-3所示,在A板附近有一电 子由静止开始向B板运动,则关于电 子到达B板时的速率,下列解释正确 的是 ( )
A.两板间距越大,运动时间就越长, 则获得的速率越大
B.两板间距越小,加速度就越大,则获得的速率越大
C.与两板间的距离无关,仅与加速电压U有关 D.以上解释都不正确
1 2 解析:由动能定理得:eU= mv 2 即 v= 2eU m ,只有 C 正确.
[答案]
(1)见解析
md2v02 md2v02 (2)- ≤U≤ qL2 qL2
dL+2b (3) L
[归纳领悟]
粒子打在屏上的位置离屏中心的距离y′可有以下三
高考经典课时作业6-3 电容器与电容、带电粒子在电场中的运动
高考经典课时作业6-3 电容器与电容、带电粒子在电场中的运动(含标准答案及解析)时间:45分钟分值:100分1.对于给定的电容器,描述其电容C、电荷量Q、电压U之间的相应关系的图象正确的是()A.①③B.②③C.③④D.①④2.如图甲所示,一条电场线与Ox轴重合,取O点电势为零,Ox方向上各点的电势φ随x 变化的情况如图乙所示.若在O点由静止释放一电子,电子仅受电场力的作用,则() A.电子一直沿Ox负方向运动B.电场力一直做正功C.电子运动的加速度逐渐增大D.电子的电势能逐渐增大3.如图是某种静电矿料分选器的原理示意图,带电矿粉经漏斗落入水平匀强电场后,分落在收集板中央的两侧.对矿粉分离的过程,下列表述正确的有()A.带正电的矿粉落在右侧B.电场力对矿粉做正功C.带负电的矿粉电势能变大D.带正电的矿粉电势能变小4.(2013·山东潍坊市二模)如图所示,平行板电容器与电动势为E的直流电源(内阻不计)连接,下极板接地.一带电油滴位于容器中的P点且恰好处于平衡状态.现将平行板电容器的上极板竖直向上移动一小段距离,则()A.带电油滴将沿竖直方向向上运动B.P点的电势将降低C.带电油滴的电势能将减少D.若电容器的电容减小,则极板带电量将增大5.(2013·唐山二模)一个带正电的粒子,在xOy平面内以速度v0从O点进入一个匀强电场,重力不计.粒子只在电场力作用下继续在xOy平面内沿图中虚线轨迹运动到A点,且在A点时的速度方向与y轴平行,则电场强度的方向可能是()A.沿x轴正方向B.沿x轴负方向C.沿y轴正方向D.垂直于xOy平面向里6.(2013·茂名模拟)真空中的某装置如图所示,现有质子、氘核和α粒子都从O点由静止释放,经过相同加速电场和偏转电场,射出后都打在同一个与OO′垂直的荧光屏上,使荧光屏上出现亮点(已知质子、氘核和α粒子质量之比为1∶2∶4,电量之比为1∶1∶2,重力不计).下列说法中正确的是()A.三种粒子在偏转电场中运动时间之比为2∶1∶1B.三种粒子出偏转电场时的速度相同C.在荧光屏上将只出现1个亮点D.偏转电场的电场力对三种粒子做功之比为1∶2∶27.(2011·高考安徽卷)图(a)为示波管的原理图.如果在电极YY′之间所加的电压按图(b)所示的规律变化,在电极XX′之间所加的电压按图(c)所示的规律变化,则在荧光屏上会看到的图形是()8.(2013·河北保定市模拟)在真空中水平放置一对金属板,两板间的电压为U,一个电子以水平速度v0沿两板中线射入电场,忽略电子所受的重力.电子在电场中的竖直偏移距离为Y,当只改变偏转电压U(或只改变初速度v0)时,下列图象哪个能正确描述Y的变化规律()A.①③B.②③C.③④D.①④9.(2013·山西省重点中学联考)如图所示,A、B两导体板平行放置,在t=0时将电子从A 板附近由静止释放(电子的重力忽略不计).分别在A、B两板间加四种电压,它们的U AB -t图线如下列四图所示.其中可能使电子到不了B板的是()10.如图所示为一真空示波管的示意图,电子从灯丝K发出(初速度可忽略不计),经灯丝与A板间的电压U1加速,从A板中心孔沿中心线KO射出,然后进入两块平行金属板M、N形成的偏转电场中(偏转电场可视为匀强电场),电子进入M、N间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P点.已知M、N两板间的电压为U2,两板间的距离为d,板长为L,电子的质量为m,电荷量为e,不计电子受到的重力及它们之间的相互作用力.(1)求电子穿过A板时速度的大小;(2)求电子从偏转电场射出时的侧移量;(3)若要电子打在荧光屏上P点的上方,可采取哪些措施?11.(2011·高考福建卷)反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似.如图所示,在虚线MN两侧分别存在着方向相反的两个匀强电场,一带电微粒从A点由静止开始,在电场力作用下沿直线在A、B 两点间往返运动.已知电场强度的大小分别是E1=2.0×103 N/C和E2=4.0×103 N/C,方向如图所示.带电微粒质量m=1.0×10-20 kg,带电荷量q=-1.0×10-9 C,A点距虚线MN的距离d1=1.0 cm,不计带电微粒的重力,忽略相对论效应.求:(1)B点距虚线MN的距离d2;(2)带电微粒从A点运动到B点所经历的时间t.12.(2013·南昌模拟)如图所示,在xOy坐标系中,两平行金属板如图放置,OD与x轴重合,板的左端与原点O重合,板长L=2 m,板间距离d=1 m,紧靠极板右侧有一荧光屏.两金属板间电压U AO随时间的变化规律如图所示,变化周期为T=2×10-3 s,U0=103 V,t=0时刻一带正电的粒子从左上角A点,以平行于AB边v0=1 000 m/s的速度射入板间,粒子电量为q=1×10-5 C,质量m=1×10-7 kg.不计粒子所受重力.求:(1)粒子在板间运动的时间;(2)粒子打到荧光屏上的纵坐标;(3)粒子打到屏上的动能.标准答案及解析:1.答案:B2.解析:由电势-位移图象可知,电势随位移均匀增加,相同位移间的电势差相同,电场强度恒定,电子运动的加速度恒定,C不正确;沿Ox轴方向电势增大,电场线方向与Ox轴负方向重合,电子受沿Ox轴正方向的电场力,且沿Ox轴正方向运动,电场力做正功,A不正确、B正确;由功能关系,电场力做正功,电势能减少,D不正确.答案:B3.解析:由题图可知,电场方向水平向左,带正电的矿粉所受电场力方向与电场方向相同,所以落在左侧;带负电的矿粉所受电场力方向与电场方向相反,所以落在右侧.选项A 错误.无论矿粉所带电性如何,矿粉均向所受电场力方向偏转,电场力均做正功,选项B正确;电势能均减少,选项C错误、选项D正确.答案:BD4.解析:上极板向上移动一小段距离后,板间电压不变,故电场强度将减小,油滴所受电场力减小,故油滴将向下运动,A错;P点的电势大于0,且P点与下极板间的电势差减小,所以P点的油滴向下运动,电场力做负功,电势减小,B对;油滴向下运动时电场力做负功,油滴的电势能增加,C错;电容器的电容C={eq \f(εr S,4πkd)|,由于d增大,电容C减小,极板带电量Q=CU将减小,D错.答案:B5.解析:在O 点粒子速度有水平向右的分量,而到A 点时水平分量变为零,说明该粒子所受电场力向左或有向左的分量,又因为粒子带正电,故只有B 正确. 答案:B 6.答案:C7.解析:在0~2t 1时间内,扫描电压扫描一次,信号电压完成一个周期,当U Y 为正的最大值时,电子打在荧光屏上有正的最大位移,当U Y 为负的最大值时,电子打在荧光屏上有负的最大位移,因此一个周期内荧光屏上的图象为B.答案:B 8.解析:由带电粒子在电场中的运动性质知,在Y 方向上,Y =12|at 2=qUl 22medv 20|(其中l 为板长,d 为板间距离)Y 正比于U ,反比于v 20|(即正比于1v 20|).当U 过大或1v 20|过大时,电子会打在极板上,不再出来,Y 就不随U 或1v 20|的增加而变大了,综上可知选项B 正确.答案:B 9.解析:在A 选项所加电压下,电子将一直向B 板加速运动;在C 选项所加电压下,电子是先加速再减速至0,再加速再减速至0,一直向B 板运动;D 选项和C 选项一样,只不过电子的加速度发生变化;只有在B 选项所加电压下,电子先向B 板加速再减速,再向A 板加速再减速至初始位置,且速度变为0,如此在A 、B 间往复运动. 答案:B 10.解析:(1)设电子经电压U 1加速后的速度为v 0,由动能定理有eU 1=12|mv 20|解得v 0= 2eU 1m|.(2)电子沿极板方向做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动.设偏转电场的电场强度为E ,电子在偏转电场中运动的时间为t ,加速度为a ,电子离开偏转电场时的侧移量为y .由牛顿第二定律和运动学公式有 t =L v 0|;eU 2md |=a ;y =12|at 2 解得:y =U 2L24U 1d|.(3)减小加速电压U 1,增大偏转电压U 2.答案:(1) 2eU 1m | (2)U 2L 24U 1d| (3)见解析11.解析:(1)带电微粒由A 运动到B 的过程中,由动能定理有 |q |E 1d 1-|q |E 2d 2=0①由①式解得d 2=E 1E 2|d 1=0.50 cm.②(2)设微粒在虚线MN 两侧的加速度大小分别为a 1、a 2,由牛顿第二定律有 |q |E 1=ma 1③ |q |E 2=ma 2④设微粒在虚线MN 两侧运动的时间分别为t 1、t 2,由运动学公式有d 1=12|a 1t 21|⑤d 2=12|a 2t 22|⑥又t =t 1+t 2⑦由②③④⑤⑥⑦式解得t =1.5×10-8 s.答案:(1)0.50 cm (2)1.5×10-8 s 12.解析:(1)粒子在板间沿x 轴匀速运动,设运动时间为t ,L =v 0t t =L v 0|=2×10-3 s(2)设t =0时刻射入的粒子在板间偏转量最大为y 1y 1=12|a ⎝⎛⎭⎫T 2|2+⎝⎛⎭⎫a ·T 2|T 2| U 0qd|=ma 解得y 1=0.15 m纵坐标y =d -y 1=0.85 m(3)粒子出射时的动能,由动能定理得: U 0d |qy 2=12|mv 2-12|mv 20| y 2=12|a ⎝⎛⎭⎫T 2|212|mv 2=5.05×10-2 J 答案:(1)2×10-3 s (2)0.85 m (3)5.05×10-2 J。
电容器和电容带电粒子在电场中的运动知识点+典型例题
电容器和电容 带电粒子在电场中的运动知识点1.电容器⑴组成:任何两个彼此又相互的导体都可以组成一个电容器。
⑵带电量:一个极板所带电量的 . ⑶电容器的充、放电①充电:使电容器带电的过程,充电后电容器两极板带上等量的,电容器中储存.②放电:使充电后的电容器失去电荷的过程,放电过程中 转化为其他形式的能. 2.电容⑴定义:电容器所带的与电容器两极板间的电势差U 的比值. ⑵定义式:UQ C =. ⑶物理意义:表示电容器本领大小的物理量. ⑷单位:法拉(F )=F 1F μ=pF 3.平行板电容器⑴影响因素:平行板电容器的电容与成正比,与介质的成正比,与成反比. ⑵决定式:=C ,k 为静电力常量. 4.带电粒子在电场中的运动 ⑴带电粒子在电场中加速带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子的增量.①在匀强电场中,=W =qU =2022121mv mv - ②在非匀强电场中:=W =2022121mv mv -⑵带电粒子在匀强电场中的偏转①如果带电粒子以初速度0v 垂直场强方向进入匀强电场中,不考虑重力时,则带②类平抛运动的一般处理方法:将粒子的运动分解为沿初速度方向的 运动和沿电场力方向的运动.根据的知识就可解决有关问题. ⑶基本公式:运动时间0v lt =(板长为l ,板间距离为d ,板间电压为U ). 加速度===mqEm F a . 离开电场的偏转量==221at y . 偏转角===tan v atv v y θ . v 0v 0 y5.示波器示波器是用来观察电信号随时间变化的情况,其核心部件是示波管,它由电子枪、偏转电极和荧光屏组成,如图所示电容 电容器[对电容器、电容的理解][例1](单选)下列说法中不正确的是:( )A 、电容器的电容越大,电容器带电就越多B 、某一给定电容器的带电荷量与极板间电压成正比C 、一个电容器无论两极板间的电压多大(不为零),它所带的电荷量和极板间的电压之比是恒定的D 、电容是表示电容器容纳电荷本领大小的物理量[变式1] (多选)两个电容器电容的公式: U Q C =和kdSC r πε4= 。
电容器、带电粒子在电场中的运动
电容器、带电粒子在电场中的运动知识点一 1.常见电容器(1)组成:由两个彼此绝缘又相互靠近的导体组成. (2)带电荷量:一个极板所带电荷量的绝对值. (3)电容器的充、放电.充电:使电容器带电的过程,充电后电容器两板带上等量的异种电荷,电容器中储存电场能. 放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能. 2.电容(1)定义:电容器所带的电荷量Q 与电容器两极板间的电势差U 的比值. (2)定义式:C =QU.(3)物理意义:表示电容器容纳电荷本领大小的物理量. (4)单位:法拉(F) 1 F =106 μF =1012 pF 3.平行板电容器(1)影响因素:平行板电容器的电容与极板的正对面积成正比,与电介质的相对介电常数成正比,与极板间距离成反比. (2)决定式:C =εr S4πkd,k 为静电力常量. 知识点二 带电粒子在匀强电场中的运动 1.带电粒子在电场中的加速(1)动力学观点分析:若电场为匀强电场,则有a =qE m ,E =Ud ,v 2-v 20=2ad . (2)功能观点分析:粒子只受电场力作用,满足qU =12m v 2-12m v 20.2.带电粒子在匀强电场中的偏转(1)条件:以速度v 0垂直于电场线方向飞入匀强电场,仅受电场力. (2)运动性质:类平抛运动. (3)处理方法:运动的分解. ①沿初速度方向:做匀速直线运动.②沿电场方向:做初速度为零的匀加速直线运动. 知识点三 示波管的工作原理1.构造:①电子枪,②偏转极板,③荧光屏.(如图所示)2.工作原理(1)YY ′上加的是待显示的信号电压,XX ′上是机器自身产生的锯齿形电压,叫做扫描电压. (2)观察到的现象:①如果在偏转电极XX ′和YY ′之间都没有加电压,则电子枪射出的电子沿直线运动,打在荧光屏中心,在那里产生一个亮斑.②若所加扫描电压和信号电压的周期相等,就可以在荧光屏上得到待测号在一个周期内变化的稳定图象.【基础自测】1.根据大量科学测试可以确定地球本身就是一个电容器.通常大地带有50万库仑左右的负电荷,而地面上空存在一个带正电的电离层,这两者便形成一个已充电的电容器,它们之间的电压约为300 kV,则地球的电容约为(B) A.0.17 F B.1.7 FC.17 F D.170 F解析:根据题意可得Q=5×105 C,U=3×105 V,根据C=QU可得C=5×105 C3×105 V≈1.7 F,B正确.2.如图所示,将平行板电容器的两极板分别与电池的正、负极相接,两板间一带电液滴恰好处于静止状态.现紧贴下板迅速插入一个有一定厚度的金属板,则在此过程中(A)A.电路中流过逆时针方向的短暂电流B.电容器的电荷量减小C.带电液滴仍保持静止D.带电液滴向下做加速运动解析:插入一个带有一定厚度的金属板,相当于极板间的距离变小,根据电容的决定式C=εr S4πkd,可知电容增大,又因电势差不变,则由Q=CU知,电容器的电荷量增大,电路中流过逆时针方向的短暂电流,故A正确,B错误;电势差不变,d减小,则电场强度增大,带电液滴所受的电场力增大,使带电液滴向上做加速运动,故C、D错误.3.平行板电容器充电后与电源断开,负极板接地,两板间有一个固定在P点的正检验电荷,如图所示.以C表示电容器的电容,E表示两板间的场强,φ表示P点处的电势,W表示正电荷在P点的电势能.若正极板保持不动,将负极板缓慢向右平移一小段距离x0,则在此过程中,各物理量与负极板移动距离x的关系图象正确的是下图中的(C)解析:当负极板右移时,两板之间的距离d减小,由C=εr S4πk(d0-x)可知,C与x的关系图象不是一次函数图象,故A错误;由U=QC可知,U=4πkdεr S Q,则E=4πkQεr S,故E与两板之间的距离d(或x)无关,故B错误;因负极板接地,设P点原来与负极板之间的距离为l,则P点的电势φ=E(l-x),故C正确;电势能E p=φq=Eq(l-x),不可能为水平线,故D错误.4.如图所示,带电粒子由静止开始,经电压为U1的加速电场加速后,垂直于板间电场方向进入电压为U2的平行板电容器,经偏转后落在下板的中间位置.为使与该粒子相同的带电粒子从相同的初始位置由静止加速、偏转后能穿出平行板电容器,下列做法中可行的是(D)A.保持U2和平行板间距不变,减小U1B.保持U1和平行板间距不变,增大U2C.保持U1、U2和下板位置不变,向下平移上板D.保持U1、U2和下板位置不变,向上平移上板解析:粒子在加速电场中运动时,有U1q=12m v20,在偏转电场中运动时,有x=v0t,y=12·U2qdm t2,解得x2=4dU1yU2,若保持U2和平行板间距不变,减小U1,则x减小,选项A错误;若保持U1和平行板间距不变,增大U2,则x减小,选项B错误;若保持U1、U2和下板的位置不变,向下平移上板,则d减小,x减小,选项C错误;保持U1、U2和下板位置不变,向上平移上板,则d变大,x变大,故选项D正确.5.如图所示,一个电子由静止开始经加速电场加速后,又沿中心轴线从O 点垂直射入偏转电场,并从另一侧射出打到荧光屏上的P 点,O ′点为荧光屏的中心.已知电子质量m =9.0×10-31kg ,电荷量e =1.6×10-19C ,加速电场电压U 0=2 500V ,偏转电场电压U =200 V ,极板的长度L 1=6.0 cm ,板间距离d =2.0 cm ,极板的末端到荧光屏的距离L 2=3.0 cm(忽略电子所受重力,结果保留两位有效数字).求:(1)电子射入偏转电场时的初速度v 0;(2)电子打在荧光屏上的P 点到O ′点的距离h ; (3)电子经过偏转电场过程中电场力对它所做的功W . 解析:(1)根据动能定理有eU 0=12m v 20,得v 0=2eU 0m,代入数据得v 0≈3.0×107 m/s.(2)设电子在偏转电场中运动的时间为t ,电子射出偏转电场时在竖直方向上的侧移量为y .电子在水平方向做匀速运动,L 1=v 0t ,电子在竖直方向上做匀加速运动,y =12at 2,根据牛顿第二定律有eU d =ma ,联立得y =UL 214dU 0,代入数据得y =0.36 cm.电子离开偏转电场时速度的反向延长线过偏转电场的中点M ,由图知,y h =L 1L 1+2L 2,解得h =0.72 cm.(3)电子在偏转电场中运动的过程中,电场力对它做的功W =e U d y ≈5.8×10-18 J.答案:(1)3.0×107 m/s (2)0.72 cm (3)5.8×10-18J知识点一 平行板电容器的动态分析1.平行板电容器动态变化的两种情况(1)电容器始终与电源相连时,两极板间的电势差U 保持不变. (2)充电后与电源断开时,电容器所带的电荷量Q 保持不变.可以形象地认为一定量的电荷对应着一定数目的电场线,若电荷量不变,则电场线数目不变.若两极板间距变化时,场强不变;若两极板正对面积变化时,引起电场线的疏密程度发生了改变,如电容器的电荷量不变,正对面积减小时,场强增大.2.平行板电容器动态问题的分析思路3.平行板电容器问题的一个常用结论电容器充电后断开电源,在电容器所带电荷量保持不变的情况下,电场强度与极板间的距离无关.1.一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器(D)A.极板上的电荷量变大,极板间电场强度变大B.极板上的电荷量变小,极板间电场强度变大C.极板上的电荷量变大,极板间电场强度不变D.极板上的电荷量变小,极板间电场强度不变解析:平行板电容器电容的表达式为C=εS4πkd,将极板间的云母介质移出后,导致电容器的电容C变小.由于极板间电压不变,据Q=CU知,极板上的电荷量变小.再考虑到极板间电场强度E=Ud,由于U、d不变,所以极板间电场强度不变,选项D正确.2.如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地.在两极板间有一固定在P点的点电荷,以E表示两板间的电场强度,E p表示点电荷在P点的电势能,θ表示静电计指针的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则(D)A.θ增大,E增大B.θ增大,E p不变C.θ减小,E p增大D.θ减小,E不变解析:由题意可知平行板电容器的带电荷量Q不变,当下极板不动,上极板向下移动一段距离时,两极板间距d减小,则电容C变大,由U=QC可知U变小,则静电计指针的偏角θ减小.又因为两板间电场强度E=Ud=QCd=4πkQεr S,Q、S不变,则E不变.因为E不变,则点电荷从P点移动到下极板(电势为零)电场力做功不变,电势能的变化相同,则点电荷在P点的电势能E p不变,故只有选项D正确.3.如图,一平行板电容器的两极板与一电压恒定的电源相连,极板水平放置,极板间距为d,在下极板上叠放一厚度为l的金属板,其上部空间有一带电粒子P静止在电容器中,当把金属板从电容器中快速抽出后,粒子P开始运动,重力加速度为g.粒子运动加速度为(A)A.ld g B.d-ld g C.ld-lg D.dd-lg解析:平行板电容器的两极板与一电压恒定的电源相连,有金属板时,板间电场强度可以表达为:E1=Ud-l,且有E1q=mg,当抽去金属板,则板间距离增大,板间电场强度可以表达为:E2=Ud,有mg-E2q=ma,联立上述可解得:dl=ga,a=ld g,选项A正确.知识点二带电粒子在电场中的直线运动1.带电粒子在电场中运动时重力的处理(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2.解决带电粒子在电场中的直线运动问题的两种思路(1)根据带电粒子受到的电场力,用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的运动情况.此方法只适用于匀强电场.(2)根据电场力对带电粒子所做的功等于带电粒子动能的变化求解.此方法既适用于匀强电场,也适用于非匀强电场.典例中国科学院2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器.加速器是人类揭示物质本源的关键设备,在放射治疗、食品安全、材料科学等方面有广泛应用.如图所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移管)组成,相邻漂移管分别接在高频脉冲电源的两极.质子从K 点沿轴线进入加速器并依次向右穿过各漂移管,在漂移管内做匀速直线运动,在漂移管间被电场加速,加速电压视为不变.设质子进入漂移管B 时速度为8×106 m/s ,进入漂移管E 时速度为1×107 m/s ,电源频率为1×107 Hz ,漂移管间缝隙很小,质子在每个管内运动时间视为电源周期的12.质子的荷质比取1×108 C/kg.求:(1)漂移管B 的长度; (2)相邻漂移管间的加速电压.【解析】 (1)设质子进入漂移管B 的速度为v B ,电源频率、周期分别为f 、T ,漂移管B 的长度为L ,则T =1f ①L =v B ·T 2②联立①②式并代入数据得L =0.4 m .③(2)设质子进入漂移管E 的速度为v E ,相邻漂移管间的加速电压为U ,电场力对质子所做的功为W ,质子从漂移管B 运动到漂移管E 电场力做功W ′,质子的电荷量为q ,质量为m ,则W =qU ④W ′=3W ⑤ W ′=12m v 2E -12m v 2B ⑥ 联立④⑤⑥式并代入数据得U =6×104 V .⑦ 【答案】 (1)0.4 m (2)6×104 V4.如图所示,一充电后的平行板电容器的两极板相距l ,在正极板附近有一质量为M 、电荷量为q (q >0)的粒子;在负极板附近有另一质量为m 、电荷量为-q 的粒子.在电场力的作用下,两粒子同时从静止开始运动.已知两粒子同时经过一平行于正极板且与其相距25l 的平面.若两粒子间相互作用力可忽略,不计重力,则Mm 为( A )A .3 2B .21C .52 D .31解析:两粒子同时从静止开始,在电场力作用下做匀加速直线运动,同时经过某一平面,它们在相同时间内位移之比为23,根据x =12at 2,可知它们的加速度之比为23.粒子受到的电场力F =qE ,结合牛顿第二定律,得a =Fm,由于两粒子所受电场力大小相等,故质量之比应为32,A 正确.5.如图所示是一个平行板电容器,其电容为C ,带电荷量为Q ,板间距离为d ,上极板带正电荷.现将一个试探电荷q 由两极板间的A 点移动到B 点,A 、B 两点间的距离为l ,连线AB 与极板间的夹角为30°,则电场力对试探电荷q 所做的功等于( C )A.qCl Qd B.qQl Cd C.qQl 2Cd D.qCl 2Qd解析:根据U =Q C ,E =U d 可得E =Q Cd ,所以,A →B 电场力做功,W =qEl sin30°=qQl 2Cd,选项C 正确.6.如图所示,充电后的平行板电容器水平放置,电容为C ,极板间的距离为d ,上极板正中有一小孔.质量为m 、电荷量为+q 的小球从小孔正上方高h 处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g ).求:(1)小球到达小孔处的速度;(2)极板间电场强度的大小和电容器所带电荷量; (3)小球从开始下落运动到下极板处的时间. 解析:(1)由v 2=2gh ,得v =2gh(2)在极板间带电小球受重力和电场力作用,由牛顿运动定律知:mg -qE =ma 由运动学公式知:0-v 2=2ad 整理得电场强度E =mg (h +d )qd由U =Ed ,Q =CU ,得电容器所带电荷量Q =C mg (h +d )q(3)由h =12gt 21,0=v +at 2,t =t 1+t 2整理得t =h +dh2h g答案:(1)2gh (2)mg (h +d )qd C mg (h +d )q(3)h +dh2h g知识点三 带电粒子在匀强电场中的偏转1.运动规律(1)沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU.(2)沿电场力方向,做匀加速直线运动⎩⎨⎧加速度:a =F m =qE m =qUmd离开电场时的偏移量:y =12at 2=qUl 22md v 20.离开电场时的偏转角:tan θ=v y v 0=qUlmd v 20.2.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12m v 20y =12at 2=12·qU 1md ·⎝⎛⎭⎫l v 02 tan θ=qU 1l md v 20得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d.(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3.功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12m v 2-12m v 20,其中U y =Ud y ,指初、末位置间的电势差.典例 如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10C 、质量为m =1.0×10-20kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109N·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离为多远;到达PS 界面时离D 点为多远; (2)在图上粗略画出粒子的运动轨迹;(3)确定点电荷Q 的电性并求其电荷量的大小.【审题关键点】 (1)带电粒子在两板之间的匀强电场中发生偏转,做类平抛运动. (2)带电粒子在两界面MN 、PS 之间的无场区域做匀速直线运动.(3)在点电荷Q 形成的电场区域做匀速圆周运动,则带电粒子进入该电场时的速度方向与该位置的半径垂直. 【解析】 (1)粒子穿过界面MN 时偏离中心线RO 的距离(偏移位移):y =12at 2,a =F m =qUdm ,L =v 0t ,则y =12at 2=qU 2dm ⎝⎛⎭⎫L v 02=0.03 m =3 cm.粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L 12L +12 cm =yY ,解得Y =4y =12 cm.(2)第一段是抛物线、第二段是直线、第三段是圆弧.轨迹如图所示:(3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电. 根据几何关系可知半径r =15 cm , 电场力提供向心力,则k Qq r 2=m v 2合r ,解得Q ≈1.04×10-8 C.【答案】 (1)3 cm 12 cm (2)轨迹图见解析(3)负电 1.04×10-8 C【突破攻略】 分析匀强电场中的偏转问题的关键(1)条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动. (2)运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动.7.如图,平行板电容器两极板的间距为d ,极板与水平面成45°角,上极板带正电.一电荷量为q (q >0)的粒子在电容器中靠近下极板处,以初动能E k0竖直向上射出.不计重力,极板尺寸足够大.若粒子能打到上极板,则两极板间电场强度的最大值为( B )A.E k04qd B.E k02qd C.2E k02qd D.2E k0qd解析:当电场足够大时,粒子打到上极板的极限情况为:粒子到达上极板处时速度恰好与上极板平行,粒子的运动为类平抛运动的逆运动.将粒子初速度v 0分解为垂直极板的v y 和平行极板的v x ,根据运动的合成与分解,当v y =0时,根据运动学公式有v 2y =2qE m d ,v y =v 0cos45°,E k0=12m v 20,联立得E =E k02qd,故B 正确. 8.如图所示,两块相同的金属板正对着水平放置,板间距离为d .当两板间加电压U 时,一个质量为m 、电荷量为+q 的带电粒子,以水平速度v 0从靠近上极板的A 点射入电场,经过一段时间后从靠近下极板的B 点射出电场,A 、B 间的水平距离为L ,不计重力影响.求:(1)带电粒子从A 点运动到B 点经历的时间; (2)带电粒子经过B 点时速度的大小; (3)A 、B 间的电势差.解析:(1)带电粒子在水平方向做匀速直线运动,从A 点到B 点经历时间t =Lv 0;(2)带电粒子在竖直方向做匀加速直线运动,板间场强大小E =Ud加速度大小a =qE m =qUmd经过B 点时粒子沿竖直方向的速度大小v y =at =qU md ·Lv 0带电粒子在B 点速度的大小v =v 20+q 2U 2L 2m 2d 2v 20; (3)粒子从A 点运动到B 点过程中,据动能定理得: qU AB =12m v 2-12m v 20A 、B 间的电势差U AB =12m v 2-12m v 20q =qU 2L 22md 2v 20.答案:(1)Lv 0(2)v 20+q 2U 2L 2m 2d 2v 20 (3)qU 2L 22md 2v 209.如图所示,在足够大的光滑绝缘水平面内建立直角坐标系xOy ,在y 轴右侧区域内有沿y 轴负方向的匀强电场(图中未画出),电场强度E =8×102 N/C.带正电的绝缘小球A 和带负电的绝缘小球B ,质量均为m =200 g ,带电荷量大小均为5×10-4C .现在使小球A 从坐标系中的点C (0,2.5 m)以一定的初速度开始运动,运动一段时间后,使小球B 从坐标系中的点D (3 m ,-2.5 m)以相同的初速度开始运动,小球B 运动t 2=1 s 时间与小球A 相遇.已知小球A 、B 初速度大小均为v 0,方向都沿x 轴正方向,不计两小球间的相互作用力和空气阻力.求:(1)v 0的大小;(2)两小球在电场中相遇点的坐标.解析:(1)设小球A 、B 在电场中分别运动了t 1、t 2时间后相遇,两小球加速度大小a A =a B =a =Eqm=2 m/s 2,其中A 球加速度方向沿y 轴负方向,B 球加速度方向沿y 轴正方向.两小球在电场中做类平抛运动,设相遇点为P ,如图所示,由几何关系得:x 方向:v 0t 1-v 0t 2=x D ,y 方向:12at 21+12at 22=y C -y D ,代入数据解得t 1=2 s ,v 0=3 m/s.(2)设相遇点P的坐标为(x P,y P),则:x P=v0t1=6 m,y C-y P=12at21,代入数据得y P=-1.5 m,相遇点P的坐标为(6 m,-1.5 m).答案:(1)3 m/s(2)(6 m,-1.5 m)电容器在现代科技生活中的应用电容器在现代生活中应用十分广泛,其中作为传感器使用的有智能手机上的电容触摸屏、电容式传声器、电容式加速度计等.10.[智能手机上的电容触摸屏](多选)目前智能手机普遍采用了电容触摸屏,电容触摸屏是利用人体的电流感应进行工作的,它是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂一层ITO(纳米铟锡金属氧化物),夹层ITO涂层作为工作面,四个角引出四个电极,当用户手指触摸电容触摸屏时,手指和工作面形成一个电容器,因为工作面上接有高频信号,电流通过这个电容器分别从屏的四个角上的电极中流出,且理论上流经四个电极的电流与手指到四个角的距离成比例,控制器通过对四个电流比例的精密计算来确定手指位置.对于电容触摸屏,下列说法正确的是(AD)A.电容触摸屏只需要触摸,不需要压力即能产生位置信号B.使用绝缘笔,在电容触摸屏上也能进行触控操作C.手指压力变大时,由于手指与屏的夹层工作面距离变小,电容变小D.手指与屏的接触面积变大时,电容变大解析:据题意知,电容触摸屏只需要触摸,由于流经四个电极的电流与手指到四个角的距离成比例,控制器就能确定手指的位置,因此不需要手指有压力,故A正确;绝缘笔与工作面不能形成一个电容器,所以不能在电容屏上进行触控操作,故B错误;手指压力变大时,由于手指与屏的夹层工作面距离变小,电容将变大,故C错误;手指与屏的接触面积变大时,电容变大,故D正确.11.[电容式传声器]图示为某电容传声器结构示意图,当人对着传声器讲话,膜片会振动.若某次膜片振动时,膜片与极板距离增大,则在此过程中(D)A.膜片与极板间的电容增大B.极板所带电荷量增大C.膜片与极板间的电场强度增大D.电阻R中有电流通过解析:根据C=εr S4πkd可知,膜片与极板距离增大,膜片与极板间的电容减小,选项A错误;根据Q=CU可知极板所带电荷量减小,因此电容器要通过电阻R放电,所以选项D正确,B错误;根据E=Ud可知,膜片与极板间的电场强度减小,选项C错误.12.[电容式加速度计](多选)电容式加速度传感器的原理如图所示,质量块左、右侧连接电介质、轻质弹簧,弹簧与电容器固定在外框上,质量块可带动电介质移动,改变电容.则(CD)A.电介质插入极板间越深,电容器电容越小B.当传感器以恒定加速度运动时,电路中有恒定电流C.若传感器原来向右匀速运动,突然减速时弹簧会压缩D.当传感器由静止突然向右加速时,电路中有顺时针方向的电流解析:由C=εr S4πkd知,电介质插入越深,εr越大,即C越大,A错;当传感器以恒定加速度运动时,电介质相对电容器静止,电容不变,电路中没有电流,B错;传感器向右匀速运动,突然减速时,质量块由于惯性相对传感器向右运动,弹簧压缩变短,C对;传感器由静止突然向右加速时,电介质相对电容器向左运动,εr增大,C增大,电源电动势不变,由C=Q U知,Q增大,上极板电荷量增大,即电路中有顺时针方向的电流.D对.。
2022年高考物理一轮复习考点优化训练专题:28 电容器与电容 带电粒子在电场中的运动
2022年高考物理一轮复习考点优化训练专题:28 电容器与电容带电粒子在电场中的运动一、单选题1.(2分)(2020高一下·海南期末)如图所示是描述对给定的电容器充电时电荷量Q、电压U、电容C之间相互关系的图像,其中不正确的是()A.B.C.D.2.(2分)(2020高一下·贵州期末)平行板电容器和电源、电阻、开关串联,组成如图所示的电路。
接通开关K,给电容器充电,则()A.保持K接通减小两极板间的距离,则两极板间的电场强度减小B.保持K接通,在两极板间插入一块铝板,则两极板间的电场强度增大C.充电结束后断开K,减小两极板间的距离,则两极板间的电压增大D.充电结束后断开K,在两极板间插入一块电介质,则两极板间的电压增大3.(2分)(2020高一下·重庆期末)下列关于电容和电容器的说法中,正确的是()A.电容器不带电时,其电容为零B.电容器的电容在数值上等于使两极板间产生1V的电势差时电容器所带的电荷量C.某一平行板电容器,其它参数不变,仅减小两极板之间的正对面积,电容变大D.保持平行板电容器两极板的带电量不变,仅增大极板间距,两极板间匀强电场的电场强度减小4.(2分)如图所示,平行板电容器两极板A和B分别与电源的正、负极相连且A板接地,P为两极板间的一点,在P点有一带负电的油滴恰好平衡。
现保持B板不动,将A板慢慢向上平移到图中虚线所示的位置,这时( )A .电容器两极板间的电势差减小B .P 点的场强增大C .P 点的电势降低D .固定在P 点的负电荷的电势能将减少5.(2分)(2020高二下·北京期末)光滑平行金属导轨 M 、N 水平放置,导轨上放置着一根与导轨垂直的导体棒 PQ 。
导轨左端与由电容为 C 的电容器、单刀双掷开关和电动势为 E 的电源组成的电路相连接,如图所示。
在导轨所在的空间存在方向垂直于导轨平面的匀强磁场(图中未画出)。
先将开关接在位置 a ,使电容器充电并达到稳定后,再将开关拨到位置 b 。
第5课时 电容器与电容 带电粒子在电场中的运动
【即时训练1】 在一块半导体基板上阵列了10万颗金属颗粒,每一颗充当电容 器的一极,外表面绝缘,手指贴在其上构成电容器的另一极,这就组成了指纹传 感器.当手指的指纹一面与绝缘表面接触时,由于指纹深浅不同,对应的峪和嵴 与颗粒间形成一个个电容大小不同的电容器,则( B ) A.指纹的嵴处与半导体基板上对应的金属颗粒距离近,电容小 B.指纹的峪处与半导体基板上对应的金属颗粒距离远,电容小 C.对每个电容感应颗粒都充电至某一参考电压,在手指靠近时,各金属电极所 带电荷量减小 D.对每个电容感应颗粒都充电至某一参考电压,在手指远离时,各金属电极均 处于充电状态
3.平行板电容器及其电容
(1)影响因素:平行板电容器的电容与 正对面积 成正比,与介质的介电常数 成
正比,与 两板间的距离 成反比.
(2)决定式:C=
rS 4πkd
,k为静电力常量,ε r为 电介质的相对介电常数
介质的性质有关.
,与电
4.平行板电容器的动态分析思路
确定不变量 E= U 分析 E 的变化 d
1.偏转问题 (1)条件分析:带电粒子 垂直 于电场线方向进入匀强电场. (2)运动形式: 类平抛 运动.
(3)处理方法:应用运动的合成与分解.
(4)运动规律:
qU
①加速度:a= F = qE = md .
mmlBiblioteka ②在电场中的运动时间:t= v0
.
qUl
2
③离开电场时的偏移量 y= 1 at2= 2mv02d . 2
解析:根据电容器的决定式 C= rS ,当上极板向下移动时,d 减小,电容变大,又 C= Q ,电
4πkd
U
压 U 不变,因此电容器带电量增多,D 错误;根据电容器内部电场强度 E= U 可知,d 减小, d
电容器实验十:观察电容器的充、放电现象 带电粒子在电场中的直线运动-2025物理大一轮复习讲义人教版
第4课时电容器实验十:观察电容器的充、放电现象带电粒子在电场中的直线运动目标要求 1.知道电容器的基本构造,了解电容器的充电、放电过程。
2.理解电容的定义及动态变化规律。
3.掌握带电粒子在电场中做直线运动的规律。
考点一实验:观察电容器的充、放电现象1.实验原理(1)电容器的充电过程如图所示,当开关S接1时,电容器接通电源,在静电力的作用下自由电子从正极板经过电源向负极板移动,正极板因失去电子而带正电,负极板因获得电子而带负电。
正、负极板带等量的正、负电荷,电荷在移动的过程中形成电流。
在充电开始时电流比较大(填“大”或“小”),以后随着极板上电荷的增多,电流逐渐减小(填“增大”或“减小”),当电容器两极板间电压等于电源电压时电荷停止定向移动,电流I=0。
(2)电容器的放电过程如图所示,当开关S接2时,相当于将电容器的两极板直接用导线连接起来,电容器正、负极板上电荷发生中和,在电子移动过程中,形成电流。
放电开始电流较大(填“大”或“小”),随着两极板上的电荷量逐渐减小,电路中的电流逐渐减小(填“增大”或“减小”),两极板间的电压也逐渐减小到零。
2.实验步骤(1)按图连接好电路。
(2)把单刀双掷开关S 打在上面,使触点1和触点2连通,观察电容器的充电现象,并将结果记录在表格中。
(3)将单刀双掷开关S 打在下面,使触点3和触点2连通,观察电容器的放电现象,并将结果记录在表格中。
(4)记录好实验结果,关闭电源。
3.注意事项(1)电流表要选用小量程的灵敏电流计。
(2)要选择大容量的电容器。
(3)实验要在干燥的环境中进行。
例1(2023·福建莆田市二模)某探究小组利用如图所示电路观察电容器的充、放电现象,其中E 为电源(内阻不计),R 为定值电阻,C 为电容器,A 为电流表,V 为电压表。
(1)给电容器充电后,为了观察放电现象,单刀双掷开关S 应拨至_______(填“1”或“2”)位置。
放电过程中,R 中电流方向________________(填“自左向右”或“自右向左”);观察到电压表的示数逐渐变小,说明电容器的带电荷量逐渐________(填“增加”或“减少”)。
高三物理一轮复习课件:第六章_第三讲_电容器与电容_带电粒子在电场中的运动
变式训练 1
一平行板电容器的两个极板水平放置,
两极板间有一带电量不变的小油滴,油滴在极板间运动时 所受空气阻力的大小与其速率成正比.若两极板间电压为 零,经一段时间后,油滴以速率 v 匀速下降;若两极板间 的电压为 U,经一段时间后,油滴以速率 v 匀速上升.若 两极板间电压为- U,油滴做匀速运动时速度的大小、方 向将是 ( )
解析
当增大两极板间的距离时, 由电容器的电容 C=
εrS 知电容变小,因为电容器两端的电压不变,由 Q=CU 4πkd 知电容器极板上的电量变小,即电容器对电源反向充电,故 R 中有电流,电流的方向为 a 流向 b,故答案应选 B、C.
答案
BC
4.如图所示,平行板电容器的两个极板为 A、B,B 板接 地, A 板带有电量+ Q,板间电场中有一固定点 P,若将 B 板 固定,A 板下移一些,或者将 A 板固定,B 板上移一些,在这 两种情况下,以下说法正确的是 ( )
三、示波管的原理 1.构造:电子枪,偏转电极,荧光屏. 2.工作原理(如图所示 ).
3.如果在偏转电极 XX′和 YY′之间都没有加电压,则电 子枪射出电子后沿直线传播,打在荧光屏 4 中心 ,在那里产 生一个亮斑. 4. YY′上加的是待显示的 5 信号电压 . XX′上是机 器自身的锯齿形电压,叫做 6 扫描电压 .若所加扫描电压和 信号电压的周期相同,就可以在荧光屏上得到待测信号在一个 周期内变化的
答案 AC
5.如图所示,足够长的两平行金属 板正对着竖直放置,它们通过导线与 电源 E、定值电阻 R、开关 S 相连.闭 合开关后,一个带电的液滴从两板上 端的中点处无初速释放,最终液滴落 在某一金属板上.下列说法中正确的 是( )
A.液滴在两板间运动的轨迹是一条抛物线 B.电源电动势越大,液滴在板间运动的加速度越大 C.电源电动势越大,液滴在板间运动的时间越短 D.定值电阻的阻值越大,液滴在板间运动的时间越长
11电容器带电粒子在电场中的运动要点
电容器、带电粒子在电场中的运动一、本周知识综述本周我们主要学习平行板电容器还有带电粒子在电场中的运动。
理解和应用两种典型电容器的求解方法,掌握带电粒子在电场中的加速和偏转,可以和抛体运动类比记忆。
能利用等效重力的方法求解复合场有关的题目。
二、重难点知识归纳与讲解1、电容器的电容、平行板电容器的电容(1)电容器:两个彼此绝缘又互相靠近的导体可构成一个电容器.(2)电容:电容器所带的电荷量Q(一个极板所带电荷量的绝对值)与两个极板间的电势差U的比值,即电容是表示电容器容纳电荷本领的物理量.(3)常用电容器:纸质电容器、电解电容器、平行板电容器、可变电容器.其中电解电容器连接时应注意其“+”、“-”极.(4)平行板电容器:平行板电容器的电容C跟介电常数ε成比,跟两板正对面积S成正比,跟两板间距离d成反比,即(5)对电容器电容的两个公式的理解.①公式是电容的定义式,适用于任何电容器.对于一个确定的电容器,其电容只由本身的因素决定,而与其电荷量Q和电压U无关.②公式是平行板电容器的决定式,只适用于平行板电容器.2、平行板电容器的动态分析充电后平行板电容器两极板间形成的电场,可认为是匀强电场,由于某种原因使电容C发生了改变,就会导致电容器的电荷量Q,两板间电压U,匀强电场的场强E发生相应的变化,这类问题常见于两种情况:(1)电容器一直与电源相连接.此时电容器两极板间电势差U保持不变.(2)电容器充电后与电源断开.此时电容器所带的电荷量Q保持不变.分析的基本思路是:3、带电粒子在电场中加速带电粒子进入电场中加速,若不计粒子重力,根据动能定理,有=0时,末速度v的大小只与带电粒子的荷质比和加速电压U有关,当初速度v而与粒子在电场中的位移无关.4、带电粒子在电场中的偏转带电粒子沿垂直匀强电场的场强方向进入电场后,做类平抛运动,如图所示,设粒,两平行金属板间电压为U,板长为L,板间子的电荷量为q,质量为m,初速度为v距离为d,则平行于板方向的分运动是匀速直线运动,L=vt垂直于板方向的分运动是初速为零的匀加速直线运动所以,侧移距离偏转角θ满足5、示波管的原理(1)结构:示波管是由电子枪、偏转电极和荧光屏组成的,管内抽成真空.(2)原理:如果在偏转电极XX′上加上扫描电压,同时在偏转电极YY′上加上所要研究的信号电压,若其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.6、带电粒子在匀强电场中的运动带电粒子在匀强电场中的运动有两类问题:一是运动和力的关系问题,常用牛顿第二定律结合运动学公式去分析解决;二是运动过程中的能量转化问题,常用动能定理或能量守恒定律去分析解决.(1)在交变电场中的运动①在交变电场中做直线运动.粒子进入电场时的速度方向(或初速为零)跟电场力方向平行,在交变电场力作用下,做加速、减速交替变化的直线运动,通常运用牛顿运动定律和运动学公式分析求解.②在交变电场中的偏转,粒子进入电场时的速度方向跟电场力方向垂直,若粒子在电场中运动的时间远小于交变电场的周期,可近似认为粒子在通过电场的过程中电场力不变,而做类平抛运动.(2)在匀强电场与重力场的复合场中运动处理复合场有关问题的方法常有两种:①正交分解法:将复杂的运动分解为两个相互正交的简单直线运动,分别去研究这两个分运动的规律,然后运用运动合成的知识去求解复杂运动的有关物理量.②等效法:由于带电微粒在匀强电场中所受到的电场力和重力都是恒力,因此,可将电场力F和重力G进行合成如图所示,这样复合场就等效为一个简单场,将其合力F 合与重力场的重力类比,然后利用力学规律和方法进行分析和解答.典型例题例1、如图所示,电子在电势差为U1的加速电场中由静止开始运动,然后射入电势差为U2的两块平行极板间的电场中.在满足电子能射出平行板区的条件下,下述四种情况下,一定能使电子的偏转角θ变大的是()A.U1变大,U2变大B.U1变小,U2变大C.U1变大,U2变小D.U1变小,U2变小解析:设电子经电场U1加速后获得的速度为v,根据动能定理①设极板长为L,两板间距离为d,电子进入偏转电场后做类平抛运动,则平行于极板方向:L=vt②垂直于极板方向:③偏转角θ满足:④由以上各式可解得:显然,U1减小,U2增大时,θ一定增大.答案:B例2、如图所示,质量为m、电荷量为-q的粒子(重力不计),在匀强电场中的A点时速度为v,方向与电场线垂直,在B点时速度大小为2v,已知A、B两点间距离为d,求(1)A、B两点间的电压;(2)电场强度的大小和方向.解析:(1)带电粒子从A到B的过程中,由动能定理可得将vA=v,v B=2v代入可解得(2)带电粒子从A到B做类平抛运动,设在垂直电场线和平行电场线方向上的位移分别为x和y.由于A到B,粒子的动能增加,则电场力做正功,所以,场强方向应水平向左.答案:例3、带有等量异种电荷的两个平行金属板A和B水平放置,两板间距离为d(d远小于板的长和宽),一个带正电的油滴M悬浮在两板的正中央,处于平衡,油滴的质量为m,电荷量为q,如图所示.在油滴的正上方距A板d处有一个质量也为m的带电油滴N,油滴N由静止释放后,可以穿过A板上的小孔,进入两金属板间与油滴M相碰,并立即结合成一个大油滴.整个装置处于真空环境中,若不计油滴M和N间的库仑力和万有引力以及金属板本身的厚度,要使油滴N能与M相碰,且结合成的大油滴(油滴可视为质点)又不与金属板B相碰.求:(1)两个金属板A、B间的电压是多少?哪板电势高?(2)油滴N带何种电荷,电荷量可能是多少?解析:(1)油滴M带正电,在两金属板之间处于平衡,有mg=qU/d,则B板电势较高,电势差(2)若油滴N带负电,则N与M相碰后,结合成大油滴无论其电性为正,还是为负,或者电荷量为零,都将向B板做加速运动而最终与B板相碰.因此,要不落到B板上,油滴N必带正电.,有:设油滴N带电量为Q,油滴N与M相碰前的速度设为v油滴N能与M相碰:油滴M和N相碰后,结合成大油滴,速度为v,有:此后,大油滴向下运动,不碰到B板,须有代入v和U的值,解得油滴所带电荷量是答案:B板电势较高(2)正电,例4、在水平向右的匀强电场中,有一质量为m,带正电的小球,用长为L的绝缘细线悬挂于O点,当小球静止A点时,细线与竖直方向夹角为θ,如图所示.现给小球一个垂直于悬线的初速度,使小球恰能在竖直平面内做圆周运动,求:(1)小球运动过程中的最小速度.(2)小球在A点的初速度.解析:小球在运动过程中,所受重力和电场力都是恒力,将它们合成等效为一个力F,如图所示,则把合力F与重力类比,其等效重力加速度因此,小球在竖直平面内做匀速圆周运动的等效“最低点”和“最高点”分别为图中的A点和B 点.(1)小球在B点处的速度最小,依题意有(2)小球从A点运动到B点的过程中,根据动能定理答案:例5、如图所示,A、B为水平放置的平行金属板,板间距离为d(d远小于板的长和宽),在两板之间有一带负电的质点P.已知若在A、B之间加电压U,则质点P可以静止平衡.现在A、B间加上如图所示的随时间t变化的电压U,在t=0时,质点P位于A、B间的中点处且初速度为0,已知质点P能在A、B之间以最大的幅度上下运动而又不与两板相碰,求图中U改变的各时刻t1,t2,t3及tn的表达式.(质点开始从中点上升到最高点,及以后每次从最高点到最低点或从最低点到最高点的过程中,电压只改变一次.)解析:综合分析带电质点P的受力情况和运动情况,建立清晰的物理图景是解答本题的关键.设质点P的质量为m,电荷量为q,当A、B间加电压U时,根据题意有当两板间所加电压为2U时,P的加速度向上,设其大小为a,则联立解得,a=g.当两板间的电压为零时,P只受重力,加速度方向向下,大小为g,要P以最大幅度上下运动,而又不与两板相碰,则P达到A板或B板时速度必为零.根据运动的对称性可知,加上电压2U后,P质点先向上做匀加速度直线运动,运动后,撤去电场,继续向上做匀减速运动直到速度为零.到达A板后,在重力作用下,自由下落直到A、B的中点,然后又加上电压2U,使质点P向下做匀减速运动,至B板时,速度恰好减为零,然后反向加速,达到A、B 中点时撤去电场,在重力作用下做匀减速运动到A板时,速度恰好为零,以后重复上述运动过程.综合以上分析,质点P的运动过程可用v—t图象表示,如图所示.由匀变速直线运动规律有其中a=g,解得设质点P从A板自由下落到AB两板中点所历经的时间为△t,则答案:例6、如图所示,A、B是一对平行的金属板,在两板间加上一周期为T的交变电压U. A 板的电势U=0,B板的电势U B随时间的变化规律为:在0到的时间内,U B=U0(正A的常数);在到T的时间内,U=-U0;在T到的时间内,U B=U0;在到2TB的时间内,U=-U0……,现有一电子从A板上的小孔进入两板间的电场区内,设电子B初速度和重力的影响均可忽略()A.若电子是在t=0时刻进入的,它将一直向B板运动B.若电子是在时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上C.若电子是在时刻进入的,它可能时而向B板运动,时而向A板运动,最后打在B板上D.若电子是在时刻进入的,它可能时而向B板,时而向A板运动解析:依题意,电子在电场中运动时,其加速度大小不变,方向在时刻发生突变.不同时刻进入的电子,其运动情况有所不同,如图中的a、b、c所示,分别表示t=0时刻,时刻的和时刻进入的电子的v—t图象(以从A板指向B板方向为正方向).从图象可以看出,t=0时刻进入的电子速度方向不变,一直向B板运动. 和时刻进入的电子运动一段时间后速度反向,这说明它们都是来回往复运动,但在一个周期内,前者的位移为正,即向B板运动了一段位移,最后一定打在B板上;而后者的位移为负,若在一个周期内未打到B板,电子将返回到A板而从小孔穿出.时刻进入的电子受到指向A板的电场力,而初速为零,因此,它不可能进入两板间运动.答案:AB在线测试一、选择题1、传感器是采集信息的重要器件.如图所示是一种测定压力的电容式传感器,A为固定电极,B为可动电极,组成一个电容大小可变的电容器.可动电极两端固定,当待测压力施加在可动电极上时,可动电极发生形变,从而改变了电容器的电容.现将此电容式传感器与零刻度在中央的灵敏电流表和电源串联成闭合电路,已知电流从电流表正接线柱流入时指针向右偏转.当待测压力增大时()A.电容器的电容将减小B.灵敏电流表指针指在正中央零刻度处C.灵敏电流表指针向左偏转D.灵敏电流表指针向右偏转2、如图所示,A、B为两块水平放置的金属板,通过闭合的开关S分别与电源两极相连,两极中央各有一个小孔a和b.在a孔正上方某处有一带电质点由静止开始下落,若不计空气阻力,该质点到达b孔时速度恰为零,然后返回.现要使带电质点能穿过b孔,则可行的方法是()A.保持S闭合,将A板适当上移B.保持S闭合,将B板适当下移C.先断开S,再将A板适当上移D.先断开S,再将B板适当下移3、如图所示,质量相同的两个带电粒子P、Q以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P从两极板正中央射入,Q从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上板的过程中()A.它们运动的时间t Q>t PB.它们的电势能减小量之比△E P∶△E Q=1∶2C.它们所带的电荷量之比q P∶q Q=1∶2D.它们的动量增量之比△p P∶△p Q=2∶14、两块大小、形状完全相同的金属平板平行放置,构成一平行板电容器,与它相连接的电路如图所示,接通开关S,电源即给电容器充电()A.保持S接通,减小两极板间的距离,则两极板间电场的电场强度减小B.保持S接通,在两极板间插入一块介质,则极板上的电荷量增大C.断开S,减小两极板间的距离,则两极板间的电势差减小D.断开S,在两极板间插入一块介质,则两极板间的电势差增大5、如图一种测定电液体深度的装置:包着一层电介质的金属棒与导电液体形成一个电容器,电容量的变化能反映液面的升降情况()A.电容增大反映h增大B.电容增大反映h减小C.将金属棒和导电液体分别接电源两极再断开后,液体深度变化时导电液与金属棒间的电压增大反映h减小D.将金属棒和导电液体分别接电源两极再断开后,液体深度变化时导电液与金属棒间的电压增大反映h增大6、三个质量相等的微粒,其中一个带正电荷,一个带负电荷,一个不带电荷,以相同初速度v沿中央轴线进入水平放置的平行金属板间,最后分别打在正极板上的A、B、C处,如图所示,则()A.打在极板A处的微粒带负电荷,打在极板B处的微粒不带电,打在极板C处的微粒带正电荷B.三个微粒在电场中的运动时间相等C.三个微粒在电场中运动时的加速度a A<a B<a CD.三个微粒打到极板上时的动能E kA<E kB<E kC7、如图所示,为一方向水平向右的匀强电场.一个质量为m、带电量为+q的小球以初速度v0从a点竖直向上射入电场中.小球通过电场中b点时速度为2v,方向与电场方向一致.则a、b两点的电势差为()A.B.C.D.8、一个电荷量为-q的油滴,从坐标原点O以速度v0射入匀强电场,v0的方向与电场方向的夹角为θ,如图所示.已知油滴质量为m,测得它在电场中运动到最高点P时的速率恰好为v0,设P点的坐标为(xP、yP),则()A.x P>0B.x P<0C.x P=0D.条件不足,不能确定9、如图所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心O处静止释放一质量为m、带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的c点,OC=h,又知道过竖直线上的b点时,小球速度最大,则在Q所形成的电场中,可确定的物理量是()A.b点场强B.c点场强C.b点电势D.c点电势B卷二、综合题10、半径为r的绝缘光滑圆环固定在竖直平面内,环上套有一质量为m、带正电的珠子,空间存在水平向右的匀强电场.如图所示,珠子所受静电力是其重力的倍.将珠子从环上最低位置A点静止释放,则珠子所能获得的最大动能E=________.k[答案]11、下述为一个观察带电粒子在平行板电容器板间电场中运动状况的实验.现进行下述操作:第一步,给如图所示真空中水平放置的平行板电容器充电,让A、B两极板带上一定的电荷量,使得一个带电油滴P在两板间的匀强电场中恰能保持静止状态.第二步,给电容器继续充电使其电荷量突然增加△Q,让油滴开始竖直向上运动t秒.第三步,在1上一步基础上使电容器突然放电△Q2,观察到又经2t秒后,油滴刚好回到原出发点.设油滴在运动过程中未与极板接触.(1)说明在上述第二步和第三步两个过程中,带电油滴各做什么性质的运动?(2)求△Q1和△Q2的比值[答案]12、一个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运动,如图所示,AB与电场线夹角θ=30°.已知带电微粒的质量m=1.0 ×10-7kg,电量q=1.0×1010C,A、B相距L=20cm.(取g=10m/s2,结果要求二位有效数字)求:(1)试说明微粒在电场中运动的性质,要求说明理由.(2)电场强度大小、方向?(3)要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少?[答案]13、在方向水平的匀强电场中,一不可伸长的不导电细线的一端连着一个质量为m的带电小球,另一端固定于O点,把小球拉起直至细线与场强平行,然后无初速释放.已知小球摆到最低点的另一侧,线与竖直方向的最大夹角为θ(如图所示).[答案]14、如图(a)所示,A、B是一对平行放置的金属板,中心各有一小孔P、Q,PQ连线垂直金属板,两板间距为d,从P点处连续不断地有质量为m、电荷量为+q的带电粒子(重力不计)沿PQ方向放出,初速度可忽略,在A、B间某时刻t=0开始加有如图(b)所示的交变电压,其电压大小为U,周期为T,带电粒子在A、B间运动过程中,粒子相互作用力可忽略不计.(1)如果只有在每个周期的时间内放出的带电粒子才能从小孔Q中射出,则上述物理量之间应满足怎样的关系?(2)如果各物理量满足(1)问的关系,求每个周期内从小孔Q中有粒子射出的时间与周期T的比值.[答案]15、如图甲所示,真空中的电极K连续不断地发出电子(设电子的初速度为零),经电压为U1的电场加速,加速电压U1随时间t变化的图象如图乙所示,电子在电场U1中加速时间极短,可认为加速时电压不变,电子被加速后由小孔S穿出,沿两个彼此靠近的水平金属板A、B间中轴线从左边缘射入偏转电场,A、B极板长均为L=0.2m,两板之间距离d=0.05m,A板的电势比B板电势高,A、B板右侧边缘到竖直放置的荧光屏P之间的距离b=0.10m,荧光屏的中心O与A、B板的中心轴线在同一水平线上,求:(1)当A、B板间所加电压U为多少时,电子恰好打不到荧光屏上;2=U2/2时,可看到屏幕上电子条距中心O多远的范围.(2)当A、B板间所加电压U′2[答案]第1题答案错误! 正确答案为 D第2题答案错误! 正确答案为 B第3题答案错误! 正确答案为 C第4题答案错误! 正确答案为 BC第5题答案错误! 正确答案为 AC第6题答案错误! 正确答案为 A第7题答案错误! 正确答案为 D第8题答案错误! 正确答案为 B第9题答案错误! 正确答案为 AD提示:1、当待测压力增大时,可动电极B发生形变,使两极板间距离d减小,由可知,在ε、S不变的情况下,d减小,则C增大,即电容器的电容将增大.由于电容器两极始终与电源两极相连,故电容器两极板间电压U保持不变,由可知,在U不变的情况下,C增大,则Q增大,即电容器应不断充电,通过电流表的电流应从正接线柱流入,指针向右偏转.2、设带电质点到a孔的距离为h,A、B两极板间距离为d,两板间电压为U,带电质点由静止释放运动到b孔的过程中,根据动能定理mg(h+d)-qU=E kb依题意知,未移动极板时,E kb=0开关S闭合时,A、B两极板始终跟电源两极相连,电压U=E保持不变.若将A板上移,(h+d)保持不变,则E′kb=0,带电质点不能穿过b孔.若将B板下移,(h+d)增大,而U不变,则E′kb>0,带电质点能穿过b孔.开关S断开时,极板上的电荷量Q保持不变.若将A板上移,由可知,d增大,则C减小;由可知,C减小,则U增大,而(h+d)保持不变,故E′kb<0,即带电质点不能到达b孔.若将B板下移,设下移△d,电场强度不变,则下移前mg(h+d)-qEd=0 ①下移后mg(h+d+△d)-qE(d+△d)=E′kb②由以上两式可得,E′kb=mg△d-qE△d由①式得mg<qE所以,E′kb<0,即带电质点不能到达b孔.答案:B6、微粒在电场中同时受到重力和电场力的作用而做类平抛运动,水平方向上:x=v0t,可知t A<t B<t C,竖直分运动,因y一定,则a A>a B>a C.7、带电小球受到电场力和重力作用,考察水平分运动,根据动能定理有:则8、油滴从O点到最高点P,由动能定理可知W AO=0.10 答案:.11 解:①在第二步过程中,油滴竖直向上做匀加速直线运动,在第三步过程中,油滴先竖直向上匀减速直线运动,然后反向做初速度为零的匀加速直线运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在电场中的运动考纲解读1.理解电容器的基本概念,掌握好电容器的两类动态分析.2.能运用运动的合成与分解解决带电粒子的偏转问题.3.用动力学方法解决带电粒子在电场中的直线运动问题.1.[对电容器和电容的理解]关于电容器及其电容的叙述,正确的是( ) A.任何两个彼此绝缘而又相互靠近的导体,就组成了电容器,跟这两个导体是否带电无关B.电容器所带的电荷量是指每个极板所带电荷量的代数和C.电容器的电容与电容器所带电荷量成反比D.一个电容器的电荷量增加ΔQ=1.0×10-6 C时,两板间电压升高10 V,则电容器的电容无法确定答案 A2.[带电粒子在板间的加速问题]如图1所示,电子由静止开始从A板向B板运动,当到达B极板时速度为v,保持两板间电压不变,则( )A.当增大两板间距离时,v也增大B.当减小两板间距离时,v增大图1C.当改变两板间距离时,v不变D.当增大两板间距离时,电子在两板间运动的时间也增大答案CD解析电子从静止开始运动,根据动能定理,从A板运动到B板动能的变化量等于电场力做的功.因为保持两个极板间的电势差不变,所以末速度不变,而位移(两板间距离)如果增加的话,电子在两板间运动的时间变长,故C、D正确.3.[带电粒子在板间的偏转问题]如图2所示,静止的电子在加速电压为U1的电场作用下从O经P板的小孔射出,又垂直进入平行金属板间的电场,在偏转电压为U2的电场作用下偏转一段距离.现使U1加倍,要想使电子的运动轨迹不发生变化,应该( ) 图2A.使U2加倍B.使U2变为原来的4倍C.使U2变为原来的2倍D.使U2变为原来的12答案 A解析 电子经U 1加速后获得的动能为E k =12mv 2=qU 1,电子在偏转电场中的侧移量为:y =12at 2=12qU 2mdl 2v 2=U 2l 24U 1d,可见当U 1加倍时,要使y 不变,需使U 2加倍,显然A 正确. 考点梳理一、电容器的充、放电和电容的理解 1.电容器的充、放电(1)充电:使电容器带电的过程,充电后电容器两极板带上等量的异种电荷,电容器中储存电场能. (2)放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能. 2.电容(1)定义:电容器所带的电荷量Q 与电容器两极板间的电势差U 的比值. (2)定义式:C =Q U.(3)物理意义:表示电容器容纳电荷本领大小的物理量. 3.平行板电容器(1)影响因素:平行板电容器的电容与正对面积成正比,与介质的介电常数成正比,与两板间的距离成反比.(2)决定式:C =εS4πkd,k 为静电力常量.特别提醒 C =Q U (或C =ΔQ ΔU )适用于任何电容器,但C =εS4πkd仅适用于平行板电容器.二、带电粒子在电场中的运动 1.带电粒子在电场中加速若不计粒子的重力,则电场力对带电粒子做的功等于带电粒子动能的增量. (1)在匀强电场中:W =qEd =qU =12mv 2-12mv 20或F =qE =q U d =ma .(2)在非匀强电场中:W =qU =12mv 2-12mv 20.2.带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t=l v0.b.不能飞出电容器:y=12at2=12qUmdt2,t=2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a=Fm=qEm=Uqmd离开电场时的偏移量:y=12at2=Uql22mdv20离开电场时的偏转角:tan θ=v yv0=Uqlmdv20特别提醒带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.4.[控制变量法的应用]如图3所示,设两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ.实验中,极板所带电荷量不变,若( )图3A.保持S不变,增大d,则θ变大B.保持S不变,增大d,则θ变小C.保持d不变,减小S,则θ变小D.保持d不变,减小S,则θ不变答案 A解析静电计指针偏角反映电容器两板间电压大小.在做选项所示的操作中,电容器电荷量Q保持不变,由C=QU=εS4πkd知,保持S不变,增大d,则C减小,U增大,偏角θ增大,选项A正确,B错误;保持d不变,减小S,则C减小,U增大,偏角θ也增大,故选项C、D均错.5.[用平抛运动的分解思想解决偏转问题]如图4所示,示波器的 示波管可视为加速电场与偏转电场的组合,若已知加速电压为U 1,偏转电压为U 2,偏转极板长为L ,极板间距为d ,且电子被加速前的初速度可忽略,则关于示波器灵敏度[即偏转电场中图4每单位偏转电压所引起的偏转量(yU 2)]与加速电场、偏转电场的关系,下列说法中正确的是( )A .L 越大,灵敏度越高B .d 越大,灵敏度越高C .U 1越大,灵敏度越高D .U 2越大,灵敏度越高答案 A解析 偏转位移y =12at 2=12qU 2md (L v )2=U 2L 24dU 1,灵敏度y U 2=L 24dU 1,故A 正确,B 、C 、D 错误.方法提炼1.电容器的两类动态分析(1)明确是电压不变还是电荷量不变.(2)利用公式C =Q U 、C =εS 4πkd 及E =Ud 进行相关动态分析. 2.带电粒子在电场中的偏转按类平抛运动进行处理.考点一 平行板电容器的动态分析 1.对公式C =Q U的理解电容C =Q U,不能理解为电容C 与Q 成正比、与U 成反比,一个电容器电容的大小是由电容器本身的因素决定的,与电容器是否带电及带电多少无关. 2.运用电容的定义式和决定式分析电容器相关量变化的思路 (1)确定不变量,分析是电压不变还是所带电荷量不变. (2)用决定式C =εS4πkd分析平行板电容器电容的变化. (3)用定义式C =Q U分析电容器所带电荷量或两极板间电压的变化. (4)用E =U d分析电容器两极板间电场强度的变化.3.电容器两类问题的比较分类 充电后与电池两极相连充电后与电池两极断开不变量UQd 变大 C 变小→Q 变小、E 变小 C 变小→U 变大、E 不变 S 变大 C 变大→Q 变大、E 不变 C 变大→U 变小、E 变小 ε变大C 变大→Q 变大、E 不变C 变大→U 变小、E 变小例1 一平行板电容器充电后与电源断开,负极板接地.两板间有 一个正试探电荷固定在P 点,如图5所示,以C 表示电容器的 电容、E 表示两板间的场强、φ表示P 点的电势,E p 表示正电 荷在P 点的电势能,若正极板保持不动,将负极板缓慢向右平 移一小段距离x 0的过程中,各物理量与负极板移动距离x 的关图5系图象中正确的是( )解析 由平行板电容器的电容C =εS4πkd可知d 减小时,C 变大,但不是一次函数,A 错.在电容器两极板所带电荷量一定的情况下,U =Q C ,E =U d =4πkQεS,与x 无关,则B 错.在负极板接地的情况下,设P 点最初的电势为φ0,则平移后P 点的电势为φ=φ0-Ex 0,C 项正确.正电荷在P 点的电势能E p =q φ=q (φ0-Ex 0),显然D 错.答案 C突破训练1 如图6所示,两块正对平行金属板M 、N 与电池相连,N 板 接地,在距两板等距离的P 点固定一个带负电的点电荷,如果M 板向上 平移一小段距离,则( ) A .点电荷受到的电场力变小图6B .M 板的带电荷量增加C .P 点的电势升高D .点电荷在P 点具有的电势能增加 答案 AD考点二 带电粒子(带电体)在电场中的直线运动 1.带电粒子在匀强电场中做直线运动的条件(1)粒子所受合外力F 合=0,粒子或静止,或做匀速直线运动.(2)粒子所受合外力F 合≠0,且与初速度方向在同一条直线上,带电粒子将做匀加速直线运动或匀减速直线运动.2.用动力学方法分析a =F 合m ,E =U d;v 2-v 20=2ad . 3.用功能观点分析匀强电场中:W =Eqd =qU =12mv 2-12mv 20非匀强电场中:W =qU =E k2-E k1例2 如图7所示,一带电荷量为+q \,质量为m 的小物块处于一倾角 为37°的光滑斜面上,当整个装置被置于一水平向右的匀强电场中时, 小物块恰好静止.重力加速度取g ,sin 37°=0.6,cos 37°=0.8.求: (1)水平向右电场的电场强度;图7(2)若将电场强度减小为原来的1/2,物块的加速度是多大; (3)电场强度变化后物块下滑距离为L 时的动能.解析 (1)小物块静止在斜面上,受重力、电场力和斜面支持力,示意图如图所示,则有F N sin 37°=qE ①F N cos 37°=mg②由①②可得E =3mg4q(2)若电场强度减小为原来的12,即E ′=3mg8q由牛顿第二定律得mg sin 37°-qE ′cos 37°=ma 可得a =0.3g .(3)电场强度变化后物块下滑距离L 时,重力做正功,电场力做负功,由动能定理得mgL sin 37°-qE ′L cos 37°=E k -0可得E k =0.3mgL .答案 (1)3mg4q(2)0.3g (3)0.3mgL突破训练2 如图8甲所示,在真空中足够大的绝缘水平地面上,一个质量为m =0.2 kg 、带电荷量为q =+2.0×10-6 C 的小物块处于静止状态,小物块与地面间的动摩擦因数μ=0.1.从t =0时刻开始,空间上加一个如图乙所示的电场.(取水平向右的方向为正方向,g 取10 m/s 2)求: (1)4秒小物块的位移大小; (2)4秒电场力对小物块所做的功.甲 乙图8答案 (1)8 m (2)1.6 J 解析 (1)0~2 s 小物块加速度a 1=E 1q -μmgm=2 m/s 2 位移s 1=12a 1t 21=4 m2 s 末的速度为v 2=a 1t 1=4 m/s 2 s ~4 s 小物块加速度a 2=E 2q -μmg m=-2 m/s 2位移s 2=v 2t 2+12a 2t 22=4 m4秒的位移s =s 1+s 2=8 m.(2)v 4=v 2+a 2t 2=0,即4 s 末小物块处于静止状态 设电场力对小物块所做的功为W ,由动能定理有:W -μmgs =0解得W =1.6 J考点三 带电粒子在电场中的偏转 1.粒子的偏转角(1)以初速度v 0进入偏转电场:如图9所示,设带电粒子质量为m , 带电荷量为q ,以速度v 0垂直于电场线方向射入匀强偏转电场,偏 转电压为U 1,若粒子飞出电场时偏转角为θ 则tan θ=v y v x,式中图9v y =at =qU 1md ·lv 0,v x =v 0,代入得tan θ=qU 1l mv 20d①结论:动能一定时tan θ与q 成正比,电荷量一定时tan θ与动能成反比. (2)经加速电场加速再进入偏转电场若不同的带电粒子都是从静止经同一加速电压U 0加速后进入偏转电场的,则由动能定理有:qU 0=12mv 20 ② 由①②式得:tan θ=U 1l2U 0d③结论:粒子的偏转角与粒子的q 、m 无关,仅取决于加速电场和偏转电场. 2.粒子在匀强电场中偏转时的两个结论 (1)以初速度v 0进入偏转电场y =12at 2=12·qU 1md ·(l v 0)2④作粒子速度的反向延长线,设交于O 点,O 点与电场右边缘的距离为x ,则x =y ·cot θ=qU 1l 22dmv 20·mv 20dqU 1l=l2结论:粒子从偏转电场中射出时,就像是从极板间的l2处沿直线射出.(2)经加速电场加速再进入偏转电场:若不同的带电粒子都是从静止经同一加速电压U 0加速后进入偏转电场的,则由②和④得:偏移量y =U 1l 24U 0d⑤上面③式偏转角正切为: tan θ=U 1l2U 0d结论:无论带电粒子的m 、q 如何,只要经过同一加速电场加速,再垂直进入同一偏转电场,它们飞出的偏移量y 和偏转角θ都是相同的,也就是运动轨迹完全重合. 例3 如图10所示,在两条平行的虚线存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场 线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试 求:图10(1)粒子从射入到打到屏上所用的时间.(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x .解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入到打到屏上所用的时间t =2Lv 0.(2)设粒子射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20又x =y +L tan α, 解得:x =3qEL 22mv 2解法二 x =v y ·L v 0+y =3qEL 22mv 20.解法三 由x y =L +L2L 2得:x =3y =3qEL 22mv 20. 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20计算粒子打到屏上的位置离屏中心的距离Y 的三种方法:(1)Y =y +d tan θ(d 为屏到偏转电场的水平距离) (2)Y =(L2+d )tan θ(L 为电场宽度)(3)Y =y +v y ·dv 0(4)根据三角形相似:Y y =L2+d L2突破训练3 如图11所示为一真空示波管的示意图,电子从灯丝K 发出(初速度可忽略不计),经灯丝与A 板间的电压U 1加速,从A 板中心孔沿中心线KO 射出,然后进入两块平行金属板M 、N 形成的偏转电场中(偏转电场可视为匀强电场),电子进入M 、 N 间电场时的速度与电场方向垂直,电子经过偏转电场后打在图11荧光屏上的P 点.已知M 、N 两板间的电压为U 2,两板间的距离为d ,板长为L ,电子的质量为m ,电荷量为e ,不计电子受到的重力及它们之间的相互作用力. (1)求电子穿过A 板时速度的大小; (2)求电子从偏转电场射出时的偏移量;(3)若要使电子打在荧光屏上P 点的上方,可采取哪些措施?答案 (1)2eU 1m (2)U 2L 24U 1d(3)减小加速电压U 1或增大偏转电压U 2解析 (1)设电子经电压U 1加速后的速度为v 0,由动能定理有eU 1=12mv 20-0,解得v 0=2eU 1m(2)电子以速度v 0进入偏转电场后,垂直于电场方向做匀速直线运动,沿电场方向做初速度为零的匀加速直线运动.由牛顿第二定律和运动学公式有t =L v 0F =ma ,F =eE , E =U 2d ,y =12at 2解得偏移量y =U 2L 24U 1d(3)由y =U 2L 24U 1d可知,减小U 1或增大U 2均可使y 增大,从而使电子打在P 点上方.42.用等效法处理带电粒子在电场、重力场中的运动1.方法提炼等效思维方法就是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法.例如我们学习过的等效电阻、分力与合力、合运动与分运动等都体现了等效思维方法.常见的等效法有“分解”、“合成”、“等效类比”、“等效替换”、“等效变换”、“等效简化”等,从而化繁为简,化难为易.2.模型转换与构建带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题,是高中物理教学中一类重要而典型的题型.对于这类问题,若采用常规方法求解,过程复杂,运算量大.若采用“等效法”求解,则能避开复杂的运算,过程比较简捷.先求出重力与电场力的合力,将这个合力视为一个“等效重力”,将a =F 合m视为“等效重力加速度”.再将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解即可.例4 如图12所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切.整个装置处于场强为E 、方向水平向右的匀强电场中.现有一 个质量为m 的小球,带正电荷量为q =3mg3E,要使小球能安图12全通过圆轨道,在O 点的初速度应满足什么条件?解析 小球先在斜面上运动,受重力、电场力、支持力,然后在 圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比 重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE2+mg2=2 3mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2DR,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20解得v 0=103gR3,因此要使小球安全通过圆轨道,初速度应满足v ≥ 103gR3. 答案 v ≥103gR3突破训练4 一个带负电荷量为q ,质量为m 的小球,从光滑绝缘的 斜面轨道的A 点由静止下滑,小球恰能通过半径为R 的竖直圆形 轨道的最高点B 而做圆周运动.现在竖直方向上加如图13所示 的匀强电场,若仍从A 点由静止释放该小球,则 ( ) 图13A .小球不能过B 点 B .小球仍恰好能过B 点C .小球通过B 点,且在B 点与轨道之间的压力不为0D .以上说法都不对 答案 B解析 小球从光滑绝缘的斜面轨道的A 点由静止下滑,恰能通过半径为R 的竖直圆形轨道的最高点B而做圆周运动,则mg =m v 21R ,mg (h -2R )=12mv 21;加匀强电场后仍从A 点由静止释放该小球,则(mg-qE )(h -2R )=12mv 22,联立解得mg -qE =m v 22R,满足小球恰好能过B 点的临界条件,选项B 正确.高考题组1.(2012·单科·2)一充电后的平行板电容器保持两极板的正对面积、间距和电荷量不变,在两极板间插入一电介质,其电容C 和两极板间的电势差U 的变化情况是( )A .C 和U 均增大B .C 增大,U 减小 C .C 减小,U 增大D .C 和U 均减小答案 B解析 由平行板电容器电容决定式C =εS4πkd知,当插入电介质后,ε变大,则在S 、d 不变的情况下C 增大;由电容定义式C =Q U 得U =QC,又电荷量Q 不变,故两极板间的电势差U 减小,选项B 正确.2.(2012·单科·9)将平行板电容器两极板之间的距离、电压、电场强度大小和极板所带的电荷量分别用d 、U 、E 和Q 表示.下列说确的是 ( )A .保持U 不变,将d 变为原来的两倍,则E 变为原来的一半B .保持E 不变,将d 变为原来的一半,则U 变为原来的两倍C .保持d 不变,将Q 变为原来的两倍,则U 变为原来的一半D .保持d 不变,将Q 变为原来的一半,则E 变为原来的一半 答案 AD解析 由E =Ud知,当U 不变,d 变为原来的两倍时,E 变为原来的一半,A 项正确;当E 不变,d 变为原来的一半时,U 变为原来的一半,B 项错误;当电容器中d 不变时,C 不变,由C =Q U知,当Q 变为原来的两倍时,U 变为原来的两倍,C 项错误;Q 变为原来的一半,则U 变为原来的一半,E 变为原来的一半,D 项正确.3.(2012·课标全国·18)如图14,平行板电容器的两个极板与水平地面成一 角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平 直线通过电容器,则在此过程中,该粒子 ( ) A .所受重力与电场力平衡 B .电势能逐渐增加图14C .动能逐渐增加D .做匀变速直线运动答案 BD解析 带电粒子在平行板电容器之间受到两个力的作用,一是重力mg ,方向竖直向下;二是电场力F =Eq ,方向垂直于极板向上,因二力均为恒力,又已知带电粒子做直线运动,所以此二力的合力一定在粒子运动的直线轨迹上,根据牛顿第二定律可知,该粒子做匀减速直线运动,选项D 正确,选项A 、C 错误;从粒子运动的方向和电场力的方向可判断出,电场力对粒子做负功,粒子的电势能增加,选项B正确.4.(2011··20)反射式速调管是常用的微波器件之一,它利用电子团在电场中的振荡来产生微波,其振荡原理与下述过程类似.如图15所示,在虚线MN两侧分别存在着方向相反的两个匀强电场,一带电微粒从A点由静止开始,在电场力作用下沿直线在A、B两点间往返运动.已知电场强度的大小分别是E1=2.0×103 N/C 图15和E2=4.0×103 N/C,方向如图所示.带电微粒质量m=1.0×10-20 kg,带电荷量q=-1.0×10-9 C,A点距虚线MN的距离d1=1.0 cm,不计带电微粒的重力,忽略相对论效应.求:(1)B点距虚线MN的距离d2;(2)带电微粒从A点运动到B点所经历的时间t.答案(1)0.50 cm (2)1.5×10-8 s解析(1)带电微粒由A运动到B的过程中,由动能定理有|q|E1d1-|q|E2d2=0 ①由①式解得d2=E1E2d1=0.50 cm ②(2)设微粒在虚线MN两侧的加速度大小分别为a1、a2,由牛顿第二定律有|q|E1=ma1 ③|q|E2=ma2 ④设微粒在虚线MN两侧运动的时间分别为t1、t2,由运动学公式有d1=12a1t21⑤d2=12a2t22⑥又t=t1+t2 ⑦由②③④⑤⑥⑦式解得t=1.5×10-8 s模拟题组5.如图16所示,由两块相互靠近的平行金属板组成的平行板电容器的极板N与静电计相接,极板M接地.用静电计测量平行板电容器两极板间的电势差U.在两极板相距一定距离d时,给电容器充电,静电计指针开一定角度.在整个实验过程中,保持电容器图16所带电荷量Q不变,下面操作能使静电计指针角变小的是( )A.将M板向下平移B.将M板沿水平方向向左远离N板C.在M、N之间插入云母板(介电常数ε>1)D.在M、N之间插入金属板,且不和M、N接触答案CD解析由C=εS4πkd可知,将M板向下平移,S减小,将M板沿水平方向向左移动,d增大,均使C变小,再由Q =CU 可知,电容器两板间电压增大,静电计指针角增大,A 、B 均错误;在M 、N 间插入云母板,ε增大,C 增大,U 变小,静电计指针角减小,C 正确;在M 、N 间插入金属板,相当于d 减小,故C 增大,U 变小,静电计指针角减小,D 正确.6.为模拟空气净化过程,有人设计了如图17所示的含灰尘空气 的密闭玻璃圆桶,圆桶的高和直径相等.第一种除尘方式是: 在圆桶顶面和底面间加上电压U ,沿圆桶的轴线方向形成一 个匀强电场,尘粒的运动方向如图甲所示;第二种除尘方式 是:在圆桶轴线处放一直导线,在导线与桶壁间加上的电压 也等于U ,形成沿半径方向的辐向电场,尘粒的运动方向如图17图乙所示.已知空气阻力与尘粒运动的速度成正比,即F f =kv (k 为一定值),假设每个尘粒的质量和带电荷量均相同,重力可忽略不计,则在这两种方式中( )A .尘粒最终一定都做匀速运动B .尘粒受到的电场力大小相等C .电场对单个尘粒做功的最大值相等D .在乙容器中,尘粒会做类平抛运动 答案 C解析 由于电压U 、圆桶的高与直径及空气阻力的大小不能计算,就不能确定尘粒最终是否做匀速运动,A 项错误;在甲、乙容器中,E =U d 中的d 是不同的,所以F =qE =qUd一定不同,B 项错误;电场力对单个尘粒做功的最大值均为W =qU ,C 项正确;由于忽略重力,在甲、乙桶中,尘粒均做直线运动,D 项错误.(限时:45分钟)►题组1 电容器、电容及动态分析1.(2011·天津·5)板间距为d 的平行板电容器所带电荷量为Q 时,两极板间电势差为U 1,板间场强为E 1.现将电容器所带电荷量变为2Q ,板间距变为12d ,其他条件不变,这时两极板间电势差为U 2,板间场强为E 2,下列说确的是( )A .U 2=U 1,E 2=E 1B .U 2=2U 1,E 2=4E 1C .U 2=U 1,E 2=2E 1D .U 2=2U 1,E 2=2E 1答案 C解析 由C =Q U 和C =εS 4k πd 及E =U d 得,E =4k πQ εS ,由电荷量由Q 增为2Q ,板间距由d 减为d2,得E 2=2E 1;又由U =Ed 可得U 1=U 2,故A 、B 、D 错,C 对.2.一平行板电容器两极板间距为d 、极板面积为S ,电容为ε0Sd,其中ε0是常量,对此电容器充电后断开电源.当增大两极板间距时,电容器极板间( )A .电场强度不变,电势差变大B .电场强度不变,电势差不变C .电场强度减小,电势差不变D .电场强度减小,电势差减小 答案 A解析 电容器充电后断开,故电容器的带电荷量不变,当增大两极板间的距离时,由C =ε0Sd可知,电容器的电容变小,由U =Q C 可知电势差变大,又由E =U d可得E =U d =Q Cd =Q ε0S dd =Qε0S,与d 无关,所以电场强度不变,A 正确.►题组2 带电粒子在电场中的直线运动3.如图1所示,在等势面沿竖直方向的匀强电场中,一带负电的微粒以 一定初速度射入电场,并沿直线AB 运动,由此可知( ) A .电场中A 点的电势低于B 点的电势B .微粒在A 点时的动能大于在B 点时的动能,在A 点时的电势能小 图1于在B 点时的电势能C .微粒在A 点时的动能小于在B 点时的动能,在A 点时的电势能大于在B 点时的电势能D .微粒在A 点时的动能与电势能之和等于在B 点时的动能与电势能之和 答案 B解析 一带负电的微粒以一定初速度射入电场,并沿直线AB 运动, 对其受力分析知其受到的电场力F 只能垂直等势面水平向左,电场 强度则水平向右,如图所示.所以电场中A 点的电势高于B 点的电势,A 错;微粒从A 向B 运动,则合外力做负功,动能减小,电场力做负功,电势能增加,B 对,C 错;微粒的动能、重力势能、电势能三种能量的总和保持不变,所以D 错.4.如图2所示,一质量为m 、电荷量为q 的小球在电场强度为E 、区域 足够大的匀强电场中,以初速度v 0沿ON 在竖直面做匀变速直线 运动.ON 与水平面的夹角为30°,重力加速度为g ,且mg =Eq ,则( )图2A .电场方向竖直向上B .小球运动的加速度大小为gC .小球上升的最大高度为v 202gD .若小球在初始位置的电势能为零,则小球电势能的最大值为mv 204答案 BD解析 由于带电小球在竖直面做匀变速直线运动,其合力沿ON 方向,而mg =qE ,由三角形定则,可知电场方向与ON 方向成 120°角,A 错误;由图中几何关系可知,其合力为mg ,由牛顿第 二定律可知a =g ,方向与初速度方向相反,B 正确;设带电小球上升的最大高度为h ,由动能定理可得:-mg ·2h =0-12mv 20,解得:h =v 204g ,C 错误;电场力做负功,带电小球的电势能变大,当带电小球速度为零时,其电势能最大,则E p =-qE ·2h cos 120°=qEh =mg ·v 204g =mv 204,D 正确.5.如图3甲所示,三个相同的金属板共轴排列,它们的距离与宽度均相同,轴线上开有小孔,在左边和右边两个金属板上加电压U 后,金属板间就形成匀强电场;有一个比荷qm=1.0×10-2 C/kg 的带正电的粒子从左边金属板小孔轴线A 处由静止释放,在电场力作用下沿小孔轴线射出(不计粒子重力),其v -t 图象如图乙所示,则下列说确的是( )图3A .右侧金属板接电源的正极B .所加电压U =100 VC .乙图中的v 2=2 m/sD .通过极板间隙所用时间之比为1∶(2-1) 答案 BD解析 带正电的粒子在电场力作用下由左极板向右运动,可判断右侧金属板接电源负极,A 选项错误.由。