数列练习题——求数列的通项公式(学生版)

合集下载

数列专题复习之典型例题(含答案)

数列专题复习之典型例题(含答案)

数列知识点-——-求通项一、由数列的前几项求数列的通项:观察法和分拆与类比法-—-—-猜测———-证明(略)二、由a n 与S n 的关系求通项a n例1已知数列{a n }的前n 项和为S n =3n -1,则它的通项公式为a n =________。

答案2·3n -1练1 已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 答案a n =错误!三、由数列的递推公式求通项例3、(1)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .设3n n n b S =-,求数列{}n b 的通项公式;答案: 13(3)2n n n n b S a -=-=-,*n ∈N .(2)(4)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠).(Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩(3)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ;答案:(1)2nnn a n λ=-+21212(1)22(1)(1)n n n n n n S λλλλλ+++--+=+-≠- 1(1)22(1)2n n n n S +-=+-λ=(4)已知数列{}n a 满足:()213,22n n a a a n n N *+=+=+∈(1)求数列{}n a 的通项公式; (2)设1234212111n n nT a a a a a a -=+++,求lim n n T →∞答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩注意:由数列的递推式求通项常见类型(请同学们查看高一笔记)1.)(1n f a a n n +=+ 2 . n n a n f a )(1=+.3 q pa a n n +=+1(其中p,q 均为常数,)0)1((≠-p pq )。

高考数学一轮复习讲练测(新教材新高考)专题7-5数列的综合应用-学生版

高考数学一轮复习讲练测(新教材新高考)专题7-5数列的综合应用-学生版

专题7.5数列的综合应用练基础1.(2021·浙江高三专题练习)已知正项等差数列{}n a 和正项等比数列{}n b },111a b ==,3b 是2a ,6a 的等差中项,8a 是3b ,5b 的等比中项,则下列关系成立的是()A .100100a b >B .102411a b =C .105a b >D .999a b >2.(2021·江西赣州市·高三二模(理))朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有132根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是()A .5B .6C .7D .83.【多选题】(2020·湖南高三月考)在“全面脱贫”行动中,贫困户小王2020年1月初向银行借了扶贫免息贷款10000元,用于自己开设的农产品土特产品加工厂的原材料进货,因产品质优价廉,上市后供不应求,据测算每月获得的利润是该月月初投人资金的20%,每月月底需缴纳房租600元和水电费400元,余款作为资金全部用于再进货,如此继续.设第n 月月底小王手中有现款为n a ,则下列论述正确的有()(参考数据:11121.27.5,1.29==)A .112000a =B .1 1.21000n n a a +=-C .2020年小王的年利润为40000元D .两年后,小王手中现款达41万4.(2021·江西高三其他模拟(理))已知公差不为0的等差数列{}n a 的部分项1k a ,2k a ,3k a ,……构成等比数列{}n a ,且11k =,22k =,35k =,则n k =___________.5.(2021·西安市经开第一中学高三其他模拟(理))数列{}n a 满足:11a =,点()1,n n n a a ++在函数1y kx =+的图像上,其中k 为常数,且0k ≠(1)若124,,a a a 成等比数列,求k 的值;(2)当3k =时,求数列{}n a 的前2n 项的和2n S .6.(2021·江苏高考真题)已知数列{}n a 满足12a =,且()*1321n n a a n n N +=+-∈.(1)求证:数列{}n a n +为等比数列;(2)求数列{}n a 的通项公式;(3)求数列{}n a 的前n 项和n S .7.(2021·全国高三其他模拟(理))已知在等差数列{}n a 中,n S 为其前n 项和,且375,49a S ==.(1)求数列{}n a 的通项公式;(2)若2,n an n b a +=数列{}n b 的前n 项和为,n T 且1000,n T ≥求n 的取值范围.8.(2021·太原市·山西大附中高三其他模拟)在数列{}{},n n a b 中,11111,331,331n n n n n n a b a a b n b b a n ++===---=-++.等差数列{}n c 的前两项依次为2a ,2b .(1)求数列{}n c 的通项公式;(2)求数列(){}+nnna b c 的前n 项和nS.9.(2021·重庆高三三模)已知数列{}n a 的前n 项和为n S ,且满足()21*n n a S n N -=∈.(1)求数列{}n a 的通项公式:(2)设()()11211n n n n a b a a +++=--,数列{}n b 的前n 项和为n T ,求证:213n T ≤<.10.(2021·沂水县第一中学高三其他模拟)在数列{}n a 中,()111,01nn n a a a c ca +==>+,且125,,a a a 成等比数列.(1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式;(2)设数列{}n b 满足()2141n n n b n a a +=+,其前n 项和为n S ,证明:1n S n <+.练提升1.(2021·河南郑州市·高三三模(文))1967年,法国数学家蒙德尔布罗的文章《英国的海岸线有多长?》标志着几何概念从整数维到分数维的飞跃.1977年他正式将具有分数维的图形成为“分形”,并建立了以这类图形为对象的数学分支——分形几何.分形几何不只是扮演着计算机艺术家的角色,事实表明它们是描述和探索自然界大量存在的不规则现象的工具.下面我们用分形的方法来得到一系列图形,如图1,线段AB 的长度为1,在线段AB 上取两个点C ,D ,使得13AC DB AB ==,以CD 为一边在线段AB 的上方做一个正三角形,然后去掉线段CD ,得到图2中的图形;对图2中的线段EC 、ED 作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:记第n 个图形(图1为第一个图形)中的所有线段长的和为n S ,对任意的正整数n ,都有n S a <,则a 的最小值为__________.2.(2020·沙坪坝区·重庆南开中学高三月考)已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,满足535S =,且1a ,4a ,13a 成等比数列.(1)求数列{}n a 的通项公式;(2)若241n n b a =-,数列{}nb 的前n 项和为n T ,实数λ使得13n nT S λ++≤对任意*n N ∈恒成立,求λ的取值范围.3.(2021·全国高三其他模拟)有下列三个条件:①数列{}2n a -是公比为12的等比数列,②n S n ⎧⎫⎨⎬⎩⎭是公差为1的等差数列,③21n n S a =-,在这三个条件中任选一个,补充在题中“___________”处,使问题完整,并加以解答.设数列{}n a 的前n 项和为n S ,11a =,对任意的*n ∈N ,都有___________.已知数列{}n b 满足32nn b ⎛⎫= ⎪⎝⎭,是否存在*k ∈N ,使得对任意的*n ∈N ,都有n kn ka ab b ≤?若存在,试求出k 的值;若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分.4.(2021·四川自贡市·高三三模(文))已知数列{a n }的前n 项和为S n ,21n n S a =-,数列{b n }是等差数列,且b 1=a 1,b 6=a 5.(1)求数列{}n a 和{}n b 的通项公式;(2)若11n n n c b b +=,记数列{c n }的前n 项和为T n ,证明:3T n <1.5.(2021·全国高三其他模拟)在①22n n S a =-;②32442a a a =+-;③321,2,S S S +成等差数列这三个条件中任选一个,补充在下面的问题中,并解答.问题:数列{a n }是各项均为正数的等比数列,前n 项和为S n ,a 1=2,且___.(1)求数列{a n }的通项公式;(2)若n n b =*n N ∈),求数列{b n }的前n 项和T n .6.(2021·宁波市北仑中学高三其他模拟)已知数列{}n a 满足1122,1,1,n n n a n n a a a n n ++⎧==⎨---⎩为奇数为偶数,记数列{}n a 的前n 项和为n S ,2,n n b a n N *=∈(1)求证:数列{}n b 为等比数列,并求其通项n b ;(2)求{}n nb 的前n 项和n T 及{}n a 的前n 项和为n S .7.(2021·湖北高三其他模拟)在等比数列{a n }中,公比0q >,其前n 项和为S n ,且S 2=6,___________.(1)求数列{a n }的通项公式;(2)设log 2n n a b =,且数列{c n }满足c 1=1,c n +1﹣c n =b n +1b n ,求数列{c n }的通项公式.从①.S 4=30,②.S 6﹣S 4=96,③.a 3是S 3与2的等差中项,这三个条件中任选一个,补充到上面问题中的横线上,并作答.8.(2021·全国高三其他模拟)从①n b n =,②(6)n n b n =⋅﹣,③()212nn b n =+⋅中任选一个填入下面的空中,并解答.设等比数列{}n a 的公比3241,4,10q a a a >-=+=-,且____.(1)求数列{}n a 的通项公式;(2)求数列132n n a b ⎧⎫-⋅⎨⎬⎩⎭的前n 项和.9.(2021·浙江高三其他模拟)已知数列{n b }满足13b =,27b =且n b =n n a c +,n ∈*N (n a 是等比数列,n c 是等差数列),记数列{n a }的前n 项和为n S ,{n c }的前n 项和为n T ,若公比数q 等于公差数d ,且2234a c =.(1)求数列{nb }的通项公式;(2)记n R 为数列{n b }的前n 项和,求22nR n -(n ≥2,且n ∈*N )的最小值.10.(2021·浙江金华市·高三三模)若数列{}n a 的前n 项和为n S ,()14,2(1)n n a n a n S n N *=⋅=+⋅∈.(1)求数列{}n a 的通项公式;(2)已知数列{}n b 满足68n b n =-,其前n 项和为n T ,若(1)nn n S T λ≥-⋅⋅对任意n *∈N 恒成立,求实数λ的取值范围.练真题1.(2020·北京高考真题)在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ().A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项2.(2020·浙江省高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0,11a d≤.记b 1=S 2,b n+1=S 2n+2–S 2n ,n *∈N ,下列等式不可能...成立的是()A.2a 4=a 2+a 6B.2b 4=b 2+b 6C.2428a a a =D.2428b b b =3.(2019年浙江卷)设,a b R ∈,数列{}n a 中,21,n n n a a a a b +==+,b N *∈,则()A.当101,102b a => B.当101,104b a =>C.当102,10b a =-> D.当104,10b a =->4.(2020·江苏省高考真题)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.5.(2019年浙江卷)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,n C n *=∈N证明:12+.n C C C n *++<∈N 6.(2021·天津高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=.(I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22n n c c -是等比数列;(ii)证明)*nk n N =<∈。

高一数学教材习题变式训练(数列)

高一数学教材习题变式训练(数列)

数学教材习题变式训练(数列)一、有关通项问题1、利用11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩求通项.(北师大版第20页习题5)数列{}n a 的前n 项和21n S n =+.(1)试写出数列的前5项;(2)数列{}n a 是等差数列吗?(3)你能写出数列{}n a 的通项公式吗? 变式题1、设数列}{n a 的前n 项和为S n =2n 2,求数列}{n a 的通项公式;解:(1):当;2,111===S a n 时 ,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 变式题2、数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求a 2,a 3,a 4的值及数列{a n }的通项公式.解:(I )由a 1=1,113n n a S +=,n=1,2,3,……,得 211111333a S a ===,3212114()339a S a a ==+=,431231116()3327a S a a a ==++=,由1111()33n n n n n a a S S a +--=-=(n ≥2),得143n n a a +=(n ≥2),又a 2=31,所以a n =214()33n -(n ≥2),∴ 数列{a n }的通项公式为21114()233n n n a n -=⎧⎪=⎨⎪⎩≥变式题3、已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈, 证明数列{}1n a +是等比数列.解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;2、解方程求通项:(北师大版第17页习题3)在等差数列{}n a 中,(1)已知812148,168,S S a d ==求和;(2)已知658810,5,a S a S ==求和;(3)已知3151740,a a S +=求.变式题1、{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于(A )667 (B )668 (C )669 (D )670 分析:本题考查等差数列的通项公式,运用公式直接求出. 解:1(1)13(1)2005n a a n d n =+-=+-=,解得669n =,选C点评:等差等比数列的通项公式和前n 项和的公式是数列中的基础知识,必须牢固掌握.而这些公式也可视作方程,利用方程思想解决问题. 3、待定系数求通项:写出下列数列{}n a 的前5项:(1)111,41(1).2n n a a a n -==+> 变式题1、已知数列{}n a 满足*111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式;解:*121(),n n a a n N +=+∈ 112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列. 12.n n a ∴+=即 *21().n n a n N =-∈ 4、由前几项猜想通项:(北师大版第8页习题1)根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式.变式题1、如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正n 边形“扩展”而来的多边形的边数为n a ,(1) (4) (7) ( ) ( )则6a = ;345991111a a a a +++⋅⋅⋅+=.解:由图可得:22(1)n a n n n n n =+-=+,所以642a =;又211111(1)1n a n n n n n n ===-+++ 所以345991111a a a a +++⋅⋅⋅+=1111111197()()()3445991003100300-+-++-=-= 变式题2、(北师大版第9页习题2)观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是( ),其通项公式为 . A .40个 B .45个 C .50个 D .55个解:由题意可得:设{}n a 为n 条直线的交点个数,则21a =,1(1),(3)n n a a n n -=+-≥,因为11n n a a n --=-,由累加法可求得:(1)12(1)2n n n a n -=+++-=,所以10109452a ⨯==,选B.二、有关等差、等比数列性质问题1、(北师大版第31页习题3)一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为( )A .83B .108C .75D .63变式题1、一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。

通项公式专题练习

通项公式专题练习

数列的通项公式的求法训练题一、选择题(每小题5分,共12个小题,共60分)1、若一数列的前四项依次是2,0,2,0,则下列式子中,不能作为它的通项公式的是( )A 、a n = 1-(-1)nB 、a n =1+(-1)n +1C 、2sin 22πn a n = D 、a n =(1-cosn π)+(n -1)(n -2)2、等差数列{a n }中,d 为公差,前n 项 和为s n =-n 2则( )A 、a n =2n-1 d=-2B 、 a n =2n-1 d=2C 、 a n = -2n+1 d=-2D 、 a n = -2n+1 d=23、若数列{}n a 的前n 项和为322+-=n n S n ,那么这个数列的前3项为( )A 、-1,1,3B 、2,1,0C 、2、1、3D 、2、1、64、数列{}n a 中,),1(11100≥+++==-n a a a a a n n ,则当1≥n 时,=n a ( )A 、n2 B 、)1(21+n n C 、12-n D 、12-n5、数列-1,7,-13,19,…的通项公式( )A 、2n-1B 、-6n+5C 、(-1)n ×6n-5D 、(-1)n(6n-5) 6、数列{n a }满足1a =1, 2a =32,且n n n a a a 21111=++- (n ≥2),则n a 等于( ). A 、12+n B 、(32)n -1 C 、(32)n D 、22+n7、在等比数列{a n }中.前n 项的和为s n ,且s n =2n -1则a 12+a 22+···+a n 2等于 ( ) A 、 (2n -1)2 B 、31(2n -1)2 C 、 4n -1 D 、31(4n -1) 8、已知数列{n a }中,)(2,211*+∈+==N n n a a a n n ,则100a 的值是( ) A 、9900 B 、9902 C 、9904 D 、11000 9、已知数列{a n }中,,21,111nnn a a a a +==+则这个数列的第n 项n a 为( )A 、2n-1B 、2n+1C 、121-n D 、121+n 10、已知数列{a n }中,对任意的*∈N n 满足422++=n n n a a a ,且4,273==a a ,则15a 的值是( )A 、8B 、12C 、16D 、32 11、设函数f 定义如下,数列{x n }满足x 0=5,且对任意自然数均有x n+1=f(x n ),则x 2005的值为( )X 1 2 3 4 5 f(x)41352A 、1B 、2C 、4D 、5 12、把正整数按下图所示的规律排序:1→2 5→6 9→10… ↑ ↓ ↑ ↓ ↑ 3 →4 7→8 11…则从2004到2006的箭头方向依次为( )↓ ↑ 2005→ →2005 A 、2005→ B 、 →2005 C 、 ↓ D 、 ↓一、选择题答题卡(请将选择题的答案直接填入下面的表格中) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(每小题4分,共4个小题,共16分)13、12,311+=-=-n n a a a ,则=n a ________________. 14、设数列{na }是首项为1的正数数列,且),3,2,1(0)1(1221 ==+-+++n a a na a n n n n n ,则它的通项公式是_______________.15、设数列{n a }满足)3)((31,313421121≥-=-==---n a a a a a a n n n n ,,则数列{n a }的通项公式为n a =_________________.16、nn n a a a 23,111+==+,则=n a _________________.三、解答题(共24分)17、(12分)写出下列数列的一个通项公式 (1)32-,83,154-,245,356-,… (2) ,,,,17161095421(3)7,77,777,7777, (4)23,45,169,25617,…18已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-= ,试求通项公式n a .19 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

待定系数法求通项(很全很简洁)

待定系数法求通项(很全很简洁)
练2:已知a1=1,n≥2时, ,求an.
第二类:形如:an+1=Aan+Ban-1
例3:已知数列 满足 ,求数列 的通项公式。
解:法ห้องสมุดไป่ตู้:

比较系数得 或 ,不妨取 ,(取-3结果形式可能不同,但本质相同)
则 ,则 是首项为4,公比为3的等比数列
,所以
法2:an+2+Kan+1=(5+k)an+1-6an=(5+k)(an+1-6/(5+k)an)
K=-2或-3
an+2-2an+1=3(an+1-2an)
练习3.数列 中,若 ,且满足 ,求 .
答案: .
第三类:形如:an+1=Aan+f(n)
例4:已知 ,求an.
例5已知a1=-1, an=3an-1+2n(n≥2),求an.
广州市铁一中学
第一类:形如an+1=A·an+B
例1已知 ,求
解:设 ,则由已知得k=2,即{an-2}成等比数列。
练1:已知数列{an}中,a1=1,an+1=2an+1。求an。
例2已知a1=1,n≥2时, ,求an.
解:取倒数得 ,设 ,则 ,即归结为求{bn}的通项。
若c≠0,则可设常数k、m满足: ,转为求 的通项。

高中数学等差数列的通项公式训练练习题含答案

高中数学等差数列的通项公式训练练习题含答案

高中数学等差数列的通项公式训练练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 在等差数列51、47、43,…中,第一个负数项为()A.第13项B.第14项C.第15项D.第16项2. 已知等差数列{a n},a2=4,a6+a7=6+a9,则公差d=()A.2B.1C.−2D.−13. 已知数列{a n}中,a1=2,a n+1=a n+12(n∈N∗),则a99的值为( )A.48B.49C.50D.514. 在等差数列{a n}中,a1+3a8+a15=60,则2a9−a10的值为( )A.6B.8C.12D.135. 数列{a n}中,若a1=1,a n+1=a n+4,则下列各数中是{a n}中某一项的是()A.2007B.2008C.2009D.20106. 若a≠b,两个等差数列a,x1,x2,b与a,y1,y2,y3,b的公差分别为d1,d2,则d1d2等于()A.3 2B.23C.43D.347. 在数列{a n}中,a1=1,a n+1=2a na n+2(n∈N∗),则a5等于( )A.2 5B.13C.23D.128. 已知等差数列{a n}的公差d为正数,a1=1,2(a n a n+1+1)=tn(1+a n),t为常数,则a n=( )A.2n−1B.4n−3C.5n−4D.n9. 《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为()A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸10. 一个首项为,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A. B. C. D.11. 等差数列{a n},a1=0,公差d=1,则a8=________.712. 在等差数列{a n}中,a2=1,a4=5,则a n=________.13. 等差数列{a n}中,若a3+a5=4,则a4=________.14. 已知数列{a n}的前n项和S n=n2−9n,则其通项a n=________.15. 已知等差数列{a n},a n=4n−3,则首项a1为________,公差d为________.16. 《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”.其中“日减功迟”的具体含义是每天比前一天少织同样多的布,则每天比前一天少织布的尺数为________.17. “欢欢”按如图所示的规则练习数数,记在数数过程中对应中指的数依次排列所构成的数列为{a n},则数到2008时对应的指头是________,数列{a n}的通项公式a n=________.(填出指头的名称,各指头的名称依次为大拇指、食指、中指、无名指、小指).18. 表中的数阵为“森德拉姆数筛”,其特点是每行每列都成等差数列,则数字70在表中出现的次数为________19. 已知数列的前n项和为,,,则________.20. 已知数列满足,,若,则数列的前n项和________.21. 数列{a n}中,a1=8,a4=2且满足a n+2=2a n+1−a n(n∈N∗),数列{a n}的通项公式________.22. 在等差数列{a n}中,已知a4+a6=28,a7=20,求a3和公差d.23. 数列{a n}是等差数列,a1=f(x+1),a2=0,a3=f(x−1),其中f(x)=x2−4x+2,求通项公式a n.24. 设数列{a n}满足a1=1,a n+1=3a n,n∈N+.(1)求数列{a n}的通项公式及前n项和S n;(2)已知数列{b n}是等差数列,且满足b1=a2,b3=a1+a2+a3,求数列{b n}的通项公式.25. 已知数列{a n},|b n}满足a1=2,b1=1 ,且当n≥2a n=23a n−1+13b n−1+2b n=1 3a n−1+23b n−1+2(1)令c n=a n+b n,d n=a n−b n ,证明:{c n}为等差数列,{d n}为等比数列;(2)求数列{a n}的通项公式及前π项和S n26. 已知公差不为零的等差数列{a n}各项均为正数,其前n项和为S n,满足2S2=a2(a2+1)且a1,a2,a4成等比数列.(1)求数列{a n}的通项公式;(2)设b n=a n+1⋅2a n,求数列{b n}的前n项和为T n.27. 已知公差不为零的等差数列{a n}的前n项和为S n,a3=4,a5是a2与a11的等比中项.(1)求S n;(2)设数列{b n}满足b1=a2, b n+1=b n+3×2a n,求数列{b n}的通项公式.28. 已知递增等差数列{a n}满足a1+a5=4,前3项的积为8,求等差数列{a n}的通项公式.29. 在等差数列{a n}中,已知a5=10,a12=31,求a1,d,a20,a n.30. 已知数列{a n},对于任意n∈N∗,都有a n=n2−bn,是否存在一个整数m,使得当b<m时,数列{a n}为递增数列?这样的整数是否唯一?是否存在最大的整数?31. 在等差数列{a n}中,a2=3,a9=17,求a19+a20+a21的值.32. 在等差数列{a n}中,已知a3=8,且满足a10>21,a12<27,若d∈Z,求公差d的值.33. 已知数列{a n}为等差数列,且a4=9,a9=−6.(1)求通项a n;(2)求a12的值.34. 已知:公差大于零的等差数列{a n}的前n项和为S n,且满足a3a4=117,a2+a5= 22.求数列{a n}的通项公式.35. 设无穷等差数列{a n}的前n项和为S n,求所有的无穷等差数列{a n},使得对于一切正整数k都有S k3=(S k)3成立.36. 在等差数列{a n}中,公差d≠0,己知数列a k1,a k2,a k3,…a kn…是等比数列,其中k1=1,k2=7,k3=25.(1)求数列{k n}的通项公式;(2)若a1=9,b n=√a k n6+√k n2,S n=b12+b22+b32...+b n2,T n=1b12+1b22+1b32...+1b n2,试判断{S n+T n}的前100项中有多少项是能被4整除的整数.37. 设正数数列的前项和为,对于任意,是和的等差中项. (1)求数列的通项公式;(2)设,是的前项和,是否存在常数,对任意,使恒成立?若存在,求取值范围;若不存在,说明理由.38. 记等差数列的前项和,已知.(1)若,求的通项公式;(2)若,求使得的的取值范围.39. 观察下表:1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,……问:(1)此表第行的第一个数与最后一个数分别是多少?(2)此表第行的各个数之和是多少?(3)2019是第几行的第几个数?40. 等差数列{a n}中,d=2,a1=5,S n=60,求n及a n.参考答案与试题解析高中数学等差数列的通项公式训练练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】等差数列的通项公式【解析】根据等差数列51、47、43,…,得到等差数列的通项公式,让通项小于0得到解集,求出解集中最小的正整数解即可.【解答】解:因为数列51、47、43,…为等差数列,所以公差d=47−51=−4,首项为51,所以通项a n=51+(n−1)×(−4)=55−4n,所以令55−4n<0解得n>554因为n为正整数,所以最小的正整数解为14,所以第一个负数项为第14项故选B2.【答案】B【考点】等差数列的通项公式【解析】(1)利用等差数列的性质进行解题即可.【解答】解:已知数列{a n}是等差数列,则a2=a1+d=4,a6+a7=2a1+11d=6+a1+8d,解得d=1 .故选B .3.【答案】D【考点】等差数列的通项公式【解析】的等差数列,由此能求出a99.由已知得数列{a n}是首项为a1=2,公差为a n+1−a n=12【解答】(n∈N∗),解:∵在数列{a n}中,a1=2,a n+1=a n+12∴数列{a n}是首项为2,公差为1的等差数列,2∴a99=2+98×1=51.2故选D.4.【答案】C【考点】等差数列的通项公式【解析】由已知条件利用等差数列的通项公式求解.【解答】解:在等差数列{a n}中,∵a1+3a8+a15=60,∴a1+3(a1+7d)+a1+14d=5(a1+7d)=60,∴a1+7d=12,∴2a9−a10=2(a1+8d)−(a1+9d)=a1+7d=12.故选C.5.【答案】C【考点】等差数列的通项公式【解析】利用等差数列的定义判断,再用通项公式求解即可.【解答】解:∵数列{a n}中有a1=1,a n+1=a n+4,∴数列{a n}为等差数列,且a1=1,公差d=4,即通项公式为:a n=4n−3,∵4n−3=2009,4n=2012,∴n=503且n=503是整数.故选C.6.【答案】C【考点】等差数列的通项公式【解析】由a,x1,x2,b为等差数列,根据等差数列的性质得到b=a+3d1,表示出d1,同理由a,y1,y2,y3,b为等差数列,根据等差数列的性质表示出d2,即可求出d1与d2的比值.【解答】解:∵a,x1,x2,b为等差数列,且公差为d1,∴b=a+3d1,即d1=b−a,3∵a,y1,y2,y3,b也为等差数列,且公差为d2,∴b=a+4d2,即d2=b−a,4则d 1d 2=43.故选C 7.【答案】 B【考点】等差数列的通项公式 【解析】 此题暂无解析 【解答】 解:由a n+1=2a nan+2,得1a n+1=a n +22a n=1a n+12,又a 1=1,所以数列{1a n}是以1为首项,12为公差的等差数列, 所以1a 5=1+4×12=3,所以a 5=13.故选B . 8. 【答案】 A【考点】等差数列的通项公式 【解析】根据数列的递推关系式,先求出t =4,即可得到{a 2n−1}是首项为1,公差为4的等差数列,a 2n−1=4n −3,{a 2n }是首项为3,公差为4的等差数列,a 2n =4n −1,问题得以解决. 【解答】解:由题设2(a n a n+1+1)=tn(1+a n ),即a n a n+1+1=tS n ,可得a n+1a n+2+1=tS n+1, 两式相减得a n+1(a n+2−a n )=ta n+1, 所以a n+2−a n =t .由2(a 1a 2+1)=t(1+a 1) 可得a 2=t −1,由a n+2−a n =t 可知a 3=t +1.因为{a n }为等差数列,所以2a 2=a 1+a 3, 解得t =4,故a n+2−a n =4,由此可得{a 2n−1}是首项为1,公差为4的等差数列,a 2n−1=4n −3, {a 2n }是首项为3,公差为4的等差数列,a 2n =4n −1, 所以a n =2n −1. 故选A . 9. 【答案】 B【考点】等差数列的通项公式【解析】从冬至日起各节气日影长设为{a n},可得{a n}为等差数列,根据已知结合前八项和公式和等差中项关系,求出通项公式,即可求解.【解答】由题知各节气日影长依次成等差数列,设为{a n}S n是其前?项和,则尺,所以a5=9.5尺,由题S S=9(a1+a5)24+a7=3a4=31.5所以a4=10.5,所以公差d=a5−a4=−1所以a12=a5+7d=2.5尺.故选:B.10.【答案】C【考点】等差数列的通项公式【解析】设等差数列{a n}的公差为|da4=23+5d,a7=23+6d,又:数列前六项均为正数,第七项起为负数,23+5d>0.23+6d<0−235<d<−236,又…数列是公差为整数的等差数列,d=−4,故选C.【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】1【考点】等差数列的通项公式【解析】直接由等差数列的通项公式求解.【解答】解:在等差数列{a n},由a1=0,公差d=17,得a8=a1+7d=0+7×17=1.故答案为:1.12.【答案】2n−3【考点】等差数列的通项公式【解析】利用等差数列的通项公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2=1,a4=5,∴{a1+d=1a1+3d=5,解得{a1=−1d=2.∴a n=−1+2(n−1)=2n−3.故答案为2n−3.13.【答案】2【考点】等差数列的通项公式【解析】根据等差数列的定义和性质,结合题意可得2a4=a3+a5=4,由此解得a4的值.【解答】解:∵等差数列{a n}中,a3+a5=4,∴2a4=a3+a5=4,解得a4=2,故答案为:2.14.【答案】2n−10【考点】等差数列的通项公式【解析】利用递推关系a n={S1n=1S n−S n−1n≥2可求数列的通项公式【解答】解:∵S n=n2−9n,∴a1=S1=−8n≥2时,a n=S n−S n−1=n2−9n−(n−1)2+9(n−1)=2n−10 n=1,a1=8适合上式故答案为:2n−1015.【答案】1,4【考点】等差数列的通项公式【解析】根据等差数列的通项公式求出公差d,令n=1求得首项a1.【解答】解:由题意得,等差数列{a n},a n=4n−3,则公差d=4,令n=1得首项a1=1,故答案为:1、4.16.【答案】429等差数列的通项公式【解析】利用等差数列的通项公式求和公式即可得出.【解答】已知数列{a n}为等差数列,其中,a1=5,a n=1,S n=90.,1=5+(n−1)d,设公差为d,则90=n(5+1)2.解得:d=−42917.【答案】食指,4n−1【考点】等差数列的通项公式【解析】注意到数1,9,17,25,,分别都对应着大拇指,且1+8×(251−1)=2001,因此数到2008时对应的指头是食指.对应中指的数依次是:3,7,11,15,,因此数列{a n}是3为首项4为公差的等差数列,根据等差数列的通项公式即可得到答案.【解答】解:∵数1,9,17,25,,分别都对应着大拇指,且1+8×(251−1)=2001,∴数到2008时对应的指头是食指.∵对应中指的数依次是:3,7,11,15,因此数列{a n}的通项公式是a n=3+(n−1)×4=4n−1.故答案为:食指,4n−118.【答案】4【考点】等差数列的通项公式【解析】第1行数组成的数列A1j(j=1, 2,…)是以2为首项,公差为1的等差数列,第j列数组成的数列Aij(i=1, 2,…)是以j+1为首项,公差为j的等差数列,求出通项公式,就求出结果.【解答】第i行第j列的数记为Aij.那么每一组i与j的组合就是表中一个数.因为第一行数组成的数列A1j(j=1, 2,…)是以2为首项,公差为1的等差数列,所以A1j=2+(j−1)×1=j+1,所以第j列数组成的数列Aij(i=1, 2,…)是以j+1为首项,公差为j的等差数列,所以Aij=(j+1)+(i−1)×j=ij+1.所以ij=69=1×69=3×23=23×3=69×1=81.所以表中的数70共出现54,19.【答案】________、1,2n—1【考点】等差数列的通项公式根据a n−1=S n+1−S n ,代入后等式两边同时除以S n+1S n+1.即可得【解答】因为a n−1=S n+1−S n则a n−1+2S n+1S n =0可化简为S n−1−S n +2S n−1S n =0等式两边同时除以S n−1S n可得1S n −1S n+1+2=0.即1S n−1−1S n =2 所以数列为等差数列,首项1S 1=1a 1=1,公差d =2 所以1S n=1+(n −1)×2=2n −1 即S n =12n−1故答案为:12n−1I =加加】本题考查了数列的综合应用,通项公式与前n 项和公式的关系,等差数列通项公式的求法,属于中档题.20.【答案】s _、4”1−4,3【考点】等差数列的通项公式【解析】a n+1n+1−a n n =2,求得an n 的通项,进而求得a n =2n 2,得b n 通项公式,利用等比数列求和即可.【解答】由题为等差数列,a n n =a 11+n −1×2=2na n =2n 2∴ b n =22n ∴ S n =4(1−42)1−4=4n−1−43,故答案为4n+1−43三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 )21.【答案】a n =10−2n【考点】等差数列的通项公式【解析】本题考查等差数列通项公式,由条件 a n+2=2a n+1−a n 可得 a n+2−a n+1=a n+1−a n ,从而{a n }为等差数列,利用 a 1=8, a 4=2 可求公差,从而可求数列{a n }的通项公式.【解答】解:由题意, a n+2−a n+1=a n+1−a n ,∴ 数列 {a n } 为等差数列,设公差为d ,由a 1=8,a 4=2 ,得8+3d =2 ,解得d =−2,∴ a n =8−2(n −1)=10−2n .故答案为:a n =10−2n .22.【答案】解:在等差数列{a n }中,∵ a 4+a 6=28,a 7=20,∴ 由题意得{a 3+d +a 3+3d =28①,a 3+4d =20②,由①②解得{a 3=8,d =3.【考点】等差数列的通项公式【解析】利用等差数列的通项公式求解.【解答】解:在等差数列{a n }中,∵ a 4+a 6=28,a 7=20,∴ 由题意得{a 3+d +a 3+3d =28①,a 3+4d =20②,由①②解得{a 3=8,d =3.23.【答案】解:因为数列{a n }是等差数列,所以a 1+a 3=2a 2,即f(x +1)+f(x −1)=0,又f(x)=x 2−4x +2,所以(x +1)2−4(x +1)+2+(x −1)2−4(x −1)+2=0,整理得x 2−4x +3=0,解得x =1,或x =3.当x =1时,a 1=f(x +1)=f(2)=22−4×2+2=−2,d =a 2−a 1=0−(−2)=2,∴ a n =a 1+(n −1)d =−2+2(n −1)=2n −4.当x =3时,a 1=f(x +1)=f(4)=42−4×4+2=2,d =0−2=−2,∴ a n =a 1+(n −1)d =2+(n −1)×(−2)=4−2n .所以,数列{a n }的通项公式为2n −4或4−2n .【考点】等差数列的通项公式【解析】题目给出了一个等差数列的前3项,根据等差中项概念列式a 1+a 3=2a 2,然后把a 1和a 3代入得到关于x 的方程,解方程,求出x 后再分别代回a 1=f(x +1)求a 1,则d 也可求,所以通项公式可求.【解答】解:因为数列{a n }是等差数列,所以a 1+a 3=2a 2,即f(x +1)+f(x −1)=0,又f(x)=x 2−4x +2,所以(x +1)2−4(x +1)+2+(x −1)2−4(x −1)+2=0,整理得x 2−4x +3=0,解得x =1,或x =3.当x =1时,a 1=f(x +1)=f(2)=22−4×2+2=−2,d =a 2−a 1=0−(−2)=2,∴ a n =a 1+(n −1)d =−2+2(n −1)=2n −4.当x =3时,a 1=f(x +1)=f(4)=42−4×4+2=2,d =0−2=−2,∴ a n =a 1+(n −1)d =2+(n −1)×(−2)=4−2n .所以,数列{a n }的通项公式为2n −4或4−2n .24.【答案】解:(1)由题设可知{a n }是首项为1,公比为3的等比数列,所以a n =3n−1,S n =1−3n 1−3=3n −12.(2)设数列{b n }的公差为d ,∵ b 1=a 2=3,b 3=a 1+a 2+a 3=S 3=13,∴ b 3−b 1=10=2d ,∴ d =5,∴ b n =5n −2.【考点】等比数列的前n 项和等比数列的通项公式等差数列的通项公式【解析】(1)判断数列是等比数列,然后求{a n }的通项公式及前n 项和S n ;(2)利用数列的关系求出公差,然后求解通项公式.【解答】解:(1)由题设可知{a n }是首项为1,公比为3的等比数列,所以a n =3n−1,S n =1−3n 1−3=3n −12.(2)设数列{b n }的公差为d ,∵ b 1=a 2=3,b 3=a 1+a 2+a 3=S 3=13,∴ b 3−b 1=10=2d ,∴ d =5,∴ b n =5n −2.25.【答案】解:(1)数列{a n },{b n }满足a 1=2,b 1=1,且 {a n =23a n−1+13b n−1+2b n =13a n−1+23b n−1+2(n ≥2), ∴ a n +b n =(a n−1+b n−1)+4(n ≥2),因为c n =a n +b n ,即c n =c n−1+4(n ≥2),∴ {c n }是首项为a 1+b 1=3, 公差为4的等差数列.且通项公式为c n =3+4(n −1)=4n −1,而a n −b n =(13a n−1−13b n−1)=13(a n−1−b n−1)(n ≥2),因为d n =a n −b n ,即d n =13d n−1(n ≥2), ∴ {d n }是首项为a 1−b 1=1, 公比为13的等比数列.且通项公式为d n =(13)n−1. (2)由(1)得到 {a n +b n =4n −1a n −b n =(13)n−1, 解得a n =12×3n−1+2n −12,∴ S n = 12×[1−(13)n ]1−13+2×n(n+1)2-12n =34−14×3+n 2+n 2. 【考点】由递推关系证明数列是等差数列等差数列与等比数列的综合数列的求和等比数列的通项公式等差数列的通项公式【解析】由题得到a n +b n =(a n−1+b n−1)+4(n ≥2),即可得到c n =c n−1+4(n ≥2),即可知{c n }是首项为a 1+b 1=3, 公差为4的等差数列.而a n −b n =13(a n−1−b n−1)(n ≥2),即可得d n =13d n−1(n ≥2),可知{d n }是首项为a 1−b 1=1, 公比为13的等比数列.由(1)得到 {a n +b n =4n −1a n −b n =(13)n−1,即可得到a n =12×3+2n −12,再利用分组转换求和法即可得解S n .【解答】解:(1)数列{a n },{b n }满足a 1=2,b 1=1,且 {a n =23a n−1+13b n−1+2b n =13a n−1+23b n−1+2(n ≥2), ∴ a n +b n =(a n−1+b n−1)+4(n ≥2),因为c n =a n +b n ,即c n =c n−1+4(n ≥2),∴ {c n }是首项为a 1+b 1=3, 公差为4的等差数列.且通项公式为c n =3+4(n −1)=4n −1,而a n −b n =(13a n−1−13b n−1)=13(a n−1−b n−1)(n ≥2),因为d n =a n −b n ,即d n =13d n−1(n ≥2), ∴ {d n }是首项为a 1−b 1=1, 公比为13的等比数列.且通项公式为d n =(13)n−1. (2)由(1)得到 {a n +b n =4n −1a n −b n =(13)n−1, 解得a n =12×3n−1+2n −12,∴ S n =12×[1−(13)n ]1−13+2×n(n+1)2-12n =34−14×3+n 2+n 2. 26.【答案】解:(1)设等差数列的公差为d ,由题意得{2S 2=a 2(a 2+1),a 22=a 1a 4, 整理{a 12+2a 1d +d 2=3a 1+d ,a 1=d ,解得a 1=d =1,所以a n =n .(2)由(1)得b n =(n +1)2n ,则T n =2×21+3×22+4×23+⋯+(n +1)×2n ,2T n =2×22+3×23+4×24+⋯+(n +1)×2n+1,两式作差整理得,T n =n ⋅2n+1.【考点】等比中项数列的求和等差数列的通项公式【解析】此题暂无解析【解答】解:(1)设等差数列的公差为d ,由题意得{2S 2=a 2(a 2+1),a 22=a 1a 4,整理{a 12+2a 1d +d 2=3a 1+d ,a 1=d ,解得a 1=d =1,所以a n =n .(2)由(1)得b n =(n +1)2n ,则T n =2×21+3×22+4×23+⋯+(n +1)×2n ,2T n =2×22+3×23+4×24+⋯+(n +1)×2n+1,两式作差整理得,T n =n ⋅2n+1.27.【答案】解:(1)由题意可得{a 1+2d =4,(a 1+4d )2=(a 1+d )(a 1+10d ),即{a 1+2d =4,2d 2=a 1d.又因为d ≠0,所以{a 1=2,d =1,所以a n =n +1,所以S n =n (2+n+1)2=n 2+3n 2;(2)由条件及(1)可得b 1=a 2=3.由已知得b n+1−b n =3×2n+1,b n −b n−1=3×2n (n ≥2).所以b n =(b n −b n−1)+(b n−1−b n−2)+⋯+(b 2−b 1)+b 1=3(2n +2n−1+2n−2+⋯+22)+3=3×2n+1−9(n ≥2).又b 1=3满足上式,所以b n =3×2n+1−9.【考点】等比中项数列递推式等差数列的前n 项和等差数列的通项公式【解析】左侧图片未给出解析左侧图片未给出解析【解答】解:(1)由题意可得{a 1+2d =4,(a 1+4d )2=(a 1+d )(a 1+10d ),即{a 1+2d =4,2d 2=a 1d.又因为d ≠0,所以{a 1=2,d =1,所以a n =n +1,所以S n =n (2+n+1)2=n 2+3n 2;(2)由条件及(1)可得b 1=a 2=3.由已知得b n+1−b n =3×2n+1,b n −b n−1=3×2n (n ≥2).所以b n =(b n −b n−1)+(b n−1−b n−2)+⋯+(b 2−b 1)+b 1=3(2n +2n−1+2n−2+⋯+22)+3=3×2n+1−9(n ≥2).又b 1=3满足上式,所以b n =3×2n+1−9.28.【答案】解:∵ 递增等差数列{a n }满足a 1+a 5=4,前3项的积为8,∴ {a 1+a 1+4d =4a 1(a 1+d)(a 1+2d)=8d >0,解得a 1=−4,d =3,∴ 等差数列{a n }的通项公式a n =−4+(n −1)×3=3n −7.【考点】等差数列的通项公式【解析】利用等差数列前n 项和公式列出方程组,求出首项和公比,由此能求出等差数列{a n }的通项公式.【解答】解:∵ 递增等差数列{a n }满足a 1+a 5=4,前3项的积为8,∴ {a 1+a 1+4d =4a 1(a 1+d)(a 1+2d)=8d >0,解得a 1=−4,d =3,∴ 等差数列{a n }的通项公式a n =−4+(n −1)×3=3n −7.29.【答案】解:解法一:∵ a 5=10,a 12=31,则{a 1+4d =10a 1+11d =31⇒{a 1=−2d =3∴ a n =a 1+(n −1)d =3n −5,a 20=a 1+19d =55解法二:∵ a 12=a 5+7d ⇒31=10+7d ⇒d =3∴ a 20=a 12+8d =55,a n =a 12+(n −12)d =3n −5【考点】等差数列的通项公式【解析】此题暂无解析【解答】略30.【答案】解:∵数列{a n},对于任意n∈N∗,都有a n=n2−bn,假设存在一个整数m,使得当b<m时,数列{a n}为递增数列,∴a n+1−a n=[(n+1)2−b(n+1)]−(n2−bn)=2n+1−b>0,∴存在一个整数m,使得当b<m时,数列{a n}为递增数列,且m=2n+1,n∈N∗.满足条件的整数m不是唯一的,但不存在最大值.【考点】等差数列的通项公式【解析】假设存在一个整数m,使得当b<m时,数列{a n}为递增数列,则a n+1−a n=[(n+ 1)2−b(n+1)]−(n2−bn)=2n+1−b>0,由此能求出结果.【解答】解:∵数列{a n},对于任意n∈N∗,都有a n=n2−bn,假设存在一个整数m,使得当b<m时,数列{a n}为递增数列,∴a n+1−a n=[(n+1)2−b(n+1)]−(n2−bn)=2n+1−b>0,∴存在一个整数m,使得当b<m时,数列{a n}为递增数列,且m=2n+1,n∈N∗.满足条件的整数m不是唯一的,但不存在最大值.31.【答案】解:∵等差数列{a n}中,a2=3,a9=17∴d=a9−a29−2=17−37=2∴a20=a2+18d=3+36=39∵a19+a20+a21=3a20=117【考点】等差数列的通项公式【解析】由已知结合公式d=a9−a29−2可求d,然后利用等差数列的性质及通项公式即可求解【解答】解:∵等差数列{a n}中,a2=3,a9=17∴d=a9−a29−2=17−37=2∴a20=a2+18d=3+36=39∵a19+a20+a21=3a20=11732.【答案】解:∵等差数列{a n}中,a3=8,且满足a10>21,a12<27,∴{a1+2d=8a1+9d>21a1+11d<27,∴{8−2d+9d>218−2d+11d<27,解得137<d <199.∵ d ∈Z ,∴ 公差d =2. 【考点】等差数列的通项公式 【解析】由已知条件利用等差数列通项公式能求出公差d 的值. 【解答】解:∵ 等差数列{a n }中,a 3=8,且满足a 10>21,a 12<27, ∴ {a 1+2d =8a 1+9d >21a 1+11d <27,∴ {8−2d +9d >218−2d +11d <27,解得137<d <199.∵ d ∈Z ,∴ 公差d =2. 33.【答案】 解:(1)∵ 数列{a n }为等差数列,且a 4=9,a 9=−6, ∴ {a 1+3d =9a 1+8d =−6,解得a 1=18,d =−3,∴ 通项a n =18+(n −1)×(−3)=21−3n . (2)a 12=21−3×12=−15.【考点】等差数列的通项公式 【解析】(1)利用等差数列通项公式列出方程组,求出首项与公差,由此能求出通项a n . (2)由通项通项a n ,能求出a 12的值.【解答】 解:(1)∵ 数列{a n }为等差数列,且a 4=9,a 9=−6, ∴ {a 1+3d =9a 1+8d =−6,解得a 1=18,d =−3,∴ 通项a n =18+(n −1)×(−3)=21−3n . (2)a 12=21−3×12=−15. 34.【答案】解:在等差数列{a n }中,a 3+a 4=a 2+a 5=22,a 3⋅a 4=117, ∴ a 3,a 4是方程x 2−22x +117=0的两实根, ∵ 公差d >0,∴ a 3<a 4, ∴ a 3=9,a 4=13; 即{a 1+2d =9a 1+3d =13, 解得{a 1=1d =4;∴ 通项公式为a n =1+4(n −1)=4n −3. 【考点】等差数列的通项公式 【解析】根据题意,由a 3+a 4=a 2+a 5,a 3⋅a 4的值求出a 3、a 4;由此求出{a 1=1d =4;即得通项公式a n . 【解答】解:在等差数列{a n }中,a 3+a 4=a 2+a 5=22,a 3⋅a 4=117, ∴ a 3,a 4是方程x 2−22x +117=0的两实根, ∵ 公差d >0,∴ a 3<a 4, ∴ a 3=9,a 4=13; 即{a 1+2d =9a 1+3d =13, 解得{a 1=1d =4;∴ 通项公式为a n =1+4(n −1)=4n −3. 35.【答案】解:若等差数列{a n }满足S k 3=(S k )3则当k =1时,有s 1=s 13,∴ a 1=0或a 1=1或a 1=−1当k =2时,有s 8=s 23,即8a 1+8×72d =(2a 1+d)3(1)当a 1=0时,代入上式得d =0或d =2√7或d =−2√7 ①当a 1=0,d =0时,a n =0,S n =0 满足S k 3=(S k )3此时,数列{a n }为:0,0,0…②当a 1=0,d =2√7时,a n =2√7(n −1),S n =2√7n(n−1)2=√7n(n −1)S 27≠(S 3)3 ∴ 不满足题意③当a 1=0,d =−2√7时,a n =−2√7(n −1),S n =−2√7n(n−1)2=−√7n(n −1)S 27≠(S 3)3 ∴ 不满足题意(2)当a 1=1时,代入上式得d =0或d =2或d =−8 ①当a 1=1,d =0时,a n =1,S n =n 满足S k 3=(S k )3此时,数列{a n }为:1,1,1…②当a 1=1,d =2时,a n =2n −1,S n =n 2 满足S k 3=(S k )3此时,数列{a n }为:1,3,5…③当a 1=1,d =−8时,a n =−8n +9,S n =n(5−4n) S 27≠(S 3)3 ∴ 不满足题意(3)当a 1=−1时,代入上式得d =0或d =−2或d =8 ①当a 1=−1,d =0时,a n =−1,S n =−n满足S k3=(S k)3此时,数列{a n}为:−1,−1,−1…②当a1=−1,d=−2时,a n=−2n+1,S n=−n2满足S k3=(S k)3此时,数列{a n}为:−1,−3,−5…③当a1=−1,d=8时,a n=8n−9,S n=n(4n−5)S27≠(S3)3∴不满足题意∴满足题意的等差数列{a n}有:①0,0,0…②1,1,1…③1,3,5…④−1,−1,−1…⑤−1,−3,−5…【考点】等差数列的通项公式【解析】先由k=1,k=2时,确定首项和公差,再验证每一组解是否符合题意,从而可以找到符合题意的数列【解答】解:若等差数列{a n}满足S k3=(S k)3则当k=1时,有s1=s13,∴a1=0或a1=1或a1=−1d=(2a1+d)3当k=2时,有s8=s23,即8a1+8×72(1)当a1=0时,代入上式得d=0或d=2√7或d=−2√7①当a1=0,d=0时,a n=0,S n=0满足S k3=(S k)3此时,数列{a n}为:0,0,0…=√7n(n−1)②当a1=0,d=2√7时,a n=2√7(n−1),S n=2√7n(n−1)2S27≠(S3)3∴不满足题意=−√7n(n−1)③当a1=0,d=−2√7时,a n=−2√7(n−1),S n=−2√7n(n−1)2S27≠(S3)3∴不满足题意(2)当a1=1时,代入上式得d=0或d=2或d=−8①当a1=1,d=0时,a n=1,S n=n满足S k3=(S k)3此时,数列{a n}为:1,1,1…②当a1=1,d=2时,a n=2n−1,S n=n2满足S k3=(S k)3此时,数列{a n}为:1,3,5…③当a1=1,d=−8时,a n=−8n+9,S n=n(5−4n)S27≠(S3)3∴不满足题意(3)当a1=−1时,代入上式得d=0或d=−2或d=8①当a 1=−1,d =0时,a n =−1,S n =−n 满足S k 3=(S k )3此时,数列{a n }为:−1,−1,−1…②当a 1=−1,d =−2时,a n =−2n +1,S n =−n 2 满足S k 3=(S k )3此时,数列{a n }为:−1,−3,−5…③当a 1=−1,d =8时,a n =8n −9,S n =n(4n −5) S 27≠(S 3)3 ∴ 不满足题意∴ 满足题意的等差数列{a n }有: ①0,0,0… ②1,1,1… ③1,3,5…④−1,−1,−1… ⑤−1,−3,−5… 36.【答案】 解:(1)设{a n }的首项为a 1,公差为d(d ≠0), ∵ a 1,a 7,a 25成等比数列, ∴ (a 1+6d)2=a 1(a 1+24d), ∴ 36d 2=12a 1d ,又d ≠0, ∴ a 1=3d...3分∴ a n =3d +(n −1)d =(n +2)d , 又a k 2a k 1=a 7a 1=9d 3d=3,∴ {a k n }是以a 1=3d 为首项,3为公比的等比数列,∴ a k n =3d ⋅3n−1=d ⋅3n ,∴ (k n +2)d =d ⋅3n (d ≠0), ∴ k n =3n −2(n ∈N ∗).(2)∵ a 1=9,∴ 3d =9,解得d =3,∴ a k n =3n+1, ∴ b n =√a k n 6+√kn2=√3n +√3n −2√2, 则b n 2+1b n2=(b n +1b n)2−2=(√3n +√3n −2√2√3n −√3n −2√2)2−2=2×3n −2,∴ S n +T n =2×3n−1−32−2n =3(3n −1)−2n ,当n 为偶数时:3n−1=(8+1)n 2−1=8n 2+...+C n 2n 2−1⋅8,能被4整除,2n 也能被4整除,∴ S n +T n 能被4整除.当n 为奇数时,S n +T n =3n+1−1−2(n +1), 3n+1−1=(8+1)n+12−1=8n+12+...+Cn+12n+12−1⋅8能被4整除,2(n +1)也能被4整除,∴ S n +T n 能被4整除,∴ {S n +T n }的前100项中有100项是能被4整除的整数.【考点】等差数列的通项公式 【解析】(1)设{a n }的首项为a 1,公差为d(d ≠0),由题意可求得a 1=3d ,于是可求得a n 的关于d 的表达式,再利用a k 2ak 1=a 7a 1=9d3d =3,可求得其公比,继而可求得akn 的关系式,两者联立即可求得数列{k n }的通项公式k n .(2)先求出b n ,进一步求出S n +T n 的通项公式,再利用二项式知识解决整除问题 【解答】 解:(1)设{a n }的首项为a 1,公差为d(d ≠0), ∵ a 1,a 7,a 25成等比数列, ∴ (a 1+6d)2=a 1(a 1+24d), ∴ 36d 2=12a 1d ,又d ≠0, ∴ a 1=3d...3分∴ a n =3d +(n −1)d =(n +2)d , 又a k 2a k 1=a 7a 1=9d 3d=3,∴ {a k n }是以a 1=3d 为首项,3为公比的等比数列,∴ a k n =3d ⋅3n−1=d ⋅3n ,∴ (k n +2)d =d ⋅3n (d ≠0), ∴ k n =3n −2(n ∈N ∗).(2)∵ a 1=9,∴ 3d =9,解得d =3,∴ a k n =3n+1, ∴ b n =√a k n 6+√k n 2=√3n +√3n −2√2, 则b n 2+1b n2=(b n +1b n)2−2=(√3n +√3n −2√2√3n −√3n −2√2)2−2=2×3n −2,∴ S n +T n =2×3n−1−32−2n =3(3n −1)−2n ,当n 为偶数时:3n−1=(8+1)n 2−1=8n 2+...+C n 2n 2−1⋅8,能被4整除,2n 也能被4整除,∴ S n +T n 能被4整除.当n 为奇数时,S n +T n =3n+1−1−2(n +1), 3n+1−1=(8+1)n+12−1=8n+12+...+Cn+12n+12−1⋅8能被4整除,2(n +1)也能被4整除,∴ S n +T n 能被4整除,∴ {S n +T n }的前100项中有100项是能被4整除的整数. 37.【答案】(1)a n =n ;(2)存在实数0≤λ<1符合题意.【考点】等差数列的通项公式 【解析】(1)根据S n 是a n 2和a n 的等差中项可知2S n =a n 2+a n ,且a n >0,则当n ≥2时,有2S n−1=(a n−1)2+a n−1,两式相减并化简即 可求解;(2)由(1)知a n =n ,由题意知,T n =1−(12)n,假设存在常数λ≥0,对任意n ∈N ,使恒成立等价于对任意n ∈N ′1−(12)n−λ(12)n>√λ恒成立整理化简,利用分离参数法求解恒成立问题即可.【解答】(1)由S n 是a n 2和a n 的等差中项可知,2S n =a n 2+a n ,且a n >0 则当n ≥2时,有2S n−1=(a n−1)2+a n−1两式相减可得,2S n −2S n−1=a n 2−a n−12+a n −a n−1即2a n =a n 2−a n−12+a n −a n+1,a n >0,化简可得,a n −a n−1=1(n ≥2) 所以数列{a n }是以1为首项1为公差的等差数列, 所以数列{a n }的通项公式为a n =n(2)由(1)知,a n =n ,因为b n =(12)n,所以数列{b n }的前几项和T n =1−(12)n假设存在常数λ≥0,对任意n ∈N ′,使T n −λ⋅2−a ,√λ恒成立 即对任意n ∈N1−(12)n−λ(12)n>√λ恒成立等价于对任意n ∈N ′1+√A <2n 恒成立即1+√2小于2a 的最小值即可.所以0≤λ<1满足对任意n ∈N ,使T n −λ⋅2−a >√λ恒成立.所以存在这样的实数?,对任意n ∈N ′,使恒成立,实数?的取值范围为0≤λ<1 38.【答案】(1)a n =−2n +8(2){n|1≤n ≤8,n ∈N }【考点】等差数列的通项公式 【解析】(1)由已知可得a 4=0,再根据a 2=4可得a 1,d 的方程组,解得.(2)由(1)可知a 1=−3d ,故可用含d 的式子表示S n 和a n ,列出不等式求解即可. 【解答】(1)设等差数列{a n }的首项为a 1公差为d ;因为等差数列{a n }的前)项和S n 且S 4=S 3.a 4=0,又∵ a 2=4 {a 1+3d =0a 1+d =4,解得{a 1=4d =−2 所以a n =a 2+(n −2)⋅d =−2n +8 (2)因为a 1=−3d >0,所以d <0 所以S n =na 1+n (n−1)2d =−3nd +n (n−1)2da n =a 1+(n −1)⋅d =(n −4)d 因为S n ≥a n ,所以(n 2−n 2−3n)d ≥(n −4)d因为d <0,所以n 2−n2−3n ≤n −4整理得n 2−9n +8≤0,解得1≤n ≤8 所以”的取值范围是{n|1≤n ≤8,n ∈N } 39.【答案】(1)第几行的第一个数是n 2,最后一个数是n 2+2n (2)第八行各个数之和为2n 3+3n 2+n(3)2019是第44行第84个数.【考点】等差数列的通项公式【解析】(1)根据此表的特点可知此表n行的第1个数为n2,第n行共有3+(n−1)×2=2n+ 1个数,依次构成公差为1的等差数列,利用等差数列的通项公式解之即可;(2)直接根据等差数列的前n项和公式进行求解;(3)1936=442×2019×452=2025,所以2019在第44行,然后设2019是此数表的第44行的第k个数,而第44行的第1个数为442,可求出k,从而得到结论.【解答】(1)由表可知,每一行都是公差为1的等差数列,第n行第一个数是n2,每一行比上一行多2个数,第一行有3个数,则第n行有3+(n−1)×2=2n+1个数,所以第一行最后一个数是n2+(2n+1−1)×1=n2+2n(当然也可以观察得出第n行最后一个数为(n+1)2−1)(2)由(1)知,第几行各个数之和为(2n+1)(n 2+n2+2n)2=(2n+1)(n2+n)=2n3+3n2+n(3)因为1936=442<2019<452=2025,所以2019在第44行,设2019是第44行第k个数,则2019=442+(k−1)×1,解得k=84,所以2019是第44行第84个数.40.【答案】解:等差数列{a n}中,d=2,a1=5,S n=60,∵前n项和S n=na1+12n(n+1)d,即5n+12×n(n−1)×2=60;解得n=6,n=−10(舍去);∴通项公式是a n=a1+(n−1)d=5+2(n−1)=2n+3,∴a6=2×6+3=15.∴所求的n=6,a6=15.【考点】等差数列的通项公式【解析】由等差数列的前n项和公式求出n的值,再由通项公式求出a6即可.【解答】解:等差数列{a n}中,d=2,a1=5,S n=60,∵前n项和S n=na1+12n(n+1)d,即5n+12×n(n−1)×2=60;解得n=6,n=−10(舍去);∴通项公式是a n=a1+(n−1)d=5+2(n−1)=2n+3,∴a6=2×6+3=15.∴所求的n=6,a6=15.。

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。

2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

求数列的通项公式列(教案+例题+习题)

求数列的通项公式列(教案+例题+习题)

求数列的通项公式(教案+例题+习题)一、教学目标1. 理解数列的概念,掌握数列的基本性质。

2. 学会求解数列的通项公式,并能应用于实际问题。

3. 培养学生的逻辑思维能力和运算能力。

二、教学内容1. 数列的概念与基本性质2. 数列的通项公式的求法3. 数列通项公式的应用三、教学重点与难点1. 教学重点:数列的概念,数列的通项公式的求法及应用。

2. 教学难点:数列通项公式的推导和应用。

四、教学方法1. 采用讲授法,讲解数列的概念、性质及通项公式的求法。

2. 利用例题,演示数列通项公式的应用过程。

3. 布置习题,巩固所学知识。

五、教学过程1. 引入数列的概念,讲解数列的基本性质。

2. 讲解数列通项公式的求法,引导学生掌握求解方法。

3. 通过例题,演示数列通项公式的应用,让学生理解并掌握公式。

4. 布置习题,让学生巩固所学知识,并提供解题思路和指导。

5. 总结本节课的重点内容,布置课后作业。

教案结束。

例题:已知数列的前n项和为Sn = n(n+1)/2,求该数列的通项公式。

解答:由数列的前n项和公式可知,第n项的值为Sn S(n-1)。

将Sn = n(n+1)/2代入上式,得到第n项的值为:an = Sn S(n-1) = n(n+1)/2 (n-1)n/2 = n/2 + 1/2。

该数列的通项公式为an = n/2 + 1/2。

习题:1. 已知数列的前n项和为Sn = n^2,求该数列的通项公式。

2. 已知数列的通项公式为an = 2n + 1,求该数列的前n项和。

3. 已知数列的通项公式为an = (-1)^n,求该数列的前n项和。

4. 已知数列的通项公式为an = n^3 6n,求该数列的前n项和。

5. 已知数列的通项公式为an = 3n 2,求该数列的前n项和。

六、教学目标1. 掌握数列的递推关系式,并能运用其求解数列的通项公式。

2. 学习利用函数的方法求解数列的通项公式。

3. 提升学生分析问题、解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列练习题
一.填空题
1.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于___________
2.数列{}n a 的前n 项和为n S ,若1(1)
n a n n =+,则5S 等于_____________________ 3.设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =____________
4.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是_____________
5.一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为_____________
6.等比数列{}n a 的各项为正数,且5647313231018,log log log a a a a a a a +=++
+=则_ 7.已知a b c d ,,,成等比数列,
且曲线223y x x =-+的顶点是()b c ,,则ad 等于______ 8.已知等比数列}{n a 的前n 项和21n n S =-,则22212n a a a +++等于_______________
9.设n S 是等差数列{}n a 的前n 项和,若5359a a =,则95
S S =______________ 10.在等比数列{}n a 中,公比q 是整数,
142318,12,a a a a +=+=则此数列的前8项和为_____ 11.111(1)(2)()242
n n ++++
++= . 12.设4710310()22222()n f n n N +=+++++∈,则()f n = . 13.若数列{}n a 的前n 项和210(123)n S n n n =-=,
,,,则此数列的通项公式为 ;数列{}n na 中数值最小的项是第 项.
14.在等差数列}{n a 中,10a <,912S S =,该数列前_______项的和最小.
三、解答题
15.设{}n a 是一个公差为(0)d d ≠的等差数列,它的前10项和10110S =,且124,,a a a 成等比数列.
(Ⅰ)证明:1a d =; (Ⅱ)求公差d 的值和数列{}n a 的通项公式.
16.已知数列{}n a 的前项和为n S ,且*1111,,3
n n a a S n N +==∈. (Ⅰ)求234,,a a a 的值及数列{}n a 的通项公式; (Ⅱ) 求2462...n a a a a ++++的和.
17.已知数列}{n a 满足1111,3(2)n n n a a a n --==+≥
(Ⅰ)求23,a a ; (Ⅱ)证明2
13-=n n a .
18.求下列数列的通项公式
(1)111,3(2)n n n a a n a -==≥; (2)111,1(2)3
n n a a a n -==-+≥; (3)n S 是{}n a 的前n 项和,121n n S +=-。

19. 已知二次函数2()32f x x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在
函数()y f x =的图像上.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设13+=n n n a a b ,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m .
20.已知数列{}n a 满足*111,21().n n a a a n N +==+∈
(I )求数列{}n a 的通项公式;
(II )(附加题)证明:*122311...().232n n a a a n n n N a a a +-<+++<∈。

相关文档
最新文档