一元一次方程应用题能力拓展
解一元一次方程应用题的方法与技巧
一元一次方程是初等数学中最基本的概念之一,解一元一次方程应用题则是数学中常见的问题类型之一。
本文将带领读者深入了解解一元一次方程应用题的方法与技巧,帮助读者更好地掌握这一知识点。
一、了解一元一次方程的概念在解一元一次方程应用题之前,我们首先需要了解一元一次方程的概念。
一元一次方程是指方程中只含有一个未知数,并且该未知数的最高次数为一。
一元一次方程的一般形式为ax+b=c,其中a、b、c为已知数,x为未知数。
解一元一次方程就是要找到使得该方程成立的未知数的值。
二、掌握解一元一次方程的基本方法在解一元一次方程应用题时,我们可以通过以下基本方法来求解。
1. 移项当方程中含有未知数的项和已知数的项时,我们可以通过移项的方法将未知数的项移到一个侧,以便进行下一步计算。
对于方程2x+3=7,我们可以通过移项将3移到等号的右侧,得到2x=7-3。
2. 消元如果方程中包含多个未知数的项,我们可以通过消元的方法化简方程。
消元的方法通常是通过加减乘除的运算,将未知数的系数相消,从而得到一个简化的方程。
对于方程3x-2y=5和2x+y=7,我们可以通过消元的方法将y的系数相消,从而仅含有一个未知数x的方程。
3. 求解通过移项和消元的方法,我们最终可以得到一个只含有一个未知数的简单方程,然后可以通过解方程的方法求解未知数的值。
解方程的方法包括凑平方、分式法、代入法等。
通过这些方法,我们可以得出未知数的值,从而求解一元一次方程。
三、应用题解题技巧在解一元一次方程应用题时,我们常常面临各种实际问题,而这些问题往往可以用一元一次方程来进行建模和求解。
以下是一些解一元一次方程应用题的常用技巧。
1. 建立方程在解题时,我们首先需要根据实际问题建立方程。
这就需要我们理解问题,将问题中的已知条件和未知量用数学符号表示出来,建立起方程模型。
2. 明确未知数在建立方程时,我们需要明确未知数代表的是什么,只有明确了未知数,才能建立准确的方程模型。
一元一次方程应用题知识点
一元一次方程应用题知识点一、知识概述《一元一次方程应用题知识点》①基本定义:一元一次方程应用题就是在实际生活场景里,有着各种各样关系的事情,我们可以用含有一个未知数(还这个未知数的次数是1呢)的方程来表示,然后求出这个未知数来解决问题。
就像是我们去猜一个神秘数字,但这个数字跟别的一些数字有着特定关系,我们把这些关系用方程写出来,就能找到这个神秘数字啦。
②重要程度:在数学学科里,这可谓相当重要哦。
把实际问题变成数学方程来解,是我们把数学运用到生活中的关键一步。
能帮我们搞定很多现实生活里跟计算有关的事儿,像计算买卖东西的价钱、工程多久完成等等。
③前置知识:要掌握它首先基本的四则运算得很熟练,加、减、乘、除不能出错。
然后得很清楚一元一次方程本身的概念,比如方程的一般形式这些。
④应用价值:在生活中应用超广泛。
就比如说算自己买东西怎么组合花的钱最少。
商家也可以用来算成本、利润等。
工程队用它计算工程进度、需要的人力啥的。
二、知识体系①知识图谱:在数学的方程这部分内容里可是基础中的基础啊。
是从单纯的方程知识迈向解决实际问题的第一步,和很多后续知识像二元一次方程应用题都有联系。
②关联知识:跟代数部分其他知识关系紧密,像整式的运算,你要是整式运算都搞不定,方程里那些式子的变形就难搞。
还有跟函数也有点沾边,一些函数问题也能转化成一元一次方程的应用题形式。
③重难点分析:- 掌握难度:有时候把实际遇到的场景转化成数学语言列方程对不少人来说挺难的。
比如说像水流问题,水速船速搞在一起很容易迷糊。
- 关键点:找准等量关系是关键。
就好像一个拼图,等量关系就是那块能嵌入中心,让整个图完整起来的关键碎片。
④考点分析:在考试里很受出题人的青睐呢。
出题方式很多样,可以直接让你根据某个场景列方程求解,或者给一个方程让你根据情境解释方程的意义。
三、详细讲解(属于方法技能类)①基本步骤:- 先读题好好理解这个情景。
我以前就老想跳着读题,结果经常没搞清楚事情全貌就开始做,最后错得一塌糊涂。
初一数学一元一次方程应用题(提高)
初一数学——一元一次方程应用题(提高)一、考点、热点回顾列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.解方程的一般步骤:①审题,弄清题意.即全面分析已知数与已知数、已知数与未知数的关系.特别要把牵涉到的一些概念术语弄清,如同向,相向,增加到,增加了等.②引进未知数.用x表示所求的数量或有关的未知量.在小学阶段所遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数.③找出应用题中数量间的相等关系,列出方程.④解方程,找出未知数的值.⑤检验并写出答案.检验时,一是要将所求得的未知数的值代太原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.二、典型例题1.五羊中学数学竞赛,满分120分,规定不少于100分的获金牌,80至99分的获银牌,统计得金牌数比银牌数少8,奖牌数比不获奖人数少9,后来改为不少于90分的获金牌,70至89分的获银牌,那么金、银牌都增加了5块,而且金牌选手和银牌选手的总分刚好相同,平均分分别是95分和75分,则参赛总人数是多少?2.把99拆成四个数,使得第一个数加上2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相等,那么这四个数是多少?3.在公路上,汽车A,B,C分别以80km/h,70km/h,50km/h的速度匀速行驶,A从甲站开往乙站,同时,B,C从乙站往甲站。
A在与B相遇2小时又与C相遇,则甲、乙两站相距多少公里?4.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为3.6km/h,骑车人速度为10.8km/h,如果有一列火车从他们背后开过来,它通过行人用了22s,通过骑车人用了26s,问这列火车的车身长为多少米?5.一项工程甲做40天完成,乙做50天完成。
七年级数学上册《列一元一次方程解应用题和差倍分问题》教案、教学设计
a.让学生回顾本节课所学的内容,总结一元一次方程的应用方法。
b.强调解题过程中的关键步骤,如找出等量关系、列方程、解方程等。
c.鼓励学生提出疑问,解答学生在学习过程中遇到的问题。
d.引导学生认识到数学在生活中的重要作用,激发学生学习数学的兴趣。
五、作业布置
为了巩固本章节所学知识,培养学生的独立思考能力和实践操作技能,特布置以下作业:
2.在将实际问题抽象为数学方程时,可能存在困难,需要进一步培养等量关系的理解和运用能力。
3.学生在差倍分问题的解题思路上可能不够清晰,需要引导和训练。
4.部分学生对数学学习的兴趣不足,需要激发学习热情,提高学习积极性。
因此,在教学过程中,教师应关注学生的个体差异,因材施教,通过生动有趣的教学方法,激发学生的学习兴趣,帮助他们克服困难,逐步提高解决实际问题的能力。同时,注重培养学生的团队合作精神,提高他们的沟通与交流能力,使学生在轻松愉快的氛围中掌握知识。
b.差倍分问题的解题步骤是什么?
c.你们在解题过程中遇到了哪些困难?如何克服?
2.教师巡回指导:在小组讨论过程中,教师巡回指导,解答学生疑问,引导学生深入思考。
3.小组汇报:各小组汇报讨论成果,分享解题经验,教师给予点评和指导。
(四)课堂练习
1.教学内容:设计不同难度的练习题,让学生独立完成。
2.教学步骤:
七年级数学上册《列一元一次方程解应用题和差倍分问题》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元一次方程的应用背景,掌握列一元一次方程解决实际问题的基本方法。
2.能够运用等量关系和代数符号准确表达现实生活中的问题,提高将实际问题转化为数学问题的能力。
3.熟练掌握和、差、倍、分等基本数学概念,并能够运用这些概念解决实际问题。
一元一次方程的解的应用拓展
一元一次方程的解的应用拓展一元一次方程是数学中最基本的方程形式之一,它解决了许多实际问题。
本文将探讨一元一次方程解的应用拓展,旨在帮助读者更好地理解和运用这种方程。
一元一次方程的一般形式为:ax + b = 0,其中a和b是已知系数,x是未知数。
解这个方程即是找到x的值,使得等式成立。
在实际问题中,一元一次方程的解可以用来解决各种应用题。
1. 市场销售问题假设一个公司在某一时期内售卖一种产品,每个单位的售价是p元,销售量是x单位。
该公司的总收入可以表示为R = px。
如果我们知道单位售价和总收入,可以利用一元一次方程来计算销售量。
例如,如果总收入为5000元,售价为5元,我们可以设立方程5x = 5000来求解销售量x。
2. 财务收支问题一元一次方程也可以应用于财务收支的问题。
例如,某个人月工资是s元,每个月的开销是k元。
假设该人存储m个月,可以通过方程ms - mk = d来计算存款d的金额。
在这个方程中,左侧表示总收入,右侧则表示总开销,通过解方程可以得到存款金额。
3. 速度和时间问题速度与时间的关系可以通过一元一次方程来解决。
假设一个人以v km/h的速度驾驶,行驶了t小时后到达目的地。
可以通过方程vt = d来计算距离d。
在这个方程中,左侧表示速度乘以时间的乘积,右侧则表示距离。
通过解方程可以求出距离的数值。
4. 比例问题一元一次方程还可以应用于比例问题。
例如,某个图书馆有m本书和n个读者,已知每个读者平均可以借阅b本书。
为了使每个读者都能借到平均数目的书籍,我们可以设立方程mb = n来计算需要的书籍总数。
通过解方程可以得到所需的书籍总数。
5. 几何问题在几何学中,一元一次方程也有广泛的应用。
例如,在一幅平面直角坐标系中,假如一条直线过点(x1, y1)和(x2, y2),我们可以根据这两个点的坐标得到直线的方程式。
对于直线的方程,我们可以通过解一元一次方程来计算与坐标轴的交点等相关信息。
一元一次方程的实际应用题(含详细答案)
一元一次方程的实际应用题(含详细答案)一元一次方程的实际应用题(含详细答案)在数学学习中,一元一次方程是基础而重要的内容之一。
它不仅具有抽象的数学意义,更在我们的日常生活中有着广泛的实际应用。
本文将通过一些实际问题来展示一元一次方程的应用,解答这些问题并给出详细的答案。
问题一:莉莉去花店买鲜花,她买了x朵玫瑰花和3朵康乃馨,共花费了72元。
已知一朵玫瑰花的价格是8元,一朵康乃馨的价格是10元,求莉莉买了多少朵玫瑰花。
解答一:设莉莉买了x朵玫瑰花,则她买的康乃馨朵数为3朵。
根据所给条件可列出一元一次方程:8x + 10 × 3 = 72。
将方程化简得:8x + 30 = 72。
再继续化简得:8x = 72 - 30 = 42。
最后得到:x = 42 ÷ 8 = 5.25。
由于朵数不能为小数,所以莉莉一共买了5朵玫瑰花。
问题二:小明用某种运算规则将这个数x变为y,其中x = 5。
若x × y = 60,求y的值。
解答二:根据问题可列出一元一次方程:5 × y = 60。
将方程化简得:y = 60 ÷ 5 = 12。
所以小明用这种运算规则将5变为12。
问题三:小明爸爸今年的年龄是小明年龄的2倍加上20,两年后小明的年龄是25岁,求小明爸爸今年的年龄。
解答三:设小明爸爸今年的年龄为x岁,则小明爸爸年轻时的年龄为2x + 20岁。
根据题意,可列出一元一次方程:x + 2 = 25。
将方程化简得:x = 25 - 2 = 23。
所以小明爸爸今年的年龄是23岁。
通过以上实际应用题,可以看到一元一次方程在日常生活中的应用十分广泛。
无论是计算购物花费、解决变量关系还是预测未来年龄,一元一次方程都能为我们提供简便而准确的解决方法。
总结:本文围绕一元一次方程的实际应用题展开,通过详细解答问题,展示了一元一次方程在日常生活中的实用性。
在解题过程中,我们灵活运用了代数表达式和方程的化简,得出了准确的答案。
七年级一元一次方程应用题8种类型归类
七年级一元一次方程应用题8种类型归类第一类:简单的线性方程的应用题这类题目基本上是直接套用一元一次方程的定义,根据题目中的条件列出方程,然后解方程得到答案。
这类问题比较简单,适合入门阶段的学生练习。
第二类:带有关系的线性方程应用题这类题目常常要求学生根据题意建立两个或多个物体之间的量的关系,然后通过建立方程解决问题。
这类问题往往需要学生较高的抽象思维能力来解决。
第三类:工作时间线性方程应用题这类题目要求学生根据不同情况下人员的工作效率和时间推导出方程,然后解决问题。
这类问题对学生的逻辑思维和数学应用能力有一定要求。
第四类:比例关系与一元一次方程的整合这类题目旨在让学生熟练掌握用比例关系建立一元一次方程,进一步拓展了一元一次方程的应用范围,对学生的推导能力和计算能力提出了更高的要求。
第五类:几何问题与线性方程的结合这类题目结合了几何图形中的关系与线性方程的解法,通过建立图形中的几何关系,以方程的形式呈现并求解,培养了学生的几何直观和数学抽象能力。
第六类:消耗量的线性方程应用题这类问题常常涉及到消耗量与产出量之间的关系,学生需要根据不同情况下物质的消耗速度和产出速度建立方程,解决问题。
第七类:时间速度距离的线性方程题型这类题目涉及了时间、速度和距离之间的关系,要求学生根据不同的情景情况建立方程,解决问题。
这类题目较为灵活,需要学生综合考虑多个变量间的关系。
第八类:经济问题的线性方程应用题这类题目常常涉及到金钱的支出与收入之间的关系,学生需要根据题目中的条件建立方程,解决经济问题。
这类题目旨在培养学生的实际应用能力和经济思维。
以上就是七年级一元一次方程应用题的8种典型类型,不同类型的题目反映了一元一次方程在现实生活中的广泛应用,通过解决这些问题,学生不仅可以提高解决实际问题的能力,还能深入理解一元一次方程的运用和意义。
希望同学们在学习过程中能够灵活应用这些方法,提高自己的数学水平。
采购烟花,爆竹,年货的初一一元一次方程应用题
采购烟花,爆竹,年货的初一一元一次方程应用题
春节即将来临,某公司计划采购烟花、爆竹和年货。
为了解这个问题,我们可以用一元一次方程来建立数学模型。
假设公司计划采购的烟花数量为x 箱,爆竹数量为y 箱,年货数量为z 箱。
根据题目,我们可以建立以下方程:
1. 采购烟花的总费用是 20x 元(因为每箱烟花20元)。
2. 采购爆竹的总费用是 30y 元(因为每箱爆竹30元)。
3. 采购年货的总费用是 50z 元(因为每箱年货50元)。
4. 公司计划的总预算是 1000 元。
因此,总预算方程可以表示为:20x + 30y + 50z = 1000。
由于采购的烟花、爆竹和年货的数量都是整数,我们需要找到满足这些条件的整数解。
现在我们要来解这个方程,找出 x、y 和 z 的值。
计算结果为: [{x: 10 - y - z/2, z: 2y}]
所以,公司应该采购的烟花数量为:10 - y - z/2 箱,爆竹数量为:y 箱,年货数量为:2y 箱。
人教版数学七年级上《一元一次方程应用题》能力提高题
列一元一次方程解应用题一、设直接未知数1.我国政府为解决老百姓看病难的问题,决定下调药品价格,某种药品在1999年涨价30%后, 2001年降价70%至a 元,则这种药品在1999年涨价前的价格为元.2.光明中学初中一年级一、二、三班向希望学校共捐书385本.一班与二班捐书的本数之比为4︰3,—班与三班捐书的本数之比为6 :7,那么二班捐书本.3.某车间共有86名工人,已知每人平均每天可加工甲种部件15个,或乙种部件12个,或丙种部件9个,要使加工后的部件按3个甲种部件、2个乙种部件和1个丙种部件配套,则应安排人加工甲种部件,人加工乙种部件,人加工丙种部件。
4.甲、乙同在一百米起跑线处,甲留在原地未动,乙则以每秒7 米的速度跑向百米终点,5秒后甲听到乙的叫声,看到乙跌倒在地,已知声音的传播速度是每秒340米,这时乙已经跑了米。
(精确到个位)5.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多能买支钢笔。
6.某妇人买了一包弹球,其中41是绿色的,81是黄色的,余下的51是蓝色,如果有12个蓝色的弹球,那么她总共买了()个弹球。
A. 48B. 60C. 96D. 720E. 19207.某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加().A.20%B.25%C.80%D.75%8.甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么().A.甲比乙大5岁B.甲比乙大10岁C.乙比甲大10岁D.乙比甲大5岁9.甲、乙、丙、丁4人拿出同样多的钱,合伙订购同样规格的若干货物.货物买来后,甲、乙、丙分别比丁多拿了3、7、14件货物,最后结算时,乙付给丁14元,那么丙应付给丁()元. A.28B.56C.70D.11210.天池旅馆二层客房比底层的多5间,黄冈市某中学参加数学竞赛有48人,若全部安排在底层,每间住4人,房间不够;而每间住5人,有的房间未住满,又若全部安排在二层,每间住3人,房间不够;而每间住4人,有的房间未住满,这家旅馆底层共有房间()个.A.9B.10C.llD.1211.某市为了鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分,按每吨0.45元收费;超过10吨而不超过20吨部分,按每吨0.80元收费;超过20吨部分按 1.5元/吨收费.现已知李老师家六月份缴水费14元,问李老师家六月份用水多少吨?12.某公园有东、西两个门,开园半小时内东门售出成人票65张,儿童票12张,收票款568元,西门售出成人票81张,儿童票8张,收票款680元,问此公园成人票、儿童票每张售价各几元?13.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不是3本,设该校买了m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m ;(2)求出该校的获奖人数及所买课外读物的本数.14.某商店有A种练习本出售,每本零售价为0.30元,一打(12本)售价为 3.00元,买10打以上的,每打还可以按 2.70元付款,解答下列问题:(1)初三、一班共57人,每人需要1本A种练习本,则该班集体去买时,最少需付多少元?(2)初三年级共227人,每人需要1本A种练习本,则该年级集体去买时,最少需付多少元?15.在3点和4点之间,时钟上的分针和时针在何时重合?16.革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元?17.商场出售的A 型冰箱每台售价2190元,每日耗电量为1度,而B 型节能冰箱每台售价虽比A 型冰箱髙出10%,但每日耗电量却为0.55度,现将A 型冰箱打折出售(打一折后的售价为原价的101),问商场至少打几折出售,消费者购买才合算?(按使用期10年,每年365 天,每度电0.40元计算)18.某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票以购买日起,可供持票者使用一年).年票分A 、B 、C 三类:A 类年票每张120元,持票者进入园林时,无需再用门票;B 类年票每张60元,持票者进人该园林时,需再购买门票,每次2元;C 类年票每张40元,持票者进入该园林时,需再购买门票,每次3元;(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进人该园林的次数最多的购票方式;(2)求一年中进入该园林至少超过多少次时,购买A 类年票比较合算?19.某人大学毕业后,准备到母校探望曾经教过自己的一位老师.他带了50元人民币,先到百货公司买了—些罐失和饮料,共用去30元;经过水果市场时,他打算买1500克香蕉和1500克苹果,但发现所带的钱不够,结杲只好少买了500克香蕉,这样所带钱数尚有结余,已知香蕉每500克3元,苹果价格也是整数,试求苹果的价格。
人教版七年级数学上册一元一次方程应用题类型专练二【含答案】
一元一次方程应用题类型二数字类型1.(基础)阅读下列材料,并完成任务.学习了一元一次方程,我们就可以利用它把无限循环小数化为分数.以无限循环小数为例,它的循环节有两位,若设,由可得,0.730.73737373= 0.73x = 0.730.73737373= ,所以,解方程,得,于是,.10073.737373x = 10073x x -=7399x =730.7399= (1)类比应用:(直接写出答案,不写过程)___________;____________;0.2= 0.12=(2)能力提升:将化为分数形式,写出解答过程;1.23(3)拓展探究:请运用上面的方法说明.0.91=2.(基础)阅读理解题,阅读下列材料:若一个三位数的十位数字是个位数字的2倍,我们称这个三位数为“倍尾数”,如521.(1)已知一个“倍尾数”的百位数字比十位数字大1,其各位数字之和是16,求这个“倍尾数”;(2)若一个“倍尾数”的各位数字之和是17,求出所有符合要求的“倍尾数”.3.(中等)将正整数1至2018按照一定规律排成下表:13457891012141516171819212223242526272829303132……记a ij 表示第i 行第j 个数,如a 14=4表示第1行第4个数是4.(1)直接写出a 32= ,a 55= ;(2)①若a ij =2018,那么i = ,j = ,②用i ,j 表示a ij = ;(3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2027.若能,求出这5个数中的最小数,若不能说明理由.4.(难)仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之“有限小数或无限循环小数均可化为分数”.例如:1140.254=÷=38185 1.655==÷=1130.33=÷= 反之2510.251004==16831.611055===那么怎么化成呢?0.313解:∵0.310 3.330.3⨯==+∴不妨设,则上式变为10x=3+x,解得x=即.0.3=x 1310.3=3 根据以上材料,回答下列问题:(1)将分数化为小数: =_________,=_________;74411(2)将小数化为分数:=_________, =_________;0.4 1.5(3)将小数化为分数,需要写出推理过程.1.021.02和差倍分类型5.(基础)某年级组织部分学生参加语文、数学、英语课外活动兴趣小组,下面两幅统计图反映了学生自愿报名(每人限报一科)的情况,请你根据图中信息回答下列问题:(1)该年级报名参加英语课外活动兴趣小组的人数占全年级人数的百分数是______,请补全条形统计图;(2)根据实际情况,需从英语课外活动小组抽调部分同学到数学课外活动小组,使数学课外活动小组的人数是英语课外活动小组人数的3倍,则应从中抽调多少名学生?6.(基础)晶晶看一本书,第一天看了总页数的,第二天看的是第一天的,剩下12页没有看3558完.这本书有多少页?7.(中等)如图,是线段上一点,,,点、点分别从点、P AB 15cm AB =10cm AP =C D P 点出发向点方向运动,点的运动速度为,点的运动速度为,运动的时间为B A C 1cm/s D 2cm /s .ts (1)运动后,求的长;1s CD (2)运动时间为多少时,点会与点重合;.D C (3)运动时间为多少时,的长度为.CD 2cm(4)当点继续在的延长线上运动时,是否存在,若存在,求出此时的运动时间,D BA 2CD AC =若不存在,请说明理由.8.(难)学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m 人去两处支援,其中,若要使甲处植树的人数仍90100m <<然是乙处植树人数的3倍,则应调往甲,乙两处各多少人?电费和水费类型9.(基础)某市对居民用水实行阶梯水费,收费标准如表:月用水量不超过12吨的部分超过12吨不超过20吨的部分超过20吨的部分收费标准(元/吨)a a +14(1)甲用户上月用水30吨,其该月水费为 元(用含a 的代数式表示);(2)若a =1.5,乙用户上月水费为30元,求乙用户该月的用水量.10.(基础)我市为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y (元)与所用的水量x (吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y 与x 之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨.11.(中等)为充分发挥市场机制和价格杠杆在水资源配置中的作用,促进节约用水,提高用水效率,2017年7月1日起某地实行阶梯水价,价目如表(注:水费按月结算,表示立方米):3m 价目表每月用水量单价(元/)3m 不超过18的部分3超出18不超出25的部分4超出25的部分7例:某户居民5月份共用水,则应缴水费(元).323m 3184(2318)74⨯+⨯-=(1)若A 居民家1月份共用水,则应缴水费_______元;312m (2)若B 居民家2月份共缴水费66元,则用水________;3m (3)若C 居民家3月份用水量为(a 低于,即),且C 居民家3、4两个月用水量3m a 320m 20a <共,求3、4两个月共缴水费多少元?(用含a 的代数式表示)340m 12.(难)某市居民使用自来水按月收费,标准如下:①若每户月用水不超过10m 3,按a 元/m 3收费;②若超过10m 3,但不超过20m 3,则超过的部分按1.5a 元/m 3收费,未超过10m 3部分按①标准收费;③若超过20m 3,超过的部分按2a 元/m 3收费,未超过20m 3部分按②标准收费;(1)若用水20m 3,应交水费 元;(用含a 的式子表示)(2)小明家上个月用水21m 3,交水费81元,求a 的值;(3)在(2)的条件下,小明家七、八两个月共交水费240元,七月份用水xm 3超过10m 3,但不足20m 3,八月份用水ym 3超过20m 3,当x ,y 均为整数时,求y 的值.行程类型13.(基础)快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米,慢车每小时行多少千米?14.(基础)小明和小亮练习一百米赛跑,小明的速度是6米/秒,小亮的速度是7.5米/秒.(1)列方程求解:若小明先跑3秒,小亮经过多长时间追上小明?(2)若小明先跑4秒,小亮能否追上小明?(直接写出结果,不必说明理由)15.(中等)A、B两地相距900km,甲车从A地驶向B地,2h后距B地800km,与此同时乙车以100km/h的速度沿着相同的道路从A地驶向B地.(1)甲车的速度为 km/h;甲车出发 h,乙车能追上甲车;(2)甲、乙两车,谁先到达B地?提前多长时间?(3)甲车出发 h.两车相距20km.16.(难)中秋节期间,小明计划外出游玩,他有两种出行线路:线路一是自己开车;线路二是先坐高铁再骑行;其中线路二的路程是线路一的2倍,且乘坐高铁部分路程占线路二全程的95%,剩余路程为骑行路程.已知高铁平均速度是开车平均速度的5倍,若最终两种出行方式所花费时间一致,则开车速度是骑行速度的多少倍?比列分赔类型17.(基础)为响应稳书记“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购实甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种是球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?18.(基础)吉阳配件厂男工人数与女工人数的比是6:7,若调走30名女工,则女工与男工人数的比为5:6,这个车间原有女工多少人?202019.(中等)年春节前夕,突如其来的新型冠状病毒肺炎造成口罩紧缺,为满足社会需求,A B某一工厂需购买、两种材料,用于生产甲、乙两种口罩,每件分别使用的材料和数量如表:A种B种甲型30kg10kg乙型20kg 20kgA15B25其中种材料每千克元,种材料每千克元.10(1)若生产甲型口罩的数量比生产乙型口罩的数量多件时,两种口罩需购买材料的资金相同,求生产甲、乙两种口罩各多少件?A B385000500(2)若工厂用于购买、两种材料的资金不超过元,且需生产两种口罩共件,求至少能生产甲种口罩多少件?20.(难)七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数.①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?答案1.(1),;(2)见详解;(3)见详解29433【详解】解:(1)设,,则有,,0.2x =0.12y = 10 2.222x = 10012.121212y = ∴,,102x x -=10012y y -=解得:,,29x =433y =∴,,20.29= 40.1233= 故答案为,;29433(2)设,则有,0.23x =10023.232323x = ∴,解得:,10023x x -=2399x =∴,230.2399= ∴;··1221.2399=(3)设,则有,0.9x =109.9999x = ∴,109x x -=解得:,1x =∴.0.91=2.(1)这个“倍尾数”为763;(2)符合要求的“倍尾数”有863和584【详解】解:(1)设这个“倍尾数”个位上的数字为x ,则十位上的数字为2x ,百位上的数字为2x +1,由题意可得x +2x +2x +1=16解得:x=3则十位上的数字为2×3=6,百位上的数字为6+1=7∴这个“倍尾数”为763答:这个“倍尾数”为763;(2)设这个“倍尾数”个位上的数字为a ,则十位上的数字为2a ,百位上的数字为17-3a ,由个位数字可得:a 可以为0、1、2、3、4、5、6、7、8、9,由十位数字可得:a 可以为0、1、2、3、4,由百位数字可得:a 可以为3、4、5,∴a=3或4当a=3时,这个“倍尾数”为863;当a=4时,这个“倍尾数”为584;答:符合要求的“倍尾数”有863和584.3.(1)18,37;(2)①253,2,②8(i ﹣1)+j ;(3)不能,见解析【详解】解:(1)根据表格可以得出a 32=18;∵前面4行一共有8×4=32个数,∴第5行的第1个数为33,则第5行的第5个数为37,即a 55=37.故答案为18;37;(2)①∵2018÷8=252…2,∴2018是第253行的第2个数,∴i =253,j =2.故答案为253,2;②根据题意,可得a ij =8(i ﹣1)+j .故答案为8(i ﹣1)+j ;(3)设这5个数中的最小数为x ,则其余4个数可表示为x +4,x +9,x +11,x +18,根据题意,得x +x +4+x +9+x +11+x +18=2027,解得x =397.∵397÷8=49…5,∴397是第50行的第5个数,而此时x +4=401是第51行的第1个数,与397不在同一行,∴将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和不能等于2027.4.(1)1.75, ;(2) ;(3)答案见解析.0.36 49519试题分析:(1)用分子除以分母即可;(2)设 根据例题得到, 设则 然后求解即0.4x = ,104x x =+ 1.510.5,=+ 0.5x =,105x x =+,可;(3)设根据题意得到,然后求得的值,最后再加上1即可.0.02x =,1002x x =+x试题解析:()174 1.75;4110.36÷=÷= ;故答案为1.75;0.36.(2)设根据题意得:10x =4+x ,解得: 0.4x = ,4.9x =设,则,解得: 0.5x = ,105x x =+,5.9x =551.510.511.99=+=+= 故答案为45,1.99(3)设根据题意得100x =2+x ,解得:0.02x =,299x =21011.021.9999=+= 5.(1)30%,补全的条形图如图,见解析;(2)从英语组抽调5名学生.【详解】解:(1)∵参加数学的学生有25人,占总体的50%,∴总人数为:25÷50%=50(人),∴参加英语课外活动兴趣小组的人数占全年级人数的百分数是,15100%30%50⨯=故 30%,参加语文课外活动兴趣小组的人数有:50-15-25=10(人),补全统计图如下:(2)设需从英语组抽调x 名同学到数学组,根据题意得:3(15-x)=25+x ,解得:x=5.答:应从中抽调5名学生.6.这本书有480页【详解】解:设这本书有x 页,根据题意可得方程:,35312585x x x +⨯+=2312,58x x -=解得:x =480,答:这本书有480页.7.(1)4cm ;(2)5s ;(3)3s 或7s ;(4)存在,或15s253s【详解】解:(1)当时,,,,1t =111CP cm =⨯=212BD cm =⨯=15105PB AB AP cm =-=-=∴,523PD PB BD cm =-=-=134CD CP PD cm=+=+=(2)当点与点重合时,,D C BD CP PB =+∴,∴25t t =+5t =∴运动时间为时,点会与点重合,5s D C (3)当点在点的左侧时C D ,,2CD BC BD =-=∴,522t t +-=∴;3t =当点在点的右侧时C D ,2CD BD BC =-=∴,()252t t -+=∴;7t =∴运动时间为或时,的长度为,3cm 7cm CD 2cm (4)∵点在的延长线上,D BA ∴,()255CD BD BC t t t =-=-+=-当点在上运动时,,C AP 10AC AP CP t =-=-∵,2CD AC =∴,()5210t t -=-∴.253t =当点在的延长线上运动时,,C PA 10AC CP AP t =-=-∵,2CD AC =∴,()5210t t -=-∴.15t =∴当点继续在的延长线上运动时,存在,此时的运动时间为,或.D BA 2CD AC =253s15s 8.(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人【详解】解:(1)设应从乙处调x 人到甲处,则乙处剩下(96-x )人,列方程得: 220396x x +=(-)解得:x=17(2)设调往甲处y 人,甲处现有(220+y )人,则调往乙处(m-y )人,乙处现有(96+m-y )人,由此可得方程:()220y 396m y +=+-∴4y-3m 68=∴68+3m y 4=∵,y<m,m ,y 均为整数90100m <<当m=91时:(舍去)68+3m 341y =44=当m=92时:68+3m 344y ==8644=当m=93时:(舍去)68+3m 347y =44=当m=94时:(舍去)68+3m 350175y ==442=当m=95时:(舍去)68+3m 353y =44=当m=96时:68+3m 356y ==8944=当m=97时:(舍去)68+3m 359y =44=当m=98时:(舍去)68+3m 362181y ==442=当m=99时:(舍去)68+3m 365y =44=综上所述:当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人答:(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人9.(1)(20a +48);(2)乙用户该月的用水量为16.8吨.【详解】解:(1)12a +8(a +1)+(30﹣20)×4=20a +48(元),故该月水费为(20a +48)元,故(20a +48);(2)若a =1.5,12×1.5=18(元),12×1.5+8×(1.5+1)=38(元),∵18<30<38,∴乙用户该月的用水量超过12吨不超过20吨,设乙用户该月的用水量为x 吨,根据题意得:18+2.5(x ﹣2)=30,解得:x =16.8.答:乙用户该月的用水量为16.8吨.10.(1)2元;(2);(3)15吨.()3101030y x x =-<≤【详解】(1)解:当x =10时,水费是20元,则每吨水费为20÷10=2(元/吨)(2)解:当10<x ≤30时,设y =kx +b ,将(10,20)和(30,80)代入可得10203080k b k b +=⎧⎨+=⎩解得,310k b =⎧⎨=-⎩∴直线y =3x -10(10<x ≤30)(3)解:设居民三月份用水x 吨,则四月份用水x +4吨,当x =10时,水费:2×10+3×14-10=52(元)<82元,故x >10,则水费:3x -10+3(x +4)-10=82,6882x ∴-=解得x =15,答:这户居民三月份用水15吨.11.(1)36;(2)21;(3)a <15时,(187-4a )元;15≤a ≤18时,(142-a )元;18<a ≤20时,124元【详解】解:(1)∵12<18,∴应缴水费12×3=36(元),故36;(2)设B 居民家2月份用水x m 3,∴3×18+4×(x -18)=66,解得x =21.故21.(3)①当a <15时,4月份的用水量超过25m 3共缴水费:3a +3×18+4(25-18)+7(40-a -25)=187-4a ,②当15≤a ≤18时,4月份的用水量不低于22m 3且不超过25m 3共缴水费:3a +3×18+4(40-a -18)=142-a ,③当18<a ≤20时,4月份的用水量超过20m 3且不超过22m 3共缴水费:3×18+4(a -18)+3×18+4(40-a -18)=124.12.(1)25a ;(2)a =3;(3)y 的值为41或38【详解】解:(1)由题意得:10a +10×1.5a =25a (元)故答案是:25a .(2)根据题意,25a +2a =81解得a =3;(3)根据题意,30+4.5(x ﹣10)+30+45+6(y ﹣20)=240.4.5x +6y =3003x +4y =2004y =200﹣3x3504xy =-因为x 取11至19的整数,且y 为整数,所以x 应为4的倍数.当x =12时,y =41:当x =16时,y =38.综上所述,y 的值为41或38.13.21千米【详解】解:设慢车每小时行x 千米,根据题意得:,403253725x ⨯-=++解得:.21x =则慢车每小时行21千米.14.(1)12秒;(2)不能.【详解】解:(1)设小亮经过秒追上小明,x 依题意得,7.5636x x -=⨯,1.518x ∴=12x ∴=答:若小明先跑3秒,小亮经过12秒追上小明.(2)若小明先跑4秒,设小亮经过秒追上小明,y 则,7.5624y y -=,1.524y ∴=16y ∴=,7.57.516120,120100y m m =⨯=> 故小亮不能追上小明.15.(1)50,4;(2)乙车先到达B 地,提前7h ;(3)3.6或4.4.【详解】解:(1)甲车2h 行驶的路程900﹣800=100(km ),∴甲车的速度为100÷2=50(km/h );设甲车出发xh ,乙车能追上甲车,由题意得:50x =100(x ﹣2),解得x =4:故50,4;(2)2h 后甲车到达B 地的时间:800÷50=16(h ),乙车到达B 地的时间:900÷100=9(h ),16﹣9=7(h ),答:乙车先到达B 地,提前7h ;(3)设甲车出发xh ,两车相距20km ,①甲车在前,乙车在后,两车相距20km ,50x ﹣100(x ﹣2)=20,解得:x =3.6;②乙车在前,甲车在后,两车相距20km ,100(x ﹣2)﹣50x =20,解得:x =4.4,答:甲车出发 3.6h 或4.4h ,两车相距20km .故3.6或4.4.16.6.2【详解】解:设线路一的路程为y ,开车的速度为,骑行速度为,则线路二的路线为2y ,高铁的速度为1x 2x ,根据题意,15x 高铁的路程为:,295% 1.9y y ⨯=则骑行的路程为:,2 1.90.1y y y -=由两种出行方式所花费时间一致,∴,1121.90.15y y y x x x =+解得:;12 6.2x x =∴开车速度是骑行速度的6.2倍.17.(1)甲种足球需50元,乙种足球需70元;(2)20个班级;(3)甲种足球40个,乙种足球60个.【详解】解:(1)设购买一个甲种足球需x 元,则购买一个乙种足球需(x+20)元,可得: 20001400220xx =⨯+解得:x=50经检验x=50是原方程的解且符合题意答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)由(1)可知该校购买甲种足球==40个,购买乙种足球20个,2000x 200050∵每个班须配备甲足球2个,乙种足球1个,答:购买的足球能够配备20个班级;(3)设这学校购买甲种足球2x 个,乙种足球3x 个,根据题意得:2x×50+3x×70=3100解得:x=20∴2x=40,3x=60答:这学校购买甲种足球40个,乙种足球60个.18.105【详解】设车间原有女工7a 人,则男工人数6a ,根据题意得730566a a -=解得a=15,经检验,符合题意,∴这个车间原有女工7×15=105人19.(1)生产甲、乙两种口罩分别为80件、70件;(2)至少能生产甲种口罩150件【详解】(1)设乙型口罩的数量为件,则甲型口罩的数量为件x ()10x +根据题意,得:()()()301510251020152025x x ⨯+⨯+=⨯+⨯∴70x =∴1080x +=∴生产甲、乙两种口罩分别为80件、70件;(2)设甲型口罩的数量为件,则乙型口罩的数量为件x ()500x -根据题意,得:()()()3015102520152025500385000x x ⨯+⨯+⨯+⨯-≤∴150x ≥∴至少能生产甲种口罩150件.20.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故15.(2)①根据题意,设七年(1)班满分人数有x 人,则未满分的有人,则2x,4402x x ++=解得:,24x =∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,∴(1)班得5分和10分的人数相等,人数为:(人);1(40424)62--=∴(1)班得总分为:(分);40656102420570⨯+⨯+⨯+⨯=由题意,(2)班存在得5分、得10分、得20分,三种情况,设得5分的有y 人,得10分的有z 人,满分20分的有人,(2)y z +∴,(2)40y z y z +++=∴,3240y z +=∴七(2)班得总分为:(分);51020(2)453015(32)1540600y z y z y z y z +++=+=+=⨯=∵,570600<∴七(2)班的总分高.。
一元一次方程专项训练
一元一次方程专项训练
1. 理解方程的概念:方程是含有未知数的等式。
学会识别方程中的未知数和已知数,并理解它们之间的关系。
2. 解方程的步骤:掌握解方程的一般步骤,包括移项、合并同类项、化简等。
通过练习不同类型的方程,熟练掌握这些步骤。
3. 应用题:将一元一次方程应用到实际问题中,如计算速度、时间、距离等。
通过解决实际问题,加深对一元一次方程的理解。
4. 等式性质:熟悉等式的基本性质,如等式两边加上或减去同一个数,等式仍然成立;等式两边乘以或除以同一个非零数,等式仍然成立。
利用这些性质解方程。
5. 方程的变形:学会将复杂的方程进行变形,以便更容易求解。
例如,将分式方程转化为整式方程,将含有括号的方程去括号等。
6. 练习错题:收集自己做错的题目,仔细分析错误原因,并进行有针对性的练习。
通过反复练习错题,加深对知识点的理解。
7. 限时训练:设置时间限制,进行一元一次方程的解题训练。
这样可以提高解题速度和应试能力。
通过以上的专项训练,你将更好地掌握一元一次方程的概念和解题方法。
不断练习和巩固,提高自己的数学能力。
解一元一次方程实际问题专项练习题
解一元一次方程实际问题专项练习题
在解一元一次方程时,我们常常会遇到一些实际问题。
这些问题可以通过建立方程并解方程来求解。
下面是一些解一元一次方程实际问题的专项练题。
1. 题目一
一个长方形的宽度是长度的一半,周长为30米。
求长方形的长度和宽度。
解答
设长方形的长度为x,则宽度为x/2。
根据周长的定义,可以得到方程:
2(x + x/2) = 30
简化该方程可得:
2x + x = 30
合并同类项后得到:
3x = 30
解方程可以得到长方形的长度:
x = 10
将x的值代入宽度的方程,可以得到长方形的宽度:x/2 = 10/2 = 5
因此,该长方形的长度为10米,宽度为5米。
2. 题目二
一个有两个水桶,一个大桶和一个小桶。
大桶比小桶多装10
升水。
如果将小桶里的水倒入到大桶里,大桶就比小桶多装2升水。
求大桶和小桶分别能装多少升水。
解答
设小桶能装的水量为x升,则大桶能装的水量为x +10升。
根
据题目要求,可以得到方程:
(x + 2) - x = 10
简化该方程可得:
2 = 10
该方程没有解。
根据题意可知,出现这种情况是不可能的。
因此,该题无解。
以上是解一元一次方程实际问题的专项练题。
通过建立方程并解方程,我们可以求解实际问题中的未知数,解决实际生活中的各种应用问题。
*注意:本文档仅供参考,请勿引用未经证实的内容。
*。
一元一次方程的实际应用题(含详细答案)
一元一次方程的实际应用题题型一:利率问题利率问题利息=本金×利率×期数本利和=本金十利息=本金×(1+利率×期数)利息税=利息×税率税后利息=利息一利息税=利息×(1-税率)税后本利和=本金+税后利息【总结】若利率是年利率,期数以“年”为单位计数,若是月利率,则期数以“月”为单位计数,解题时要注意.【例1】某人把若干元按三年期的定期储蓄存入银行,假设年利率为3. 69%,到期支取时扣除所得税实得利息2 103.3元,求存入银行的本金.(利息税为5%)【答案】设存入银行的本金为x元,根据题意,得()()%%3 3.69152103.3x⨯⨯⨯-=x⨯=0.1051652103.3x=,20000因此,存入银行的本金是20000元.【总结】利息=本金×利率×期数×利息税题型二:折扣问题利润额=成本价×利润率售价=成本价+利润额新售价=原售价×折扣【例2】小丽和小明相约去书城买书,请你根据他们的对话内容(如图),求出小明上次所买书籍的原价.--图641【分析】设小明上次购买书籍的原价是x元,由题意,得0.82012+=-,x xx=.解得160因此,小明上次所买书籍的原价是160元,【答案】160元.1:一件衣服按标价的八折出售,获得利润18元,占标价的10%,问该衣服的买入价?分析:本金:标价利率:-20%利息:成交价-标价=买入价+利润-标价解:设该衣服的买入价为x元x+18-18/10%=18/10%×(80%-1)当然,这道题这样解是一种方法,还可以按照我们常规的算术方法解来,倒也简单,因此,列方程解应用题是针对过程清楚的问题比较简单方便。
2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[分析]探究题目中隐含的条件是关键,可直接设出成本为X元进价折扣率标价优惠价利润X元8折(1+40%)X元80%(1+40%)X 15元等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15解:设进价为X元,80%X(1+40%)—X=15,X=125答:进价是125元。
(完整版)一元一次方程应用题专题
(完整版)一元一次方程应用题专题
引言
一元一次方程是数学中最基本的方程之一。
在实际生活和工作中,我们经常遇到各种与一元一次方程有关的问题,例如物品购买、速度计算等。
本文将探讨一些实际应用中的一元一次方程题目。
应用题一:物品购买
假设你去商场购买了一批物品,其中某些物品的单价为x元,
数量为n个。
你花了y元购买了这些物品,现在你想知道每个物品
的单价和数量是多少。
解题思路:
设物品的单价为x元,数量为n个。
根据题目中的条件可列出
方程:
nx = y
我们可以通过解这个方程来求解x和n的值。
应用题二:速度计算
假设小明骑自行车以v1 km/h的速度从A地到B地,骑摩托车以v2 km/h的速度从B地到C地。
已知A地到B地的距离为d1公里,B地到C地的距离为d2公里。
现在我们想知道小明从A地到C地的总时间。
解题思路:
设从A地到B地的时间为t1小时,从B地到C地的时间为t2小时。
根据题目中的条件可列出方程:
t1 = d1/v1
t2 = d2/v2
我们可以通过解这两个方程来求解t1和t2的值,从而得到小明从A地到C地的总时间。
结论
通过以上两个应用题的解答,我们可以看到一元一次方程在实际生活中的应用范围非常广泛。
掌握一元一次方程的解题方法,可以帮助我们解决各种实际问题,提高解决问题的能力。
参考文献
[1] 清华大学附属中学数学组, 高中数学第三卷-一元一次方程. 北京: 清华大学出版社, 2009: 1-20.。
一元一次方程应用题(含答案解析)
一元一次方程应用题(含答案解析)一元一次方程应用题知能点1:市场经济、打折销售问题×100%(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,?在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50?元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1?分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
一元一次方程解应用题-配套问题
一元一次方程解应用题-配套问题1.某车间有85名技工,每个人平均每天可以加工16个甲种部件或10个乙种部件。
每2个甲种部件和3个乙种部件可以配成一套。
问应该安排多少人加工甲、乙部件,才能使每天加工的甲、乙两种部件刚好配套。
2.某部队派出一支由25人组成的小分队参加防汛抗洪斗争。
每个人每小时可以装18袋泥土或者每2个人每小时可以抬14袋泥土。
问如何安排人力,才能使装泥和抬泥密切配合,而正好清场干净。
3.包装厂有42名工人,每个工人平均每小时可以生产120片圆形铁片或80片长方形铁片。
两张圆形铁片和一张长方形铁片可以配成一个密封圆桶。
问如何安排工人生产圆形或长方形铁片,才能合理地将铁片配套。
4.某车间加工机轴和轴承。
一个工人每天平均可以加工15个机轴或10个轴承。
该车间共有80名工人。
一根机轴和两个轴承可以配成一套。
问应该分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。
5.某厂生产一批西装。
每2米布可以裁剪3件上衣或4条裤子。
现有240米花呢。
为了使上衣和裤子配套,应该各使用多少米花呢来裁剪上衣和裤子?6.一个大人一餐可以吃4个面包,而4个幼儿一餐只吃1个面包。
现有100人,包括大人和幼儿。
每餐刚好吃100个面包。
问在这100人中,有多少个大人和幼儿?7.一张方桌由1个桌面和4条桌腿组成。
如果1立方米木料可以用来制作50个桌面或300条桌腿。
现有5立方米木料。
问应该使用多少立方米木料来制作桌面和桌腿,才能恰好组成方桌?能够制作多少张方桌?。
4.3《一元一次方程的应用》省优获奖学案2
4.3 一元一次方程的应用(2)1、会找等积变形问题类型应用题的相等关系设未知数列方程;2、掌握用方程解决实际问题的基本步骤:理解题意,寻找等量关系,设未知数列方程,解方程,作答.重点:列方程解决等积问题.难点:将实际问题转化成一元一次方程来解决.1、借助表格分析应用题,列方程解决实际问题;2、在探索的过程中积极动手、动脑、动口,加强交流互助,达到合作共赢.1、圆柱的底面半径为r ,高为h ,那么圆柱的底面面积是_______,圆柱的体积是_______.如果一个圆柱的底面直径是10cm ,高为h ,则圆柱的体积可表示为 .2、一个正方体的棱长为a ,这个正方形的体积是 .3、一个长方体的长为a ,宽为b ,高为c ,这个长方形体积是_____________.4、长方形长为m ,宽为n ,此时长方形周长为________,面积为________.一、知识链接,明确目标(10分钟)如图,将一个底面直径为20cm 、高为9cm直径为10cm 变,那么圆柱的高变成了多少?1、在这个问题中有什么等量关系?.根据等量关系,列出方程:.解这个方程,得x= .因此,高变成了cm.【温馨提示】1、如果题目没有要求,在表示圆的周长或面积、圆柱圆锥的体积时保留π的形式。
2、解方程时要注意选择简单的方法巩固练习:要锻造一个直径为10cm,高为8cm的圆柱形毛坯,应截取直径为8cm的圆钢多长?小结:列方程解应用题的一般步骤是:、、、、、 .二、自主学习,点拨释疑(限时15分钟)【例1 】用一根长为10m的铁丝围成一个长方形.探究(1)使得这个长方形的长比宽多1.4m,此时长方形的长、宽各为多少米?【分析】由题意知,长方形的始终是不变的,所以可得等量关系 =在解决这个问题的过程中,要抓住这个等量关系。
解:(1)设此时长方形的为xm,则它的为 m,由题意得探究(2)使得这个长方形的长比宽多0.8m,此时长方形的长、宽各为多少米?解:探究(3)使得这个长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?解后反思:1、本题列方程时用的等量关系是什么?2、在表示未知量时抓住关键字:“多、少、倍、分、比”.三、巩固练习,提升能力(限时5分钟)1、第一块试验田的面积比第二块试验田的3倍还多100平方米,这两块试验田共2900平方米,两块试验田的面积分别是_________和________平方米。
七年级数学应用题能力训练(含答案)
七年级数学一元一次方程应用题能力训练一、单选题1.某牛奶加工厂现有鲜奶9吨.若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶.方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.则方案一与方案二的总利润各为()A.10500,12000B.10500,16800C.12000,10500D.16800,105002.十一期间某校组织七、八年级的同学到某景点郊游,该景点的门票全票票价为15元/人,若为50~99人可以八折购票,100人以上则可六折购票.已知参加郊游的七年级同学少于50人,八年级同学多于50人而少于100人.若七、八年级分别购票,两个年级共计应付门票费1575元,若合在一起购买折扣票,总计应付门票费1080元.参加郊游的七、八年级同学的总人数是否超过100人,以及参加郊游的七、八年级同学的人数分别是()A.不超过;35,55B.超过;35,75C.不超过;25,55D.超过;45,753、某校两名教师带若干名学生去旅游,联系两家标价相同的旅行社,经洽谈后,甲旅行社的优惠条件是:1名教师全部收费,其余7.5折收费;乙旅行社的优惠条件是:全部师生8折优惠。
⑴当学生人数等于多少人时,甲旅行社与乙旅行社收费价格一样?⑵若核算结果,甲旅行社的优惠价相对乙旅行社的优惠价要便宜,问学生人数是多少?4、学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块砖,其他年级同学每人搬8块,总共搬了400块砖,问初一同学有多少人参加搬砖?分析:设初一同学有x人参加搬砖,列表如下,可列出方程:_________________5、某蔬菜公司收购到某各蔬菜104吨,准备加工后销售。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“ “ “ “一元一次方程应用题能力拓展1.2007 年中超联赛共有 15 个队参加,每队要进行 28 场比赛,比赛的记分规则是胜一场得 3 分,平一场得 1 分,输一场得 0 分。
某球队在第一阶段的 12 场比赛中输了 2 场共得 22 分,请问:(1)第一阶段的 12 场 比赛中这支球队共胜了几场?(2)这支球队打完全部比赛最高能得多少分?(3)据分析 2007 年中超比赛 要冲进前三甲,至少要 60 分,问这支队要冲进前三甲,在后面的比赛中最少要胜几场?2. 某市百货商店元月 1 日搞促销活动,购物不超 200 元不予优惠,超过 200 元而不足 500 元的优惠 10%; 超过 500 元,其中 500 元按 9 折优惠,超过部分按 8 折优惠,某人两次购物分别用了 134 元和 466 元,问: (1)此人两次购物其物品不打折值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将这两次购 物合同一次购买是否更省?为什么?3. 有人问一男孩:“你家兄弟有几个?姊妹有几个?”他回答:“我有几个兄弟就有几个姊妹”,这人又问 男孩的姐姐,她回答说:“我的兄弟数是我姊妹数的 2 倍”请问他家兄弟,姊妹各有几人?4. 西北某地区为改造沙漠,决定 2005 年起进行“治沙种草”,的过程中,每一年新增草地达 10 亩的农户, 当年可得生活补贴费 1500 元,且每超过一亩,政府还给予每亩a 元的奖励,另外经治沙种草后的土地从下 一年起,每亩每年可有 b 元的收入,下表是某农户在头两年通过“治沙种草”每年的总收入情况年份20052006 新增草地的亩数20 亩26 亩 年总收入2006 元5060 元注:年总收入=生活补贴费+政府奖励费+种草收入(1)试根据以上提供的数据确定 a ,b 的值。
(2)从 2006 年起,如果该农户每年新增草地的亩数均能 比前一年按相同的增长率增长,那么 2008 年该农户通过“治沙种草”获得的年总收入将达到多少 元?5. 小明沿公路前进,对面来了一辆汽车,他问司机: 后面有一辆自行车吗?”司机回答: 10 分钟前我超 过一辆自行车。
”小明又问: 你的车速是多少?”司机回答: 75 千米/小时”小明继续走了 20 分钟就遇到 了这辆自行车。
小明估计自己步行的的速度是 3 千米/小时,这样小明就算出了这辆自行车的速度是多少?6. 某商品的进价是 3000 元,标价是 4500 元。
(1)商店要求利润不低于 5%的售价打折出售,最低可以打 几折出售此商品?(2)根据市场情况,这种商品销售已进入淡季,商店要求不赔本的售价打折出售,最低 可以打几折出售此商品?(3)如果此商品已造成大量库存,商店要求在赔本不多于 5%的前提下打折出售, 最低可以打几折出售此商品?7. 梅林中学租用两辆小汽车(设速度相同)同时送 1 名带队老师及 7 名九年级的学生到县城参加数学竞赛, 每辆限坐 4 人(不包括司机),其中一辆小汽车在距离考场 15 千米的地方出现故障,此时离截止进考场的 时间还有 42 分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是 60 千米/小时,人 步行的速度是 5 千米/时(上车时间忽略不计)(1)若小汽车送 4 人到达考场,然后再回到出现故障处接其 他人,请你通过计算说明他们能否在截止进考场的时间前到达考场。
(2)假如你是带队的老师,请你设计 一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性。
8. 2001 年以来,我国曾五次实施药品降价,累计降价的总金额为 269 亿元,五次药品降价的年份与相应降 价金额如表所示,表中缺失了 2003 年,2007 年相关数据,已知 2007 年药品降价金额是 2003 年药品降价 金额的 6 倍,结合表中信息,求 2003 年和 2007 年的药品降价金额年份 2001 2003 20042005 2006降价金额(亿 54 3540元)(20,公司第二次改装同样多的车辆后,所有改装后9.现在两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏,另一种是40瓦(即0.04千瓦)的白炽灯,售价18元//盏。
假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚所在地的电价是每千瓦时0.5元。
(1)设照明时间是x小时,请用含x的式子分别表示用一/盏节能灯的费用和用一/盏白炽灯的费用。
(2)小刚想在这两种灯中选购一/盏。
1)当照明时间是多少时,使用两种灯的费用一样多?2)试用特殊值判断照明时间在什么范围内时,选用白炽灯费用低?照明时间在什么范围内时,选用节能灯费用低?(3)小刚想在这两种灯中选购两/盏,假定两种/盏灯总的照明时间是3000小时,每种灯的使用寿命是2800小时,请你帮他设计一种费用最低的选购方案,并说明理由.10.某商场用2500元购进A,B两种新型节能台灯共50盏,这两种台灯的进价,标价如下表所示进价(元/盏)标价(元/盏)A4060B65100(1)这两种台灯各购进多少盏?(2)若A型台灯按标价的9折出售,B型台灯按标价的8折出售,那么这批台灯全部售完后,商场共获利多少元?11.为庆祝儿童节,某市中小学组织文艺汇演,甲乙两所学校共有92名学生准备参加演出,其中甲校准备参加演出的学生人数多于乙校准备参加演出的学生人数,甲校准备参加演出的学生人数不够90名,下面是服装厂给出的演出服装的价格表购买服装的套数每套服装的价格1套至45套60元46套至90套50元91套及以上40元两所学校单独购买服装,一共应付5000元。
1)如果甲乙两校联合起来购买服装,那么比各自购买服装共节省多少钱?(2)甲乙两校各有多少名学生准备参加演出?12.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成。
你认为哪种方案获利最多,为什么?13.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分的印刷费可按8折收费。
(1)如果该单位要印刷2400份,在甲乙两印刷的费用分别是多少元?(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料所用费用低?14.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫CNG的改烧汽油为天然气的装置,每辆车改装价格为4000元,公司第一次改装了部分车辆后核算,已改装的车辆每天的燃料费占剩下的未改装车辆费用的3的车辆每天的燃料费占剩下车辆每天燃料费用的25,问:(1)公司共改装了多少辆出租车,改装后的每辆出租车平均每天的燃料费用比改装前的燃料费下降了百分之几?(2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本?⎧ 。
2008(答案:1. 解:(1)设第一阶段的比赛中,这支球队共胜了 x 场,则平了(12-2-x )场,根据题意得 3x+(10-x ) =22,解得 x=6,10-6=4(场) 2)若后面的比赛全胜,则得分最高,所以最高得分为 22+(28-12)⨯ 3=70 (3)由题意可知,要冲进三甲,则后面的比赛至少要得分 38 分,若胜 13 场则得 39 分,冲甲成功, 若胜 12 场平 2 场,冲甲也成功,要胜 11 场平 5 场同样冲甲成功,若胜 10 场平 6 场,则得分为 58 分, 则不能冲进三甲,所以至少要胜 11 场。
2.解:(1)因为 200 ⨯ 90%=180 〉134 。
故购 134 元的商品未优惠。
又 500 ⨯ 0.9 = 450〈466 ,故购466 元的商品有两项优惠,设其售价为 x 元,依题意,得 500 ⨯ 0.9 + ( x - 500) ⨯ 0.8 = 466 解得x=520,由此可知如果商品不打折,则分别值134 元和 520 元,共值 654 元。
(2)节省 654-(134+466)=54(元)。
(3)654 元的商品优惠价为 500 ⨯ 0.9 + (654 - 500) ⨯ 0.8 = 573.2 (元),故更节省(134+466)-573.2=26.8(元)。
3.解:设姊妹有 x 人,则兄弟有(x+1)人。
X+1=2(x-1),x=3。
4.解:(1)由题意可得 ⎨1500 + (20 - 10)a = 2600 ⎩1500 + (26 - 10)a + 20b = 5060得 a=110,b=90。
(2)该农户每年新增地亩 数 的 增 长 率 为26 - 20 20⨯ 100% = 30%,2008 年 该 农 户 的 种 草 收 入 为90 ⨯ (20 + 26 + 26(1 + 30%)) = 7182年 该 农 户 新 增 草 地 面 积 为26(1 + 30%) 2 = 43 .9。
可获利政府奖励110 ⨯ (43 - 10) = 3630 ∴ 2008 年该农户在“治沙种草”中总收入将达到 1500+7182+3630=123125.设这辆自行车速度是 x 千米/小时根据题意可列方程为20 10 + 20 10⨯ 3 + x = 75 ⨯ 解得 x=23 60 60 606.(1)设最低 x 折出售,4500x=3000(1+5%),解得 x=0.7(2)最低打 x 折出售,4500x=3000。
X=0.67 (3)设最低 x 折出售,4500x=3000(1-5%),X=0.637.(1)不能到达, 提示:小汽车需要走 3 个 15 千米。
15 3⨯ 3 = (h ) = 45 min 45〉 42 ∴不能。
60 4(2)方案:先将 4 人用车送到考场,另外 4 人同时步行前往考场,汽车到考场后,然后返回到与另外 4 人的相遇处,再载他们到考场。
先将 4 人用车送到考场所需时间为 15/60=0.25 小时=15 分钟。
在 0.25 小时内另外 4 人步行了 1.25 千米,此时他们与考场的距离为 15-1.25=13.75 千米,设汽车返回 T 小时 后与步行的 4 人相遇,则有 5T+60T=13.75。