白盒测试及用例设计

合集下载

白盒测试用例设计方法

白盒测试用例设计方法

1白盒测试用例设计方法1.1白盒测试简介白盒测试又称结构测试、逻辑驱动测试或基于程序的测试,一般多发生在单元测试阶段。

白盒测试方法主要包括逻辑覆盖法,基本路径法,程序插装等。

这里重点介绍一下常用的基本路径法,对于逻辑覆盖简单介绍一下覆盖准则。

1.2基本路径法在程序控制流图的基础上,通过分析控制构造的环路复杂性,导出独立路径集合,从而设计测试用例,设计出的测试用例要保证在测试中程序的每一个可执行语句至少执行一次。

在介绍基本路径测试方法(又称独立路径测试)之前,先介绍流图符号:图1如图1所示,每一个圆,称为流图的节点,代表一个或多个语句,流程图中的处理方框序列和菱形决策框可映射为一个节点,流图中的箭头,称为边或连接,代表控制流,类似于流程图中的箭头。

一条边必须终止于一个节点,即使该节点并不代表任何语句,例如,图2中两个处理方框交汇处是一个节点,边和节点限定的范围称为区域。

图2任何过程设计表示法都可被翻译成流图,下面显示了一段流程图以及相应的流图。

注意,程序设计中遇到复合条件时(逻辑or, and, nor 等),生成的流图变得更为复杂,如(c)流图所示。

此时必须为语句IF a OR b 中的每一个a 和b 创建一个独立的节点。

(c)流图独立路径是指程序中至少引进一个新的处理语句集合,采用流图的术语,即独立路径必须至少包含一条在定义路径之前不曾用到的边。

例如图(b)中所示流图的一个独立路径集合为:路径1:1-11路径2:1-2-3-4-5-10-1-11路径3:1-2-3-6-8-9-10-1-11路径4:1-2-3-6-7-9-10-1-11上面定义的路径1,2,3 和4 包含了(b)流图的一个基本集,如果能将测试设计为强迫运行这些路径,那么程序中的每一条语句将至少被执行一次,每一个条件执行时都将分别取true 和false(分支覆盖)。

应该注意到基本集并不唯一,实际上,给定的过程设计可派生出任意数量的不同基本集。

白盒测试案例

白盒测试案例

白盒测试案例白盒测试是软件测试中的一种重要测试方法,它主要针对软件内部结构进行测试,旨在检验程序中的逻辑错误、代码覆盖率和路径覆盖等问题。

下面我们将通过几个具体的案例来介绍白盒测试的应用和方法。

案例一,函数逻辑测试。

假设我们有一个简单的函数,用于计算两个整数的和。

在进行白盒测试时,我们需要考虑函数的各种可能输入和边界情况。

比如,输入为正数、负数、零等不同情况下,函数的返回值是否符合预期;输入边界情况下,比如最大值、最小值、边界值加一等情况下,函数是否能够正确处理。

同时,我们还需要测试函数的异常情况,比如输入非整数、输入为空等情况下,函数是否能够正确处理并给出合理的错误提示。

案例二,条件覆盖测试。

在一个复杂的程序中,通常会存在多个条件判断的情况,这时候我们需要进行条件覆盖测试来确保程序的每个条件都能够得到正确的覆盖。

比如,一个函数中包含了多个if-else语句,我们需要设计测试用例,使得每个条件都能够被至少一次触发,以确保程序的完整性和准确性。

在进行条件覆盖测试时,我们需要考虑各种可能的组合情况,以及条件的嵌套关系,确保每个条件都能够得到充分的测试覆盖。

案例三,路径覆盖测试。

路径覆盖测试是白盒测试中的一种重要方法,它旨在测试程序中的各个路径是否都能够被正确执行。

在进行路径覆盖测试时,我们需要分析程序的控制流图,找出所有可能的执行路径,并设计测试用例来覆盖这些路径。

通过路径覆盖测试,我们可以发现程序中隐藏的逻辑错误和潜在的漏洞,提高程序的稳定性和可靠性。

结语。

通过以上几个具体的案例,我们可以看到白盒测试在软件开发中的重要性和应用价值。

在进行白盒测试时,我们需要充分理解程序的内部结构和逻辑,设计合理的测试用例,确保程序的各个部分都能够得到充分的覆盖和测试,从而提高程序的质量和稳定性。

希望本文能够帮助大家更好地理解白盒测试,并在实际工作中加以应用。

测试用例的设计

测试用例的设计
对于测试对象中可能存在何种类型的 错误,是挑选测试用例应该考虑的重要因 素。推测的重要依据是程序设计规格说明 书(或者代码的序言性注释),不但要考虑 它告诉了我们什么,还应该考虑说明中遗 漏了什么,或者是否存在可能的冲突。
软件工程
测试用例设计小结
在实际应用中通常以黑盒测试法设计 测试用例为主,白盒测试法设计测试用例 为辅。并可以考虑以下测试策略: l任何情况下都应该使用边界值分析设计测 试用例; l必要时采用等价类划分法补充用例; l必要时再用错误推测法补充用例; l对照程序内部逻辑,检查已设计用例的逻 辑覆盖。根据程序可靠性要求,补充用例 使之达到规定的逻辑覆盖要求。
第一步:将详细设计结果或程序编码映射成程 序控制结构图。
第二步:根据程序控制结构图计算程序的环形 复杂度。
第三步:确定线性独立路径的基本集合。 第四步:设计测试用例,确保基本路径集中每 条路径的执行。
软件工程
1.2 黑盒测试法用例的设计
黑盒测试法用例的设计有等价类划分、 边界值分析、错误推测等。根据这些方法来 生成测试用例,可以提前到需求分析阶段或 设计阶段。同时使用这些方法很可能发现白 盒测试不易发现的其他类型的错误。
(满足A≤1,B=O,A≠2和x>1的条件) 【{A=1,B=1,X=1},{A=1,B=1,X=1}】
(满足A≤1,B≠O,A≠2和x≤1的条件)
覆盖sacbed 覆盖sabed 覆盖sabed 覆盖sabd
软件工程
2. 基本路径测试
使用这种技术设计测试用例时,首先计算程 序的环形复杂度,并用该复杂度为指南定义执行 路径的基本集合,从该基本集合导出的测试用例 可以保证程序中的每条语句至少执行一次,而且 每个条件在执行时都将分别取真、假两种值。基 本路径测试技术设计测试用例的步骤:

基于白盒测试的用例设计与验证(一)

基于白盒测试的用例设计与验证(一)

学号:《软件测试技术》实验报告与习题册2014 / 2015 学年第2学期系别计算机科学与技术专业计算机软件班级一班姓名指导教师目录实验一:基于白盒测试的用例设计与验证(一)一.实验目的(1)熟悉Eclipse开发环境(2)掌握Java语言的基本语法,能够利用Java实现简单的程序开发(3)熟悉白盒测试基本原理(4)掌握白盒测试的逻辑覆盖法,能够依据语句覆盖、判定覆盖、条件覆盖、判定\条件覆盖、条件组合覆盖的原理进行相应测试用例的设计工作。

二.实验内容(1)选择一门语言,完成指定的单元程序开发。

(2)分别依据白盒测试逻辑覆盖法中的语句覆盖、判定覆盖、条件覆盖、判定\条件覆盖、条件组合覆盖的原理设计相应的测试用例。

(3)根据给定的流程图,实际运行测试用例,检测程序的实现是否正确。

三.程序流程图运行结果示例程序源码#include<stdio.h>void main(){int m;int n;int p;int q;printf("请输入m的值:");scanf("%d",&m);printf("请输入n的值:");scanf("%d",&n);printf("请输入p的值:");scanf("%d",&p);printf("请输入q的值:");scanf("%d",&q);printf("输入完毕\n");if(m>0 && n<6){m=n+3;n=n*2;}if(p>5 || q<0){p=2*q+5;q=q++;}printf("m:%d\n",m);printf("n:%d\n",n);printf("p:%d\n",p);printf("q:%d\n",q);}1.语句覆盖程序中的每个可执行语句至少被执行一次2.判定覆盖3.条件覆盖4.判定-条件覆盖判断条件中的所有条件可能取值至少执行一次,同时,所有判断的可能结果至少执行一次。

软件测试-实验2-白盒测试案例分析

软件测试-实验2-白盒测试案例分析

实验 2 白盒测试一、实验目的与要求1、掌握白盒测试的语句覆盖和判定覆盖测试方法的原理及应用2、掌握条件覆盖、条件组合覆盖的方法,提高应用能力3、掌握路径法测试二、实验设备1、电脑PC三、实验原理白盒测试原理:已知产品的内部工作过程,可以通过测试证明每种内部操作是否符合设计规格要求,所有内部成分是否已经过检查。

它是把测试对象看作装在一个透明的白盒子里,也就是完全了解程序的结构和处理过程。

这种方法按照程序内部的逻辑测试程序,检验程序中的每条通路是否都能按预定要求正确工作,其又称为结构测试。

1、语句覆盖语句覆盖指代码中的所有语句都至少执行一遍,用于检查测试用例是否有遗漏,如果检查到没有执行到的语句时要补充测试用例。

无须细分每条判定表达式,该测试虽然覆盖了可执行语句,但是不能检查判断逻辑是否有问题。

2、判定覆盖又称判断覆盖、分支覆盖,指设计足够的测试用例,使得程序中每个判断的取真分支和取假分支至少经历一次,即判断真假取值均曾被满足。

判定覆盖比语句覆盖强,但是对程序逻辑的覆盖度仍然不高,比如由多个逻辑条件组合而成的判定,仅判定整体结果而忽略了每个条件的取值情况。

3、条件覆盖、条件判定覆盖条件覆盖指程序中每个判断中的每个条件的所有可能的取值至少要执行一次,但是条件覆盖不能保证判定覆盖,条件覆盖只能保证每个条件至少有一次为真,而不考虑所有的判定结果。

条件判定覆盖是条件覆盖和判定覆盖的组合,指设计足够的测试用例,使得判定中每个条件的所有可能的取值至少出现一次,并且每个判定取到的各种可能的结果也至少出现一次。

条件判定覆盖弥补了条件和判定覆盖的不足,但是未考虑条件的组合情况。

4、条件组合覆盖又称多条件覆盖,设计足够的测试用例,使得判定条件中每一个条件的可能组合至少出现一次。

线性地增加了测试用例的数量。

5、基本路径法在程序控制流图的基础上,通过分析控制构造的环路复杂性,导出基本可执行的路径集合,从而设计测试用例的方法。

测试用例设计--黑盒测试、白盒测试

测试用例设计--黑盒测试、白盒测试

测试⽤例设计--⿊盒测试、⽩盒测试测试⽤例设计设计数据库测试⽤例就是针对数据库的功能和性能⽽设计的测试⽅案,并编⼊测试计划中。

测试⽤例的设计既要考虑正常情况,也应考虑极限情况以及字段取最⼤值和最⼩值等边界情况。

因为测试的⽬的是暴露数据库中隐藏的错误和缺陷,所以在设计测试⽤例时要充分考虑那些易于发现错误和缺陷的测试⽤例。

好的测试⽤例应该有较⾼的发现错误和缺陷的概率。

⽩盒测试的测试⽤例设计逻辑覆盖法和基本路径测试法是计算机软件⽩盒测试⽤例设计的两个重要⽅法。

这两个⽅法也适合存储过程、触发器、嵌⼊式SQL等数据库程序的测试。

语句覆盖语句覆盖语句覆盖是设计⾜够多的测试⽤例,运⾏所测程序,使得程序中每条可执⾏语句⾄少被执⾏⼀次。

不过,每条可执⾏语句⾄少执⾏⼀次是最基本的要求,但是它不能保证发现逻辑运算和程序逻辑错误,且并不是所有的分⽀被执⾏过。

例6-1 考虑图6-2,语句覆盖的测试⽤例如表6-1所⽰。

注意,该组测试⽤例不能覆盖判断E为假的分⽀。

⽽且,如果判断C误写为X>2 or Y>3,该组测试⽤例仍能够实现语句覆盖,因此该组测试⽤例发现不了这个错误。

测试⽤例⼀般不是唯⼀的。

例如,表6-2的测试⽤例也可以实现语句覆盖。

判定覆盖判定覆盖⼜称分⽀覆盖,是设计⾜够多的测试⽤例,运⾏所测程序,使得程序中每个判断的取真分⽀和取假分⽀分别⾄少执⾏⼀次。

例6-2 考虑图6-2,其中C、E为判断。

判定覆盖的测试⽤例如表6-3所⽰。

虽然判定覆盖能够保证所有判断的取真分⽀和取假分⽀执⾏⾄少⼀次,但判定覆盖不能保证发现条件表达式错误。

例如,如果语句C误写为X>2 or Y>3,表6-3给出的测试⽤例仍能够实现判定覆盖,因此该组测试⽤例发现不了这个错误。

条件覆盖条件覆盖是设计⾜够多的测试⽤例,运⾏所测程序,使得每个判断的每个条件成分取真值和假值分别⾄少执⾏⼀次。

例6-3 考虑图6-2。

⾸先对所有判断的条件成分取值进⾏标记:v条件覆盖的测试⽤例如表6-4所⽰。

软件测试-实验2-白盒测试案例分析

软件测试-实验2-白盒测试案例分析

实验2 白盒测试一、实验目的与要求1、掌握白盒测试的语句覆盖和判定覆盖测试方法的原理及应用2、掌握条件覆盖、条件组合覆盖的方法,提高应用能力3、掌握路径法测试二、实验设备1、电脑PC三、实验原理白盒测试原理:已知产品的内部工作过程,可以通过测试证明每种内部操作是否符合设计规格要求,所有内部成分是否已经过检查。

它是把测试对象看作装在一个透明的白盒子里,也就是完全了解程序的结构和处理过程。

这种方法按照程序内部的逻辑测试程序,检验程序中的每条通路是否都能按预定要求正确工作,其又称为结构测试。

1、语句覆盖语句覆盖指代码中的所有语句都至少执行一遍,用于检查测试用例是否有遗漏,如果检查到没有执行到的语句时要补充测试用例。

无须细分每条判定表达式,该测试虽然覆盖了可执行语句,但是不能检查判断逻辑是否有问题。

2、判定覆盖又称判断覆盖、分支覆盖,指设计足够的测试用例,使得程序中每个判断的取真分支和取假分支至少经历一次,即判断真假取值均曾被满足。

判定覆盖比语句覆盖强,但是对程序逻辑的覆盖度仍然不高,比如由多个逻辑条件组合而成的判定,仅判定整体结果而忽略了每个条件的取值情况。

3、条件覆盖、条件判定覆盖条件覆盖指程序中每个判断中的每个条件的所有可能的取值至少要执行一次,但是条件覆盖不能保证判定覆盖,条件覆盖只能保证每个条件至少有一次为真,而不考虑所有的判定结果。

条件判定覆盖是条件覆盖和判定覆盖的组合,指设计足够的测试用例,使得判定中每个条件的所有可能的取值至少出现一次,并且每个判定取到的各种可能的结果也至少出现一次。

条件判定覆盖弥补了条件和判定覆盖的不足,但是未考虑条件的组合情况。

4、条件组合覆盖又称多条件覆盖,设计足够的测试用例,使得判定条件中每一个条件的可能组合至少出现一次。

线性地增加了测试用例的数量。

5、基本路径法在程序控制流图的基础上,通过分析控制构造的环路复杂性,导出基本可执行的路径集合,从而设计测试用例的方法。

白盒测试用例设计方法

白盒测试用例设计方法

白盒测试用例设计方法
白盒测试用例设计方法是通过了解软件系统的内部结构和代码的执行路径来设计测试用例。

下面是几种常用的白盒测试用例设计方法:
1. 语句覆盖:确保每个代码语句至少被执行一次。

设计测试用例以覆盖代码中的每个语句。

2. 判定覆盖:设计测试用例以覆盖代码中的每个条件判断语句的每个路径。

包括覆盖判断条件为真和为假的两个路径。

3. 条件覆盖:确保每个条件判断语句中的每个条件都被测试覆盖。

为此,需要设计多个测试用例来测试各种组合情况。

4. 路径覆盖:设计测试用例以覆盖代码中的每个可能路径。

这种方法通常会生成大量的测试用例,因为需要测试所有可能的路径组合。

5. 循环覆盖:确保所有的循环结构被至少测试一次。

设计测试用例以覆盖循环的各种情况,如循环未执行、执行一次、多次等。

6. 数据流覆盖:设计测试用例以覆盖代码中使用的各种数据流。

包括输入数据、输出数据和中间数据的覆盖。

以上是一些常用的白盒测试用例设计方法,根据具体的软件系统和测试目标,可以选择合适的方法来设计测试用例。

白盒测试及例题

白盒测试及例题

测试覆盖标准
– 条件组合覆盖:执行足够的例子,使得 每个判定中条件的各种可能组合都至少 出现一次。
这是一种相当强的覆盖准则,可以 有效地检查各种可能的条件取值的组合 是否正确。它不但可覆盖所有条件的可 能取值的组合,还可覆盖所有判断的可 取分支,但可能有的路径会遗漏掉。测 试还不完全。
白盒测试的主要方法:
– 判定覆盖(也称为分支覆盖):执行足够的 测试用例,使得程序中的每一个分支至少都 通过一次。 判定覆盖只比语句覆盖稍强一些,但实 际效果表明,只是判定覆盖,还不能保证一 定能查出在判断的条件中存在的错误。因此, 还需要更强的逻辑覆盖准则去检验判断内部 条件。
– 条件覆盖:执行足够的测试用例,使程序中 每个判断的每个条件的每个可能取值至少执 行一次; 条件覆盖深入到判定中的每个条件,但 可能不能满足判定覆盖的要求。
① A=3,B=0,X=1 (沿路径acd执行); ② A=2,B=1,X=3(沿路径abe执行)
分支覆盖
A=3,B=0,X=1 (沿路径
判定覆盖
分支覆盖
程序中含有判定的语句包括IF-THENELSE、DO-WHILE、REPEAT-UNTIL等,除了 双值的判定语句外,还有多值的判定语句,如 PASCAL中的CASE语句、FORTRAN中带有三 个分支的IF语句等。所以“分支覆盖”更一般的 含义是:使得每一个分支获得每一种可能的结 果。
测试覆盖标准
– 判定/条件覆盖:执行足够的测试用例,使得判 定中每个条件取到各种可能的值,并使每个判定 取到各种可能的结果。
判定/条件覆盖有缺陷。从表面上来看,它测 试了所有条件的取值。但是事实并非如此。往往 某些条件掩盖了另一些条件。会遗漏某些条件取 值错误的情况。为彻底地检查所有条件的取值, 需要将判定语句中给出的复合条件表达式进行分 解,形成由多个基本判定嵌套的流程图。这样就 可以有效地检查所有的条件是否正确了。

实验5、白盒测试:覆盖测试及测试用例设计

实验5、白盒测试:覆盖测试及测试用例设计
运用逻辑覆盖法的判定覆盖标准设计测试用例,并执行测试,撰写实验报告。
实验步骤:
1)画出程序流程图
#include <stdio.h>
float salary_compute(int time, float unit_pay);
void main()
{
int time=0;
float unit_pay=50;
float salary=0;
time=20;
salary=salary_compute(time, unit_pay);
printf("月薪为:%f\n",salary);
}
float salary_compute(int time, float unit_pay)
{
float salary=0.0;
实验5、白盒测试:覆盖测试及测试用例设计
一、实验目的
1、掌握白盒测试的概念。
2、掌握逻辑覆盖法。
二、实验任务
以下三个任务、至少完成一个
1、某工资计算程序功能如下:若雇员月工作小时超过40小时,则超过部分按原小时工资的1.5倍的加班工资来计算。若雇员月工作小时超过50小时,则超过50的部分按原小时工资的3倍的加班工资来计算,而40到50小时的工资仍按照原小时工资的1.5倍的加班工资来计算。程序输入为:雇员月工作时间及小时工资,输出为工资。
}
⑤else if(time >=0)
{
⑥salary = unit_pay * time;
}
⑦else
{
⑧salary = unit_pay * time;//printf("输入的工作时间有误!");
}

软件测试白盒测试测试用例与代码

软件测试白盒测试测试用例与代码

实验二白盒测试1.实验目的能熟练应用白盒测试技术设计测试用例2.实验内容计算生日是星期几已知公元1年1月1日是星期一。

编写一个程序,只要输入年月日,就能回答那天是星期几。

应用逻辑覆盖方法和基本路径测试方法为上面的问题设计测试用例。

要求:(1)画出该程序的控制流图;(2)用基本路径测试方法给出测试路径;(3)为满足判定/条件覆盖设计测试用例。

3.程序代码#include "stdio.h"#include "conio.h"int main1(){int day,mn,yr,i,days=0,s,k;int mont[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};char wek[][9]={ {'S','u','n','d','a','y'},{'M','o','n','d','a','y'},{'T','u','e','s','d','a','y'},{'W','e','d','n','s','d','a','y'},{'T','h','u','r','s','d','a','y'},{'F','r','i','d','a','y'},{'S','a','t','u','r','d','a','y'}};printf("Inpute the date (year-month-day):");scanf("%d-%d-%d",&yr,&mn,&day);if (yr%4==0&&yr%100!=0||yr%400==0)mont[2]=29;elsemont[2]=28;if(yr<=0||mn<=0||mn>=13||day>mont[mn]||day<=0){printf("输入日期有误\n");return 0;}for (i=0;i<mn;i++)days+=mont[i];days+=day;s=yr-1+(int)((yr-1)/4)-(int)((yr-1)/100)+(int)((yr-1)/4 00)+days;k=s%7;printf("%d-%d-%d is %s.",yr,mn,day,wek[k]);return 0;}void main(){do {main1();printf("\n******************************\n");printf("请按回车继续:\n");}while (getch()==13);}4.画出程序的控制流图流程图:控制流图:5.写出基本路径条件:。

如何编写单元测试用例(白盒测试)

如何编写单元测试用例(白盒测试)

如何编写单元测试用例(白盒测试)。

一、 单元测试的概念单元通俗的说就是指一个实现简单功能的函数。

单元测试就是只用一组特定的输入(测试用例)测试函数是否功能正常,并且返回了正确的输出。

测试的覆盖种类1.语句覆盖:语句覆盖就是设计若干个测试用例,运行被测试程序,使得每一条可执行语句至少执行一次。

2.判定覆盖(也叫分支覆盖):设计若干个测试用例,运行所测程序,使程序中每个判断的取真分支和取假分支至少执行一次。

3.条件覆盖:设计足够的测试用例,运行所测程序,使程序中每个判断的每个条件的每个可能取值至少执行一次。

4.判定——条件覆盖:设计足够的测试用例,运行所测程序,使程序中每个判断的每个条件的每个可能取值至少执行一次,并且每个可能的判断结果也至少执行一次。

5.条件组合测试:设计足够的测试用例,运行所测程序,使程序中每个判断的所有条件取值组合至少执行一次。

6.路径测试:设计足够的测试用例,运行所测程序,要覆盖程序中所有可能的路径。

用例的设计方案主要的有下面几种:条件测试,基本路径测试,循环测试。

通过上面的方法可以实现测试用例对程序的逻辑覆盖,和路径覆盖。

二、开始测试前的准备在开始测试时,要先声明一下,无论你设计多少测试用例,无论你的测试方案多么完美,都不可能完全100%的发现所有BUG,我们所需要做的是用最少的资源,做最多测试检查,寻找一个平衡点保证程序的正确性。

穷举测试是不可能的。

所以现在进行单元测试我选用的是现在一般用的比较多的基本路径测试法。

三、开始测试基本路径测试法:设计出的测试用例要保证每一个基本独立路径至少要执行一次。

函数说明 :当i_flag=0;返回 i_count+100当i_flag=1;返回 i_count *10否则返回 i_count *20输入参数:int i_count ,int i_flag输出参数: int i_return;代码:int i_flag)i_count, int1 int Test(int i_count,2 {3 intint i_temp = 1;while (i_count>0)4 while5 {6 if if (0 == i_flag)7 {8 i_temp = i_count + 100;break;9 break10 }11 elseelse12 {13 if if (1 == i_flag)14 {15 i_temp = i_temp * 10;16 }else17 else18 {19 i_temp = i_temp * 20;20 }21 }22 i_count--;23 }return i_temp;24 return25 }1.画出程序控制流程图图例:事例程序流程图:圈中的数字代表的是语句的行号,也许有人问为什么选4,6,13,8......作为结点,第2行,第3行为什么不是结点,因为选择结点是有规律的。

白盒测试设计用例的方法

白盒测试设计用例的方法

白盒测试设计用例的方法
1. 等价类划分法呀!这就像是把东西分类一样,把可能的情况分成几大类。

比如说测试一个登录功能,那就可以把用户名和密码的正确、错误情况进行分类,分别设计用例。

哇塞,这样不就能全面覆盖各种情况了嘛!
2. 边界值分析法,嘿,这个可重要啦!就像走路到了边界处特别要小心一样。

比如规定输入年龄在 18 到 60 岁,那 18 和 60 这两个边界值就得好好测试呀,这不是很容易理解嘛!
3. 因果图法呢,哎呀,就像是顺着线索找原因和结果。

比如有多个条件影响一个结果,那咱就得好好分析这些条件之间的关系,然后设计用例,不是挺有意思嘛!
4. 判定表法呀,这就好像是做一个决策表格似的。

对于复杂的条件组合,通过判定表清晰地列出来,然后得出对应的用例,是不是很厉害呢!
5. 正交试验法哦,听着就很牛掰吧!就像是从很多因素中选出最关键的组合来进行测试。

比如有多个参数要考虑,用这个方法就能高效地选出典型组合进行用例设计,是不是超级有用呀!
6. 场景法呢,哇哦,这简直就是在模拟一个场景片段呀!想想一个业务流程,从开始到结束,设计出符合各种场景的用例,这多生动形象呀,当然能把测试做好啦!
我觉得这些白盒测试设计用例的方法都超级棒,各有各的厉害之处,用好了就能让测试工作如虎添翼呀!。

白盒测试 例子

白盒测试 例子

白盒测试例子
白盒测试是软件测试中的一种重要方法,其主要目的是验证程序的内部结构是
否符合设计要求,以此来检查代码的覆盖率和质量。

在白盒测试中,测试人员可以查看源代码,并且能够了解程序的逻辑结构,以便更好地设计测试用例和发现潜在的缺陷。

以下是一个关于白盒测试的例子,以便更好地理解这一概念。

假设现在有一个计算器应用程序,其中包含了加法、减法、乘法和除法等功能。

我们需要对这个计算器应用程序进行白盒测试,以确保其功能的正确性和稳定性。

首先,我们可以查看计算器应用程序的源代码,了解其内部实现逻辑。

接下来,我们可以设计一些测试用例,例如针对加法功能的测试用例: - 输入
两个正整数,验证计算结果是否正确。

- 输入一个正整数和一个负整数,验证计算
结果是否正确。

- 输入两个小数,验证计算结果是否正确。

对于减法、乘法和除法功能也可以设计类似的测试用例。

在执行这些测试用例时,我们可以通过观察计算结果和预期结果是否一致来判断程序的正确性。

同时,还可以利用代码覆盖率工具来分析测试覆盖范围,确保所有的代码路径都得到覆盖。

通过这个例子,我们可以看到白盒测试的准确性和深度优势。

通过深入了解程
序的内部结构,白盒测试可以更好地发现潜在的问题,保障软件质量,提高用户体验。

综上所述,白盒测试是一种重要的软件测试方法,通过设计测试用例和分析源
代码,可以全面检查程序的内部逻辑和质量。

在软件开发过程中,合理运用白盒测试可以有效提高软件的稳定性和可靠性,确保软件交付符合设计要求。

实训 白盒测试用例设计

实训  白盒测试用例设计

实训白盒测试用例设计实训1、实训目的1、掌握白盒测试用例的设计方法。

2、综合运用所学的白盒测试方法设计测试用例。

2、实训准备1、白盒测试用例的设计方法。

2、测试用例模板。

3、实训内容3.1基本训练实验一:下面是快速排序算法中的一趟划分算法,其中datalist是数据表,它有两个数据成员:一是元素类型为Element的数组V,另一个是数组大小n。

算法中用到两个操作,一是取某数组元素V[i]的关键码操作getKey( ),一是交换两数组元素内容的操作Swap( ):int Partition ( datalist &list, int low, int high ) {//在区间[ low, high ]以第一个对象为基准进行一次划分,k返回基准对象回放位置。

int k = low; Element pivot = list.V[low]; //基准对象for ( int i = low+1; i <= high; i++ ) //检测整个序列,进行划分if ( list.V[i].getKey ( ) < pivot.getKey( ) && ++ k != i ) Swap ( list.V[k], list.V[i] ); //小于基准的交换到左侧去Swap ( list.V[low], list.V[k] ); //将基准对象就位return k; //返回基准对象位置}(1)试画出它的程序流程图;(2)试利用路径覆盖方法为它设计足够的测试用例(循环次数限定为0次,1次和2次)。

实验二:下面是选择排序的程序,其中datalist是数据表,它有两个数据成员:一是元素类型为Element的数组V,另一个是数组大小n。

算法中用到两个操作,一是取某数组元素V[ i]的关键码操作getKey ( ),一是交换两数组元素内容的操作Swap( ):void SelectSort ( datalist & list ) {//对表list.V[0]到list.V[n-1]进行排序,n是表当前长度。

第3章 白盒测试用例设计方法

第3章 白盒测试用例设计方法

软件质量保证与测试

只需设计一个测试用例: a=2,b=1,c=6; 即达到了语句覆盖。
1 a>0 and b>0 3 N a>1 or c>1 5 N c=b+c Y 4 c=c+1 Y 2 c=c/a
软件质量保证与测试

【优点】 :可以很直观地从源代码得到测试用例,无须细分每条判 定表达式。 【缺点】 :由于这种测试方法仅仅针对程序逻辑中显式存在的语句, 但对于隐藏的条件是无法测试的。如在多分支的逻辑运算中无法全面 的考虑。语句覆盖是最弱的逻辑覆盖。
F1,T2,F3, T4 F1,F2,F3, F4
覆盖路径 P1(1-2-4) P3(1-3-4)
P3(1-3-4) P4(1-3-5)
覆盖组合 1,5 2,6
3,7 4,8
覆盖了所有组合,但覆盖路径有限,1-2-5 没被覆盖
软件质量保证与测试

测试用例 a=2,b=1,c=6
覆盖条件 T1, T2, T3, T4 T1, F2, T3, F4 F1, T2, F3, T4 F1, F2, F3, F4
软件质量保证与测试

测试用例 输入:a=2,b=1,c=6 输出:a=2,b=1,c=5 输入:a=2,b=-1,c=-2 输出:a=2,b=-1,c=-2
输入:a=-1,b=2,c=3 输出:a=-1,b=2,c=6 输入:a=-1,b=-2,c=-3 输出:a=-1,b=-2,c=-5
覆盖条件 T1,T2,T3, T4 T1,F2,T3, F4
1 a>0 and b>0 3 N a>1 or c>1 5 N c=b+c Y 4 Y 2

白盒测试及用例的设计

白盒测试及用例的设计
为了提高决策覆盖率,可以增加更多的测试用例或优化现有的 测试用例。
条件覆盖率
详细描述
为了提高条件覆盖率,可以增加 更多的测试用例或优化现有的测 试用例。
04
总结词
高条件覆盖率意味着测试用例对 程序中的条件进行了全面的测试, 但并不能保证所有可能的条件结 果都已覆盖。
01 03
总结词
条件覆盖率是衡量测试用例覆盖 程序中条件语句(如if、while等) 中的条件的程度的指标。
TestNG是Java语言的测试框架,具有灵活的测试用例 管理功能。
详细描述
TestNG支持多种测试类型,如单元测试、集成测试和 端到端测试。它提供了丰富的断言方法和数据驱动测试 ,有助于提高测试效率和代码覆盖率。
案例三:使用Selenium进行白盒测试
总结词
Selenium是一个用于Web应用程序 的自动化测试框架。
边界值分析法
总结词
边界值分析法是一种白盒测试用例设计方法 ,它关注输入域的边界值,通过测试边界值 和附近的值来验证软件的健壮性。
详细描述
边界值分析法主要针对输入域的边界值进行 测试,因为这些值在软件中往往容易出现问 题。通过测试边界值和附近的值,可以有效 地发现软件在处理异常情况时的缺陷和错误 。这种方法有助于提高测试的覆盖率,确保
详细描述
Selenium支持多种浏览器和操作系统, 能够模拟用户操作,如点击、输入等。 通过编写测试脚本,可以实现对Web 应用程序的全面白盒测试,确保功能 和用户体验的正确性。
感谢您的观看
THANKS
缺陷跟踪与修复
缺陷管理
对发现的问题进行跟踪管理,确保问题得到及时修复。
缺陷验证
对修复的问题进行验证,确保问题已被正确修复。

白盒测试用例设计方法

白盒测试用例设计方法

1.白盒测试用例设计方法1.1. 白盒测试概述由于逻辑错误和不正确假设与一条程序路径被运行的可能性成反比。

由于我们经常相信某逻辑路径不可能被执行,而事实上,它可能在正常的情况下被执行。

由于代码中的笔误是随机且无法杜绝的,因此我们要进行白盒测试。

白盒测试又称结构测试,透明盒测试、逻辑驱动测试或基于代码的测试。

白盒测试是一种测试用例设计方法,盒子指的是被测试的软件,白盒指的是盒子是可视的,你清楚盒子内部的东西以及里面是如何运作的。

1.白盒的测试用例需要做到➢保证一个模块中的所有独立路径至少被使用一次;➢对所有逻辑值均需测试true 和false;➢在上下边界及可操作范围内运行所有循环;➢检查内部数据结构以确保其有效性。

2.白盒测试的目的通过检查软件内部的逻辑结构,对软件中的逻辑路径进行覆盖测试;在程序不同地方设立检查点,检查程序的状态,以确定实际运行状态与预期状态是否一致。

3.白盒测试的特点依据软件设计说明书进行测试、对程序内部细节的严密检验、针对特定条件设计测试用例、对软件的逻辑路径进行覆盖测试。

4.白盒测试的实施步骤1)测试计划阶段:根据需求说明书,制定测试进度。

2)测试设计阶段:依据程序设计说明书,按照一定标准化的方法进行软件结构划分和设计测试用例。

3)测试执行阶段:输入测试用例,得到测试结果。

4)测试总结阶段:比照测试的结果和代码的预期结果,分析错误原因,找到并解决错误。

5.白盒测试的方法总体上分为静态方法和动态方法两大类。

➢静态分析:是一种不通过执行程序而进行测试的技术。

静态分析的关键功能是检查软件的表示和描述是否一致,没有冲突或者没有歧义。

➢动态分析:主要特点是当软件系统在模拟的或真实的环境中执行之前、之中和之后, 对软件系统行为的分析。

动态分析包含了程序在受控的环境下使用特定的期望结果进行正式的运行。

它显示了一个系统在检查状态下是正确还是不正确。

在动态分析技术中,最重要的技术是路径和分支测试。

白盒测试用例设计方法

白盒测试用例设计方法

白盒测试用例设计方法随着互联网行业的发展,人们对软件品质的要求也越来越高,因此软件测试也显得尤为重要。

目前,软件测试中最为重要的一种方式就是白盒测试,它着力于分析内部结构和行为,并设计出恰当的测试用例,以便确定软件是否满足用户和开发者的需求。

白盒测试用例设计是指帮助开发者定义和构建测试用例的过程,以便检查软件是否正常工作。

由于每个软件的结构和行为都不尽相同,因此白盒测试的用例设计方法也有多种不同的形式。

白盒测试用例设计方法包括以下几种:一、基于流程的测试用例设计方法基于流程的测试用例设计方法是根据软件系统用户交互的流程来设计测试用例,它关注的是用户操作的输入和输出。

二、基于数据的测试用例设计方法基于数据的测试用例设计方法是根据不同的数据输入情况来设计测试用例,关注的是软件对不同类型的输入数据的处理情况。

三、基于状态的测试用例设计方法基于状态的测试用例设计方法是根据软件系统的状态来设计测试用例,它关注的是软件系统在处理不同状态时的行为是否符合预期。

四、基于安全性的测试用例设计方法基于安全性的测试用例设计方法是根据安全性要求来设计测试用例,关注的是软件系统的安全性。

白盒测试用例设计是一项非常复杂的工作,需要综合考虑软件结构、行为和安全性等多方面因素。

它不仅要求开发者具备足够的测试知识,而且还要求他们拥有测试分析和思维分析能力。

另外,白盒测试用例设计师还需要充分了解软件、技术和规范,并对软件测试工具和方法有较深入的了解。

如果由于忽略上述重要因素而导致测试用例无法有效覆盖软件的所有功能,将有可能破坏软件的品质,甚至威胁到软件的安全性。

此外,白盒测试用例设计还需要考虑到性能测试,即检查软件的性能、可用性和可靠性以确保软件的可用性。

对于性能测试用例,开发者需要牢记一些注意事项,比如:输入输出数据的量级,循环次数,记录最大,最小,平均值等等。

这些信息有助于检验软件是否具有良好的性能,以及更快更好地解决性能问题。

白盒测试的测试用例设计方法

白盒测试的测试用例设计方法

白盒测试的测试用例设计方法白盒测试是一种测试方法,旨在验证程序内部的结构和逻辑。

在白盒测试中,测试人员需要设计有效的测试用例来全面评估系统的功能和准确性。

本文将介绍几种常用的白盒测试用例设计方法。

一、语句覆盖(Statement Coverage)语句覆盖是一种基本的白盒测试用例设计方法。

它要求测试用例能够覆盖被测试程序中的每条语句至少一次。

通过执行每个语句,可以确保程序的基本功能正常运行。

测试人员可以通过代码走查和代码覆盖率工具来确定覆盖情况。

二、判定覆盖(Decision Coverage)判定覆盖是一种更为严格的白盒测试用例设计方法。

它要求测试用例能够覆盖每个条件语句的所有可能结果,包括真值和假值。

通过判定覆盖,可以验证程序在不同条件下的正确性。

测试人员需要对每个条件进行测试设计,确保每个结果都被覆盖到。

三、条件覆盖(Condition Coverage)条件覆盖是判定覆盖的一种补充方法。

它要求测试用例能够覆盖每个独立条件的所有可能情况。

通过条件覆盖,可以确保程序在各种条件下的正确处理。

测试人员需要考虑所有可能的条件组合,并设计相应的测试用例。

四、路径覆盖(Path Coverage)路径覆盖是一种高级的白盒测试用例设计方法。

它要求测试用例能够覆盖程序中所有可能的执行路径。

通过路径覆盖,可以全面评估程序的逻辑和流程。

测试人员需要分析代码,找出程序的所有路径,并设计测试用例来覆盖这些路径。

五、边界值覆盖(Boundary Value Coverage)边界值覆盖是一种特殊的白盒测试用例设计方法。

它要求测试用例能够覆盖每个输入和输出的边界值。

通过边界值覆盖,可以检测程序对边界情况的处理是否正确。

测试人员需要确定每个输入和输出的边界,设计测试用例来验证程序的边界处理能力。

六、错误推测(Error Guessing)错误推测是一种经验主义的白盒测试用例设计方法。

它要求测试人员根据自己的经验和直觉来猜测可能存在的错误,并设计相应的测试用例来验证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

白盒测试白盒测试(White-box Testing,又称逻辑驱动测试,结构测试)是把测试对象看作一个打开的盒子。

利用白盒测试法进行动态测试时,需要测试软件产品的内部结构和处理过程,不需测试软件产品的功能。

白盒测试又称为结构测试和逻辑驱动测试。

白盒测试法的覆盖标准有逻辑覆盖、循环覆盖和基本路径测试。

其中逻辑覆盖包括语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、条件组合覆盖和路径覆盖。

六种覆盖标准:语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、条件组合覆盖和路径覆盖发现错误的能力呈由弱至强的变化。

语句覆盖每条语句至少执行一次。

判定覆盖每个判定的每个分支至少执行一次。

条件覆盖每个判定的每个条件应取到各种可能的值。

判定/条件覆盖同时满足判定覆盖条件覆盖。

条件组合覆盖每个判定中各条件的每一种组合至少出现一次。

路径覆盖使程序中每一条可能的路径至少执行一次。

白盒测试也称结构测试或逻辑驱动测试,它是知道产品内部工作过程,可通过测试来检测产品内部动作是否按照规格说明书的规定正常进行,按照程序内部的结构测试程序,检验程序中的每条通路是否都有能按预定要求正确工作,而不顾它的功能,白盒测试的主要方法有逻辑驱动、基路测试等,主要用于软件验证。

"白盒"法全面了解程序内部逻辑结构、对所有逻辑路径进行测试。

"白盒"法是穷举路径测试。

在使用这一方案时,测试者必须检查程序的内部结构,从检查程序的逻辑着手,得出测试数据。

贯穿程序的独立路径数是天文数字。

但即使每条路径都测试了仍然可能有错误。

第一,穷举路径测试决不能查出程序违反了设计规范,即程序本身是个错误的程序。

第二,穷举路径测试不可能查出程序中因遗漏路径而出错。

第三,穷举路径测试可能发现不了一些与数据相关的错误。

白盒测试六种覆盖方法摘要:白盒测试作为测试人员常用的一种测试方法,越来越受到测试工程师的重视。

白盒测试并不是简单的按照代码设计用例,而是需要根据不同的测试需求,结合不同的测试对象,使用适合的方法进行测试。

因为对于不同复杂度的代码逻辑,可以衍生出许多种执行路径,只有适当的测试方法,才能帮助我们从代码的迷雾森林中找到正确的方向。

本文介绍六种白盒子测试方法:语句覆盖、判定覆盖、条件覆盖、判定条件覆盖、条件组合覆盖、路径覆盖。

由于逻辑错误和不正确假设与一条程序路径被运行的可能性成反比。

由于我们经常相信某逻辑路径不可能被执行, 而事实上,它可能在正常的情况下被执行。

由于代码中的笔误是随机且无法杜绝的,因此我们要进行白盒测试。

白盒测试又称结构测试,透明盒测试、逻辑驱动测试或基于代码的测试。

白盒测试是一种测试用例设计方法,盒子指的是被测试的软件,白盒指的是盒子是可视的,你清楚盒子内部的东西以及里面是如何运作的。

白盒的测试用例需要做到:●保证一个模块中的所有独立路径至少被使用一次●对所有逻辑值均需测试●在上下边界及可操作范围内运行所有循环●检查内部数据结构以确保其有效性白盒测试的目的:通过检查软件内部的逻辑结构,对软件中的逻辑路径进行覆盖测试;在程序不同地方设立检查点,检查程序的状态,以确定实际运行状态与预期状态是否一致。

白盒测试的特点:依据软件设计说明书进行测试、对程序内部细节的严密检验、针对特定条件设计测试用例、对软件的逻辑路径进行覆盖测试。

白盒测试的实施步骤:1.测试计划阶段:根据需求说明书,制定测试进度。

2.测试设计阶段:依据程序设计说明书,按照一定规范化的方法进行软件结构划分和设计测试用例。

3.测试执行阶段:输入测试用例,得到测试结果。

4.测试总结阶段:对比测试的结果和代码的预期结果,分析错误原因,找到并解决错误。

白盒测试的方法:总体上分为静态方法和动态方法两大类。

静态分析是一种不通过执行程序而进行测试的技术。

静态分析的关键功能是检查软件的表示和描述是否一致,没有冲突或者没有歧义。

动态分析的主要特点是当软件系统在模拟的或真实的环境中执行之前、之中和之后, 对软件系统行为的分析。

动态分析包含了程序在受控的环境下使用特定的期望结果进行正式的运行。

它显示了一个系统在检查状态下是正确还是不正确。

在动态分析技术中,最重要的技术是路径和分支测试。

下面要介绍的六种覆盖测试方法属于动态分析方法。

白盒测试的优缺点1、优点●迫使测试人员去仔细思考软件的实现●可以检测代码中的每条分支和路径●揭示隐藏在代码中的错误●对代码的测试比较彻底●最优化2、缺点●昂贵●无法检测代码中遗漏的路径和数据敏感性错误●不验证规格的正确性六种覆盖方法首先为了下文的举例描述方便,这里先给出一张程序流程图。

(本文以1995年软件设计师考试的一道考试题目为例,图中红色字母代表程序执行路径)。

1、语句覆盖1)主要特点:语句覆盖是最起码的结构覆盖要求,语句覆盖要求设计足够多的测试用例,使得程序中每条语句至少被执行一次。

2)用例设计:(如果此时将A路径上的语句1—〉T去掉,那么用例如下)3)优点:可以很直观地从源代码得到测试用例,无须细分每条判定表达式。

4)缺点:由于这种测试方法仅仅针对程序逻辑中显式存在的语句,但对于隐藏的条件和可能到达的隐式逻辑分支,是无法测试的。

在本例中去掉了语句1—〉T去掉,那么就少了一条测试路径。

在if结构中若源代码没有给出else后面的执行分支,那么语句覆盖测试就不会考虑这种情况。

但是我们不能排除这种以外的分支不会被执行,而往往这种错误会经常出现。

再如,在Do-While结构中,语句覆盖执行其中某一个条件分支。

那么显然,语句覆盖对于多分支的逻辑运算是无法全面反映的,它只在乎运行一次,而不考虑其他情况。

2、判定覆盖1)主要特点:判定覆盖又称为分支覆盖,它要求设计足够多的测试用例,使得程序中每个判定至少有一次为真值,有一次为假值,即:程序中的每个分支至少执行一次。

每个判断的取真、取假至少执行一次。

23)优点:判定覆盖比语句覆盖要多几乎一倍的测试路径,当然也就具有比语句覆盖更强的测试能力。

同样判定覆盖也具有和语句覆盖一样的简单性,无须细分每个判定就可以得到测试用例。

4)缺点:往往大部分的判定语句是由多个逻辑条件组合而成(如,判定语句中包含AND、OR、CASE),若仅仅判断其整个最终结果,而忽略每个条件的取值情况,必然会遗漏部分测试路径。

3、条件覆盖1)主要特点:条件覆盖要求设计足够多的测试用例,使得判定中的每个条件获得各种可能的结果,即每个条件至少有一次为真值,有一次为假值。

2)用例设计:3)优点:显然条件覆盖比判定覆盖,增加了对符合判定情况的测试,增加了测试路径。

4)缺点:要达到条件覆盖,需要足够多的测试用例,但条件覆盖并不能保证判定覆盖。

条件覆盖只能保证每个条件至少有一次为真,而不考虑所有的判定结果。

4、判定/条件覆盖1)主要特点:设计足够多的测试用例,使得判定中每个条件的所有可能结果至少出现一次,每个判定本身所有可能结果也至少出现一次。

2)用例设计:3)优点:判定/条件覆盖满足判定覆盖准则和条件覆盖准则,弥补了二者的不足。

4)缺点:判定/条件覆盖准则的缺点是未考虑条件的组合情况。

5、组合覆盖:1)主要特点:要求设计足够多的测试用例,使得每个判定中条件结果的所有可能组合至少出现一次。

2)用例设计:3)优点:多重条件覆盖准则满足判定覆盖、条件覆盖和判定/条件覆盖准则。

更改的判定/条件覆盖要求设计足够多的测试用例,使得判定中每个条件的所有可能结果至少出现一次,每个判定本身的所有可能结果也至少出现一次。

并且每个条件都显示能单独影响判定结果。

4)缺点:线性地增加了测试用例的数量。

6、路径覆盖1)主要特点:设计足够的测试用例,覆盖程序中所有可能的路径。

23)优点:这种测试方法可以对程序进行彻底的测试,比前面五种的覆盖面都广。

4)缺点:由于路径覆盖需要对所有可能的路径进行测试(包括循环、条件组合、分支选择等),那么需要设计大量、复杂的测试用例,使得工作量呈指数级增长。

而在有些情况下,一些执行路径是不可能被执行的,如:If (!A)B++;If (!A)D--;这两个语句实际只包括了2条执行路径,即A为真或假时候对B和D的处理,真或假不可能都存在,而路径覆盖测试则认为是包含了真与假的4条执行路径。

这样不仅降低了测试效率,而且大量的测试结果的累积,也为排错带来麻烦。

总结白盒测试是一种被广泛使用的逻辑测试方法,是由程序内部逻辑驱动的一种单元测试方法。

只有对程序内部十分了解才能进行适度有效的白盒测试。

但是贯穿在程序内部的逻辑存在着不确定性和无穷性,尤其对于大规模复杂软件。

因此我们不能穷举所有的逻辑路径,即使穷举也未必会带来好运(穷举不能查出程序逻辑规则错误,不能查出数据相关错误,不能查出程序遗漏的路径)。

那么正确使用白盒测试,就要先从代码分析入手,根据不同的代码逻辑规则、语句执行情况,选用适合的覆盖方法。

任何一个高效的测试用例,都是针对具体测试场景的。

逻辑测试不是片面的测试正确的结果或是测试错误的结果,而是尽可能全面地覆盖每一个逻辑路径用例设计一、白盒测试根据软件产品的内部工作过程,在计算机上进行测试,以证实每种内部操作是否符合设计规格要求,所有内部成分是否已经过检查。

这种测试方法就是白盒测试。

白盒测试把测试对象看做一个打开的盒子,允许测试人员利用程序内部的逻辑结构及有关信息,设计或选择测试用例,对程序所有逻辑路径进行测试。

通过在不同点检查程序的状态,确定实际的状态是否与预期的状态一致。

不论是黑盒测试,还是白盒测试,都不可能把所有可能的输入数据都拿来进行所谓的穷举测试。

因为可能的测试输入数据数目往往达到天文数字。

下面让我们看两个例子。

假设一个程序P有输入X和Y及输出Z,参看图10-4-1。

在字长为32位的计算机上运行。

如果X 、Y只取整数,考虑把所有的X 、Y值都做为测试数据,按黑盒测试方法进行穷举测试,力图全面、无遗漏地“挖掘”出程序中的所有错误。

这样做可能采用的测试数据组(Xi,Yi)的最大可能数目为:。

如果程序P测试一组X、Y数据需要 1毫秒,且一天工作24小时,一年工作365天,要完成264组测试,需要5亿年。

图 10-4-1 黑盒子而对一个具有多重选择和循环嵌套的程序,不同的路径数目也可能是天文数字。

设给出一个如图 10-4-2所示的小程序的流程图,其中包括了一个执行达20次的循环。

那么它所包含的不同执行路径数高达条,若要对它进行穷举测试,覆盖所有的路径。

假使测试程序对每一条路径进行测试需要1毫秒,同样假定一天工作24小时,一年工作365 天,那么要想把如图 10-4-2所示的小程序的所有路径测试完,则需要3170年。

图 10-4-2 白盒测试中的穷举测试以上的分析表明,实行穷举测试,由于工作量过大,实施起来是不现实的。

相关文档
最新文档