二次函数综合题类型
二次函数综合压轴题型
二次函数综合压轴题型
二次函数综合压轴题型是一种难度较大的数学题目,通常涉及到二次函数的性质、图像、最值以及与其他数学知识的综合应用。
以下是一些常见的二次函数综合压轴题型的例子:
1. 二次函数与几何的综合:这类题目通常会涉及到二次函数图像与几何图形(如三角形、矩形、圆等)的结合,需要利用几何知识解决二次函数问题。
2. 二次函数与一次函数的综合:这类题目通常会涉及到两个函数图像的交点、性质以及与不等式相关的知识点,需要综合考虑一次函数和二次函数的性质。
3. 二次函数与方程根的综合:这类题目通常会涉及到求二次方程的根、判断根的情况以及与二次函数图像的关系,需要利用二次函数的性质和判别式的知识。
4. 二次函数的最值问题:这类题目通常会涉及到求二次函数的最值,需要利用配方法、顶点式等二次函数的性质和公式。
5. 二次函数的实际应用题:这类题目通常会涉及到生活中的问题,如抛物线的运动、物体下落等,需要将实际问题转化为数学问题,利用二次函数的知识求解。
解二次函数综合压轴题型需要熟练掌握二次函数的性质、图像和公式,同时还需要具备一定的数学思维和推理能力。
在解题过程中,要注意灵活运用所学知识,多角度思考问题,寻找最佳的解题方法。
题库-二次函数性质综合题
二次函数性质综合题类型一 二次项系数确定型1.已知二次函数y =x 2-2mx +m 2+m -5.(1)若该二次函数图象关于y 轴对称,写出它的图象的顶点坐标.(2)若该二次函数图象的顶点在第一象限,求m 的取值范围.解:(1)∵二次函数y =x 2-2mx +m 2+m -5的图象关于y 轴对称,∴x =22m --=0, 解得m =0, ∴二次函数为y =x 2-5,∴顶点坐标为(0,-5);(2)y =x 2-2mx +m 2+m -5=(x -m )2+m -5,∴顶点坐标为(m ,m -5),∵它的图象的顶点在第一象限,∴ m >0,且 m −5>0 , 解得m>5.2.已知抛物线G :y=x 2-2ax+a -1(a 为常数).(1)当a =3时,用配方法求抛物线G 的顶点坐标;(2)若记抛物线G 的顶点坐标为P (p ,q ),①分别用含a 的代数式表示p ,q ;②请在①的基础上继续用含p 的代数式表示q ;③由①②可得,顶点P 的位置会随着a 的取值变化而变化,则点P 总落在__________图象上.A .一次函数B .反比例函数C .二次函数(3)小明想进一步对(2)中的问题进行如下改编:将(2)中的抛物线G 改为抛物线H :y =x 2-2ax +N (a 为常数),其中N 代表含a 的代数式,从而使这个新抛物线H 满足:无论a 取何值,它的顶点总落在某个一次函数的图象上.请按照小明的改编思路,写出一个符合以上要求的新抛物线H的函数表达式:_________(用含a的代数式表示),它的顶点所在的一次函数图象的表达式y=kx+b(k,b为常数,k≠0)中,k=___________,b=___________.解:(1)当a=3时,y=x2-6x+2=(x-3)2-7,∴点G的顶点坐标为(3,-7);(2)①y=x2-2ax+a-1=(x-a)2-a2+a-1,∴p=a,q=-a2+a-1;②q=-p2+p-1;③C(3)y=x2-2ax+a2+a-1,1,-1(答案不唯一)【解法提示】y=x2-2ax+a2+a-1=(x-a)2+a-1,顶点坐标为(a,a-1),顶点所在的一次函数图象的表达式y=x-1.3.已知抛物线y=x2-2mx+2m2+2m,得出两个结论:结论一:当抛物线经过原点时,顶点在第三象限的角平分线所在的直线上;结论二:不论m取什么实数值,抛物线顶点一定不在第四象限.(1)请你求出抛物线经过原点时m的值及顶点坐标,并说明结论一是否正确?(2)结论二正确吗? 若你认为正确,请求出当实数m变化时,抛物线顶点的纵横坐标之间的函数关系式,并说明顶点不在第四象限的理由;若你认为不正确,求出抛物线顶点在第四象限时,m的取值范围.解:(1)结论一正确.抛物线经过原点时,2m2+2m=0,则m1=0,m2=-1,当m=-1时,抛物线解析式为y=x2+2x=(x+1)2-1,顶点坐标(-1,-1);当m=0时,抛物线解析式为y=x2,顶点坐标(0,0),由于顶点(-1,-1)和顶点(0,0)都在第三象限的角平分线所在的直线上,∴结论一正确;(2)结论二正确.∵抛物线的解析式y =x 2-2mx +2m 2+2m 可变为y =(x -m )2+m 2+2m ,∴抛物线的顶点坐标为(m ,m 2+2m ),若设抛物线的顶点为(x ,y ),则2,2x m y m m=⎧⎨=+⎩ ∴抛物线顶点的纵横坐标的函数关系式为y =x 2+2x ,∵抛物线y =x 2+2x 的顶点为(-1,-1),与x 轴的交点为(0,0),(-2,0),且抛物线开口向上,∴抛物线 y =x 2+2x 不可能在第四象限.即不论 m 取什么实数值,抛物线顶点一定不在第四象限.4.在平面直角坐标系xOy 中,抛物线y =x 2-2mx +m 2-m +2的顶点为D .线段ab 的两端点分别为a (-3,m ),b (1,m ).(1)求点D 的坐标(用含m 的代数式表示);(2)若该抛物线经过点b (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围. 解:(1)∵y =x 2-2mx +m 2-m +2=(x -m )2-m +2,∴D (m ,-m +2);(2)∵抛物线经过点B (1,m ),∴m =1-2m +m 2-m +2,解得m =3或m =1;(3)根据题意:∵A (-3,m ),B (1,m ),∴AB 所在直线的解析式为y =m (-3≤x ≤1),与y =x 2-2mx +m 2-m +2,联立得: x 2-2mx +m 2-2m +2=0,令y =x 2-2mx +m 2-2m +2,若抛物线y =x 2-2mx +m 2-2m +2与线段AB 只有一个公共点,即函数y 在-3≤x ≤1范围内只有一个零点,当x =-3时,y =m 2+4m +11≤0,∵b 2-4ac >0,∴此种情况不存在,当x =1时,y =m 2-4m +3≤0, 解得1≤m ≤3.5.已知抛物线的表达式为 y =2x 2-4x -1.(1)求当x 为何值时y 取最小值,并求出最小值;(2)这个抛物线交x 轴于点(x 1,0),(x 2,0),求2112x x x x +的值; (3)将二次函数的图象先向右平移2个单位长度,再向下平移 1个单位长度后,所得二次函数图象的顶点为a ,请你求出点a 的坐标.解:(1)y =2x 2-4x -1=2(x 2-2x +1)-2-1=2(x -1)2-3,当x =1时,y 取最小值,最小值为-3;(2)令y =0,得2x 2-4x -1=0,由题意得:方程的两个根为x 1,x 2,∵a =2,b =-4,c =-1,∴x 1+x 2=b a -=2,x 1x 2=c a =12-, 则22221121212121212()210;x x x x x x x x x x x x x x ++-+===- (3)二次函数的图象向右平移2个单位长度,得到解析式为y=2(x-1-2)2-3,即y=2(x-3)2-3,再向下平移1个单位长度,得y=2(x-3)2-3-1,即y=2(x-3)2-4,则平移后顶点a的坐标为(3,-4).6.已知二次函数y=-x2+2mx-4m+2(m为常数)(1)请你用m的代数式表示该函数的顶点坐标;(2)对于二次函数y=-x2+2mx-4m+2,若当x≥1时,函数值y随x的增大而减小,请你求出m的取值范围;(3)若二次函数y=-x2+2mx-4m+2的顶点纵坐标为H,写出H与m的函数关系式,并判断该函数图象的顶点是否有最高点(或最低点)?若有,请求出这个点的坐标.解:(1)∵2224,42 22(1)4b m ac bm m ma a--=-==-+⨯-,∴顶点坐标为(m,m2-4m+2);(2)∵抛物线的对称轴为直线x=m,且a=-1<0,∴当x≥m时,函数值y随x的增大而减小,∵当x≥1时,函数值y随x的增大而减小,∴m≤1;(3)∵二次函数y=-x2+2mx-4m+2的顶点纵坐标为H,∴H=m2-4m+2=(m-2)2-2,∵1>0,∴函数顶点有最低点,坐标为(2,-2).7.已知二次函数y=22x bx c++(b,c为常数).(1)当b=1,c=-3时,求二次函数在-2≤x≤2上的最小值;(2)当c=3时,求二次函数在0≤x≤4上的最小值;(3)当c =42b 时,若在自变量x 的值满足2b ≤x ≤2b +3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.解:(1)当b =1,c =-3时,二次函数解析式为2223(1)4y x x x =+-=+-,∵x =-1在-2≤x ≤2的范围内,∴当x =-1时,函数取得最小值为-4;(2)当c =3时,二次函数解析式为y =223x bx ++=22()3x b b +-+,其对称轴为直线x =-b ,①若-b <0,即b >0时,当x =0时,y 有最小值为3;②若0≤-b ≤4,即4≤b ≤0时,当x =-b 时,y 有最小值为23b -+; ③若-b >4,即b <-4时,当x =4时,y 有最小值为8b +19;(3)当c =24b 时,二次函数的解析式为y =2224x bx b ++,它是开口向上,对称轴为直线x =-b 的抛物线,①若-b <2b ,即b >0时,在自变量x 的值满足2b ≤x ≤2b +3的情况下,与其对应的函数值y 随x 增大而增大,∴当x =2b 时,y=2(2)2b b +×222412b b b +=为最小值,∴12b 2=21,∴b 或b =(舍), ∴二次函数解析式为y =27x +;②若2b ≤-b ≤2b +3,即-1≤b ≤0,当x =-b 时,代入y =2224x bx b ++,得y 的最小值为23b ,∴23b =21, ∴b 舍)或b (舍),③若-b >2b +3时,即b<-1,x =2b+3时,代入二次函数解析式y =2224x bx b ++中,得y 的最小值为212189b b ++,∴212189b b ++=21,∴b =-2或b =12(舍),∴二次函数解析式为y =2416x x -+.综上所述,b =2或b =-2时,此时二次函数的解析式分别为y =27x ++或y =2416x x -+.类型二 二次项系数不确定型1.已知实数a ,c 满足111a c +=,2a +c -ac +2>0,二次函数y =ax 2+bx +9a 经过点 B (4,n )、A (2,n ),且当1≤x ≤2时,y =ax 2+bx +9a 的最大值与最小值之差是9,求a 的值. 解:∵实数a ,c 满足111a c +=,∴c -ac =-a ,∵2a +c -ac +2>0,∴2a -a +2>0,∴a >-2,∵二次函数y =ax 2+bx +9a 经过点B (4,n )、A (2,n ), ∴2b a -=422+=3, ∴b =-6a , ∴y =ax 2+bx +9a =a (x 2-6x +9)=a (x -3)2,∵当1≤x ≤2时,y =ax 2+bx +9a 的最大值与最小值之差是9,∴|4a -a |=9, ∴a =±3,又∵a>-2, ∴a =3.2.已知抛物线的函数解析式为y =ax 2+bx -3a (b <0),若这条抛物线经过 点(0,-3),方程ax 2+bx -3a =0的两根为x 1,x 2,且|x 1-x 2|=4.(1)求抛物线的顶点坐标;(2)已知实数x >0,请证明x +1x ≥2,并说明x 为何值时才会有x +1x =2. 解:(1)∵抛物线过点(0,-3),∴-3a =-3,,∴a =1,∴y =x 2+bx -3,∵x 2+bx -3=0的两根为x 1,x 2,∴x 1+x 2=-b ,x 1x 2=-3,∵|x 1-x 2|=4, ∴|x 1-x 2=4 ,4, ∴b 2=4 ,∵b <0, ∴b =-2 ,∴y =x 2-2x -3=(x -1)2-4 ,∴抛物线的顶点坐标为(1,-4);(2)∵x >0, ∴x +1x −2=( x -1x )2 ≥0 ,∴x +1x ≥2,显然当x =1时,才有x +1x =2.3.已知函数24(2)m m y m x +-=+是关于x 的二次函数,求:(1)满足条件m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点的坐标,这时x 为何值时y 随x 的增大而增大?(3)m 为何值时,抛物线有最大值?最大值是多少?这时x 为何值时,y 随x 的增大而减小?解:(1)根据题意得m +2≠0且m 2+m -4=2,解得m 1=2,m 2=-3, 所以满足条件的m 值为2或-3;(2)当m +2>0时,抛物线有最低点, 所以m =2, 抛物线解析式为y =4x 2, 所以抛物线的最低点为(0,0),当x ≥0时,y 随x 的增大而增大;(3)当m =-3时,抛物线开口向下,函数有最大值; 抛物线解析式为y =-x 2,所以二次函数的最大值是0,这时,当x ≥0时,y 随x 的增大而减小.4.我们知道,经过原点的抛物线解析式可以是y =ax 2+bx (a ≠0).(1)对于这样的抛物线:当顶点坐标为(1,1)时,求a 、b 的值;(2)当顶点坐标为(m ,2m ),m ≠0时,求a 与m 之间的关系式;(3)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =(k +1)x (k ≠-1)上,请用含k 的代数式表示b .解:(1)∵顶点坐标为(1,1),∴ 21214b a b a⎧-=⎪⎪⎨-⎪=⎪⎩, 解得12a b =-⎧⎨=⎩; (2)当顶点坐标为(m ,2m ),m ≠0时,2224b m a b m a⎧-=⎪⎪⎨-⎪=⎪⎩, 解得a =2m -; (3)过原点的抛物线y =ax 2+bx 的顶点坐标为(2b a-,24b a -), ∵抛物线顶点在直线y =(k +1)x (k ≠-1)上, ∴2(1)()42b b k a a -=+-, 整理得:b =2k +2.5.已知二次函数y =ax 2-(a +1)x +1(a >0).(1)当a =1时,求二次函数y =ax 2-(a +1)x +1(a >0)的顶点坐标和对称轴.(2)二次函数y =ax 2-(a +1)x +1(a >0)与x 轴的交点恒过一个定点,求出这个定点;(3)当二次函数y =ax 2-(a +1)x +1(a >0)时,x 在什么范围内,y 随着x 的增大而减小?解:(1)当a =1时,y =x 2-2x +1, 顶点坐标式为y =(x -1)2,则顶点坐标为(1,0),对称轴为直线x =1;(2)令y =ax 2-(a +1)x +1=0, a (x 2-x )+1-x =0,当x =1时,a (x 2-x )+1-x =0恒成立, 则这个定点为(1,0);(3)∵y =ax 2-(a +1)x +1(a >0),∴y =a (x −12a a+)2+1−2(1)4a a +, ∵a >0, ∴当x <12a a+时,y 随着x 的增大而减小. 6.已知函数y =(n +1)x m +mx +1-n (m ,n 为实数).(1)当m ,n 取何值时,此函数是我们学过的哪一类函数?它一定与x 轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n >-1,那么:①当x <0时,y 随x 的增大而减小,请判断这个命题的真假并说明理由; ②它一定经过哪个点?请说明理由.解:(1)①当m =1,n ≠-2时,函数y =(n +1)x m +mx +1-n (m ,n 为实数)是一次函数,它一定与x 轴有一个交点,∵当y =0时,即(n +1)x m +mx +1-n =0,∴x =12n n -+ , ∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;②当m =2,n ≠-1时,函数y =(n +1)x m +mx +1-n (m ,n 为实数)是二次函数, 当y =0时,y =(n +1)x m +mx +1-n =0,即(n +1)x 2+2x +1-n =0,△=22-4(1+n )(1-n )=4n 2≥0,∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;③当n =-1,m ≠0时,函数y =(n +1)x m +mx +1-n 是一次函数,当y =0时,x =2m-, ∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;(2)①假命题,若它是一个二次函数,则m =2,函数y =(n +1)x 2+2x +1-n , ∵n >-1,∴n +1>0,抛物线开口向上, 对称轴:x =2122(1)1b a n n -=-=-++<0, ∴对称轴在y 轴左侧,当x <0时,y 有可能随x 的增大而增大,也可能随x 的增大而减小;②当x =1时,y =n +1+2+1-n =4.当x =-1时,y =0.∴它一定经过点(1,4)和(-1,0).7.在平面直角坐标系xOy 中,直线y =2x -3与y 轴交于点 A ,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l ,直线l 与直线y =2x -3交于点 C .(1)求点C 的坐标;(2)如果抛物线y =nx 2-4nx +5n (n >0)与线段bC 有唯一公共点,求n 的取值范围. 解:(1)∵直线y =2x -3与y 轴交于点A (0,-3),∴点A 关于x 轴的对称点B (0,3),l 为直线y =3,∵直线y =2x -3与直线l 交于点C ,∴点C 坐标为(3,3);(2)∵抛物线y =nx 2-4nx +5n (n >0),∴y =nx 2-4nx +4n +n =n (x -2)2+n (n >0),∴抛物线的对称轴为直线x =2,顶点坐标为(2,n ),∵点B (0,3),点C (3,3),①当n >3时,抛物线的最小值为n >3,与线段BC 无公共点;②当n=3时,抛物线的顶点为(2,3),在线段BC上,此时抛物线与线段BC有一个公共点;③当0<n<3时,抛物线最小值为n,与线段BC有两个公共点;如果抛物线y=n (x-2)2+n经过点b,则3=5n,解得n=35,由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3),点(4,3)不在线段BC上,此时抛物线与线段BC有一个公共点B;如果抛物线y=n(x-2)2+n经过点C,则3=2n,解得n=32,由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3),点(1,3)在线段BC 上,此时抛物线与线段BC有两个公共点,综上所述,当35≤n<32或n=3时,抛物线与线段bC有一个公共点.8.已知抛物线C:y1=a(x-h)2-1,直线l:y2=kx-kh-1.(1)求证:直线l恒过抛物线C的顶点;(2)当a=1,2≤x≤m时,y1≤x-3恒成立,求m的最大值;(3)当0<a≤1,k>0时,若在直线l下方的抛物线C上至少存在三个横坐标为整数的点,求k的取值范围.解:(1)抛物线C的顶点坐标为(h,-1),当x=h时,y2=kh-kh-1=-1,所以直线l 恒过抛物线C的顶点;(2)当a=1时,抛物线C解析式为y1=(x-h)2-1,不妨令y3=x-3 ,如解图①所示,抛物线C的顶点在直线y=-1上移动,第8题解图①当2≤x≤3时,y1≤x-3恒成立,则可知抛物线C的顶点为(2,-1),设抛物线C与直线y3=x-3 除顶点外的另一交点为M,此时点M的横坐标即为m的最大值,由2(2)13y xy x⎧=--⎨=-⎩,解得x=2或x=3,∴m的最大值为3.(3)如解图②所示,由(1)可知:抛物线C与直线l都过点a(h,-1).第8题解图②当0<a≤1时,k>0,在直线l下方的抛物线C上至少存在三个横坐标为整数点,即当x=h+3时,y2>y1恒成立.∴k(h+3)-kh-1>a(h+3-h)2-1,整理得:k>3a.又∵0<a≤1,所以0<3a≤3,所以k>3.9.已知二次函数23 2y ax bx=+-的图象与y轴交于点B,(1)若二次函数的图象经过点A(1,1).①二次函数的图象对称轴为直线x=1,求此二次函数的解析式;②对于任意的正数a,当x>n时,y随x的增大而增大,请求出n的取值范围;(2)若二次函数的图象的对称轴为直线x=-1,且直线y=2x-2与直线l也关于直线x=-1对称,且二次函数的图象在-5<x<-4这一段位于直线l的上方,在1<x<2这一段位于直线y=2x-2的下方,求此二次函数的解析式.解:(1)①由题意得31212a bba⎧+-=⎪⎪⎨⎪-=⎪⎩,解得525ab⎧=-⎪⎨⎪=⎩,∴二次函数的解析式为253522y x x =-+-; ∵二次函数的图象经过点A (1,1), ∴31,2a b +-= ∴b =52a -, ∴对称轴为55122242a b x a a a -=-=-=-+, ∵a>0,∴50,4a -< ∴122b x a =-<, ∵当x>n 时,y 随x 的增大而增大,1,221;2b n a n ∴≤-<∴<(2)由直线y =2x -2可知:直线y =2x -2与直线x =-1的交点为(-1,-4),与x 轴的交点为(1,0),∵直线y =2x -2与直线l 也关于直线x =-1对称,∴直线l 与x 轴的交点为(-3,0),设直线l 的解析式为y =kx +d ,∵直线l 过点(-1,-4),(-3,0),代入解析式得4,03k d k d-=-+⎧⎨=-+⎩解得=2,6k d -⎧⎨=-⎩ ∴直线l 的解析式为y =-2x -6. ∵二次函数232y ax bx =+-的图象的对称轴为直线x =-1,且直线y =2x -2与y =-2x -6关于直线x =-1对称,如解图,当1<x<2时,函数232y ax bx =+-的图象在直线y =2x -2的下方,第9题解图∴当-4<x<-3时,函数232y ax bx =+-的图象在直线l :y =-2x -6的下方; 又∵当-5<x<-4时,函数232y ax bx =+-的图象在直线l 的上方, ∴当x =-4时,y =-2⨯(-4)-6=2, 即(-4,2)为函数232y ax bx =+-与y =-2x -6的图象的交点, ∴316422,12a b b a⎧--=⎪⎪⎨⎪-=-⎪⎩解得716,78a b ⎧=⎪⎪⎨⎪=⎪⎩ ∴此二次函数的解析式为27731682y x x =+-.。
二次函数综合题分类解析
二次函数综合题分类解析
二次函数,又称二项式函数,是很常见的数学概念,在多个学科中,如数学、物理、经济、医学等,都有应用。
而二次函数的综合题,则是指在一道题中给出多个二次函数成分,最终求出正确答案的题型。
在数学学习中,二次函数的综合题可以分为四类:
一、常用二次函数综合题:这类题型以给出的函数求解最终结果为主,如:求函数f(x) = ax + bx + c在x=3时的值,求被定义域
为[-2,2]的函数g(x)在2处的值等。
二、函数曲线图形综合题:这类题型要求考生掌握函数图像的形状,题目中会有参数没有给出,考生要根据图形的形状进行推断,如:函数y=2x + 4x + a的图象是一条不等式,求a的值。
三、二次函数最值及单调性综合题:这类题型要求考生给出的函数的最值,和函数的单调性,有时会给出函数的一次导数和二次导数,如:函数f(x) = ax + bx + c,求f(x)的极大值、极小值,函数在(2,5)处是单调递增还是递减?
四、求解综合题:这类题型要求考生根据题目提供的信息,综合推断,从而求解函数,如:已知函数f(x)的最大值为5,求ax + bx + c = 0的解。
以上就是关于二次函数综合题分类解析的全部内容。
从上面的讲解可以看出,二次函数综合题不但基础知识要求比较高,同时还需要考生有扎实的数学基础和较强的推理能力,仅仅依靠死记硬背是无法做好此类题型的。
因此,在平时学习中,考生除了要做好此类综合题
的做题练习之外,还应多加分析,仔细分析每一道题,看懂题意,把握主旨,在理解的基础上,总结出经验,才能真正提高解题能力和逻辑思维能力。
二次函数中常见的几种综合题型
二次函数中常见的几种综合题型二次函数常见的几类综合题型一、求线段最大值及根据面积求点坐标问题1.已知抛物线 $y=x^2+bx+c$ 的图象与 $x$ 轴的一个交点为 $B(5,0)$,另一个交点为 $A$,且与 $y$ 轴交于点 $C(0,5)$。
1) 求直线 $BC$ 与抛物线的解析式;2) 若点 $M$ 是抛物线在 $x$ 轴下方图象上的一个动点,过点 $M$ 作 $MN\parallel y$ 轴交直线 $BC$ 于点 $N$,求$MN$ 的最大值;3) 在 (2) 的条件下,$MN$ 取得最大值时,若点 $P$ 是抛物线在 $x$ 轴下方图象上任意一点,以 $BC$ 为边作平行四边形 $CBPQ$,设平行四边形 $CBPQ$ 的面积为 $S_1$,$\triangle ABN$ 的面积为 $S_2$,且 $S_1=6S_2$,求点$P$ 的坐标。
2.对称轴为直线 $x=-1$ 的抛物线$y=ax^2+bx+c(a\neq0)$ 与 $x$ 轴相交于 $A$、$B$ 两点,其中点 $A$ 的坐标为 $(-3,0)$。
1) 求点 $B$ 的坐标;2) 已知 $a=1$,$C$ 为抛物线与 $y$ 轴的交点。
①若点 $P$ 在抛物线上,且 $S_{\trianglePOC}=4S_{\triangle BOC}$,求点 $P$ 的坐标;②设点 $Q$ 是线段 $AC$ 上的动点,作 $QD\perp x$ 轴交抛物线于点 $D$,求线段 $QD$ 长度的最大值。
二、求三角形周长及面积的最值问题3.已知抛物线 $y=ax^2+bx+c$ 经过 $A(-3,a-b+c)$,$B(1,a+b+c)$,$C(c,a+3c-b)$ 三点,其顶点为 $D$,对称轴是直线 $l$,$l$ 与 $x$ 轴交于点 $H$。
1) 求该抛物线的解析式;2) 若点 $P$ 是该抛物线对称轴 $l$ 上的一个动点,求$\triangle PBC$ 周长的最小值;3) 如图 (2),若 $E$ 是线段 $AD$ 上的一个动点($E$ 与$A$、$D$ 不重合),过点 $E$ 作平行于 $y$ 轴的直线交抛物线于点 $F$,交 $x$ 轴于点 $G$,设点 $E$ 的横坐标为 $m$,$\triangle ADF$ 的面积为 $S$。
二次函数(十二大题型综合归纳 )(学生版)--新九年级数学
二次函数(十二大题型综合归纳)题型1:二次函数的概念1以下函数式二次函数的是()A.y=ax2+bx+cB.y=2x-12-4x2C.y=ax2+bx+c a≠0D.y=x-1x-22二次函数y=2x x−3的二次项系数与一次项系数的和为()A.2B.-2C.-1D.-4题型2:二次函数的值3已知二次函数y=x2+2x-5,当x=3时,y=.4已知二次函数y=ax2+2c,当x=2时,函数值等于8,则下列关于a,c的关系式中,正确的是()A.a+2c=8B.2a+c=4C.a-2c=8D.2a-c=45二次函数y=ax2+bx-3a≠0的图象经过点2,-2,则代数式2a+b的值为.题型3:二次函数的条件6已知y=mx m-2+2mx+1是y关于x的二次函数,则m的值为()A.0B.1C.4D.0或47关于x的函数y=a-bx2+1是二次函数的条件是()A.a≠bB.a=bC.b=0D.a=0题型4:列二次函数关系式8已知有n个球队参加比赛,每两队之间进行一场比赛,比赛的场次数为m,则m关于n的函数解析式为.题型5:特殊二次函数的图像和性质9关于二次函数y =-34x 2-1的图像,下列说法错误的是()A.抛物线开口向下B.对称轴为直线x =0C.顶点坐标为0,-1D.当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大10抛物线y =34x 2与抛物线y =-34x 2+3的相同点是()A.顶点相同B.对称轴不相同C.开口方向一样D.顶点都在y 轴上11如果二次函数y =ax 2+m 的值恒大于0,那么必有()A.a >0,m 取任意实数B.a >0,m >0C.a <0,m >0D.a ,m 均可取任意实数12对于二次函数y =-3(x -2)2的图象,下列说法正确的是()A.开口向上B.对称轴是直线x =-2C.当x >-2时,y 随x 的增大而减小D.顶点坐标为2,013二次函数:①y =-13x 2+1;②y =12(x +1)2-2;③y =-12(x +1)2+2;④y =12x 2;⑤y =-12(x -1)2;⑥y =12(x -1)2.(1)以上二次函数的图象的对称轴为直线x =-1的是(只填序号);(2)以上二次函数有最大值的是(只填序号)﹔(3)以上二次函数的图象中关于x 轴对称的是(只填序号).14设函数y 1=x -a 12,y 2=x -a 22,y 3=x -a 3 2.直线x =b 的图象与函数y 1,y 2,y 3的图象分别交于点A b ,c 1,B b ,c 2 ,C b ,c 3,()A.若b <a 1<a 2<a 3,则c 2<c 3<c1B.若a 1<b <a 2<a 3,则c 1<c 2<c 3C.若a 1<a 2<b <a 3,则c 3<c 2<c 1 D.若a 1<a 2<a 3<b ,则c 3<c 2<c 115已知二次函数y =(x -m )2,当x ≤1时,y 随x 的增大而减小,则m 的取值范围是.16已知关于x 的一元二次方程x 2-(2m +1)x +m 2-1=0有实数根a ,b ,则代数式a 2-ab +b 2的最小值为.题型6:与特殊二次函数有关的几何知识17在平面直角坐标系中,点A是抛物线y=a x-42+k与y轴的交点,点B是这条抛物线上的另一点,且AB⎳x轴,则以AB为边的等边三角形ABC的周长为.18在平面直角坐标系内有线段PQ,已知P(3,1)、Q(9,1),若抛物线y=(x-a)2与线段PQ有交点,则a的取值范围是.19二次函数y=-x+3的图象上任意二点连线不与x轴平行,则t的取值范围2+h t≤x≤t+2为.题型7:二次函数y=ax2+bx+c的图像和性质20下列抛物线中,与抛物线y=x2-2x+8具有相同对称轴的是()A.y=4x2+2x+4B.y=x2-4xC.y=2x2-x+4D.y=-2x2+4x21若抛物线y=x2+ax+1的顶点在y轴上,则a的值为()A.2B.1C.0D.-222抛物线y=x-1x+5图象的开口方向是(填“向上”或“向下”).23当二次函数y=ax2+bx+c有最大值时,a可能是()A.1B.2C.-2D.324已知抛物线y=x2-2bx+b2-2b+1(b为常数)的顶点不在抛物线y=x2+c(c为常数)上,则c应满足()A.c≤2B.c<2C.c≥2D.c>225已知二次函数y=x2-2mx+m的图象经过A1,y1,B5,y2两个点,下列选项正确的是()A.若m<1,则y1>y2B.若1<m<3,则y1<y2C.若1<m<5,则y1>y2D.若m>5,则y1<y2题型8:二次函数y=ax2+bx+c的最值与求参数范围问题26已知直线y=2x+t与抛物线y=ax2+bx+c a≠0,且点B、B m,n有两个不同的交点A3,5是抛物线的顶点,当-2≤a≤2时,m的取值范围是.27已知抛物线y=x2+bx+c经过点(1,-2),(-2,13).(1)求抛物线解析式及对称轴.(2)关于该函数在0≤x<m的取值范围内,有最小值-3,有最大值1,求m的取值范围.28已知二次函数y=mx2-4m2x-3(m为常数,m>0).(1)若点(-2,9)在该二次函数的图象上.①求m的值:②当0≤x≤a时,该二次函数值y取得的最大值为18,求a的值;(2)若点P(x,y)是该函数图象上一点,当0≤x p≤4时,y p≤-3,求m的取值范围.题型9:根据二次函数y=ax2+bx+c的图像判断有关信息29函数y=ax2+bx+c a≠0与y=kx的图象如图所示,现有以下结论:①c=3;②k=3;③3b+c+6=0;④当1<x<3时,x2+b-1x+c<0.其中正确的为.(填写序号即可)30如图,已知二次函数y=ax2+bx+c a≠0的图象与x轴交于点A-1,0,与y轴的交点在0,-2和0,-1之间(不包括这两点),对称轴为直线x=1,下列结论:①4a+2b+c>0;②4ac-b2<8a;③13<a<23;④b>c;⑤直线y=k i(k i>0,i=1,2,3,⋯,2023)与抛物线所有交点的横坐标之和为4046;其中正确结论的个数有()A.2个B.3个C.4个D.5个题型10:二次函数的应用31如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m ,两侧距地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞内部顶端离地面的距离为()A.7.5B.8C.649D.64732某炮兵部队实弹演习发射一枚炮弹,经x 秒后的高度为y 米,且时间x 与高度y 的关系为y =ax 2+bx .若此炮弹在第5秒与第16秒时的高度相等,则在下列哪一个时间段炮弹的高度达到最高.()A.第8秒B.第10秒C.第12秒D.第15秒33在2023年中考体育考试前,小康对自己某次实心球的训练录像进行了分析,发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y (单位:米)与飞行的水平距离x (单位:米)之间具有函数关系y =-116x 2+58x +32,则小康这次实心球训练的成绩为()A.14米B.12米C.11米D.10米34某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m ).有下列结论:①AB =30m ;②池底所在抛物线的解析式为y =145x 2-5;③池塘最深处到水面CD 的距离为3.2m ;④若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离变为1.2m .其中结论错误的是()A.①B.②C.③D.④35某建筑工程队借助一段废弃的墙体CD,CD长为18米,用76米长的铁栅栏围成两个相连的长方形仓库,为了方便取物,在两个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门,现有如下两份图纸(图纸1点A在线段DC的延长线上,图纸2点A在线段DC上),设AB =x米,图纸1,图纸2的仓库总面积分别为y1平方米,y2平方米.(1)分别写出y1,y2与x的函数关系式;(2)小红说:“y1的最大值为384.y2的最大值为507.”你同意吗?请说明理由.题型11:二次函数的解答证明题36已知二次函数y=-x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标.②当-1≤x≤3时,求y的取值范围.(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.37如图,已知二次函数y=-12x2+bx+c的图象与x轴交于A1,0,B,与y轴交于点C0,-52.CD∥x轴交抛物线于点D.(1)求b,c的值.(2)已知点E在抛物线上且位于x轴上方,过E作y轴的平行线分别交AB,CD于点F,G,且GE= 2GD,求点E的坐标.38在直角坐标系中,设函数y=ax2+bx+c(a,b,c是常数,a≠0).(1)已知a=1.①若函数的图象经过0,3和-1,0两点,求函数的表达式;②若将函数图象向下平移两个单位后与x轴恰好有一个交点,求b+c的最小值.(2)若函数图象经过-2,m,-3,n和x0,c,且c<n<m,求x0的取值范围.题型12:二次函数压轴题39在平面直角坐标系中,抛物线y=-x2-4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为-5,0.(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求三角形ACP面积的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。
题库-二次函数性质综合题
二次函数性质综合题类型一 二次项系数确定型1.已知二次函数y =x 2-2mx +m 2+m -5.(1)若该二次函数图象关于y 轴对称,写出它的图象的顶点坐标.(2)若该二次函数图象的顶点在第一象限,求m 的取值范围.解:(1)∵二次函数y =x 2-2mx +m 2+m -5的图象关于y 轴对称,∴x =22m --=0, 解得m =0, ∴二次函数为y =x 2-5,∴顶点坐标为(0,-5);(2)y =x 2-2mx +m 2+m -5=(x -m )2+m -5,∴顶点坐标为(m ,m -5),∵它的图象的顶点在第一象限,∴ m >0,且 m −5>0 , 解得m>5.2.已知抛物线G :y=x 2-2ax+a -1(a 为常数).(1)当a =3时,用配方法求抛物线G 的顶点坐标;(2)若记抛物线G 的顶点坐标为P (p ,q ),①分别用含a 的代数式表示p ,q ;②请在①的基础上继续用含p 的代数式表示q ;③由①②可得,顶点P 的位置会随着a 的取值变化而变化,则点P 总落在__________图象上.A .一次函数B .反比例函数C .二次函数(3)小明想进一步对(2)中的问题进行如下改编:将(2)中的抛物线G 改为抛物线H :y =x 2-2ax +N (a 为常数),其中N 代表含a 的代数式,从而使这个新抛物线H 满足:无论a 取何值,它的顶点总落在某个一次函数的图象上.请按照小明的改编思路,写出一个符合以上要求的新抛物线H的函数表达式:_________(用含a的代数式表示),它的顶点所在的一次函数图象的表达式y=kx+b(k,b为常数,k≠0)中,k=___________,b=___________.解:(1)当a=3时,y=x2-6x+2=(x-3)2-7,∴点G的顶点坐标为(3,-7);(2)①y=x2-2ax+a-1=(x-a)2-a2+a-1,∴p=a,q=-a2+a-1;②q=-p2+p-1;③C(3)y=x2-2ax+a2+a-1,1,-1(答案不唯一)【解法提示】y=x2-2ax+a2+a-1=(x-a)2+a-1,顶点坐标为(a,a-1),顶点所在的一次函数图象的表达式y=x-1.3.已知抛物线y=x2-2mx+2m2+2m,得出两个结论:结论一:当抛物线经过原点时,顶点在第三象限的角平分线所在的直线上;结论二:不论m取什么实数值,抛物线顶点一定不在第四象限.(1)请你求出抛物线经过原点时m的值及顶点坐标,并说明结论一是否正确?(2)结论二正确吗? 若你认为正确,请求出当实数m变化时,抛物线顶点的纵横坐标之间的函数关系式,并说明顶点不在第四象限的理由;若你认为不正确,求出抛物线顶点在第四象限时,m的取值范围.解:(1)结论一正确.抛物线经过原点时,2m2+2m=0,则m1=0,m2=-1,当m=-1时,抛物线解析式为y=x2+2x=(x+1)2-1,顶点坐标(-1,-1);当m=0时,抛物线解析式为y=x2,顶点坐标(0,0),由于顶点(-1,-1)和顶点(0,0)都在第三象限的角平分线所在的直线上,∴结论一正确;(2)结论二正确.∵抛物线的解析式y =x 2-2mx +2m 2+2m 可变为y =(x -m )2+m 2+2m ,∴抛物线的顶点坐标为(m ,m 2+2m ),若设抛物线的顶点为(x ,y ),则2,2x m y m m=⎧⎨=+⎩ ∴抛物线顶点的纵横坐标的函数关系式为y =x 2+2x ,∵抛物线y =x 2+2x 的顶点为(-1,-1),与x 轴的交点为(0,0),(-2,0),且抛物线开口向上,∴抛物线 y =x 2+2x 不可能在第四象限.即不论 m 取什么实数值,抛物线顶点一定不在第四象限.4.在平面直角坐标系xOy 中,抛物线y =x 2-2mx +m 2-m +2的顶点为D .线段ab 的两端点分别为a (-3,m ),b (1,m ).(1)求点D 的坐标(用含m 的代数式表示);(2)若该抛物线经过点b (1,m ),求m 的值;(3)若线段AB 与该抛物线只有一个公共点,结合函数的图象,求m 的取值范围. 解:(1)∵y =x 2-2mx +m 2-m +2=(x -m )2-m +2,∴D (m ,-m +2);(2)∵抛物线经过点B (1,m ),∴m =1-2m +m 2-m +2,解得m =3或m =1;(3)根据题意:∵A (-3,m ),B (1,m ),∴AB 所在直线的解析式为y =m (-3≤x ≤1),与y =x 2-2mx +m 2-m +2,联立得: x 2-2mx +m 2-2m +2=0,令y =x 2-2mx +m 2-2m +2,若抛物线y =x 2-2mx +m 2-2m +2与线段AB 只有一个公共点,即函数y 在-3≤x ≤1范围内只有一个零点,当x =-3时,y =m 2+4m +11≤0,∵b 2-4ac >0,∴此种情况不存在,当x =1时,y =m 2-4m +3≤0, 解得1≤m ≤3.5.已知抛物线的表达式为 y =2x 2-4x -1.(1)求当x 为何值时y 取最小值,并求出最小值;(2)这个抛物线交x 轴于点(x 1,0),(x 2,0),求2112x x x x +的值; (3)将二次函数的图象先向右平移2个单位长度,再向下平移 1个单位长度后,所得二次函数图象的顶点为a ,请你求出点a 的坐标.解:(1)y =2x 2-4x -1=2(x 2-2x +1)-2-1=2(x -1)2-3,当x =1时,y 取最小值,最小值为-3;(2)令y =0,得2x 2-4x -1=0,由题意得:方程的两个根为x 1,x 2,∵a =2,b =-4,c =-1,∴x 1+x 2=b a -=2,x 1x 2=c a =12-, 则22221121212121212()210;x x x x x x x x x x x x x x ++-+===- (3)二次函数的图象向右平移2个单位长度,得到解析式为y=2(x-1-2)2-3,即y=2(x-3)2-3,再向下平移1个单位长度,得y=2(x-3)2-3-1,即y=2(x-3)2-4,则平移后顶点a的坐标为(3,-4).6.已知二次函数y=-x2+2mx-4m+2(m为常数)(1)请你用m的代数式表示该函数的顶点坐标;(2)对于二次函数y=-x2+2mx-4m+2,若当x≥1时,函数值y随x的增大而减小,请你求出m的取值范围;(3)若二次函数y=-x2+2mx-4m+2的顶点纵坐标为H,写出H与m的函数关系式,并判断该函数图象的顶点是否有最高点(或最低点)?若有,请求出这个点的坐标.解:(1)∵2224,42 22(1)4b m ac bm m ma a--=-==-+⨯-,∴顶点坐标为(m,m2-4m+2);(2)∵抛物线的对称轴为直线x=m,且a=-1<0,∴当x≥m时,函数值y随x的增大而减小,∵当x≥1时,函数值y随x的增大而减小,∴m≤1;(3)∵二次函数y=-x2+2mx-4m+2的顶点纵坐标为H,∴H=m2-4m+2=(m-2)2-2,∵1>0,∴函数顶点有最低点,坐标为(2,-2).7.已知二次函数y=22x bx c++(b,c为常数).(1)当b=1,c=-3时,求二次函数在-2≤x≤2上的最小值;(2)当c=3时,求二次函数在0≤x≤4上的最小值;(3)当c =42b 时,若在自变量x 的值满足2b ≤x ≤2b +3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.解:(1)当b =1,c =-3时,二次函数解析式为2223(1)4y x x x =+-=+-,∵x =-1在-2≤x ≤2的范围内,∴当x =-1时,函数取得最小值为-4;(2)当c =3时,二次函数解析式为y =223x bx ++=22()3x b b +-+,其对称轴为直线x =-b ,①若-b <0,即b >0时,当x =0时,y 有最小值为3;②若0≤-b ≤4,即4≤b ≤0时,当x =-b 时,y 有最小值为23b -+; ③若-b >4,即b <-4时,当x =4时,y 有最小值为8b +19;(3)当c =24b 时,二次函数的解析式为y =2224x bx b ++,它是开口向上,对称轴为直线x =-b 的抛物线,①若-b <2b ,即b >0时,在自变量x 的值满足2b ≤x ≤2b +3的情况下,与其对应的函数值y 随x 增大而增大,∴当x =2b 时,y=2(2)2b b +×222412b b b +=为最小值,∴12b 2=21,∴b =72或b =72-(舍), ∴二次函数解析式为y =277x x ++;②若2b ≤-b ≤2b +3,即-1≤b ≤0,当x =-b 时,代入y =2224x bx b ++,得y 的最小值为23b ,∴23b =21, ∴b =7(舍)或b =-7(舍),③若-b >2b +3时,即b<-1,x =2b+3时,代入二次函数解析式y =2224x bx b ++中,得y 的最小值为212189b b ++,∴212189b b ++=21,∴b =-2或b =12(舍),∴二次函数解析式为y =2416x x -+.综上所述,b =72或b =-2时,此时二次函数的解析式分别为y =277x x ++或y =2416x x -+.类型二 二次项系数不确定型1.已知实数a ,c 满足111a c +=,2a +c -ac +2>0,二次函数y =ax 2+bx +9a 经过点 B (4,n )、A (2,n ),且当1≤x ≤2时,y =ax 2+bx +9a 的最大值与最小值之差是9,求a 的值. 解:∵实数a ,c 满足111a c +=,∴c -ac =-a ,∵2a +c -ac +2>0,∴2a -a +2>0,∴a >-2,∵二次函数y =ax 2+bx +9a 经过点B (4,n )、A (2,n ), ∴2b a -=422+=3, ∴b =-6a , ∴y =ax 2+bx +9a =a (x 2-6x +9)=a (x -3)2,∵当1≤x ≤2时,y =ax 2+bx +9a 的最大值与最小值之差是9,∴|4a -a |=9, ∴a =±3,又∵a>-2, ∴a =3.2.已知抛物线的函数解析式为y =ax 2+bx -3a (b <0),若这条抛物线经过 点(0,-3),方程ax 2+bx -3a =0的两根为x 1,x 2,且|x 1-x 2|=4.(1)求抛物线的顶点坐标;(2)已知实数x >0,请证明x +1x ≥2,并说明x 为何值时才会有x +1x =2. 解:(1)∵抛物线过点(0,-3),∴-3a =-3,,∴a =1,∴y =x 2+bx -3,∵x 2+bx -3=0的两根为x 1,x 2,∴x 1+x 2=-b ,x 1x 2=-3,∵|x 1-x 2|=4, ∴|x 1-x 2|=21212()4x x x x +-=4 , ∴212b +=4, ∴b 2=4 ,∵b <0, ∴b =-2 ,∴y =x 2-2x -3=(x -1)2-4 ,∴抛物线的顶点坐标为(1,-4);(2)∵x >0, ∴x +1x −2=( x -1x )2 ≥0 ,∴x +1x ≥2,显然当x =1时,才有x +1x =2.3.已知函数24(2)m m y m x +-=+是关于x 的二次函数,求:(1)满足条件m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点的坐标,这时x 为何值时y 随x 的增大而增大?(3)m 为何值时,抛物线有最大值?最大值是多少?这时x 为何值时,y 随x 的增大而减小?解:(1)根据题意得m +2≠0且m 2+m -4=2,解得m 1=2,m 2=-3, 所以满足条件的m 值为2或-3;(2)当m +2>0时,抛物线有最低点, 所以m =2, 抛物线解析式为y =4x 2, 所以抛物线的最低点为(0,0),当x ≥0时,y 随x 的增大而增大;(3)当m =-3时,抛物线开口向下,函数有最大值; 抛物线解析式为y =-x 2,所以二次函数的最大值是0,这时,当x ≥0时,y 随x 的增大而减小.4.我们知道,经过原点的抛物线解析式可以是y =ax 2+bx (a ≠0).(1)对于这样的抛物线:当顶点坐标为(1,1)时,求a 、b 的值;(2)当顶点坐标为(m ,2m ),m ≠0时,求a 与m 之间的关系式;(3)继续探究,如果b ≠0,且过原点的抛物线顶点在直线y =(k +1)x (k ≠-1)上,请用含k 的代数式表示b .解:(1)∵顶点坐标为(1,1),∴ 21214b a b a⎧-=⎪⎪⎨-⎪=⎪⎩, 解得12a b =-⎧⎨=⎩; (2)当顶点坐标为(m ,2m ),m ≠0时,2224b m a b m a⎧-=⎪⎪⎨-⎪=⎪⎩, 解得a =2m -; (3)过原点的抛物线y =ax 2+bx 的顶点坐标为(2b a -,24b a-), ∵抛物线顶点在直线y =(k +1)x (k ≠-1)上, ∴2(1)()42b b k a a-=+-, 整理得:b =2k +2.5.已知二次函数y =ax 2-(a +1)x +1(a >0).(1)当a =1时,求二次函数y =ax 2-(a +1)x +1(a >0)的顶点坐标和对称轴.(2)二次函数y =ax 2-(a +1)x +1(a >0)与x 轴的交点恒过一个定点,求出这个定点;(3)当二次函数y =ax 2-(a +1)x +1(a >0)时,x 在什么范围内,y 随着x 的增大而减小?解:(1)当a =1时,y =x 2-2x +1, 顶点坐标式为y =(x -1)2,则顶点坐标为(1,0),对称轴为直线x =1;(2)令y =ax 2-(a +1)x +1=0, a (x 2-x )+1-x =0,当x =1时,a (x 2-x )+1-x =0恒成立, 则这个定点为(1,0);(3)∵y =ax 2-(a +1)x +1(a >0),∴y =a (x −12a a +)2+1−2(1)4a a+, ∵a >0, ∴当x <12a a+时,y 随着x 的增大而减小. 6.已知函数y =(n +1)x m +mx +1-n (m ,n 为实数).(1)当m ,n 取何值时,此函数是我们学过的哪一类函数?它一定与x 轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n >-1,那么:①当x <0时,y 随x 的增大而减小,请判断这个命题的真假并说明理由; ②它一定经过哪个点?请说明理由.解:(1)①当m =1,n ≠-2时,函数y =(n +1)x m +mx +1-n (m ,n 为实数)是一次函数,它一定与x 轴有一个交点,∵当y =0时,即(n +1)x m +mx +1-n =0,∴x =12n n -+ , ∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;②当m =2,n ≠-1时,函数y =(n +1)x m +mx +1-n (m ,n 为实数)是二次函数, 当y =0时,y =(n +1)x m +mx +1-n =0,即(n +1)x 2+2x +1-n =0,△=22-4(1+n )(1-n )=4n 2≥0,∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;③当n =-1,m ≠0时,函数y =(n +1)x m +mx +1-n 是一次函数,当y =0时,x =2m-, ∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与x 轴有交点;(2)①假命题,若它是一个二次函数,则m =2,函数y =(n +1)x 2+2x +1-n , ∵n >-1,∴n +1>0,抛物线开口向上, 对称轴:x =2122(1)1b a n n -=-=-++<0, ∴对称轴在y 轴左侧,当x <0时,y 有可能随x 的增大而增大,也可能随x 的增大而减小;②当x =1时,y =n +1+2+1-n =4.当x =-1时,y =0.∴它一定经过点(1,4)和(-1,0).7.在平面直角坐标系xOy 中,直线y =2x -3与y 轴交于点 A ,点A 与点B 关于x 轴对称,过点B 作y 轴的垂线l ,直线l 与直线y =2x -3交于点 C .(1)求点C 的坐标;(2)如果抛物线y =nx 2-4nx +5n (n >0)与线段bC 有唯一公共点,求n 的取值范围. 解:(1)∵直线y =2x -3与y 轴交于点A (0,-3),∴点A 关于x 轴的对称点B (0,3),l 为直线y =3,∵直线y =2x -3与直线l 交于点C ,∴点C 坐标为(3,3);(2)∵抛物线y =nx 2-4nx +5n (n >0),∴y =nx 2-4nx +4n +n =n (x -2)2+n (n >0),∴抛物线的对称轴为直线x =2,顶点坐标为(2,n ),∵点B (0,3),点C (3,3),①当n >3时,抛物线的最小值为n >3,与线段BC 无公共点;②当n=3时,抛物线的顶点为(2,3),在线段BC上,此时抛物线与线段BC有一个公共点;③当0<n<3时,抛物线最小值为n,与线段BC有两个公共点;如果抛物线y=n (x-2)2+n经过点b,则3=5n,解得n=35,由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3),点(4,3)不在线段BC上,此时抛物线与线段BC有一个公共点B;如果抛物线y=n(x-2)2+n经过点C,则3=2n,解得n=32,由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3),点(1,3)在线段BC 上,此时抛物线与线段BC有两个公共点,综上所述,当35≤n<32或n=3时,抛物线与线段bC有一个公共点.8.已知抛物线C:y1=a(x-h)2-1,直线l:y2=kx-kh-1.(1)求证:直线l恒过抛物线C的顶点;(2)当a=1,2≤x≤m时,y1≤x-3恒成立,求m的最大值;(3)当0<a≤1,k>0时,若在直线l下方的抛物线C上至少存在三个横坐标为整数的点,求k的取值范围.解:(1)抛物线C的顶点坐标为(h,-1),当x=h时,y2=kh-kh-1=-1,所以直线l 恒过抛物线C的顶点;(2)当a=1时,抛物线C解析式为y1=(x-h)2-1,不妨令y3=x-3 ,如解图①所示,抛物线C的顶点在直线y=-1上移动,第8题解图①当2≤x≤3时,y1≤x-3恒成立,则可知抛物线C的顶点为(2,-1),设抛物线C 与直线y 3=x -3 除顶点外的另一交点为M , 此时点M 的横坐标即为m 的最大值,由 2(2)13y x y x ⎧=--⎨=-⎩,解得x =2或x =3, ∴m 的最大值为3.(3)如解图②所示,由(1)可知:抛物线C 与直线l 都过点a (h ,-1).第8题解图②当0<a ≤1时,k >0,在直线l 下方的抛物线C 上至少存在三个横坐标为整数点,即当x =h +3时,y 2>y 1恒成立.∴k (h +3)-kh -1>a (h +3-h )2-1,整理得:k >3a .又∵0<a ≤1, 所以0<3a ≤3,所以k >3.9.已知二次函数232y ax bx =+-的图象与y 轴交于点B , (1) 若二次函数的图象经过点A (1,1).①二次函数的图象对称轴为直线 x =1,求此二次函数的解析式;②对于任意的正数a ,当x>n 时,y 随x 的增大而增大,请求出n 的取值范围;(2)若二次函数的图象的对称轴为直线x =-1,且直线y =2x -2与直线l 也关于直线x =-1对称,且二次函数的图象在-5<x<-4这一段位于直线l 的上方,在1<x<2这一段位于直线y =2x -2的下方,求此二次函数的解析式.解:(1)①由题意得31212a b b a⎧+-=⎪⎪⎨⎪-=⎪⎩,解得525a b ⎧=-⎪⎨⎪=⎩,∴二次函数的解析式为253522y x x =-+-; ∵二次函数的图象经过点A (1,1), ∴31,2a b +-= ∴b =52a -, ∴对称轴为55122242a b x a a a -=-=-=-+, ∵a>0,∴50,4a-< ∴122b x a =-<, ∵当x>n 时,y 随x 的增大而增大,1,221;2b n a n ∴≤-<∴<(2)由直线y =2x -2可知:直线y =2x -2与直线x =-1的交点为(-1,-4),与x 轴的交点为(1,0),∵直线y =2x -2与直线l 也关于直线x =-1对称,∴直线l 与x 轴的交点为(-3,0),设直线l 的解析式为y =kx +d ,∵直线l 过点(-1,-4),(-3,0),代入解析式得4,03k d k d-=-+⎧⎨=-+⎩解得=2,6k d -⎧⎨=-⎩ ∴直线l 的解析式为y =-2x -6. ∵二次函数232y ax bx =+-的图象的对称轴为直线x =-1,且直线y =2x -2与y =-2x -6关于直线x =-1对称,如解图,当1<x<2时,函数232y ax bx =+-的图象在直线y =2x -2的下方,第9题解图∴当-4<x<-3时,函数232y ax bx =+-的图象在直线l :y =-2x -6的下方; 又∵当-5<x<-4时,函数232y ax bx =+-的图象在直线l 的上方, ∴当x =-4时,y =-2⨯(-4)-6=2, 即(-4,2)为函数232y ax bx =+-与y =-2x -6的图象的交点, ∴316422,12a b b a⎧--=⎪⎪⎨⎪-=-⎪⎩解得716,78a b ⎧=⎪⎪⎨⎪=⎪⎩ ∴此二次函数的解析式为27731682y x x =+-.。
中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)
中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。
常考二次函数综合题整理(全)
常考二次函数综合题整理 题型一最短路径问题1、如图,抛物线y=﹣12x2+bx+2与x轴交于A,B两点,与y轴交于C点,且点A的坐标为(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.【变式】如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;题型二最大面积(线段最长)问题2、已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?并求出这个最大值.3、如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH△x轴于点H,与BC交于点M,连接PC,求线段PM的最大值.【变式】如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;【变式】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图,过点P作PE△y轴于点E,连接AE.求△PAE面积S的最大值;题型三 存在点构成等腰三角形问题4、如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.5、如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.【变式】已知二次函数y=ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 、DB ,求证:△BCD 是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.【变式】如图,抛物线与x 轴交于A ,B 两点,与y 轴交于点()0,2C -,点A 的坐标是()2,0,P 为抛物线上的一个动点,过点P 作PD x ⊥轴于点D ,交直线BC 于点E ,抛物线的对称轴是直线1x =-.(1)求抛物线的函数表达式;(2)若点P 在第二象限内,且14PE OD =,求PBE ∆的面积. (3)在(2)的条件下,若M 为直线BC 上一点,在x 轴的下方,是否存在点M ,使BDM ∆是以BD 为腰的等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.题型四 存在点构成直角三角形问题6、如图,抛物线2y ax bx 4=+-经过()A 3,0-,()B 5,4-两点,与y 轴交于点C ,连接AB ,AC ,BC .()1求抛物线的表达式;()2求证:AB 平分CAO ∠;()3抛物线的对称轴上是否存在点M ,使得ABM V 是以AB 为直角边的直角三角形,若存在,求出点M 的坐标;若不存在,请说明理由.【变式】如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.●题型四存在点构成等腰直角三角形问题7、已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P作x轴的垂线,交线段AB于点D,再过点P做PE△x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.●题型四存在点构成平行四边形问题8、如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.()B-,对称轴为直线l,点M是线段AB的中点.0,5(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.【变式】如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(﹣3,0)、B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.9、如图,已知抛物线y=12x2+bx+c与直线AB:y=12x+12相交于点A(1,0)和B(t,52),直线AB交y轴于点C.(1)求抛物线的解析式及其对称轴;(2)设点M是抛物线对称轴上一点,点N在抛物线上,以点A、B、M、N为顶点的四边形是否可能为矩形?若能,请求出点M的坐标,若不能,请说明理由.10、如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.11、如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在x轴下方且在抛物线对称轴上,是否存在一点Q,使△BQC=△BAC?若存在,求出Q点坐标;若不存在,说明理由.12、如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.连接AC,当直线AM与直线BC的夹角等于△ACB 的2倍时,请直接写出点M的坐标【变式】如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.【变式】如图,抛物线y=ax 2+bx+c 经过A (﹣1,0),B (4,0),C (0,3)三点,D 为直线BC 上方抛物线上一动点,DE△BC 于E .(1)求抛物线的函数表达式;(2)如图1,求线段DE 长度的最大值;(3)如图2,设AB 的中点为F ,连接CD ,CF ,是否存在点D ,使得△CDE 中有一个角与△CFO 相等?若存在,求点D 的横坐标;若不存在,请说明理由.【变式】如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.题型七 存在点使三角形相似问题13、如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.14、如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣12x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【变式】抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(32,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求△ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE△AC,当△DCE 与△AOC相似时,求点D的坐标.【变式】如图,抛物线y=12x2+bx+c与直线y=12x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ△PA交y轴于点Q,问:是否存在点P 使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.题型七二次函数与圆结合问题15、如图,△E的圆心E(3,0),半径为5,△E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与△E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.16、如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【变式】在平面直角坐标系中,二次函数y=ax2+53x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣13x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【变式】如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0<a<3)的图象与x轴交于点A、B (点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP△x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.。
二次函数综合题分类汇总
二次函数综合题解题方法解数学压轴题一般可以分为三个步骤:认真审题,理解题意、探究解题思路、正确解答。
解题方法:1、待定系数法求二次函数的解析式;2、会用配方法、公式法求抛物线的顶点坐标、对称轴方程重要数学思想:转化思想、数形结合思想、分类讨论思想及方程的思想等。
一、距离问题例1:(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.例2:(2014年山东泰安)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x 轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;例3:(2014年山东日照)(2014•日照)如图1,在菱形OABC中,已知OA=2,∠AOC=60°,抛物线y=ax2+bx+c(a≠0)经过O,C,B三点.(Ⅰ)求出点B、C的坐标并求抛物线的解析式.(Ⅱ)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG上.(1)当OP+PC的最小值时,求出点P的坐标;二、面积问题:1、面积最大问题例1:(2009临沂)如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.例2:(2014•莱芜)如图,过A (1,0)、B (3,0)作x 轴的垂线,分别交直线y=4﹣x 于C 、D 两点.抛物线y=ax 2+bx+c 经过O 、C 、D 三点. (1)求抛物线的表达式;(3)若△AOC 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中△AOC 与△OBD 重叠部分的面积记为S ,试求S 的最大值.2、面积为定值的问题例1:(2014潍坊)如图,抛物线y=ax 2+bx+c (a≠O )与y 轴交于点C(O ,4),与x 轴交于点A 和点B ,其中点A 的坐标为(-2,0),抛物线的对称轴x=1与抛O xyAB C4 12-(第26题图)物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC 的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;例2:(2014•枣庄)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;三角形相似问题:1、直角三角形相似问题例1:(2014•威海)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;xyADBOC(第25题图)(2)E 为抛物线上一动点,是否存在点E 使以A 、B 、E 为顶点的三角形与△COB 相似?若存在,试求出点E 的坐标;若不存在,请说明理由;例2:25.(2014东营) 如图,直线y=2x+2与x 轴交与点A ,与y 轴交与点B ,△AOB 沿y 轴翻折,点A 落到点C ,过点B 的抛物线2y x bx c =-++与直线BC 交于点D (3,4-).(1)求直线BD 和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M 、O 、N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由;例3:(2011•临沂)如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C .(1)求抛物线的解析式;:(3)P 是抛物线上的第一象限内的动点,过点P 作PMx 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.2、等腰三角形相似问题例1:(2007临沂)如图①,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。
2024中考备考重难点01 二次函数与几何的综合训练(9大题型+限时分层检测)
重难点01 二次函数与几何图形的综合练习中考数学中《二次函数与几何图形的综合练习》部分主要考向分为九类:一、二次函数与几何变换的综合(选择性考,10~12分)二、二次函数与直角三角形的综合(选择性考,10~12分)三、二次函数与等腰三角形的综合(选择性考,10~12分)四、二次函数与相似三角形的综合(选择性考,10~12分)五、二次函数与四边形的综合(选择性考,10~12分)六、二次函数与最值的综合(选择性考,10~12分)七、二次函数与新定义的综合(选择性考,10~12分)八、二次函数与圆的综合(选择性考,10~12分)九、二次函数与角的综合(选择性考,10~12分)因为二次函数是大多数中考压轴题的几何背景,所以,训练二次函数与其他几何图形的综合问题非常必要,只要自己见过一定量的题型,才能再遇到对应类型的压轴题时不至于新生畏惧。
所以,本专题就常见的中考数学中二次函数的几种结合类型的压轴题进行训练,希望大家在训练中摸索方法,掌握技能,练就心态!考向一:二次函数与几何变换的综合1.(2023•武汉)抛物线交x轴于A,B两点(A在B的左边),交y轴于点C.(1)直接写出A,B,C三点的坐标;(2)如图(1),作直线x=t(0<t<4),分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF,若△BDE与△CEF相似,求t的值;(3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.2.在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于点A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),点P是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D,如图1,当的值最大时,求点P 的坐标及的最大值;(3)过点P作x轴的垂线交直线AC于点M,连结PC,将△PCM沿直线PC翻折,当点M的对应点M′恰好落在y轴上时,请直接写出此时点M的坐标.考向二:二次函数与直角三角形的综合1.(2023•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2﹣2x﹣3的顶点为P.直线l过点M (0,m)(m≥﹣3),且平行于x轴,与抛物线L1交于A、B两点(B在A的右侧).将抛物线L1沿直线l翻折得到抛物线L2,抛物线L2交y轴于点C,顶点为D.(1)当m=1时,求点D的坐标;(2)连接BC、CD、DB,若△BCD为直角三角形,求此时L2所对应的函数表达式;(3)在(2)的条件下,若△BCD的面积为3,E、F两点分别在边BC、CD上运动,且EF=CD,以EF为一边作正方形EFGH,连接CG,写出CG长度的最小值,并简要说明理由.2.(2023•内江)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于B(4,0),C(﹣2,0)两点,与y轴交于点A(0,﹣2).(1)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点K,过点P作y轴的平行线交x轴于点D,求的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△MAB是以AB为一条直角边的直角三角形;若存在,请求出点M的坐标,若不存在,请说明理由.考向三:二次函数与等腰三角形的综合1.(2023•青海)如图,二次函数y=﹣x2+bx+c的图象与x轴相交于点A和点C(1,0),交y轴于点B(0,3).(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P,对称轴与x轴交于点Q,求四边形AOBP的面积(请在图1中探索);(3)二次函数图象的对称轴上是否存在点M,使得△AMB是以AB为底边的等腰三角形?若存在,请求出满足条件的点M的坐标;若不存在,请说明理由(请在图2中探索).2.(2023•娄底)如图,抛物线y=x2+bx+c过点A(﹣1,0)、点B(5,0),交y轴于点C.(1)求b,c的值.(2)点P(x0,y0)(0<x0<5)是抛物线上的动点.①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.考向四:二次函数与相似三角形的综合1.(2023•乐至县)如图,直线与x轴、y轴分别交于A、B两点,抛物线经过A、B两点.(1)求抛物线的表达式;(2)点D是抛物线在第二象限内的点,过点D作x轴的平行线与直线AB交于点C,求DC的长的最大值;(3)点Q是线段AO上的动点,点P是抛物线在第一象限内的动点,连结PQ交y轴于点N.是否存在点P,使△ABQ与△BQN相似,若存在,求出点P的坐标;若不存在,说明理由.2.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0)和C (0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.考向五:二次函数与四边形的综合1.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①y=x2﹣1;②y=x2﹣x,其中,为函数y=x﹣1的轴点函数.(填序号)【尝试应用】(2)函数y=x+c(c为常数,c>0)的图象与x轴交于点A,其轴点函数y=ax2+bx+c与x轴的另一交点为点B.若OB=OA,求b的值.【拓展延伸】(3)如图,函数y=x+t(t为常数,t>0)的图象与x轴、y轴分别交于M,C两点,在x轴的正半轴上取一点N,使得ON=OC.以线段MN的长度为长、线段MO的长度为宽,在x轴的上方作矩形MNDE.若函数y=x+t(t为常数,t>0)的轴点函数y=mx2+nx+t的顶点P在矩形MNDE的边上,求n的值.3.(2023•邵阳)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(﹣2,0)和点B(4,0),且与直线l:y=﹣x﹣1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与抛物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.考向六:二次函数与最值的综合1.(2023•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c经过点A(0,1),点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠P AQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2,当h2﹣h1=m时,直接写出m的值.2.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.考向七:二次函数与新定义的综合1.(2023•南通)定义:平面直角坐标系xOy中,点P(a,b),点Q(c,d),若c=ka,d=﹣kb,其中k 为常数,且k≠0,则称点Q是点P的“k级变换点”.例如,点(﹣4,6)是点(2,3)的“﹣2级变换点”.(1)函数y=﹣的图象上是否存在点(1,2)的“k级变换点”?若存在,求出k的值;若不存在,说明理由;(2)动点A(t,t﹣2)与其“k级变换点”B分别在直线l1,l2上,在l1,l2上分别取点(m2,y1),(m2,y2).若k≤﹣2,求证:y1﹣y2≥2;(3)关于x的二次函数y=nx2﹣4nx﹣5n(x≥0)的图象上恰有两个点,这两个点的“1级变换点”都在直线y=﹣x+5上,求n的取值范围.2.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是(填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是、;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.考向八:二次函数与圆的综合1.(2023•湘西州)如图(1),二次函数y=ax2﹣5x+c的图象与x轴交于A(﹣4,0),B(b,0)两点,与y轴交于点C(0,﹣4).(1)求二次函数的解析式和b的值.(2)在二次函数位于x轴上方的图象上是否存在点M,使?若存在,请求出点M的坐标;若不存在,请说明理由.(3)如图(2),作点A关于原点O的对称点E,连接CE,作以CE为直径的圆.点E′是圆在x轴上方圆弧上的动点(点E′不与圆弧的端点E重合,但与圆弧的另一个端点可以重合),平移线段AE,使点E移动到点E′,线段AE的对应线段为A′E′,连接E′C,A′A,A′A的延长线交直线E′C于点N,求的值.2.(2023•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,c=﹣1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,点D在⊙O上且在第二象限内,点E在x轴正半轴上,连接DE,且线段DE交y轴正半轴于点F,.①求证:.②当点E在线段OB上,且BE=1.⊙O的半径长为线段OA的长度的2倍,若4ac=﹣a2﹣b2,求2a+b的值.考向九:二次函数与角的综合1.(2023•无锡)已知二次函数y=(x2+bx+c)的图象与y轴交于点A,且经过点B(4,)和点C (﹣1,).(1)请直接写出b,c的值;(2)直线BC交y轴于点D,点E是二次函数y=(x2+bx+c)图象上位于直线AB下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.2.(2023•营口)如图,抛物线y=ax2+bx﹣1(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C,抛物线的对称轴交x轴于点D(3,0),过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当=时,求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.(建议用时:150分钟)1.(2023•宜兴市一模)如图,二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,则∠ACB=°;M是二次函数在第四象限内图象上一点,作MQ∥y轴交BC 于Q,若△NQM是以NQ为腰的等腰三角形,则线段NC的长为.2.(2023•越秀区一模)如图,抛物线与H:交于点B(1,﹣2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是.(填写正确的序号)3.(2023•晋州市模拟)如图所示,已知在平面直角坐标系xOy中,点A(15,8),点M是横轴正半轴上的一个动点,⊙P经过原点O,且与AM相切于点M.(1)当AM⊥x轴时,点P的坐标为;(2)若点P在第一象限,设点P的坐标为(x,y),则y关于x的函数关系式为(不用写出自变量x的取值范围);(3)当射线OP与直线AM相交时,点M的横坐标t的取值范围是.4.(2024•道里区模拟)已知:在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B、C两点,与x轴的另一交点为点A.(1)如图1,求抛物线的解析式;(2)如图2,点D为直线BC上方抛物线上一动点,连接AC、CD,设直线BC交线段AD于点E,△CDE的面积为S1,△ACE的面积为S2当最大值时,求点D的坐标;(3)如图3,在(2)的条件下,连接CD、BD,将△BCD沿BC翻折,得到△BCF(点D和点F为对应点),直线BF交y轴于点P,点S为BC中点,连接PS,过点S作SP的垂线交x轴于点R,在对称轴TH上有一点Q,使得△PQB是以PB为直角边的直角三角形,求直线RQ的解析式.5.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.6.(2023•东莞市一模)抛物线y=ax2+bx﹣2与x轴交于A、B两点(点A在点B的左侧),且A(﹣1,0),B(4,0),与y轴交于点C.连结BC,以BC为边,点O为中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交BD于点M.(1)求该抛物线对应的函数表达式;(2)x轴上是否存在一点P,使△PBC为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由;(3)当点P在线段OB上运动时,试探究:当m为何值时,四边形CQMD是平行四边形?请说明理由.7.(2024•碑林区校级二模)二次函数y=ax2+bx+4(a≠0)的图象与x轴交于A(﹣4,0),B(1,0)两点,点M为y轴负半轴上一点,且OM=2.(1)求二次函数表达式;(2)点E是线段AB(包含A,B)上的动点,过点E作x轴的垂线,交二次函数图象于点P,交直线AM于点N,若以点P,N,A为顶点的三角形与△AOM相似,若存在,请求出点P的坐标;若不存在,请说明理由.8.(2024•镇海区校级模拟)若二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2的图象关于点P(1,0)成中心对称图形,我们称y1与y2互为“中心对称”函数.(1)求二次函数y=x2+6x+3的“中心对称”函数的解析式;(2)若二次函数y=ax2+2ax+c(a>0)的顶点在它的“中心对称”函数图象上,且当时,y最大值为2,求此二次函数解析式;(3)二次函数y1=ax2+bx+c(a<0)的图象顶点为M,与x轴负半轴的交点为A、B,它的“中心对称”函数y2的顶点为N,与x轴的交点为C、D,从左往右依次是A、B、C、D,若AB=2BP,且四边形AMDN 为矩形,求b2﹣4ac的值.9.(2024•雁塔区校级二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴分别交于A,B两点,点A的坐标是(﹣4,0),点B的坐标是(1,0),与y轴交于点C,P是抛物线上一动点,且位于第二象限,过点P作PD⊥x轴,垂足为D,线段PD与直线AC相交于点E.(1)求该抛物线的解析式;(2)连接OP,是否存在点P,使得∠OPD=2∠CAO?若存在,求出点P的横坐标;若不存在,请说明理由.10.(2024•长沙模拟)若两条抛物线相交于A(x1,y1),B(x2,y2)两点,并满足y1﹣kx1=y2﹣kx2,其中k为常数,我们不妨把k叫做这两条抛物线的“依赖系数”.(1)若两条抛物线相交于A(﹣2,2),B(﹣4,4)两点,求这两条抛物线的“依赖系数”;(2)若抛物线1:y=2ax2+x+m与抛物线2:y=ax2﹣x﹣n相交于A(x1,y1),B(x2,y2)两点,其中a>0,求抛物线1与抛物线2的“依赖系数”;(3)如图,在(2)的条件下,设抛物线1和2分别与y轴交于C,D两点,AB所在的直线与y轴交于E点,若点A在x轴上,m≠0,DA=DC,抛物线2与x轴的另一个交点为点F,以D为圆心,CD为半径画圆,连接EF,与圆相交于G点,求tan∠ECG.11.(2023•嘉善县一模)“距离”是数学研究的重要对象,如我们所熟悉的两点间的距离.现在我们定义一种新的距离:已知P(a,b),Q(c,d)是平面直角坐标系内的两点,我们将|a﹣c|+|b﹣d|称作P,Q间的“L型距离”,记作L(P,Q),即L(P,Q)=|a﹣c|+|b﹣d|.已知二次函数y1的图象经过平面直角坐标系内的A,B,C三点,其中A,B两点的坐标为A(﹣1,0),B(0,3),点C在直线x=2上运动,且满足L(B,C)≤BC.(1)求L(A,B);(2)求抛物线y1的表达式;(3)已知y2=2tx+1是该坐标系内的一个一次函数.①若D,E是y2=2tx+1图象上的两个动点,且DE=5,求△CDE面积的最大值;②当t≤x≤t+3时,若函数y=y1+y2的最大值与最小值之和为8,求实数t的值.12.(2023•任城区二模)如图,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)如图,若点P是线段BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,当△PCM和△ABC相似时,求此时点P的坐标;(3)若点P是直线BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,将△PCM沿CM对折,如果点P的对应点N恰好落在y轴上,求此时点P的坐标;13.(2023•姑苏区校级二模)探究阅读题:【阅读】在大自然里,有很多数学的奥秘,一片美丽的心形叶片,一棵生长的幼苗都可以看作把一条抛物线的一部分沿直线折叠而形成.(如图1和图2)【探究任务1】确定心形叶片的形状如图3建立平面直角坐标系,心形叶片下部轮廓线可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分,且过原点,求抛物线的解析式和顶点D的坐标.【探究任务2】研究心形叶片的尺寸如图3,心形叶片的对称轴直线y=x+2与坐标轴交于A、B两点,直线x=6分别交抛物线和直线AB于点E、F点,点E、E′是叶片上的一对对称点,EE′交直线AB与点G,求叶片此处的宽度EE′.【探究任务3】研究幼苗叶片的生长小李同学在观察幼苗生长的过程中,发现幼苗叶片下方轮廓线都可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分.如图4,幼苗叶片下方轮廓线正好对应探究任务1中的二次函数,已知直线PD与水平线的夹角为45°,三天后,点D长到与点P同一水平位置的点D′时,叶尖Q落在射线OP上,如图5所示,求此时幼苗叶子的长度和最大宽度.。
二次函数综合题存在性问题分类训练(9种类型)(学生版)--2023-2024学年九年级数学上册重难点
二次函数综合题存在性问题分类训练(9种类型)【类型一存在性之等腰三角形】1如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.2如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于A-1,0,B2,0两点,与y轴交于点C.(1)求抛物线的解析式及点C的坐标;(2)若F为抛物线上一点,连接BC,是否存在以BC为底的等腰△BCF?若存在,请求出点F的坐标;若不存在,请说明理由.3如图,已知抛物线y=-x2+bx+c经过B-3,0两点,与x轴的另一个交点为A.,C0,3(1)求抛物线的解析式;(2)在抛物线对称轴上找一点E,使得AE+CE的值最小,求出点E的坐标;(3)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.4如图,已知抛物线y=-x2+bx+c经过B(-3,0),C(0,3)两点,与x轴的另一个交点为A.(1)求抛物线的解析式;(2)若直线y=mx+n经过B,C两点,则m=;n=;(3)在抛物线对称轴上找一点E,使得AE+CE的值最小,直接写出点E的坐标;(4)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.【类型二存在性之直角三角形】5如图,在平面直角坐标系中,一次函数y=12x-2的图象分别交x轴、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,E是线段OA的中点.(1)求抛物线的解析式;(2)点F是抛物线上的动点,当∠OEF=∠BAE时,求点F的横坐标;(3)在抛物线上是否存在点P,使得△ABP是以点A为直角顶点的直角三角形,若存在,请求出P点坐标,若不存在,请说明理由.(4)抛物线上(AB下方)是否存在点M,使得∠ABM=∠ABO?若存在,求出点M到y轴的距离,若不存在,请说明理由.6如图,已知抛物线y=x2+bx+c的对称轴为直线x=2,与y轴交于点C0,3,与x轴交于点A和点B.(1)求抛物线的解析式和点A、B的坐标;(2)设点P为抛物线的对称轴直线x=2上的一个动点,求使△PBC为直角三角形的点P的坐标.7如图,在平面直角坐标系xOy中,抛物线y=x2+bx-3与直线l:y=x+1交于A,B两点,点A的坐标为-1,0.(1)求抛物线的解析式及点B的坐标;(2)已知抛物线与x轴有2个交点,右侧交点为C,点P为线段AB上任意一点(不含端点),若△PBC是以点P为直角顶点的直角三角形,求点P的坐标.8如图,一次函数y=12x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=12x2+bx+c的图象与一次函数y=12x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为1,0.(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB-PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【类型三存在性之等腰直角三角形】9如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.(3)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.10如图1,在平面直角坐标系中,抛物线y=-23x2+43x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过点A作AD∥BC交抛物线于D,连接CA,CD,PC,PB,记四边形ACPB的面积为S1,△BCD的面积为S2,当S1-S2的值最大时,求P点的坐标和S1-S2的最大值;(3)如图2,将抛物线水平向右平移,使得平移后的抛物线经过点O,G为平移后的抛物线的对称轴直线l上一动点,将线段AC沿直线BC平移,平移过程中的线段记为A′C′(线段A'C'始终在直线l左侧),是否存在以A′,C′,G为顶点的等腰直角△A′C′G?若存在,请写出满足要求的所有点G的坐标并写出其中一种结果的求解过程,若不存在,请说明理由.11如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.12如图,在平面直角坐标系中,将一等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,其中A的坐标为(0,2),直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.(1)求抛物线的解析式;(2)设抛物线的顶点为D,连结BD、CD,求△DBC的面积;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【类型四存在性之平行四边形】13在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点(-1,0),(3,0)和0,3.(1)求抛物线的表达式;(2)若直线x=m与x轴交于点N,在第一象限内与抛物线交于点M,当AN+MN有最大值时,求出抛物线上点M的坐标;(3)若点P为抛物线y=ax2+bx+c(a≠0))的对称轴上一动点,将抛物线向左平移1个单位长度后,Q为平移后抛物线上一动点,在(2)的条件下求得的点M,是否能与A,P,Q构成平行四边形?若能构成,求出Q点坐标;若不能构成,请说明理由.14如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)在直线BC的下方的抛物线上存在一点M,使得△BCM的面积最大,请求出点M的坐标(3)点F是抛物线上的动点,点D是抛物线顶点坐标,作EF∥AD交x轴于点E,是否存在点F,使得以A、D、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.15如图,在平面直角坐标系中,抛物线y=12x2+bx+c(b、c为常数)的顶点坐标为32,-258,与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,点C,点D关于x轴对称,连接AD,作直线BD.(1)求b、c的值;(2)求点A、B的坐标;(3)求证:∠ADO=∠DBO;(4)点P在抛物线y=-12x2+bx+c上,点Q在直线BD上,当以点C、D、P、Q为顶点的四边形为平行四边形时,直接写出点Q的坐标.16如图,抛物线y=ax2+2ax+c与y轴负半轴交于点C,与x轴交于A,B两点,点A在点B左侧,点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是第三象限抛物线上的动点,连接AC,当△ACD的面积为3时,求出此时点D的坐标;(3)将抛物线y=ax2+2ax+c向右平移2个单位,平移后的抛物线与原抛物线相交于点M,N在原抛物线的对称轴上,H为平移后的抛物线上一点,当以A、M、H、N为顶点的四边形是平行四边形时,请直接写出点H的坐标.【类型五存在性之菱形】17如图,抛物线y=ax2+bx+c过点A-1,0.,B3,0,C0,3(1)求抛物线的解析式;(2)设点P是直线BC上方抛物线上一点,求出△PBC的最大面积及此时点P的坐标;(3)若点M是抛物线对称轴上一动点,点N为坐标平面内一点,是否存在以BC为边,点B、C、M、N为顶点的四边形是菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.18综合与探究:如图,已知抛物线y=-38x2+94x+6与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.直线BC与抛物线的对称轴交于点E.将直线BC沿射线CO方向向下平移n个单位,平移后的直线与直线AC 交于点F,与抛物线的对称轴交于点D.(1)求出点A,B,C的坐标,并直接写出直线AC,BC的解析式;(2)当△CDB是以BC为斜边的直角三角形时,求出n的值;(3)直线BC上是否存在一点P,使以点D,E,F,P为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.19如图,直线y =mx +n m ≠0 .与抛物线y =-x 2+bx +c 交于A -1,0 ,B 2,3 两点.(1)求抛物线的解析式;(2)若点C 在抛物线上,且△ABC 的面积为3,求点C 的坐标;(3)若点P 在抛物线上,PQ ⊥OA 交直线AB 于点Q ,点M 在坐标平面内,当以B ,P ,Q ,M 为顶点的四边形是菱形时,请直接写出点M 的坐标.20如图1,在平面直角坐标系中,抛物线y=-32x2+32x+3与x轴交于点A和点B(点A在点B左侧),与y轴交于点C.(1)求直线BC的解析式;(2)点P是直线BC上方抛物线上的一动点,过点P作y轴的平行线交BC于点D,过点P作x轴的平行线交BC于点E,求PE+3PD的最大值及此时点P的坐标;(3)如图2,在(2)中PE+3PD取得最大值的条件下,将抛物线y=-32x2+32x+3沿着射线CB方向平移得到新抛物线y ,且新抛物线y 经过线段BC的中点F,新抛物线y 与y轴交于点M,点N为新抛物线y 对称轴上一点,点Q为坐标平面内一点,若以点P,Q,M,N为顶点的四边形是以PN为边的菱形,写出所有符合条件的点Q的坐标,并写出求解点Q的坐标的其中一种情况的过程.【类型六存在性之矩形】21如图①,抛物线y=ax2+x+c a≠0与x轴交于A(-2,0),B(6,0)两点,与y轴交于点C,点P是第一象限内抛物线上的一个动点,过点P作PD⊥x轴,垂足为点D,PD交直线BC于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)如图②.过点P作PF⊥CE,垂足为点F,当CF=EF时,请求出m的值;(3)如图③,连接CP,当四边形OCPD是矩形时,在抛物线的对称轴上存在点Q,使原点O关于直线CQ的对称点O 恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q的坐标.22已知抛物线y =ax 2+bx -4a ≠0 交x 轴于点A 4,0 和点B -2,0 ,交y 轴于点C .(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线AC 下方的动点,过点P 分别作x 轴、y 轴的平行线,交直线AC 于点D ,交x 轴于点E ,当PD +PE 取最大值时,求点P 的坐标及PD +PE 最大值.(3)在抛物线上是否存在点M ,对于平面内任意点N ,使得以A 、C 、M 、N 为顶点且AC 为一条边的四边形为矩形,若存在,请直接写出M 、N 的坐标,不存在,请说明理由.23综合与探究如图,抛物线y=ax2-3x+c a≠0与x轴交于A(4,0),C两点,交y轴于点B(0,-4),点P为y轴右侧抛物线上的一个动点.(1)求抛物线的解析式;(2)当P在AB下方时,求△ABP面积的最大值;(3)当∠ABP=15°时,△BOP的面积为;(4)点M为抛物线对称轴上的一点,点N为平面内一点,是否存点M、点N,使得以A、B、M、N为顶点的四边形是矩形?若存在,请直接写出点M的坐标;如不存在,请说明理由.24如图,直线y=43x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2-83x+c(a≠0)经过A,C两点,交x轴的正半轴于点B,连接BC.(1)求抛物线的解析式.(2)点P在抛物线上,连接PB,当∠PBC=45°时,求点P的坐标;(3)已知点M从点B出发,以每秒1个单位长度的速度沿BA运动,同时点N从点O出发,以每秒3个单位长度的速度沿OC,CA运动.当点M,N运动到某一时刻时,在坐标平面内是否存在点D,使得以A,M,N,D为顶点的四边形是矩形?若存在,请直接写出点D的坐标;若不存在,请说明理由.【类型七存在性之正方形】25如图,抛物线y=-14x2+bx+c的对称轴与x轴交于点A1,0,与y轴交于点B0,3,C为该抛物线图象上的一个动点.(1)求抛物线的解析式;(2)如图,当点C在第一象限,且∠BAC=90°,求ACAB的值;(3)点D在抛物线上(点D在点C的左侧,不与点B重合),点P在坐标平面内,问是否存在正方形ACPD?若存在,请直接写出点P的坐标;若不存在,请说明理由.26综合与探究如图,抛物线y=ax2+bx+6与x轴交于A-2,0,B4,0两点,与y轴交于点C,直线y=23x-4与x轴交于点D,与y轴交于点E.若M为第一象限内抛物线上一点,过点M且垂直于x轴的直线交DE于点N,连接MC,MD.(1)求抛物线的函数表达式及D,E两点的坐标.(2)当CM=EN时,求点M的横坐标.(3)G为平面直角坐标系内一点,是否存在点M使四边形MDEG是正方形.若存在,请直接写出点G的坐标;若不存在,请说明理由.27如图,已知直线y=-x+4与抛物线y=ax2+bx交于点A4,0两点,点P为抛物线上和B-1,5一动点,过点P作x轴的垂线,交直线AB于Q,PN⊥AB于点N.(1)求抛物线的解析式;(2)当点P在直线AB下方时,求线段PN的最大值;(3)是否存在点P使得△ABP是直角三角形,若存在,请求出点P坐标,若不存在,请说明理由;(4)坐标轴上是否存在点M,使得以点P,N,Q,M为顶点的四边形是正方形,若存在,请直接写出点M的坐标,若不存在,请说明理由28如图,抛物线y=-12x2+bx+c与x轴交于点A和点B4,0,与y轴交于点C0,4,点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.【类型八存在性之相似三角形】29如图,在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A,B,与y轴交于点C,经过点x+2交抛物线于点D,点D与点A的横坐标互为相反数,P是抛物线上一动点,连接A的直线y=-12AC.(1)求抛物线的表达式;(2)若点P在第一象限内的抛物线上,当∠PBA=2∠BAD时,求直线BP的表达式;(3)点Q在y轴上,若△DQP∽△COA,请直接写出点P的坐标.30如图,已知抛物线过三点O0,0,弧AB过线段OA的中点C,若点E为弧AB,B2,23,A8,0所在圆的圆心.(1)求该抛物线的解析式.(2)求圆心点E的坐标,并判断点E是否在这条抛物线上.(3)若弧BC的中点为P,是否在x轴上存在点M,使得△APB与△AMP相似?若存在,请求出点M的坐标,若不存在说明理由.31如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.②设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,直接写出当△CEF与△COD相似时,点P的坐标;32如图,抛物线y=12x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A-4,0,C0,-2.(1)求抛物线和直线AC的函数解析式;(2)若点E是线段AC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,求四边形CDAF的最大面积;(3)在抛物线的对称轴上找一点P,使得以A、D、P为顶点的三角形与△OAC相似,请直接写出点P的坐标.【类型九存在性之角度问题】33如图,抛物线y=ax2+bx+2经过A-1,0为抛物线上、B4,0两点,与y轴交于点C,点D x,y 第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为4时,求点D的坐标;(3)该抛物线上是否存在点D,使得∠DCB=2∠ABC,若存在,求点D的坐标;若不存在,请说明理由.34如图,抛物线y=ax2+bx-1a≠0与x轴交于点A1,0和点B,与y轴交于点C,抛物线的对称轴交x轴于点D3,0,过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当BQPQ=57时.求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.35如图,在平面直角坐标系xoy中,顶点为M的抛物线y=ax2+bx a>0经过点A(-1,3)和x轴正半轴上的点B,AO=OB.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的度数;(3)联结AM、BM、AB,若在坐标轴上存在一点P,使∠OAP=∠ABM,求点P的坐标.36如图,在平面直角坐标系中,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A1,0两点,,B3,0与y轴交于点C,其顶点为点D,点E的坐标为0,-1,该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式.(2)一动点M从点D出发,以每秒1个单位的速度沿与y轴平行的方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?(3)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
二次函数综合题分类解析
二次函数综合题分类解析
二次函数以二次项为最高项的多项式称为二次函数,通常用y= ax2+bx+c来表示,其中a、b、c为实数,a≠0,x为一元变量。
一般情况下,二次函数都伴随着综合题,多用于考查学生对函数的分析与解决问题能力。
二、分类
1. 二次函数求根
此类题目是最常见的综合题,要求学生根据给出的二次函数求解其根或最大值最小值等。
一般来说,求根的综合题要求学生能够用因式分解法或者平方根法求解其根,同时要求学生熟练掌握了解二次形式的属性。
2. 二次函数的图象
此类题目要求学生更加熟练地使用二次函数的性质来求解图像
的形状,常见的有求函数的极值点、求函数的凹凸性质、求函数的增减性等,同时还要求学生熟悉图像横坐标和纵坐标的变化情况。
3. 二次函数转换
此类题目要求学生掌握二次函数的变换,其中有改变二次项系数、改变常数项系数、改变横坐标原点以及改变横坐标轴的长度等变化,改变后的二次函数的图象位置、形状等也会发生变化。
三、解析
在解决二次函数综合题时,学生必须做好仔细的推理,并用解题步骤依次解决。
首先,要正确获得二次函数的相关性质,包括二次函
数的极值点、凹凸性质、增减性等,同时还要把握准确的求解方法。
其次,当涉及到图象改变时,要根据改变前后的参数推测出图象改变后的情况,以此来解决综合题。
本文介绍了二次函数综合题分类解析,明确了二次函数的性质,分类了常见的综合题,并提出了解题步骤,希望对于学习数学的同学有所帮助。
二次函数综合题分类解析
二次函数综合题分类解析二次函数是高中数学中常见的函数,它是一些常见的一元二次多项式的求导函数,在考试中也是比较重要的知识点。
关于二次函数的综合题也是比较多见的,这些题型中涉及到的知识点也是比较多,因此,了解二次函数综合题的分类以及解题方法是非常有必要的。
首先,让我们来看一下关于二次函数综合题的分类:一、求函数值这类题目主要涉及求二次函数的值,比如已知二次函数y=ax2+bx+c的参数a、b、c值,当x的值给定时,求二次函数的函数值y。
此类题的解题思路是:根据y=ax2+bx+c的表达式,把参数a、b、c和x的值带入到表达式中,即可求得y的值。
二、求函数图象这类题主要涉及求二次函数的图象,比如已知ax2+bx+c=0的参数a、b、c值,求这个二次函数的图象。
此类题的解题思路是:根据a、b、c的值可以先求得直线y=ax2+bx+c的方程,然后根据方程的极值或者零点可以求得二次函数的图象。
三、求函数的最大值、最小值这类题目主要涉及求二次函数的最大值或者最小值,比如已知ax2+bx+c=0的参数a、b、c值,求这个二次函数的最大值或者最小值。
此类题的解题思路是:根据二次函数y=ax2+bx+c的形式,求解出它的最大和最小值,即可求得最大值和最小值。
四、求函数的极值点这类题目主要涉及求二次函数的极值点,比如已知ax2+bx+c=0的参数a、b、c值,求这个二次函数的极大值点或者极小值点。
此类题的解题思路是:根据二次函数y=ax2+bx+c的形式,求出它的极值点,即可求得极值点。
五、求函数的零点此类题目主要涉及求二次函数的零点,比如已知ax2+bx+c=0的参数a、b、c值,求这个二次函数的零点。
此类题的解题思路是:根据二次函数y=ax2+bx+c的形式,采用二元一次方程组的求解方法,求出它的零点,即可求得零点。
六、求函数的对称轴这类题目主要涉及求二次函数的对称轴,即求出它的离散点集中所包含的点关于对称轴对称的概念。
中考数学专题:二次函数综合题带答案
二次函数综合题类型一线段、周长、面积问题1.如图,直线y=-x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.2.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+PA的值最小,请求出这个最小值,并说明理由.3.已知抛物线y=ax2+bx-4经过点A(2,0)、B(-4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.4.如图,抛物线y=ax2-3ax-4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.类型二存在性问题5.如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,-2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=-1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=-x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.7.在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)在(1)的情况下,点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)在(1)的情况下,若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.7.如图,二次函数y═ax2+bx+4的图象与x轴交于点A(-1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.类型三角相等问题8.如图,已知点A(-1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.9.如图,抛物线y=ax2+bx+c经过A(-1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E.(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.答案和解析1.【答案】解:(1)∵直线y=-x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(-1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=-x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,-t2+t+),则D(t,-t+),∴DM=-t2+t+-(-t+)=-t2+t=-(t-)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.【解析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、二次函数的性质、方程思想等知识.在(1)中注意函数图象与坐标的交点的求法,在(2)中注意待定系数法的应用,在(3)中找到DH、MH与DM的关系是解题的关键.本题考查知识点较多,综合性较强,难度适中.2.【答案】解:(1)直线y=-5x+5,x=0时,y=5∴C(0,5)y=-5x+5=0时,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点,∴解得:,∴抛物线解析式为y=x2-6x+5;当y=x2-6x+5=0时,解得:x1=1,x2=5∴B(5,0);(2)如图1,过点M作MH⊥x轴于点H,∵A(1,0),B(5,0),C(0,5)∴AB=5-1=4,OC=5∴S△ABC=AB•OC=×4×5=10∵点M为x轴下方抛物线上的点∴设M(m,m2-6m+5)(1<m<5)∴MH=|m2-6m+5|=-m2+6m-5∴S△ABM=AB•MH=×4(-m2+6m-5)=-2m2+12m-10=-2(m-3)2+8∴S四边形AMBC=S△ABC+S△ABM=10+[-2(m-3)2+8]=-2(m-3)2+18∴当m=3,即M(3,-4)时,四边形AMBC面积最大,最大面积等于18;(3)如图2,在x轴上取点D(4,0),连接PD、CD,∴BD=5-4=1∵AB=4,BP=2∴∵∠PBD=∠ABP∴△PBD∽△ABP∴∴PD=AP∴PC+PA=PC+PD∴当点C、P、D在同一直线上时,PC+PA=PC+PD=CD最小∵CD=∴PC+PA的最小值为.【解析】本题考查了二次函数的图象与性质,求二次函数最大值,解一次方程(组)和一元二次方程,相似三角形的判定和性质,两点之间线段最短.求线段与线段的几分之几的和的最小值,一般将“线段的几分之几”进行转换,变成能用“两点之间线段最短”的图形来求最小值.(1)由直线y=-5x+5求点A、C坐标,用待定系数法求抛物线解析式,进而求得点B坐标.(2)从x轴把四边形AMBC分成△ABC与△ABM;由点A、B、C坐标求△ABC面积;设点M横坐标为m,过点M作x轴的垂线段MH,则能用m表示MH的长,进而求△ABM的面积,得到△ABM面积与m的二次函数关系式,配方即求得m为何值时取得最大值,进而求点M坐标和四边形AMBC的面积最大值.(3)作点D坐标为(4,0),可得BD=1,进而有,再加上公共角∠PBD=∠ABP,根据两边对应成比例且夹角相等可证△PBD∽△ABP,得等于相似比,进而得PD=AP,所以当C、P、D在同一直线上时,PC+PA=PC+PD=CD最小.用两点间距离公式即求得CD的长.3.【答案】解:(1)∵抛物线y=ax+bx-4经过点A(2,0),B(-4,0),∴,解得,∴抛物线解析式为y=x2+x-4;(2)如图1,连接OP,设点P(x,),其中-4<x<0,四边形ABPC的面积为S,由题意得C(0,-4),∴S=S△AOC+S△OCP+S△OBP=+,=4-2x-x2-2x+8,=-x2-4x+12,=-(x+2)2+16.∵-1<0,开口向下,S有最大值,∴当x=-2时,四边形ABPC的面积最大,此时,y=-4,即P(-2,-4).因此当四边形ABPC的面积最大时,点P的坐标为(-2,-4).(3),∴顶点M(-1,-).如图2,连接AM交直线DE于点G,此时,△CMG的周长最小.设直线AM的解析式为y=kx+b,且过点A(2,0),M(-1,-),∴,∴直线AM的解析式为y=-3.在Rt△AOC中,=2.∵D为AC的中点,∴,∵△ADE∽△AOC,∴,∴,∴AE=5,∴OE=AE-AO=5-2=3,∴E(-3,0),由图可知D(1,-2)设直线DE的函数解析式为y=mx+n,∴,解得:,∴直线DE的解析式为y=--.∴,解得:,∴G().【解析】(1)把点A、B的坐标代入抛物线解析式,利用待定系数法求函二次数解析式解答;(2)连接OP,由S=S△AOC+S△OCP+S△OBP,可得出关于P点横坐标的表达式,然后利用二次函数的最值问题求出点P的坐标;(3)连接AM交直线DE于点G,此时,△CMG的周长最小.求出直线AM的解析式,再由△ADE∽△AOC,求出点E的坐标,求出直线DE的解析式,则由AM、DE两直线的交点可求得G点坐标.本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,待定系数法求一次函数解析式,三角形的面积,相似三角形的判定与性质,勾股定理,二次函数的最值问题.理解坐标与图形性质;会运用数形结合思想解决数学问题.4.【答案】解:(1)把C(0,2)代入y=ax2-3ax-4a得:-4a=2.解得a=-.则该抛物线解析式为y=-x2+x+2.由于y=-x2+x+2=-(x+1)(x-4).故A(-1,0),B(4,0);(2)存在,理由如下:由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,∴CD∥EG,∴=.∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).∴CD=2-1=1.∴=EG.设BC所在直线的解析式为y=mx+n(m≠0).将B(4,0),C(0,2)代入,得.解得.∴直线BC的解析式是y=-x+2.设E(t,-t2+t+2),则G(t,-t+2),其中<t<4.∴EG=(-t2+t+2)-(-t+2)=-(t-2)2+2.∴=-(t-2)2+2.∵<0,∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).【解析】(1)将点C的坐标代入函数解析式求得a值即可;将所求得的抛物线解析式转化为两点式,易得点A、B的坐标;(2)由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,根据平行线截线段成比例将求的最大值转化为求的最大值,所以利用一次函数图象上点的坐标特征、二次函数图象上点的坐标特征,两点间的距离公式以及配方法解题即可.本题考查了二次函数综合题型,需要综合运用一次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,二次函数最值的求法,待定系数法确定函数关系式以及平行线截线段成比例等知识点,综合性较强,难度不是很大.5.【答案】解:(1)点A的坐标是(2,0),抛物线的对称轴是直线x=-1,则点B(-4,0),则函数的表达式为:y=a(x-2)(x+4)=a(x2+2x-8),即:-8a=-2,解得:a=,故抛物线的表达式为:y=x2+x-2;(2)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=-x-2,则tan∠ABC=,则sin∠ABC=,设点D(x,0),则点P(x,x2+x-2),点E(x,x-2),∵PE=OD,∴PE=(x2+x-2+x+2)=(-x),解得:x=0或-5(舍去x=0),即点D(-5,0)S△PBE=×PE×BD=(x2+x-2+x+2)(-4-x)=;(3)由题意得:△BDM是以BD为腰的等腰三角形,只存在:BD=BM的情况,BD=1=BM,则y M=-BM sin∠ABC=-1×=-,则x M=,故点M(,-).【解析】(1)点A(2,0)、点B(-4,0),则函数的表达式为:y=a(x-2)(x+4)=a (x2+2x-8),即可求解;(2)PE=OD,则PE=(x2+x-2-x+2)=(-x),求得:点D(-5,0),利用S△PBE= PE×BD=(x2+x-2-x+2)(-4-x),即可求解;(3)BD=1=BM,则y M=-BM sin∠ABC=-1×=-,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.【答案】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(-2,0),Rt△ABC中,tan∠ABC=2,∴,∴,∴AC=6,∴A(-2,6),把A(-2,6)和B(1,0)代入y=-x2+bx+c得:,解得:,∴抛物线的解析式为:y=-x2-3x+4;(2)①∵A(-2,6),B(1,0),易得AB的解析式为:y=-2x+2,设P(x,-x2-3x+4),则E(x,-2x+2),∵PE=DE,∴-x2-3x+4-(-2x+2)=(-2x+2),x=1(舍)或-1,∴P(-1,6);②∵M在直线PD上,且P(-1,6),设M(-1,y),∴AM2=(-1+2)2+(y-6)2=1+(y-6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y-6)2+4+y2=45,解得:y=3,∴M(-1,3+)或(-1,3-);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y-6)2,y=-1,∴M(-1,-1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y-6)2+45=4+y2,y=,∴M(-1,);综上所述,点M的坐标为:∴M(-1,3+)或(-1,3-)或(-1,-1)或(-1,).【解析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=-2x+2,根据PD⊥x轴,设P(x,-x2-3x+4),则E(x,-2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.7.【答案】解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(-1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴,解得:,∴此抛物线的解析式为:y=-x2+3x+4;(2)如图1,连接AA′,设直线AA′的解析式为:y=kx+m,∴,解得:,∴直线AA′的解析式为:y=-x+4,设点M的坐标为:(x,-x2+3x+4),则S△AMA′=×4×[-x2+3x+4-(-x+4)]=-2x2+8x=-2(x-2)2+8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,∴M的坐标为:(2,6);(3)设点P的坐标为(x,-x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(-1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,①当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴-x2+3x+4=±4,当-x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);当-x2+3x+4=-4时,解得:x3=,x4=,∴P3(,-4),P4(,-4);②当BQ为对角线时,BP∥QN,BP=QN,此时P与P1,P2重合;综上可得:点P的坐标为:P1(0,4),P2(3,4),P3(,-4),P4(,-4);如图2,当这个平行四边形为矩形时,点N的坐标为:(0,0)或(3,0).【解析】此题属于二次函数的综合题,考查了待定系数法求函数解析式的知识、平行四边形的性质以及三角形面积问题.掌握分类讨论思想的应用是解此题的关键.(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A 的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;(2)首先连接AA′,设直线AA′的解析式为:y=kx+m,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,-x2+3x+4),继而可得△AMA′的面积,继而求得答案;(3)分别从BQ为边与BQ为对角线去分析求解,即可求得答案.结合平行四边形的情况分析即可得到矩形的情况.8.【答案】解:(1)将点A(-1,0),B(4,0),代入y═ax2+bx+4,得:,解得:,∴二次函数的表达式为:y=-x2+3x+4,当x=0时,y=4,∴C(0,4),设BC所在直线的表达式为:y=mx+n,将C(0,4)、B(4,0)代入y=mx+n,得:,解得:,∴BC所在直线的表达式为:y=-x+4;(2)∵DE⊥x轴,PF⊥x轴,∴DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,∵y=-x2+3x+4=-(x-)2+,∴点D的坐标为:(,),将x=代入y=-x+4,即y=-+4=,∴点E的坐标为:(,),∴DE=-=,设点P的横坐标为t,则P的坐标为:(t,-t2+3t+4),F的坐标为:(t,-t+4),∴PF=-t2+3t+4-(-t+4)=-t2+4t,由DE=PF得:-t2+4t=,解得:t1=(不合题意舍去),t2=,当t=时,-t2+3t+4=-()2+3×+4=,∴点P的坐标为(,);(3)存在,理由如下:如图2所示:由(2)得:PF∥DE,∴∠CED=∠CFP,又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,∴∠PCF≠∠DCE,∴只有∠PCF=∠CDE时,△PCF∽△CDE,∴=,∵C(0,4)、E(,),∴CE==,由(2)得:DE=,PF=-t2+4t,F的坐标为:(t,-t+4),∴CF==t,∴=,∵t≠0,∴(-t+4)=3,解得:t=,当t=时,-t2+3t+4=-()2+3×+4=,∴点P的坐标为:(,).【解析】(1)由题意得出方程组,求出二次函数的解析式为y=-x2+3x+4,则C(0,4),由待定系数法求出BC所在直线的表达式即可(2)证DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,由二次函数解析式求出点D的坐标,由直线BC的解析式求出点E的坐标,则DE=,设点P的横坐标为t,则P的坐标为:(t,-t2+3t+4),F的坐标为:(t,-t+4),由DE=PF得出方程,解方程进而得出答案;(3)由平行线的性质得出∠CED=∠CFP,当∠PCF=∠CDE时,△PCF∽△CDE,则=,得出方程,解方程即可.本题是二次函数综合题目,考查了待定系数法求二次函数和一次函数的解析式、二次函数的性质、平行四边形的判定与性质、平行线的性质、相似三角形的判定与性质、勾股定理等知识;本题综合性强,熟练掌握待定系数法求函数解析式,熟记二次函数的性质是解题的关键.9.【答案】解:(1)设抛物线的解析式为y=a(x+1)(x-3),将C(0,1)代入得-3a=1,解得:a=-,∴抛物线的解析式为y=-x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=-,∴直线BC的解析式为y=-x+1.设点P(x,-x2+x+1),则D(x,-x+1)∴PD=(-x2+x+1)-(-x+1)=-x2+x,∴S△PBC=OB•DP=×3×(-x2+x)=-x2+x.又∵S△PBC=1,∴-x2+x=1,整理得:x2-3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.如图:∵A(-1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=-x,AB的垂直平分线为直线x=1,∴点M为直线y=-x与x=1的交点,即M(1,-1),∴Q的坐标为(1,-1-).【解析】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的外心的性质,求得点M的坐标以及⊙M的半径的长度是解题的关键.(1)设抛物线的解析式为y=a(x+1)(x-3),将C(0,1)代入求得a的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=-x+1,设点P(x,-x2+x+1),则D(x,-x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=-x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q的坐标.10.【答案】解:(1)由题意,得,解得,抛物线的函数表达式为y=-x2+x+3;(2)设直线BC的解析是为y=kx+b,,解得∴y=-x+3,设D(a,-a2+a+3),(0<a<4),过点D作DM⊥x轴交BC于M点,如图1,M(a,-a+3),DM=(-a2+a+3)-(-a+3)=-a2+3a,∵∠DME=∠OCB,∠DEM=∠BOC,∴△DEM∽△BOC,∴=,∵OB=4,OC=3,∴BC=5,∴DE=DM∴DE=-a2+a=-((a-2)2+,当a=2时,DE取最大值,最大值是,(3)假设存在这样的点D,△CDE使得中有一个角与∠CFO相等,∵点F为AB的中点,∴OF=,tan∠CFO==2,过点B作BG⊥BC,交CD的延长线于G点,过点G作GH⊥x轴,垂足为H,如图2,①若∠DCE=∠CFO,∴tan∠DCE==2,∴BG=10,∵△GBH∽BCO,∴==,∴GH=8,BH=6,∴G(10,8),设直线CG的解析式为y=kx+b,∴,解得∴直线CG的解析式为y=x+3,∴,解得x=,或x=0(舍).②若∠CDE=∠CFO,同理可得BG=,GH=2,BH=,∴G(,2),同理可得,直线CG的解析是为y=-x+3,∴,解得x=或x=0(舍),综上所述,存在点D,使得△CDE中有一个角与∠CFO相等,点D的横坐标为或.【解析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得DM,根据相似三角形的判定与性质,可得DE的长,根据二次函数的性质,可得答案;(3)根据正切函数,可得∠CFO,根据相似三角形的性质,可得GH,BH,根据待定系数法,可得CG的解析式,根据解方程组,可得答案.本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用相似三角形的性质得出DE的长,又利用了二次函数的性质;解(3)的关键是利用相似三角形的性质得出G点的坐标,由;利用了待定系数法求函数解析式,解方程组的横坐标.。
二次函数中常见的几种综合题型(含解析) ——适合中上
二次函数中常见的几类综合题型一求线段最大值及根据面积求点坐标问题1.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.分析:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点∑的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出△ABN的面积S2=5,则S1=6S2=30.再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.证明△EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(﹣1,0),运用待定系数法求出直线PQ的解析式为y=﹣x﹣1,然后解方程组,即可求出点P的坐标.解答:解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,所以直线BC的解析式为y=﹣x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,得,解得,所以抛物线的解析式为y=x2﹣6x+5;(2)设M(x,x2﹣6x+5)(1<x<5),则N(x,﹣x+5),∵MN=(﹣x+5)﹣(x2﹣6x+5)=﹣x2+5x=﹣(x﹣)2+,∴当x=时,MN有最大值;(3)∵MN取得最大值时,x=2.5,∴﹣x+5=﹣2.5+5=2.5,即N(2.5,2.5).解方程x2﹣6x+5=0,得x=1或5,∴A(1,0),B(5,0),∴AB=5﹣1=4,∴△ABN的面积S2=×4×2.5=5,∴平行四边形CBPQ的面积S1=6S2=30.设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=5,∴BC•BD=30,∴BD=3.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,BE=BD=6,∵B(5,0),∴E(﹣1,0),设直线PQ的解析式为y=﹣x+t,将E(﹣1,0)代入,得1+t=0,解得t=﹣1∴直线PQ的解析式为y=﹣x﹣1.解方程组,得,,∴点P的坐标为P1(2,﹣3)(与点D重合)或P2(3,﹣4).2.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值分析:(1)由抛物线y=ax2+bx+c的对称轴为直线x=﹣1,交x轴于A、B两点,其中A点的坐标为(﹣3,0),根据二次函数的对称性,即可求得B点的坐标;(2)①a=1时,先由对称轴为直线x=﹣1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x﹣3,得到C点坐标,然后设P点坐标为(x,x2+2x﹣3),根据S△POC=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;②先运用待定系数法求出直线AC的解析式为y=﹣x﹣3,再设Q点坐标为(x,﹣x﹣3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.解答:解:(1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=﹣1对称,∵点A的坐标为(﹣3,0),∴点B的坐标为(1,0);(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=﹣1,∴=﹣1,解得b=2.将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=﹣3.则二次函数的解析式为y=x2+2x﹣3,∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.设P点坐标为(x,x2+2x﹣3),∵S△POC=4S△BOC,∴×3×|x|=4××3×1,∴|x|=4,x=±4.当x=4时,x2+2x﹣3=16+8﹣3=21;当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.所以点P的坐标为(4,21)或(﹣4,5);②设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,﹣3)代入,得,解得,即直线AC的解析式为y=﹣x﹣3.设Q点坐标为(x,﹣x﹣3)(﹣3≤x≤0),则D点坐标为(x,x2+2x﹣3),QD=(﹣x﹣3)﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.二求三角形周长及面积的最值问题3.如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y 轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.分析:(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可;(2)根据BC是定值,得到当PB+PC最小时,△PBC的周长最小,根据点的坐标求得相应线段的长即可;(3)设点E的横坐标为m,表示出E(m,2m+6),F(m,﹣m2﹣2m+3),最后表示出EF的长,从而表示出S于m的函数关系,然后求二次函数的最值即可.解答:解:(1)由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A、点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3,BC=;故△PBC周长的最小值为3+.(3)①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AG=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2).4. 如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.分析:(1)利用待定系数法求二次函数解析式解答即可;(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC与对称轴的交点即为所求点D;(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x 的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解.解答:解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).三为等腰或直角三角形是求点坐标问题5.如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式;(2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算;(3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论,①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案.解答:解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点,∴可得A(1,0),B(0,﹣3),把A、B两点的坐标分别代入y=x2+bx+c得:,解得:.∴抛物线解析式为:y=x2+2x﹣3.(2)令y=0得:0=x2+2x﹣3,解得:x1=1,x2=﹣3,则C点坐标为:(﹣3,0),AC=4,故可得S△ABC=AC×OB=×4×3=6.(3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意:讨论:①当MA=AB时,,解得:,∴M1(﹣1,),M2(﹣1,﹣);②当MB=BA时,,解得:M3=0,M4=﹣6,∴M3(﹣1,0),M4(﹣1,﹣6)(不合题意舍去),③当MB=MA时,,解得:m=﹣1,∴M5(﹣1,﹣1),答:共存在4个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣1)使△ABM为等腰三角形.6.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.分析:(1)利用待定系数法求出抛物线的解析式;(2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值;(3)△OMD为等腰三角形,可能有三种情形,需要分类讨论.解答:解:(1)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中,得,解得∴该抛物线的解析式为y=x2+x﹣4.(2)令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2,∴A(﹣4,0),S△ABC=AB•OC=12.设P点坐标为(x,0),则PB=2﹣x.∵PE∥AC,∴∠BPE=∠BAC,∠BEP=∠BCA,∴△PBE∽△ABC,∴,即,化简得:S△PBE=(2﹣x)2.S△PCE=S△PCB﹣S△PBE=PB•OC﹣S△PBE=×(2﹣x)×4﹣(2﹣x)2=x2﹣x+=(x+1)2+3∴当x=﹣1时,S△PCE的最大值为3.(3)△OMD为等腰三角形,可能有三种情形:(I)当DM=DO时,如答图①所示.DO=DM=DA=2,∴∠OAC=∠AMD=45°,∴∠ADM=90°,∴M点的坐标为(﹣2,﹣2);(II)当MD=MO时,如答图②所示.过点M作MN⊥OD于点N,则点N为OD的中点,∴DN=ON=1,AN=AD+DN=3,又△AMN为等腰直角三角形,∴MN=AN=3,∴M点的坐标为(﹣1,﹣3);(III)当OD=OM时,∵△OAC为等腰直角三角形,∴点O到AC的距离为×4=,即AC上的点与点O之间的最小距离为.∵>2,∴OD=OM的情况不存在.综上所述,点M的坐标为(﹣2,﹣2)或(﹣1,﹣3).7.如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.分析:(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为(x,x2+2x﹣3),根据AC的解析式表示出点N的坐标,再根据S△PAC=S△PAN+S△PCN就可以表示出△PAC的面积,运用顶点式就可以求出结论;(3)分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为(0,t),根据勾股定理列出方程,求出t的值即可.解答:解:(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a(x+3)(x﹣1),将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=﹣3,解得 a=1,则y=(x+3)(x﹣1)=x2+2x﹣3,所以抛物线的解析式为:y=x2+2x﹣3;(2)过点P作x轴的垂线,交AC于点N.设直线AC的解析式为y=kx+m,由题意,得,解得,∴直线AC的解析式为:y=﹣x﹣3.设P点坐标为(x,x2+2x﹣3),则点N的坐标为(x,﹣x﹣3),∴PN=PE﹣NE=﹣(x2+2x﹣3)+(﹣x﹣3)=﹣x2﹣3x.∵S△PAC=S△PAN+S△PCN,∴S=PN•OA=×3(﹣x2﹣3x)=﹣(x+)2+,∴当x=﹣时,S有最大值,此时点P的坐标为(﹣,﹣);(3)在y轴上是存在点M,能够使得△ADM是直角三角形.理由如下:∵y=x2+2x﹣3=y=(x+1)2﹣4,∴顶点D的坐标为(﹣1,﹣4),∵A(﹣3,0),∴AD2=(﹣1+3)2+(﹣4﹣0)2=20.设点M的坐标为(0,t),分三种情况进行讨论:①当A为直角顶点时,如图3①,由勾股定理,得AM2+AD2=DM2,即(0+3)2+(t﹣0)2+20=(0+1)2+(t+4)2,解得t=,所以点M的坐标为(0,);②当D为直角顶点时,如图3②,由勾股定理,得DM2+AD2=AM2,即(0+1)2+(t+4)2+20=(0+3)2+(t﹣0)2,解得t=﹣,所以点M的坐标为(0,﹣);③当M为直角顶点时,如图3③,由勾股定理,得AM2+DM2=AD2,即(0+3)2+(t﹣0)2+(0+1)2+(t+4)2=20,解得t=﹣1或﹣3,所以点M的坐标为(0,﹣1)或(0,﹣3);综上可知,在y轴上存在点M,能够使得△ADM是直角三角形,此时点M的坐标为(0,)或(0,﹣)或(0,﹣ 1)或(0,﹣3).四四边形与二次函数问题8、如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.分析:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点A的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.解答:解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作ND⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).9.如图,抛物线y=x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,).直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线y=x2+bx+c与直线y=kx的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为l,点P的横坐标为x,求l与x的函数关系式,并求出l的最大值.分析:(1)将A,B两点分别代入y=x2+bx+c进而求出解析式即可;(2)首先假设出P,M点的坐标,进而得出PM的长,将两函数联立得出D点坐标,进而得出CE的长,利用平行四边形的性质得出PM=CE,得出等式方程求出即可;(3)利用勾股定理得出DC的长,进而根据△PMN∽△CDE,得出两三角形周长之比,求出l与x的函数关系,再利用配方法求出二次函数最值即可.解答:解:(1)∵y=x2+bx+c经过点A(2,0)和B(0,)∴由此得,解得.∴抛物线的解析式是y=x2﹣x+,∵直线y=kx﹣经过点A(2,0)∴2k﹣=0,解得:k=,∴直线的解析式是 y=x﹣,(2)设P的坐标是(x,x2﹣x+),则M的坐标是(x,x﹣)∴PM=(x2﹣x+)﹣(x﹣)=﹣x2﹣x+4,解方程得:,,∵点D在第三象限,则点D的坐标是(﹣8,﹣7),由y=x﹣得点C的坐标是(0,﹣),∴CE=﹣﹣(﹣7)=6,由于PM∥y轴,要使四边形PMEC是平行四边形,必有PM=CE,即﹣x2﹣x+4=6解这个方程得:x1=﹣2,x2=﹣4,符合﹣8<x<2,当x=﹣2时,y=﹣×(﹣2)2﹣×(﹣2)+=3,当x=﹣4时,y=﹣×(﹣4)2﹣×(﹣4)+=,因此,直线AD上方的抛物线上存在这样的点P,使四边形PMEC是平行四边形,点P的坐标是(﹣2,3)和(﹣4,);(3)在Rt△CDE中,DE=8,CE=6 由勾股定理得:DC=∴△CDE的周长是24,∵PM∥y轴,∵∠PMN=∠DCE,∵∠PNM=∠DEC,∴△PMN∽△CDE,∴=,即=,化简整理得:l与x的函数关系式是:l=﹣x2﹣x+,l=﹣x2﹣x+=﹣(x+3)2+15,∵﹣<0,∴l有最大值,当x=﹣3时,l的最大值是15.10.如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.分析:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点A的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.解答:解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作ND⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).。
初中数学二次函数综合题及答案(经典题型)
二次函数试题一;选择题:1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( )A -1B 2C -1或2D m 不存在2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C 矩形周长一定时,矩形面积和矩形边长之间的关系D 圆的周长与半径之间的关系4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( )A y=—( x-2)2+2B y=—( x+2)2+2C y=— ( x+2)2+2D y=—( x-2)2—5、抛物线y=21x 2-6x+24的顶点坐标是( )A(—6,—6)B (—6,6)C (6,6)D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则c b a + =c a b + =ba c+ 的值是( ) A -1 B 1 C 21 D -218、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( )二填空题:13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。
16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。
17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形)1、已知:二次函数y=x 2+bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣).AMC (1)求此二次函数的解析式.(2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积.2、如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C (0,4),顶点为(1,92).(1)求抛物线的函数表达式;(2)设抛物线的对称轴与轴交于点D ,试在对称轴上找出点P ,使△CDP 为等腰三角形,请直接写出满足条件的所有点P 的坐标.(3)若点E 是线段AB 上的一个动点(与A 、B 不重合),分别连接AC 、BC ,过点E作EF ∥AC 交线段BC 于点F ,连接CE ,记△CEF 的面积为S ,S 是否存在最大值?若存在,求出S 的最大值及此时E 点的坐标;若不存在,请说明理由.3、如图,一次函数y =-4x -4的图象与x 轴、y 轴分别交于A 、C 两点,抛物线y =43x 2+bx +c 的图象经过A 、C 两点,且与x 轴交于点B . (1)求抛物线的函数表达式;(2)设抛物线的顶点为D ,求四边形ABDC 的面积;(3)作直线MN 平行于x 轴,分别交线段AC 、BC 于点M 、N .问在x 轴上是否存在点P ,使得△PMN 是等腰直角三角形?如果存在,求出所有满足条件的P 点的坐标;如果不存在,请说明理由.启东教育 精心教学2222673(二次函数与四边形)4、已知抛物线217222y x mx m =-+-. (1)试说明:无论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)如图,当该抛物线的对称轴为直线x =3时,抛物线的顶点为点C ,直线y =x -1与抛物线交于A 、B 两点,并与它的对称轴交于点D .①抛物线上是否存在一点P 使得四边形ACPD 是正方形?若存在,求出点P 的坐标;若不存在,说明理由;②平移直线CD ,交直线AB 于点M ,交抛物线于点N ,通过怎样的平移能使得C 、D 、M 、N 为顶点的四边形是平行四边形.5、如图,抛物线y =mx 2-11mx +24m (m <0) 与x 轴交于B 、C 两点(点B 在点C 的左侧),抛物线另有一点A 在第一象限内,且∠BAC =90°.(1)填空:OB =_ ▲ ,OC =_ ▲ ;(2)连接OA ,将△OAC 沿x 轴翻折后得△ODC ,当四边形OACD 是菱形时,求此时抛物线的解析式;(3)如图2,设垂直于x 轴的直线l :x =n 与(2)中所求的抛物线交于点M ,与CD 交于点N ,若直线l 沿x 轴方向左右平移,且交点M 始终位于抛物线上A、C两点之间时,试探究:当n 为何值时,四边形N 的面积取得最大值,并求出这个最大值.6、如图所示,在平面直角坐标系中,四边形ABCD 是直角梯形,BC ∥AD ,∠BAD=90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .(1)求抛物线的解析式.(2)抛物线上是否存在点P ,使得PA=PC ,若存在,求出点P 的坐标;若不存在,请说明理由.(3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE-QC|最大?并求出最大值.7、已知抛物线223 (0)y ax ax a a =--<与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 的坐标;(2)过点D 作DH 丄y 轴于点H ,若DH=HC ,求a 的值和直线CD 的解析式;(3)在第(2)小题的条件下,直线CD 与x 轴交于点E ,过线段OB 的中点N 作NF 丄x 轴,并交直线CD 于点F ,则直线NF 上是否存在点M ,使得点M 到直线CD 的距离等于点M 到原点O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.(二次函数与圆)8、如图,在平面直角坐标系中,抛物线y=ax 2+bx+c (a≠0)的图象经过M (1,0)和N (3,0)两点,且与y 轴交于D (0,3),直线l 是抛物线的对称轴.1)求该抛物线的解析式.2)若过点A (﹣1,0)的直线AB 与抛物线的对称轴和x 轴围成的三角形面积为6,求此直线的解析式.启东教育 精心教学22226733)点P 在抛物线的对称轴上,⊙P 与直线AB 和x 轴都相切,求点P 的坐标.9、如图,y 关于x 的二次函数y=﹣(x+m )(x ﹣3m )图象的顶点为M ,图象交x 轴于A 、B 两点,交y 轴正半轴于D 点.以AB 为直径作圆,圆心为C .定点E 的坐标为(﹣3,0),连接ED .(m >0) (1)写出A 、B 、D 三点的坐标;(2)当m 为何值时M 点在直线ED 上?判定此时直线与圆的位置关系; (3)当m 变化时,用m 表示△AED 的面积S ,并在给出的直角坐标系中画出S 关于m 的函数图象的示意图。
最新二次函数综合大题分类
P1 B
A
P3
C
P2
二次函数与圆综合
模块一:直线和圆的位置关系 1.直线和圆的位置关系判断 d、R法则:设圆心到直线的距离是d,圆的半径是R. ①当d>R,直线和圆相离; ②当d=R,直线和圆相切; ③当d<R,直线和圆相交. 2.直线和圆相切 (1)圆和坐标轴相切:圆心到坐标轴的距离和半径相等。 (2)圆和特殊的直线相切:圆心到直线的距离和半径相等。 注意:特殊直线是指倾斜角度为30。,45。,60。,90。,120。,135。,150。或者与 两坐标轴平行的直线。 (3)圆和一般的直线相切:圆心到直线的距离和半径相等。
距离关系的存在性问题
距离的存在性问题(二)
y
A
O
M
C
D
N B
l1 l2
角度的存在性问题
1.45°→构造直角三角形→构造“一线三直角”模型,如图:
P
45° A
B
P C
45° A
B
P C
A 45°
D
BE
2.30°→构造直角三角形→构造“一线三直角”模型,如图:
A 30° B
非直角三角形相似的存在性问题 (1)找确定对应点 对应点根据对应角确定,在两个相似的三角形中,相等的角一定是对 应角,因此先寻找相等的角,从而确定对应点. (2)分类讨论 按照角度和边,逐步确定各个对应点,分类讨论进行求解. 几何法:按照对应边成比例分类讨论,列等式. 解析法:按照对应角相等,利用斜率,进行联立求解.
二次函数点存在性问题
内容模块
1 动点产生的等腰三角形
6 动点产生特殊四边形
2 动点产生直角三角形
7 动点产生定值问题
3 动点产生相似三角形
二次函数综合题
二次函数综合题类型一㊀对称性㊁增减性问题1.已知二次函数y =ax 2-2ax.(1)二次函数图象的对称轴是直线x =㊀;(2)当0ɤx ɤ3时,y 的最大值与最小值的差为4,求该二次函数的表达式;(3)若a <0,对于二次函数图象上的两点P (x 1,y 1),Q (x 2,y 2),当t ɤx 1ɤt +1,x 2ȡ3时,均满足y 1ȡy 2,请结合函数图象,直接写出t 的取值范围.(2)当=解:(1)a 1>;0时,ȵ该函数图象的对称轴为直线x 1,ʑ当x =1时,y 有最小值为-a ,当x =3时,y 有最大值为3a ,ʑ3a -(-a )=4,ʑa =1,ʑ二次函数的表达式为y =x 2-2x.当a <0时,同理可得,y 有最大值为-a ;y 有最小值为3a ,ʑ-a -3a =4,ʑa =-1,ʑ二次函数的表达式为y=-x2+2x,综上所述,该二次函数的表达式为y=x2-2x或y=-x2+2x;(3)-1ɤtɤ2.ʌ解法提示ɔȵa<0,该函数图象的对称轴为直线x=1,ʑx<1时,y随x的增大而增大,x>1时,y随x的增大而减小,x=-1和x=3时的函数值相等.ȵtɤx1ɤt+1,x2ȡ3时,均满足y1ȡy2,ʑtȡ-1,t+1ɤ3,ʑ-1ɤtɤ2.2.在平面直角坐标系xOy中,点(m-2,y1),(m, y2),(2-m,y3)在抛物线y=x2-2ax+1上,其中mʂ1且mʂ2.(1)求出该抛物线的对称轴(用含a的式子表示);(2)当m=0时,若y1=y3,比较y1与y2的大小关系,并说明理由;(3)若存在大于1的实数m,使y1>y2>y3,求a的取值范围.解:(1)ȵy=x2-2ax+1,ʑ抛物线对称轴为直线x=--2a2=a; (2)y1>y2.理由如下:ȵm=0,y1=y3,ʑ点(-2,y1)与点(2,y3)关于抛物线对称轴对称,ʑ抛物线对称轴为直线x=-2+22=0,即a=0,ʑy=x2+1,ʑ抛物线开口向上,顶点坐标为(0,1),ʑy2=1为函数最小值,ʑy1>y2;(3)将(m-2,y1),(m,y2),(2-m,y3)分别代入y=x2-2ax+1,得y1=m2-4m-2am+4a+5,y2=m2-2am+1,y3= m2-4m+2am-4a+5,ȵy1>y2>y3,ʑm2-4m-2am+4a+5>m2-2am+1>m2-4m+ 2am-4a+5,解得m-1<a<1.ȵm>1,ʑ0<a<1.3.已知抛物线y=2x2-4mx+2m2-1.(1)求该抛物线的顶点坐标;(2)若直线y =n 与该抛物线交于点A ,B ,且AB=2,求n 的值;(3)若抛物线y =2x 2-4mx +2m 2-1经过点P (t ,y 1),Q (t +1,y 2),y 1y 2<0,求y 1的取值范围.解:(1)ȵy =2x 2-4mx +2m 2-1=2(x -m )2-1,ʑ该抛物线顶点坐标为(m ,-1);(2)ȵAB =2,抛物线对称轴为直线x =m ,1,n ),(m +1,n )ʑ抛物线与直线y =n 的两个交点坐标为(m -,将(m +1,n )代入y =2(x -m )2-1得n =2-1=1;(3)ȵ抛物线y =2(x -m )2-1,a =2>0,ʑ抛物线开口向上,对称轴为直线x =m ,令2(x -m )2-1=0,解得x 1=m -22,x 2=m +22,ʑx 2-x 1=2>1.ȵy 1y 2<0,ʑy 1<0,y 2>0或y 1>0,y 2<0,如解图①,当y 1<0,y 2>0时,t <m +22<t +1,ʑm+22-1<t<m+22,第3题解图①当t=m时,y1取最小值为-1,ʑ-1ɤy1<0,如解图②,当y第3题解图②t<m-22<t+1,ʑm-22-1<t<m-22,将t=m-22-1代入y=2(x-m)2-1得y=2(m-22-1-m)2-1=2+22,ʑ0<y1<2+22,综上所述,-1ɤy1<0或0<y1<2+22.类型二㊀公共点问题考向一㊀定抛物线与动线段1.如图,已知直线y =2x +1与抛物线y =2x 2+bx +c 交于点A (0,1),B (3,7),点C (4,m )在该直线上.(1)求该抛物线的顶点坐标;(2)将线段AC 沿着y 轴向上或向下平移,使平移后的线段AᶄCᶄ(点Aᶄ,Cᶄ分别为点A ,C 的对应点)与该抛物线只有一个公共点,设点Aᶄ的纵坐标为n ,求n 的取值范围.解:(1)将点A (0,1),B (3,7)代入y =2x 2+bx +c ,得c =1,2ˑ32+3b +c =7,{解得b =-4,c =1,{ʑy =2x 2-4x +1=2(x -1)2-1,ʑ该抛物线的顶点坐标为(1,-1);(2)将C(4,m)代入y=2x+1得,m=2ˑ4+1=9,ʑC(4,9),当x=4时,y=2x2-4x+1=2ˑ42-4ˑ4+1=17.①若线段AC向上平移,当线段AC向上平移17 -9=8个单位时,线段AᶄCᶄ与抛物线有一个交点Cᶄ(4,17),此时点Aᶄ的坐标为(0,9).若向上平移超过8个单位,则抛物线与线段AᶄCᶄ没有交点,ʑ1<nɤ9;②若线段AC向下平移,设线段AC向下平移a个单位,令2x+1-a=2x2-4x+1,整理得2x2-6x+a=0,令(-6)2-4ˑ2a=0,解得a=92,ʑn=1-92=-72,综上所述,n的取值范围为1<nɤ9或n=-72.2.在平面直角坐标系xOy中,抛物线y=ax2+4x+c(a ʂ0)经过点A (3,-4)和B (0,2).(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A ,B 之间的部分记为图象M (含A ,B 两点).将图象M 沿直线x =3翻折,得到图象N.若过点C (9,4)的直线y =kx +b 与图象M ㊁图象N 都相交,且只有两个交点,求b 的取值范围.解:(1)将点A (3,-4)和B (0,2)代入抛物线y =ax 2+4x +c (a ʂ0),可得9a +12+c =-4,c =2,{解得a =-2,c =2,{ʑ抛物线的表达式为y =-2x 2+4x +2.ȵy =-2x 2+4x +2=-2(x -1)2+4,ʑ抛物线的顶点坐标为(1,4);(2)设点B (0,2)关于x =3的对称点为Bᶄ,则点Bᶄ(6,2).如解图,若直线y =kx +b 经过点C (9,4)和Bᶄ(6,2),可得b =-2.若直线y =kx +b 经过点C (9,4)和A (3,-4),可得b =-8.当直线y =kx +b 平行x 轴时,b =4,综上所述,第2题解图考向二㊀动抛物线与定线段(直线) 1.已知:抛物线y=x2-2x+3a+1(a为常数).(1)当a=1时,求该抛物线的顶点坐标;(2)抛物线上有两点M(-1,yM ),N(2,yN),请比较y M与y N的大小;(3)在平面直角坐标系中,若该抛物线在xɤ3的部分与直线y=2x-3有两个交点,求a的取值范围.解:(1)当a=1时,抛物线为y=x2-2x+4=(x-1)2+3,则该抛物线的顶点坐标为(1,3);(2)由题意易知抛物线的对称轴为直线x= --22ˑ1=1,ȵ抛物线开口向上,且1-(-1)=2,2-1=1,2>1,ʑy M>y N;(3)ȵ二次函数的图象在xɤ3的部分与一次函数y=2x-3的图象有两个交点,令x2-2x+3a+1=2x-3,整理得x2-4x+3a+4=0,由根的判别式得16-4(3a+4)>0,解得a<0,把x=3代入y=2x-3,得y=3ˑ2-3=3,把(3,3)代入y=x2-2x+3a+1得3=9-6+3a+1,解得a=-13,ʑa的取值范围为-13ɤa<0.2.(2021燕山区二模)在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(aʂ0).(1)求抛物线的对称轴及抛物线与y轴交点坐标;(2)已知点B(3,4),将点B向左平移3个单位长度,得到点C.若抛物线与线段BC恰有一个公共点,结合函数的图象,求a的取值范围.解:(1)ȵ抛物线y=ax2-2ax-3a,ʑ抛物线的对称轴是直线x=--2a2a=1,令x=0,则y=-3a,ʑ抛物线与y轴交点坐标为(0,-3a); (2)y=ax2-2ax-3a=a(x2-2x-3)=a(x+1)(x-3),ʑ抛物线与x轴交于点A(-1,0),D(3,0),与y 轴交于点E(0,-3a),顶点坐标是(1,-4a).由题意得点C(0,4),B(3,4),①当a>0时,如解图①,显然抛物线与线段BC 无公共点;②当a<0时,若抛物线顶点在线段BC上,如解图②,则顶点坐标为(1,4),ʑ-4a=4,ʑa=-1;③当a<0时,若抛物线的顶点不在线段BC上,如解图③,ȵ抛物线与线段BC恰有一个公共点,ʑ-3a>4,ʑa<-43,综上所述,a的取值范围是a<-43第2题解图考向三㊀动抛物线与动直线1.(2021西城区一模)在平面直角坐标系xOy中,抛物线y=ax2-2a2x+1(aʂ0)与y轴交于点A,过点A作x轴的平行线与抛物线交于点B.(1)直接写出抛物线的对称轴;(2)若AB=4,求抛物线所对应的函数解析式;(3)已知点P(a+4,1),Q(0,a+1),如果抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.解:(1)抛物线的对称轴为直线x=a;ʌ解法提示ɔȵ抛物线y=ax2-2a2x+1(aʂ0),ʑ抛物线的对称轴为直线x=--2a22a=a. (2)由题意可知抛物线的对称轴为直线x=ʃ2,ʑa=ʃ2,ʑ抛物线所对应的函数解析式为y=2x2-8x+1或y=-2x2-8x+1;(3)当a>0时,如解图①,抛物线过点P(a+4, 1)时,则a+42=a,解得a=4,ʑQ(0,5),此时,抛物线与线段PQ有一个公共点.当a<0时,如解图②,抛物线过点P(a+4,1)时,a+4=0,解得a=-4,㊀图②第1题解图此时,Q(0,-3),抛物线与线段PQ有一个公共点;综上所述,当0<aɤ4或-4ɤa<0时,抛物线与线段PQ恰有一个公共点.类型三㊀整点问题1.(2021顺义区一模)在平面直角坐标系xOy中,抛物线y=ax2-4ax+3a(a>0)与y轴交于点A.(1)求点A和抛物线顶点的坐标(用含a的式子表示);(2)直线y=-ax+3a与抛物线y=ax2-4ax+3a围成的区域(不包括边界)记作G.横㊁纵坐标都为整数的点叫做整点.①当a=1时,结合函数图象,求区域G中整点的个数;②当区域G中恰有6个整点时,直接写出a的取值范围.解:(1)ȵy=ax2-4ax+3a=a(x-2)2-a,ʑ抛物线的顶点的坐标为(2,-a).ȵ抛物线y=ax2-4ax+3a(a>0)与y轴交于点A,ʑA(0,3a);(2)①当a=1时,直线y=-x+3,抛物线y=x2-4x+3,可得直线y=-x+3与抛物线y=x2-4x+3的交点为(3,0),(0,3);则(1,1),(2,0)是区域G中的两个整点,即区域G中整点的个数为2个;②32<aɤ2.ʌ解法提示ɔ联立直线y=-ax+3a与抛物线y= ax2-4ax+3a,可得交点为(0,3a),(3,0),ʑ区域G由0ɤxɤ3,-aɤyɤ3a组成;当x=1时,与直线的交点为(1,2a),与抛物线的交点为(1,0),同理可得,当x=2时,与直线的交点为(2,a),与抛物线的交点为(2,-a),区域G中的整点不包括边界,整点有6个,如解图,当0<a< 1时,G中最多有1个整点;当a=1时,G中有2个整点;当1<aɤ1.5时,G中最多有5个整点;当1.5<aɤ2时,G中最多有6个整点;当2<aɤ3.5时,G中最多有13个整点;ʑ当32<aɤ2时,区域G中恰有6个整点.第1题解图2.在平面直角坐标系xOy中,抛物线y=ax2-2ax+ a-1(其中a是常数,a>0)与y轴交于点A.我们将横㊁纵坐标都是整数的点叫做 整点 .(1)求该抛物线的顶点坐标;(2)如果线段OA(包含端点)上的 整点 个数大于3个且小于8个,求a的取值范围;(3)若抛物线与x轴围成的区域(含边界)内有6个整点,求a的取值范围.解:(1)ȵy=ax2-2ax+a-1=a(x-1)2-1,ʑ该抛物线的顶点坐标为(1,-1);(2)ȵ点A为抛物线与y轴的交点,ʑ点A的坐标为(0,a-1).ȵa>0,线段OA(包含端点)上的整点个数大于3个且小于8个,则a-1>2,且a-1<7,ʑa的取值范围为3<a<8;(3)当a=1时,抛物线的解析式为y=x2-2x,如解图,此时抛物线与x轴围成的区域(含边界)内有4个整点,第2题解图当a=14时,抛物线与x轴围成的区域(含边界)内有6个整点,当a=19时,抛物线与x轴围成的区域(含边界)内有8个整点,ȵ抛物线的顶点坐标为(1,-1),ʑ要使抛物线与x轴围成的区域(含边界)内有6个整点,则x=-2所对应的y值要大于0,且x =-1所对应的y值小于等于0,ʑ4a+4a+a-1>0,a+2a+a-1ɤ0,解得a>19,且aɤ14,ʑ当抛物线与x轴围成的区域(含边界)内有6个整点时,a的取值范围为19<aɤ14.。
二次函数代几综合专题
二次函数代几综合(类型一)
———求面积最大值问题
1. 某拱桥横截面为抛物线形,将抛物线放置在平面直角坐标系中如图所示,抛物线与x轴交于A、B两点,与y轴交于C点,且抛物线的解析式为y=-x 2+2x+3.
(1)求△ABC的面积;
(2)若动点D在第一象限的抛物线上,求△BDC面积最大时D点的坐标,并求出△BDC的最大面积。
(3) 若动点D在第一象限的抛物线上且抛物线的对称轴交CB于点P,
当S△DCP最大时,请求D点的坐标和△DCP的最大面积。
2、如图,二次函数y=x 2+bx+c的图象与x轴交于A、B两点,且A点坐标为(-3,0),经过B点的直线交抛物线于点D(-2,-3).
(1)求抛物线的解析式
(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
(3)在二次函数上有一动点P,过点P作PM⊥x轴交线段BD于点M,判断PM有最大值还是有最小值,如有,求出线段PM长度的最大值或最小值并求出此时S △BDP的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数综合题常见题型
一、线段最值
1、如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.
7),且顶点C的横坐标为4,该图象在x 轴上截2、如图,二次函数的图象经过点D(0,3
9
得的线段AB的长为6.
⑴求二次函数的解析式;
⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.
3、如图,已知直线
1
1
2
y x
=+与y轴交于点A,与x轴交于点D,抛物线2
1
2
y x bx c
=++与直
线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。
⑴求该抛物线的解析式;
⑵动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。
⑶在抛物线的对称轴上找一点M,使||
AM MC
-的值最大,求出点M的坐标。
4、如图,已知ABC
=,点A、C在x轴上,点B坐标
∠=︒,AC BC
ACB
∆为直角三角形,90
为(3,m)(0
m>),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ Array并延长交AC于点F,试证明:()
FC AC EC
+为定值.
二、周长
5、已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.
(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.
(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式. 试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.
A C x y
B O
6、如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).
(1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;
(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.
三、面积
7、如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.
四、等腰三角形
8、如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.
(1)求点B的坐标;
(2)求经过点A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
9、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
10、在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.
.
五、平行四边形
11、如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P
是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
(1)分别求出直线AB和这条抛物线的解析式.
(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.
(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
11、如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.
(1)求抛物线顶点A的坐标;
(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD 的形状;
(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
12、如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.
(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
(3)点P是抛物线上一动点,是否存在点P,使四边形P ACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.
13、已知抛物线y=x2+1(如图所示).
(1)填空:抛物线的顶点坐标是(0,1),对称轴是x=0(或y轴);
(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;
(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.
八、相似
14、如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标.
(2)试判断△BCD的形状,并说明理由.
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.
15、如图,抛物线的顶点为C(﹣1,﹣1),且经过点A、点B和坐标原点O,点B的横坐标为﹣3.
(1)求抛物线的解析式;
(2)若点D为抛物线上的一点,点E为对称轴上的一点,且以点A、O、D、E为
顶点的四边形为平行四边形,请直接写出点D的坐标;
(3)若点P是抛物线第一象限上的一个动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;
(2)求直线BC的解析式;
(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.
十、抛物线与圆
16、如图,抛物线n mx x y ++=221交轴于A 、B 两点,交轴于点C , 点P 是它的顶点,点A 的横坐标是3,点B 的横坐标是1.
(1) 求、的值;
(2)求直线PC 的解析式;
(3)请探究以点A 为圆心、直径为5的圆与直线PC 的位置关系,并说明理由. (参考数据,
,)
26.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b 的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.
(1)求抛物线的解析式;
(2)若PA:PB=3:1,求一次函数的解析式;
(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.。