二次函数综合练习题(含答案)

合集下载

《二次函数》同步综合练习卷(含答案)

《二次函数》同步综合练习卷(含答案)

《二次函数》同步综合练习卷一.选择题1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=2.若b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四图之一所示,根据图象分析,则a的值等于()A.﹣1 B.1 C.D.3.设函数y=kx2+(3k+2)x+1,对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值为()A.2 B.﹣2 C.﹣1 D.04.若二次函数y=x2﹣6x+c的图象过A(﹣1,a),B(2,b),C(5,c),则下列正确的是()A.a>b>c B.a>c>b C.b>a>c D.c>a>b5.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移个单位得到抛物线c′B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移个单位得到抛物线c′D.将抛物线c沿x轴向右平移6个单位得到抛物线c′6.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或27.已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(0,﹣3),且对称轴为x=2,则这条抛物线的顶点坐标为()A.(2,3)B.(2,1)C.(﹣2,1)D.(2,﹣1)8.用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2 C.y=(x﹣6)2﹣2 D.y=(x﹣3)2+29.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:有以下几个结论:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2;其中正确的是()A.①④B.②④C.②③D.③④10.如表是一组二次函数y=x2+x﹣1的自变量x与函数值y的对应值.由上表可知,方程x2+x﹣1=0的一个近似解是()A.0.4 B.0.5 C.0.6 D.0.811.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B (3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个12.如图,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设⊙O1的半径为y,AM=x,则y关于x 的函数关系式是()A.y=﹣x2+x B.y=﹣x2+x C.y=﹣x2﹣x D.y=x2﹣x13.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m二.填空题14.有下列函数:①y=1﹣x2;②y=;③y=x(x﹣3);④y=ax2+bx+c;⑤y=2x+1.其中,是二次函数的有(填序号)15.二次函数y1=mx2、y2=nx2的图象如图所示,则m n(填“>”或“<”).16.若抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,且两抛物线的顶点相距3个单位长度,则c的值为.17.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有.①abc>0②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3③2a+b=0④当x>0时,y随x的增大而减小18.已知点(﹣1,m)、(2,n)在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a0(用“>”或“<”连接).19.将抛物线y=﹣3x2向左平移一个单位后,得到的抛物线解析式是.20.函数y=﹣(x﹣1)2﹣7的最大值为.21.有一个二次函数的图象,甲、乙、丙三位同学分别说出了它的特点:甲:对称轴是直线x=2;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形的面积为3.请你写出满足上述全部特点的一个二次函数解析式.22.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.23.已知抛物线y=ax2+bx+c的图象与x轴交于点A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和C (2m﹣4,m﹣6),抛物线y=ax2+bx+c与y轴交于点D,点P在抛物线的对称轴上,连PA,PD,当PA+PD的长最短时,点P的坐标为.24.试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:.25.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的说法有.(请填写正确说法的番号)26.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.27.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过米时就会影响过往船只在桥下的顺利航行.28.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE ﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①AD=BE=5;②当0<t≤5时,y=t2;③cos∠ABE=;④当t=秒时,△ABE∽△QBP;⑤当△BPQ的面积为4cm2时,时间t的值是或;其中正确的结论是.参考答案一.选择题1.解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选:A.2.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣<0,a>0,则b>0,正确;第三个图的对称轴﹣<0,a<0,则b<0,故与b>0矛盾.由于第三个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向上,a=1.故选:B.3.解:∵对于任意负实数k,当x<m时,y随x的增大而增大,∵k为负数,即k<0,∴函数y=kx2+(3k+2)x+1表示的是开口向下的二次函数,∴在对称轴的左侧,y随x的增大而增大,∵对于任意负实数k,当x<m时,y随x的增大而增大,∴x=﹣=﹣∴m≤﹣=.∵k<0,∴﹣>0∴,∵m≤对一切k<0均成立,∴m≤,∴m的最大整数值是m=﹣2.故选:B.4.解:∵二次函数y=x2﹣6x+c,∴该二次函数的抛物线开口向上,且对称轴为:x=3.∵点A(﹣1,a),B(2,b),C(5,c)都在二次函数y=x2﹣6x+c的图象上,而三点横坐标离对称轴x=3的距离按由远到近为:(﹣1,a)、(5,c)、(2,b),∴a>c>b,故选:B.5.解:∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3)..因此将抛物线C向右平移4个单位.故选:B.6.解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.7.解:根据题意得:,解得:a=﹣1,b=4,c=﹣3,∴抛物线解析式为y=﹣x2+4x﹣3=﹣(x﹣2)2+1,则抛物线顶点坐标为(2,1).故选:B.8.解:y=x2﹣6x+11,=x2﹣6x+9+2,=(x﹣3)2+2.故选:D.9.解:设抛物线的解析式为y=ax2+bx+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.10.解:观察表格得:方程x2+x﹣1=0的一个近似根为0.6,故选:C.11.解:由图象可知,抛物线开口向下,则a<0,c>0∵抛物线的顶点坐标是A(1,4)∴抛物线对称轴为直线x=﹣∴b=﹣2a∴b>0,则①错误,②正确;方程ax2+bx+c=4方程的解,可以看做直线y=4与抛物线y=ax2+bx+c的交点的横坐标.由图象可知,直线y=4经过抛物线顶点,则直线y=4与抛物线有且只有一个交点.则方程ax2+bx+c=4有两个相等的实数根,③正确;由抛物线对称性,抛物线与x轴的另一个交点是(﹣1.0)则④错误;不等式x(ax+b)≤a+b可以化为ax2+bx+c≤a+b+c∵抛物线顶点为(1,4)∴当x=1时,y最大=a+b+c∴ax2+bx+c≤a+b+c故⑤正确故选:B.12.解:连接O1M,OO1,可得到直角三角形OO1M,依题意可知⊙O的半径为2,则OO1=2﹣y,OM=2﹣x,O1M=y.在Rt△OO1M中,由勾股定理得(2﹣y)2﹣(2﹣x)2=y2,解得y=﹣x2+x.故选:A.13.解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.二.填空题(共15小题)14.解:①y=1﹣x2;②y=,是反比例函数;③y=x(x﹣3);④y=ax2+bx+c,需要添加a≠0;⑤y=2x+1,是一次函数.其中,是二次函数的有:①y=1﹣x2;③y=x(x﹣3).故答案为:①③.15.解:根据抛物线的开口大小与二次函数的二次项系数的关系:系数越大,开口越小,故m>n,故答案为>.16.解:y=2(x﹣3)2+1对称轴是x=3,顶点坐标为(3,1),∵抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,∴﹣=3,解得,a=,∵两抛物线的顶点相距3个单位长度,∴y=x2﹣x+c的顶点坐标为(3,4)或(3,﹣2),把(3,4)代入y=x2﹣x+c得,c=,把(3,﹣2)代入y=x2﹣x+c得,c=﹣,故答案为:或﹣.17.解:∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴>0,∴b>0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0,故①错误;∵抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故②正确;∵对称轴为直线x=1,∴=1,即2a+b=0,故③正确;∵由函数图象可得:当0<x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小,故④错误;故答案为②③.18.解:∵二次函数的解析式为y=ax2﹣2ax﹣1,∴该抛物线对称轴为x=1,∵|﹣1﹣1|>|2﹣1|,且m>n,∴a>0.故答案为:>.19.解:∵抛物线y=﹣3x2向左平移一个单位后的顶点坐标为(﹣1,0),∴所得抛物线的解析式为y=﹣3(x+1)2,故答案为:y=﹣3(x+1)2.20.解:∵在函数y=﹣(x﹣1)2﹣7中a=﹣1<0,∴当x=1时,y取得最大值,最大值为﹣7,故答案为:﹣7.21.解:对称轴是直线x=2,则一次项系数与二次项系数的比是﹣4,因而可设函数解析式是y=ax2﹣4ax+ac,与y轴交点的纵坐标也是整数,因而ac是整数,y=ax2﹣4ax+ac=a(x2﹣4x+c),与x轴两个交点的横坐标都是整数,即方程x2﹣4x+c=0有两个整数解,设是﹣1和+5,则c=﹣5,则y=ax2﹣4ax+ac=a(x2﹣4x﹣5),∵以这三个交点为顶点的三角形的面积为3,∴a=±.则函数是:y=±(x+1)(x﹣5).(答案不唯一).22.解:y=x2+6x+5,=x2+6x+9﹣4,=(x2+6x+9)﹣4,=(x+3)2﹣4.故答案是:y=(x+3)2﹣4.23.解:∵点A(m﹣4,0)和C(2m﹣4,m﹣6)在直线y=﹣x+p上∴,解得:m=3,p=﹣1,∴A(﹣1,0),B(3,0),C(2,﹣3),设抛物线y=ax2+bx+c=a(x﹣3)(x+1),∵C(2,﹣3),代入得:﹣3=a(2﹣3)(2+1),∴a=1∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,对称轴EF为x=1,当x=0时y=﹣3,即D点的坐标为(0,﹣3),作D关于EF的对称点N,连接AN,交EF于P,则此时P为所求,根据对称得N的坐标为(2,﹣3),设直线AN的解析式为y=kx+e,把A、N的坐标代入得:,解得:k=﹣1,e=﹣1,即y=﹣x﹣1,把x=1代入得:y=﹣2,即P点的坐标为(1,﹣2),故答案为:(1,﹣2).24.解:∵一元二次方程的一个根为0,另一个根在1到2,∴设两个根分别为0和,∴此一元二次方程可以是:x(x﹣)=0,∴二次函数关系式为:y=x(x﹣)=x2﹣x.故答案为:y=x2﹣x.25.解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y;1∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y>y1;2=2+,x2=2﹣(舍去),当M=2,﹣x2+4x=2,x∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故答案为②③.26.解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)227.解:设抛物线解析式为y=ax2,把点B(10,﹣4)代入解析式得:﹣4=a×102,解得:a=﹣,∴y=﹣x2,把x=9代入,得:y=﹣=﹣3.24,此时水深=4+2﹣3.24=2.76米.28.解:根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度分别是1cm/秒、2cm/秒∴BC=BE=10,∴AD=BC=10.∴①错误;又∵从M到N的变化是4,∴ED=4,∴AE=AD﹣ED=10﹣4=6.∵AD∥BC,∴∠EBQ=∠AEB,∴cos∠EBQ=cos∠AEB=,故③错误;如图1,过点P作PF⊥BC于点F,∵AD∥BC,∴∠EBQ=∠AEB,∴sin∠EBQ=sin∠AEB==,∴PF=PB sin∠EBQ=t,∴当0<t≤5时,y=BQ×PF=×2t×t=t2,故②正确,如图4,当t=时,点P在CD上,∴PD=﹣BE﹣ED=﹣10﹣4=,PQ=CD﹣PD=8﹣=,∴,,∴∵∠A=∠Q=90°,∴△ABE∽△QBP,故④正确.由②知,y=t2当y=4时, t2=4,从而,故⑤错误综上所述,正确的结论是②④.。

二次函数综合题经典40题(含知识点与答案解析)(可编辑修改word版)

二次函数综合题经典40题(含知识点与答案解析)(可编辑修改word版)

2019年03月08日〃子初ぐ的初中数学组卷评卷人得分一.解答题(共40小题)1.已知二次函数y=ax2+bx+c图象的对称轴为y轴,且过点(1,2),(2,5).(1)求二次函数的解析式;(2)如图,过点E(0,2)的一次函数图象与二次函数的图象交于A,B两点(A点在B 点的左侧),过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D.①当CD=3时,求该一次函数的解析式;②分别用S1,S2,S3表示△ACE,△ECD,△EDB的面积,问是否存在实数t,使得S22=tS1S3都成立?若存在,求出t的值;若不存在,说明理由.2.如图,已知抛物线y=x2﹣x﹣k(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)过D点向x轴作垂线,垂足为点M,连结AD,若∠MDA=∠ABD,求点D的坐标;(3)若在第一象限的抛物线上有一点P,使得以点A,B,P为顶点的三角形与△ABC相似,请直接写出△ABC的面积.3.如图,已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,图象经过B(﹣3,0)、C(0,3)两点,且与x轴交于点A.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)在抛物线的对称轴上找一点M,使△ACM周长最短,求出点M的坐标;(3)若点P为抛物线对称轴上的一个动点,直接写出使△BPC为直角三角形时点P的坐标.4.定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x﹣m)2+k 的关联直线.(1)求抛物线y=x2+6x﹣1的关联直线;(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.5.已知抛物线y=﹣x2+mx+m+1与x轴交于A、B两点(点A在点B的左侧).(1)当m=2时,抛物线与y轴交于点C.①直接写出点A、B、C的坐标;②如图1,连接AC,在x轴上方的抛物线上有一点D,若∠ABD=∠ACO,求点D的坐标;③如图2,点P为抛物线位于第一象限图象上一动点,过P作PQ⊥CB,求PQ的最大值;(2)如图3,若点M为抛物线位于x轴上方图象上一动点,过点M作MN⊥x轴,垂足为N,直线MN上有一点H,满足∠HBA与∠MAB互余,试判断HN的长是否变化,若变化,请说明理由,若不变,请求出HN长.6.如图,已知抛物线经过点A(3,0),B(0,3),C(﹣1,0).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标;(3)如图1,点D是抛物线上一动点,过D作y轴的平行线DE交直线AB于点E,当线段DE=1时,请直接写出D点的横坐标;(4)如图2,当D为直线AB上方抛物线上一动点时,DF⊥AB于F,设AC的中点为M,连接BD,BM,是否存在点D,使得△BDF中有一个角与∠BMO相等?若存在,请直接写出点D的横坐标;若不存在,请说明理由.7.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.8.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,2),直线CD:y=﹣x+2与x轴交于点D.动点M在抛物线上运动,过点M作MP⊥x轴,垂足为P,交直线CD于点N.(1)求抛物线的解析式;(2)当点P在线段OD上时,△CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;(3)点E是抛物线对称轴与x轴的交点,点F是x轴上一动点,点M在运动过程中,若以C、E、F、M为顶点的四边形是平行四边形时,请直接写出点F的坐标.9.如图,在直角坐标平面内,抛物线经过原点O、点B(1,3),又与x轴正半轴相交于点A,∠BAO=45°,点P是线段AB上的一点,过点P作PM∥OB,与抛物线交于点M,且点M在第一象限内.(1)求抛物线的表达式;(2)若∠BMP=∠AOB,求点P的坐标;(3)过点M作MC⊥x轴,分别交直线AB、x轴于点N、C,若△ANC的面积等于△PMN 的面积的2倍,求的值.10.在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,顶点为D,且过点(2,﹣3a).(1)求抛物线的解析式;(2)抛物线上是否存在一点P,过点P作PM⊥BD,垂足为点M,PM=2DM?若存在,求点P的坐标;若不存在,说明理由.(3)在(2)的条件下,求△PMD的面积.11.如图,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式;(2)已知点P是抛物线上的一个动点,并且点P在第二象限内,过动点P作PE⊥x轴于点E,交线段AC于点D.①如图1,过D作DF⊥y轴于点F,交抛物线于M,N两点(点M位于点N的左侧),连接EF,当线段EF的长度最短时,求点P,M,N的坐标;②如图2,连接CD,若以C,P,D为顶点的三角形与△ADE相似,求△CPD的面积.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.13.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3与直线y=x﹣3交于点A(3,0)和点B(﹣2,n),与y轴交于点C.(1)求出抛物线的函数表达式;(2)在图1中,平移线段AC,点A、C的对应点分别为M、N,当N点落在线段AB上时,M点也恰好在抛物线上,求此时点M的坐标;(3)如图2,在(2)的条件下,在抛物线上是否存在点P(不与点A重合),使△PMC 的面积与△AMC的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.14.已知抛物线l1与l2形状相同,开口方向不同,其中抛物线l1:y=ax2﹣6ax﹣10交x轴于A,B两点(点A在点B的左侧),且AB=4,抛物线l2与l1交于点A与C(4,m).(1)求抛物线l1,l2的函数表达式;(2)当x的取值范围是 时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大;(3)直线PQ∥y轴,分别交x轴,l1,l2于点D(n,0),P,Q,当≤n≤5时,求线段PQ的最大值.15.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.16.在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.17.已知直线y=x+4分别交x轴、y轴于A、B两点,抛物线y=x2+mx﹣4经过点A,和x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD面积的最大值;(3)如图2,经过点M(﹣4,1)的直线交抛物线于点P、Q,连接CP、CQ分别交y轴于点E、F,求OE•OF的值.18.如图,在平面直角坐标系中,直线y=+2分别交x轴、y轴于点A、B,抛物线y=﹣x2+bx+c经过点A、B.点P是x轴上一个动点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.设点P的横坐标为m.(1)点A的坐标为 .(2)求这条抛物线所对应的函数表达式.(3)点P在线段OA上时,若以B、E、F为顶点的三角形与△FPA相似,求m的值.(4)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外),称E、F、P三点为“共谐点”.直接写出E、F、P三点成为“共谐点”时m的值.19.如图1,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=4,直线1是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.抛物线上有一点Q,使得△PQN与△APM的面积相等,请求出点Q到直线PN的距离.20.如图抛物线y=ax2+2交x轴于点A(﹣2,0)、B,交y轴于点C;(1)求抛物线的解析式;(2)点P从点A出发,以1个单位/秒的速度向终点B运动,同时点Q从点C出发,以相同的速度沿y轴正方向向上运动,运动的时间为t秒,当点P到达点B时,点Q也停止运动,设△PQC的面积为S,求S与t间的函数关系式并直接写出t的取值范围;(3)在(2)的条件下,当点P在线段OB上时,设PQ交直线AC于点G,过P作PE⊥AC于点E,求EG的长.21.如图,在平面直角坐标系中,直线y=﹣x+3与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣1.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q,当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.(1)求b、c的值.(2)当点N落在直线AB上时,直接写出m的取值范围.(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN周长为c,求c与m之间的函数关系式,并写出c随m增大而增大时m的取值范围.(4)当△PQM与y轴只有1个公共点时,直接写出m的值.22.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.23.已知:如图,抛物线y=﹣x2+bx+c与x轴、y轴分别相交于点A(﹣1,0)、B(0,3)两点,其顶点为D.(1)求这条抛物线的解析式;(2)若抛物线与x轴的另一个交点为E.求△ODE的面积;抛物线的对称轴上是否存在点P使得△PAB的周长最短.若存在请求出P点的坐标,若不存在说明理由.24.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q 作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y 轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.25.在平面直角坐标系中,已知抛物线y=ax2+bx﹣4与x轴相交于A(﹣4,0)、C(2,0)两点.与y轴相交于点B.(1)求抛物线的解析式;(2)求抛物线与y轴的交点B的坐标和抛物线顶点坐标;(3)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.26.在平面直角坐标系xOy中抛物线y=ax2﹣2ax+3(a≠0)的顶点A在第一象限,它的对称轴与x轴交于点B,△AOB为等腰直角三角形(1)写出抛物线的对称轴为直线 ;(2)求出抛物线的解析式;(3)垂直于y轴的直线L与该抛物线交于点P(x1,y1),Q(x2,y2)其中x1<x2,直线L与函数y=(x>0)的图象交于点R(x3,y3),若,求x1+x2+x3的取值范围.27.已知抛物线y=x2﹣2mx+m2﹣3(m是常数).(1)证明:无论m取什么实数,该抛物线与x轴都有两个交点;(2)设抛物线的顶点为A,与x轴两个交点分别为B,D,B在D的右侧,与y轴的交点为C.①求证:当m取不同值时,△ABD都是等边三角形;②当|m|≤,m≠0时,△ABC的面积是否有最大值,如果有,请求出最大值,如果没有,请说明理由.28.已知抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0),且与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)点P是y轴正半轴上的一个动点,连结DP,将线段DP绕着点D顺时针旋转90°得到线段DE,点P的对应点E恰好落在抛物线上,求出此时点P的坐标;(3)点M(m,n)是抛物线上的一个动点,连接MD,把MD2表示成自变量n的函数,并求出MD2取得最小值时点M的坐标.29.如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,2),点B的坐标为(1,0).(1)求该二次函数的表达式及点C的坐标;(2)点D的坐标为(0,1),点F为该二次函数在第二象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.①求S的最大值;②在点F的运动过程中,当点E落在该二次函数图象上时,求此时S的值及点E的坐标.30.如图1,抛物线y=mx2﹣4mx+3m(m>0)与x轴交于A,B两点(点B在点A右侧).与y轴交点C,与直线l:y=x+1交于D、E两点,(1)当m=1时,连接BC,求∠OBC的度数;(2)在(1)的条件下,连接DB、EB,是否存在抛物线在第四象限上一点P,使得S△DBE=S△DPE?若存在,求出此时P点坐标及PB的长度;若不存在,请说明理由;(3)若以DE为直径的圆恰好与x轴相切,求此时m的值.31.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与直线l:y=kx+m(k<0)交于A(﹣1,﹣1)、B两点,与y轴交于C(0,2).(1)求抛物线的函数表达式;(2)若y轴平分∠ACB,求k的值;(3)若在x轴上有且只有一点P,使∠APB=90°,求k的值.32.如图,已知点E在x轴上,⊙E交x轴于A,B两点(点A在点B的左侧),交y轴于点C,OB=3OA=3,抛物线y=ax2+bx+c的图象过A、B、C三点,顶点为M.(1)写出A、B两点的坐标A ,B ;(2)求二次函数的关系式;(3)点P为线段BM上的一个动点,过点P作x轴的垂线PQ垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数关系式,和四边形ACPQ的面积的最大值.33.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y=x2+bx+c过点A和B,与y轴交于点C.(1)求点C的坐标,并画出抛物线的大致图象(要求过点A、B、C,开口方向、顶点和对称轴相对准确)(2)点Q(8,m)在抛物线y=x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;(3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.34.如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF:S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),点P是抛物线上第一象限上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.35.如图,顶点为D的抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于两点B、C(点B在点C的左边),点A与点E关于抛物线的对称轴对称,点B、E在直线y=kx+b(k,b为常数)上.(1)求k,b的值;(2)点P为直线AE上方抛物线上的任意一点,过点P作AE的垂线交AE于点F,点G为y轴上任意一点,当△PBE的面积最大时,求PF+FG+OG的最小值;(3)在(2)中,当PF+FG+OG取得最小值时,将△AFG绕点A按顺时方向旋转30°后得到△AF1G1,过点G1作AE的垂线与AE交于点M.点D向上平移个单位长度后能与点N重合,点Q为直线DN上任意一点,在平面直角坐标系中是否存在一点S,使以S、Q、M、N为顶点且MN为边的四边形为菱形?若存在,直接写出点S的坐标;若不存在,请说明理由.36.如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.37.已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点的坐标分别为A (0,2),B(﹣1,0),点C为线段AB的中点,现将线段BA绕点B按逆时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)、经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣1.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(﹣1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围 .38.在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0),与y轴交于C(0,3),抛物线顶点为D点.(1)求此抛物线解析式;(2)如图1,点P为抛物线上的一个动点,且在对称轴右侧,若△ADP面积为3,求点P 的坐标;(3)在(2)的条件下,PA交对称轴于点E,如图2,过E点的任一条直线与抛物线交于M,N两点,直线MD交直线y=﹣3于点F,连结NF,求证:NF∥y轴.39.如图1,正方形ABCD的一边AB在x轴的正半轴上,⊙M是正方形ABCD的外接圆,连接OD,与⊙M相交于E点,连接BE与AD交于点F,已知AB=4,(1)求证:△ODA≌△FBA;(2)如图2,当E是OD中点时,点G是过E、A、B的抛物线的顶点,连接AG,①求点E的坐标;②求证:AG是⊙M的切线.(3)如图3,连接CE,若ED+EA=3,直接写出EC+EB的值.40.如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(,);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P 作PQ∥y轴交线段OB于点Q.(1)求抛物线的解析式;(2)当PQ的长度为最大值时,求点Q的坐标;(3)点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB 上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.2019年03月08日〃子初ぐ的初中数学组卷参考答案与试题解析一.解答题(共40小题)1.已知二次函数y=ax2+bx+c图象的对称轴为y轴,且过点(1,2),(2,5).(1)求二次函数的解析式;(2)如图,过点E(0,2)的一次函数图象与二次函数的图象交于A,B两点(A点在B 点的左侧),过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D.①当CD=3时,求该一次函数的解析式;②分别用S1,S2,S3表示△ACE,△ECD,△EDB的面积,问是否存在实数t,使得S22=tS1S3都成立?若存在,求出t的值;若不存在,说明理由.【考点】HF:二次函数综合题.【分析】(1)把点(1,2),(2,5)坐标和对称轴为y轴三个条件,代入二次函数的表达式即可求解;(2)①将一次函数表达式与二次函数表达式联立并整理得:x2﹣kx﹣1=0,利用x2﹣x1===3,即可求解;②分别求出S1、S2、S3,用韦达定理化简,即可求解.【解答】解:(1)由题意得:,解得:,故:二次函数的表达式为:y=x2+1;(2)①设过点E的一次函数表达式为:y=kx+2,将一次函数表达式与二次函数表达式联立并整理得:x2﹣kx﹣1=0,设点A、B的坐标分别为(x1,y1)、(x2,y2)(x1<x2),则:x1+x2=k,x1x2=﹣1,x2﹣x1===3,解得:k=,∴该一次函数表达式为:y=x+2或y=﹣x+2;②S1=AC•OC=﹣x1y1,S2=CD•OE=(x2﹣x1)=k2+4,S3=BD•OD=x2y2,x1+x2=k,x1x2=﹣1,则:S1•S2=﹣x1x2[k2x1x2+2k(x1+x2)+4]=(k2+4)=4S2,∴t=4.【点评】本题考查的是二次函数综合运用,主要考查利用韦达定理处理复杂的数据,难度不大.2.如图,已知抛物线y=x2﹣x﹣k(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)过D点向x轴作垂线,垂足为点M,连结AD,若∠MDA=∠ABD,求点D的坐标;(3)若在第一象限的抛物线上有一点P,使得以点A,B,P为顶点的三角形与△ABC相似,请直接写出△ABC的面积.【考点】HF:二次函数综合题.【分析】(1)求出A、B的坐标,把点B坐标代入直线表达式即可求解;(2)利用△AMD∽△DMB,=,即可求解;(3)分△ABC∽△APB、△ABC∽△PAB两种情况,分别求解即可.【解答】解:(1)抛物线y=x2﹣x﹣k=(x+2)(x﹣4),令y=0,则x=﹣2或4,即点A、B的坐标分别为(﹣2,0)、(4,0),把点B坐标代入直线y=﹣x+b得:﹣×4+b=0,解得:b=,∴直线BD的表达式为:y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),把点D的坐标代入抛物线表达式得:(﹣5+2)(﹣5﹣4)=3,k=,∴抛物线的表达式为:y=x2﹣x﹣;(2)设点D的坐标为(x,﹣x+),则:DM=﹣x+,BM=4﹣x,AM=﹣2﹣x,∵∠MDA=∠ABD,∠AMD=∠DMB,∴△AMD∽△DMB,∴=,即:(﹣x+)2=(4﹣x)(﹣2﹣x),解得:x=﹣5或4(舍去x=4),∴点D的坐标为(﹣5,3);(3)由抛物线的表达式,令x=0,则y=﹣k,∴点C的坐标为(0,﹣k),OC=k,①当△ABC∽△APB时,则∠BAC=∠PAB,设点P的坐标为(x,y),过点P作PN⊥x轴交于点N,则ON=x,PN=y,tan∠BAC=tan∠PAB,即:,∴y=kx+k,把点P(x,)代入抛物线表达式并解得:x=8或﹣2(舍去﹣2),故点P的坐标为(8,5k),∵△ABC∽△APB,∴AB2=AC•AP,即:62=,解得:k=,S△ABC=AB•OC==;②△ABC∽△PAB时,同理可得:k=,S△ABC=AB•OC==3,故:△ABC的面积为=或3.【点评】本题考查的是二次函数综合运用,涉及到三角形相似、解直角三角形等,(2)(3)的关键是通过相似确定线段间的比例关系.3.如图,已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,图象经过B(﹣3,0)、C(0,3)两点,且与x轴交于点A.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)在抛物线的对称轴上找一点M,使△ACM周长最短,求出点M的坐标;(3)若点P为抛物线对称轴上的一个动点,直接写出使△BPC为直角三角形时点P的坐标.【考点】HF:二次函数综合题.【分析】(1)由抛物线的对称轴及点B的坐标可求出点A的坐标,由点A,B,C的坐标,利用待定系数法即可求出二次函数的表达式;(2)连接BC,交直线x=﹣1于点M,此时△ACM周长最短,由点B,C的坐标,利用待定系数法可求出直线BC的函数表达式,再利用一次函数图象上点的坐标特征即可求出点M的坐标;(3)设点P的坐标为(﹣1,m),结合点B,C的坐标可得出PB2,PC2,BC2的值,分∠BCP=90°,∠CBP=90°,∠BPC=90°三种情况考虑,①当∠BCP=90°时,利用勾股定理可得出关于m的一元一次方程,解之可得出m的值,进而可得出点P的坐标;②当∠CBP=90°时,利用勾股定理可得出关于m的一元一次方程,解之可得出m的值,进而可得出点P的坐标;③当∠BPC=90°时,利用勾股定理可得出关于m 的一元二次方程,解之可得出m的值,进而可得出点P的坐标.综上,此题得解.【解答】解:(1)∵二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,点B的坐标为(﹣3,0),∴点A的坐标为(1,0).将A(1,0),B(﹣3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴二次函数的表达式为y=﹣x2﹣2x+3.(2)连接BC,交直线x=﹣1于点M,如图1所示.∵点A,B关于直线x=﹣1对称,∴AM=BM.∵点B,C,M三点共线,∴此时AM+CM取最小值,最小值为BC.设直线BC的函数表达式为y=kx+d(k≠0),将B(﹣3,0),C(0,3)代入y=kx+d,得:,解得:,∴直线BC的函数表达式为y=x+3.当x=﹣1时,y=x+3=2,∴当点M的坐标为(﹣1,2)时,△ACM周长最短.(3)设点P的坐标为(﹣1,m),∵点B的坐标为(﹣3,0),点C的坐标为(0,3),∴PB2=[﹣3﹣(﹣1)]2+(0﹣m)2=m2+4,PC2=[0﹣(﹣1)]2+(3﹣m)2=m2﹣6m+10,BC2=[0﹣(﹣3)]2+(3﹣0)2=18.分三种情况考虑(如图2):①当∠BCP=90°时,BC2+PC2=PB2,∴18+m2﹣6m+10=m2+4,解得:m=4,∴点P的坐标为(﹣1,4);②当∠CBP=90°时,BC2+PB2=PC2,∴18+m2+4=m2﹣6m+10,解得:m=﹣2,∴点P的坐标为(﹣1,﹣2);③当∠BPC=90°时,PB2+PC2=BC2,∴m2+4+m2﹣6m+10=18,整理得:m2﹣3m﹣2=0,解得:m1=,m2=,∴点P的坐标为(﹣1,)或(﹣1,).综上所述:使△BPC为直角三角形时点P的坐标为(﹣1,﹣2),(﹣1,),(﹣1,)或(﹣1,4).【点评】本题考查了二次函数的性质、待定系数法求二次函数解析式、三角形的三边关系、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、两点间的距离公式、勾股定理以及解一元一次(二次)方程,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数的对称性及三角形的三边关系,找出点M所在的位置;(3)分∠BCP=90°,∠CBP=90°,∠BPC=90°三种情况,找出关于m的方程.4.定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x﹣m)2+k 的关联直线.(1)求抛物线y=x2+6x﹣1的关联直线;(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.【考点】HF:二次函数综合题.【分析】(1)根据关联直线的定义可求;(2)由题意可得a=2,c=3,设抛物线的顶点式为y=2(x﹣m)2+k,可得,可求m和k的值,即可求这条抛物线的表达式;(3)由题意可得A(1,4a)B(2,3a)C(﹣1,0),可求AB2=1+a2,BC2=9+9a2,AC2=4+16a2,分BC,AC为斜边两种情况讨论,根据勾股定理可求a的值.【解答】解:(1)∵y=x2+6x﹣1=(x+3)2﹣10∴关联直线为y=x+3﹣10=x﹣7(2)∵抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,∴a=2,c=3,可设抛物线的顶点式为y=2(x﹣m)2+k,则其关联直线为y=2(x﹣m)+k=2x﹣2m+k,∴解得∴抛物线y=2x2+3或y=2(x+1)2+1,(3)由题意:A(1,4a)B(2,3a)C(﹣1,0),∴AB2=1+a2,BC2=9+9a2,AC2=4+16a2,显然AB2<BC2且AB2<AC2,故AB不能成为△ABC的斜边,当AB2+BC2=AC2时:1+a2+9+9a2=4+16a2解得a=±1,当AB2+AC2=BC2时:1+a2+4+16a2=9+9a2解得,∵抛物线的顶点在第一象限∴a>0,即【点评】本题是二次函数综合题,直角三角形的性质,熟练掌握二次函数图象上点的坐标特征和二次函数的性质;理解坐标与图象性质,记住两点间的距离公式,注意分情况讨论思想的应用.5.已知抛物线y=﹣x2+mx+m+1与x轴交于A、B两点(点A在点B的左侧).(1)当m=2时,抛物线与y轴交于点C.①直接写出点A、B、C的坐标;②如图1,连接AC,在x轴上方的抛物线上有一点D,若∠ABD=∠ACO,求点D的坐标;③如图2,点P为抛物线位于第一象限图象上一动点,过P作PQ⊥CB,求PQ的最大值;(2)如图3,若点M为抛物线位于x轴上方图象上一动点,过点M作MN⊥x轴,垂足为N,直线MN上有一点H,满足∠HBA与∠MAB互余,试判断HN的长是否变化,若变化,请说明理由,若不变,请求出HN长.【考点】HF:二次函数综合题.【分析】(1)①先解方程﹣x2+2x+3=0得A点和B点坐标;然后计算自变量为0时的函数值得到C点坐标;②OD交y轴于E,如图2,通过证明Rt△OBE∽Rt△OCA,利用相似比得到OE=OA=1,则E(0,1),再利用待定系数法求出直线BE的解析式为y=﹣x+1,然后解方程得D点坐标;③作PK⊥x轴于K,交BC于F,如图2,易得直线BC的解析式为y=﹣x+3,设P(x,﹣x2+2x+3)(0<x<3),则F(x,﹣x+3),所以PF=﹣x2+3x,再证明∠BFK=∠PFQ=45°,所以PQ=PF=﹣x2+x,然后根据二次函数的性质解决问题;(2)先解方程﹣x2+mt+m+1=0得A(﹣1,0),B(m+1,0),延长BH交AM于G,如图3,证明Rt△BNH∽△MNA,则=,设M(t,﹣t2+mt+m+1),则N(t,0),所以=,然后根据分式的运算可得到HN=1.【解答】解:(1)①当m=2时,抛物线解析式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),当y=0时,y=﹣x2+2x+3=3,则C(0,3);②OD交y轴于E,如图2,∵∠OBE=∠ACO,∴Rt△OBE∽Rt△OCA,∴==,∴OE=OA=1,∴E(0,1),设直线BE的解析式为y=kx+b,把B(3,0),E(0,1)代入得,解得,∴直线BE的解析式为y=﹣x+1,解方程组得或﹣,∴D点坐标为(﹣,);③作PK⊥x轴于K,交BC于F,如图2,易得直线BC的解析式为y=﹣x+3,设P(x,﹣x2+2x+3)(0<x<3),则F(x,﹣x+3),∴PF=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x,∵OB=OC=3,∴△OCB为等腰直角三角形,∴∠KBF=45°,∴∠BFK=∠PFQ=45°,∴PQ=PF=﹣x2+x=﹣(x﹣)2+,当x=时,PQ有最大值,最大值为;(2)HN的长度不变,它的长度为1.。

二次函数综合复习附答案

二次函数综合复习附答案

二次函数综合复习学校:___________姓名:___________班级:___________考号:___________一、单选题 1.关于二次函数()215y x =-+,下列说法正确的是( ) A .函数图象的开口向下 B .函数图象的顶点坐标是()1,5- C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大2.如图,某公司准备在一个等腰直角三角形ABC 的绿地上建造一个矩形的休闲书吧PMBN ,其中点P 在AC 上,点NM 分别在BC,AB 上,记PM=x ,PN=y ,图中阴影部分的面积为S ,若NP 在一定范围内变化,则y 与x ,S 与x 满足的函数关系分别是( )A .反比例函数关系,一次函数关系B .二次函数关系,一次函数关系C .一次函数关系,反比例函数关系D .一次函数关系,二次函数关系3.二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )A .B .C .D .4.如图,已知抛物线22y ax bx =+-的对称轴是=1x -,直线l x ∥轴,且交抛物线于点()()1122,,,P x y Q x y ,下列结论错误..的是( )A .28b a >-B .若实数1m ≠-,则2a b am bm -<+C .320a ->D .当2y >-时,120x x ⋅<5.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为直线x =1,点B 坐标为(﹣1,0).则下面的四个结论:①2a +b =0;①4a ﹣2b +c >0;①abc >0;①当y <0时,x <﹣1或x >3.其中正确的是( )A .①①B .①①C .①①D .①①6.记某商品销售单价为x 元,商家销售此种商品每月获得的销售利润为y 元,且y 是关于x 的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y 与x 的函数关系式是( ) A .y =﹣(x ﹣60)2+1825 B .y =﹣2(x ﹣60)2+1850 C .y =﹣(x ﹣65)2+1900D .y =﹣2(x ﹣65)2+20007.已知抛物线22()1y x =-+,下列结论错误的是( ) A .抛物线开口向上 B .抛物线的对称轴为直线2x = C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大8.已知抛物线y =ax 2 +bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图象如图所示,有下列结论:①abc >0;①2c ﹣3b <0;①5a +b +2c =0;①若B (43,y 1)、C (13,y 2)、D (13-,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .4二、填空题 9.如图,已知P 是函数y 214x =-1图象上的动点,当点P 在x 轴上方时,作PH ①x 轴于点H ,连接PO .小华用几何画板软件对PO ,PH 的数量关系进行了探讨,发现PO ﹣PH 是个定值,则这个定值为 _____.10.如图,二次函数2(0)y ax bx c a =++≠的图像过点(-1,0),对称轴为直线x =2,下列结论:①4a +b =0;①9a +c <3b ;①8a +7b +2c >0;①若点A (-3,1y )、点B (21,2y -)、点C (37,2y )在该函数图像上,则132y y y <<:①若方程()()153a x x +-=-的两根为12,x x ,且12x x <,则1215.x x <-<<其中正确的结论有__________. (只填序号)11.已知二次函数223y x x =--+,当12a x 时,函数值y 的最小值为1,则a 的值为_______.12.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是_____.13.北仑梅山所产的草莓柔嫩多汁,芳香味美,深受消费者喜爱.有一草莓种植大户,每天草莓的采摘量为300千克,当草莓的零售价为22元/千克时,刚好可以全部售完.经调查发现,零售价每上涨1元,每天的销量就减少30千克,而剩余的草莓可由批发商以18元/千克的价格统一收购走,则当草莓零售价为___元时,该种植户一天的销售收入最大.14.如图,一次足球训练中,一球员从球门正前方将球射向球门,球射向球门的路线呈抛物线,当球飞行的水平距离为6米时,球达到最高点,此时球离地面3米,当足球下落到离地面53米时,足球飞行的水平距离为__________米.三、解答题 15.某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x 元,每个月的销售量为y 件. (1)求y 与x 的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少? 16.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x 元(x 为整数),每个月的销售量为y 件.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围; (2)设每月的销售利润为W ,请直接写出W 与x 的函数关系式.17.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的,正常水位时,大孔水面宽度为20m ,顶点距水面6m ,小孔顶点距水面4.5m .当水位上涨刚好淹没小孔时,求大孔的水面宽度.18.如图,点(),3P a 在抛物线C :()246y x =--上,且在C 的对称轴右侧.(1)写出C 的对称轴和y 的最大值,并求a 的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P 及C 的一段,分别记为P ',C '.平移该胶片,使C '所在抛物线对应的函数恰为269y x x =-+-.求点P '移动的最短路程.19.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y (个)与销售单价x (元)之间满足如图所示的一次函数关系.(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w 元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?20.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y (件)与销售单价x (元/件)满足一次函数关系,部分数据如下表所示:(1)直接写出y 与x 的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元? (3)当销售单价为多少元时,每天获利最大?最大利润是多少元?21.在平面直角坐标系xOy 中,抛物线()2420y ax ax a a =-+≠的顶点为P ,且与y 轴交于点A ,与直线y a =-交于点B ,C (点B 在点C 的左侧).(1)求抛物线()2420y ax ax a a =-+≠的顶点P 的坐标(用含a 的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC 围成的封闭区域(不含边界)为“W 区域”.①当2a =时,请直接写出“W 区域”内的整点个数;①当“W 区域”内恰有2个整点时,结合函数图象,直接写出a 的取值范围.22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ≤≤,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克? 23.在平面直角坐标系中,设二次函数22y ax bx =++(a ,b 是常数,0a ≠). (1)若1a =,当=1x -时,4y =.求y 的函数表达式.(2)写出一题a ,b 的值,使函数22y ax bx =++的图象与x 轴只有一个公共点,并求此函数的顶点坐标.(3)已知,二次函数22y ax bx =++的图象和直线4y ax b =+都经过点(2,m ),求证2212a b +≥.24.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K 为飞行距离计分的参照点,落地点超过K 点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA 为66m ,基准点K 到起跳台的水平距离为75m ,高度为m h (h 为定值).设运动员从起跳点A 起跳后的高度(m)y 与水平距离(m)x 之间的函数关系为2(0)y ax bx c a =++≠.(1)c的值为__________;(2)①若运动员落地点恰好到达K点,且此时19,5010a b=-=,求基准点K的高度h;①若150a=-时,运动员落地点要超过K点,则b的取值范围为__________;(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.参考答案:1.D【分析】由抛物线的表达式和函数的性质逐一求解即可. 【详解】解:对于y =(x -1)2+5, ①a =1>0,故抛物线开口向上,故A 错误; 顶点坐标为(1,5),故B 错误;该函数有最小值,最小值是5,故C 错误; 当1x >时,y 随x 的增大而增大,故D 正确, 故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 2.D【分析】先求出AM =PM ,利用矩形的性质得出y =﹣x +m ,最后利用S =S △ABC -S 矩形PMBN 得出结论.【详解】设AB =m (m 为常数).在△AMP 中,①A =45°,AM ①PM , ①△AMP 为等腰直角三角形, ①AM =PM ,又①在矩形PMBN 中,PN =BM ,①x +y =PM +PN =AM +BM =AB =m ,即y =﹣x +m , ①y 与x 成一次函数关系,①S =S △ABC -S 矩形PMBN =12m 2-xy =12m 2-x (﹣x +m )=x 2-mx +212m ,①S 与x 成二次函数关系. 故选D .【点睛】本题考查了一次函数的实际应用及二次函数的实际应用,解题的关键是掌握根据题意求出y 与x 之间的函数关系式. 3.A【分析】先分析二次函数21y ax bx =++的图像的开口方向即对称轴位置,而一次函数2y ax b =+的图像恒过定点(,0)2ba-,即可得出正确选项.【详解】二次函数21y ax bx =++的对称轴为2bx a=-,一次函数2y ax b =+的图像恒过定点(,0)2b a -,所以一次函数的图像与二次函数的对称轴的交点为(,0)2ba-,只有A 选项符合题意. 故选A .【点睛】本题考查了二次函数的图像与性质、一次函数的图像与性质,解决本题的关键是能推出一次函数2y ax b =+的图像恒过定点(,0)2ba-,本题蕴含了数形结合的思想方法等. 4.C【分析】先根据抛物线对称轴求出2b a =,再由抛物线开口向上,得到0a >,则228480b a a a +=+>由此即可判断A ;根据抛物线开口向上在对称轴处取得最小值即可判断B ;根据当1x =时,20y a b =+-<,即可判断C ;根据2y >-时,直线l 与抛物线的两个交点分别在y 轴的两侧,即可判断D .【详解】解:①抛物线22y ax bx =+-的对称轴是=1x -, ①12ba-=-, ①2b a =,①抛物线开口向上, ①0a >,①228480b a a a +=+>,①28b a >-,故A 说法正确,不符合题意; ①抛物线开口向下,抛物线对称轴为直线x =-1, ①当x =-1时,=2y a b --最小值,①当实数1m ≠-,则222a b am bm --<+-,①当实数1m ≠-时,2a b am bm -<+,故B 说法正确,不符合题意; ①当1x =时,20y a b =+-<,①a +2a -2<0,即3a -2<0,故C 说法错误,符合题意; ①2y >-,①直线l 与抛物线的两个交点分别在y 轴的两侧,①120x x ⋅<,故D 说法正确,不符合题意;故选C .【点睛】本题主要考查了根据二次函数的图象去判断式子符号,二次函数的系数与图象之间的关系等等,熟知二次函数的相关知识是解题的关键.5.C【分析】根据对称轴为x =1可判断①;当x =﹣2时,4a ﹣2b +c <0即可判断①;根据开口方向,对称轴以及与y 轴交点即可判断①,求出A 点坐标,根据图象即可判断①.【详解】解:①对称轴为x =1,①x =﹣2b a=1, ①b =﹣2a ,①2a +b =0,故选项①正确;①点B 坐标为(﹣1,0),①当x =﹣2时,4a ﹣2b +c <0,故选项①错误;①图象开口向下,①a <0,①b =﹣2a >0,①图象与y 轴交于正半轴上,①c >0,①abc <0,故选项①错误;①对称轴为x =1,点B 坐标为(﹣1,0),①A 点坐标为:(3,0),①当y <0时,x <﹣1或x >3.故选项①正确;故选:C .【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a ≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线x =﹣2b a;抛物线与y 轴的交点坐标为(0,c );当b 2﹣4ac >0,抛物线与x 轴有两个交点;当b 2﹣4ac =0,抛物线与x 轴有一个交点;当b 2﹣4ac <0,抛物线与x 轴没有交点.6.D【分析】设二次函数的解析式为:y =ax 2+bx +c ,根据题意列方程组即可得到结论.【详解】解:设二次函数的解析式为:y =ax 2+bx+c ,①当x =55,y =1800,当x =75,y =1800,当x =80时,y =1550,①222555518007575180080801550a b c a b c a b c ⎧++=⎪++=⎨⎪++=⎩,解得a =−2,b =260,c =−6450,①y 与x 的函数关系式是y =﹣2x 2+260x ﹣6450=﹣2(x ﹣65)2+2000,故选:D .【点睛】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键.7.D【分析】根据二次函数的开口方向、对称轴、顶点坐标以及增减性对各选项分析判断即可得解.【详解】解:抛物线22()1y x =-+中,a >0,抛物线开口向上,因此A 选项正确,不符合题意;由解析式得,对称轴为直线2x =,因此B 选项正确,不符合题意;由解析式得,当2x =时,y 取最小值,最小值为1,所以抛物线的顶点坐标为(2,1),因此C 选项正确,不符合题意;因为抛物线开口向上,对称轴为直线2x =,因此当2x <时,y 随x 的增大而减小,因此D 选项错误,符合题意;故选D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在()2y a x h k =-+中,对称轴为x h =,顶点坐标为(,)h k . 8.B【分析】根据二次函数的图象与性质一一判断即可.【详解】解:由图象可知,开口向上,图象与y 轴负半轴有交点,则0a >,0c <, 对称轴为直线12b x a=-=,则20b a =-<, ①0abc >,故①正确;当3x =时,930y a b c =++=,①2b a =-,①30a c +=,即3a c =-①()()2323320c b a a -=⨯--⨯-=,故①错误;①对称轴为直线12b x a=-=, ①抛物线与x 轴负半轴的交点为(1-,0),①0a b c -+=,①930a b c ++=,两式相加,则10220a b c ++=,①50a b c ++=,故①错误; ①14133--=,12133-=,41133-=, ①421333>>, ①根据开口向上,离对称轴越近其对应的函数值越小,则有321y y y >>,故①正确; ①正确的结论有2个,故选:B【点睛】本题考查了二次函数的图象及性质;熟练掌握二次函数图象及性质,能够通过函数图象提取信息是解题的关键.9.2【分析】设p (x ,14x 2-1),则OH =|x |,PH =|14x 2-1|,因点P 在x 轴上方,所以14x 2-1>0,由勾股定理求得OP =14x 2+1,即可求得OP -PH =2,得出答案. 【详解】解:设p (x ,14x 2-1),则OH =|x |,PH =|14x 2-1|, 当点P 在x 轴上方时,①14x 2-1>0, ①PH =|14x 2-1|=14x 2-1, 在Rt △OHP 中,由勾股定理,得OP 2=OH 2+PH 2=x 2+(14x 2-1)2=(14x 2+1)2, ①OP =14x 2+1, ①OP -PH =(14x 2+1)-(14x 2-1)=2,故答案为:2.【点睛】本题考查二次函数图象上点的坐标特征,勾股定理,利用坐标求线段长度是解题的关键.10.①①①①【分析】根据二次函数的图象与系数的关系即可求出答案.【详解】解:①由对称轴可知:x =−2b a=2, ①4a +b =0,故①正确;①由图可知:x =−3时,y <0,①9a −3b +c <0,即9a +c <3b ,故①正确;①令x =−1,y =0,①a −b +c =0,①b =−4a ,①c =−5a ,①8a +7b +2c=8a −28a −10a=−30a由开口可知:a <0,①8a +7b +2c =−30a >0,故①正确;①由抛物线的对称性可知:点C 关于直线x =2的对称点为(12,y 3),①−3<−12<12,①y 1<y 2<y 3故①错误;①由题意可知:(−1,0)关于直线x =2的对称点为(5,0),①二次函数y =ax 2+bx +c =a (x +1)(x −5),令y =−3,①直线y =−3与抛物线y =a (x +1)(x −5)的交点的横坐标分别为x 1,x 2,①x 1<−1<5<x 2故①正确;故答案为:①①①①.【点睛】本题考查二次函数的图象,解题的关键是正确理解二次函数的图象与系数之间的关系,本题属于中等题型.11.1-1【分析】先把函数解析式化为顶点式可得当1x <-时,y 随x 的增大而增大,当1x >-时,y 随x 的增大而减小,然后分两种情况讨论:若1a ≥-;若1a <-,即可求解.【详解】解:()222314y x x x =--+=-++,①当1x <-时,y 随x 的增大而增大,当1x >-时,y 随x 的增大而减小,若1a ≥-,当12a x时,y 随x 的增大而减小, 此时当12x =时,函数值y 最小,最小值为74,不合题意, 若1a <-,当x a =时,函数值y 最小,最小值为1,①2231a a --+=,解得:1a =-1-;综上所述,a 的值为1-故答案为:1-【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.12.﹣3<x <1【分析】根据抛物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【详解】解:①抛物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点为(﹣3,0),对称轴为x =﹣1,①抛物线与x 轴的另一个交点为(1,0),由图象可知,当y <0时,x 的取值范围是﹣3<x <1.故答案为:﹣3<x <1.【点睛】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键.13.25【分析】设草莓的零售价为x 元/千克,销售收入为y 元,由题意得y =-30x 2+1500x -11880,再根据二次函数的性质解答即可.【详解】解:设草莓的零售价为x 元/千克,销售收入为y 元,由题意得,y =x [300-30(x -22)]+18×30(x -22)=-30x 2+1500x -11880, 当150025260b x a =-=-=-时,y 最大, ①当草莓的零售价为25元/千克时,种植户一天的销售收入最大.故答案为:25.【点睛】本题考查二次函数的实际应用,熟练掌握二次函数的性质是解题关键. 14.10【分析】设抛物线的解析式为2(6)3y a x =-+,代入原点,确定解析式为2112y x x =-+,当y =53米时,求得x 的值即可. 【详解】设抛物线的解析式为2(6)3y a x =-+,代入原点,得:20(06)3a =-+,解得a =112-, ①抛物线的解析式为2112y x x =-+, 当y =53米时, 215123x x -+=, 解得x =10,x =2(舍去),足球飞行的水平距离为10米,故答案为:10.【点睛】本题考查了抛物线的解析式,已知函数值求自变量值,熟练掌握待定系数法是解题的关键.15.(1)y =-10x+900;(2)每件销售价为70元时,获得最大利润;最大利润为4000元【分析】(1)根据等量关系“利润=(售价﹣进价)×销量”列出函数表达式即可.(2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值.【详解】解:(1)根据题意,y =300﹣10(x ﹣60)=-10x+900,①y 与x 的函数表达式为:y =-10x+900;(2)设利润为w ,由(1)知:w =(x ﹣50)(-10x+900)=﹣10x 2+1400x ﹣45000, ①w =﹣10(x ﹣70)2+4000,①每件销售价为70元时,获得最大利润;最大利润为4000元.【点睛】本题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.16.(1)260(5080)4203(80140)x x y x x -<⎧=⎨-<⎩;(2)2230010400(5080)354016800(80140)x x x W x x x ⎧-+-<=⎨-+-<⎩【分析】(1)根据题意先分类讨论,当售价超过50元但不超过80元时,上涨的价格是()50x -元,就少卖()50x -件,用原来的210件去减()50x -得到销售量;当售价超过80元,超过80的部分是()80x -元,就少卖()380x -件,用原来的210件先减去售价从50涨到80之间少卖的30件再减去()380x -得到最终的销售量.(2)根据利润=(售价-成本)⨯销量,现在的单件利润是()40x -元,再去乘以(1)中两种情况下的销售量,得到销售利润关于售价的式子.【详解】(1)当5080x <时,210(50)y x =--,即260y x =-.当80140x <时,210(8050)3(80)y x =----,即4203y x =-,则260(5080),4203(80140).x x y x x -<⎧=⎨-<⎩ (2)由利润=(售价-成本)×销售量可以列出函数关系式为2230010400(5080),354016800(80140).x x x W x x x ⎧-+-<=⎨-+-<⎩【点睛】本题考查二次函数实际应用中的利润问题,关键在于根据题意列出销量与售价之间的一次函数关系式以及熟悉求利润的公式,需要注意本题要根据售价的不同范围进行分类讨论,结果要写成分段函数的形式,还要标上x 的取值范围.17.此时大孔的水面宽度为10m .【分析】根据题意,建立如图所示的平面直角坐标系,可以得到A 、B 、M 的坐标,设出函数关系式,待定系数求解函数式.根据NC 的长度,得出函数值y ,代入解析式,即可得出E 、F 的坐标,进而得出答案.【详解】解:如图,建立如图所示的平面直角坐标系,由题意得,M 点坐标为(0,6),A 点坐标为(-10,0),B 点坐标为(10,0),设中间大抛物线的函数式为y =ax 2+6,①点B 在此抛物线上,①0=a ×102+6,解得a =-350, ①函数式为y =-350x 2+6. ①NC =4.5m ,①令y =4.5,代入解析式得-350x 2+6=4.5, x 1=5,x 2=-5, ①可得EF =5-(-5)=10.此时大孔的水面宽度为10m .【点睛】本题是二次函数的实际应用,考查了待定系数法求二次函数的解析式,由函数值求自变量的值,解答时求出函数的解析式是关键.18.(1)对称轴为直线6x =,y 的最大值为4,7a =(2)5【分析】(1)由2()y a x h k =-+的性质得开口方向,对称轴和最值,把(),3P a 代入()246y x =--中即可得出a 的值;(2)由2269(3)y x x x =-+-=--,得出抛物线269y x x =-+-是由抛物线C :()246y x =-+-向左平移3个单位,再向下平移4个单位得到,即可求出点P '移动的最短路程.(1)()2244)6(6y x x -=--=-+,①对称轴为直线6x =,①10-<,①抛物线开口向下,有最大值,即y 的最大值为4,把(),3P a 代入()246y x =--中得: 24(6)3a --=,解得:5a =或7a =,①点(),3P a 在C 的对称轴右侧,①7a =;(2)①2269(3)y x x x =-+-=--,①2(3)y x =--是由()246y x =-+-向左平移3个单位,再向下平移4个单位得到,5,①P '移动的最短路程为5.【点睛】本题考查二次函数2()y a x h k =-+的图像与性质,掌握二次函数2()y a x h k =-+的性质以及平移的方法是解题的关键.19.(1)2100y x =-+;(2)40元或20元;(3)当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元;【分析】(1)直接由待定系数法,即可求出一次函数的解析式;(2)根据题意,设当天玩具的销售单价是x 元,然后列出一元二次方程,解方程即可求出答案;(3)根据题意,列出w 与x 的关系式,然后利用二次函数的性质,即可求出答案.(1)解:由图可知,设一次函数的解析式为y kx b =+,把点(25,50)和点(35,30)代入,得25503530k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩, ①一次函数的解析式为2100y x =-+;(2)解:根据题意,设当天玩具的销售单价是x 元,则(10)(2100)600x x -⨯-+=,解得:140x =,220x =,①当天玩具的销售单价是40元或20元;(3)解:根据题意,则(10)(2100)w x x =-⨯-+,整理得:22(30)800w x =--+;①20-<,①当30x =时,w 有最大值,最大值为800;①当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.【点睛】本题考查了二次函数的性质,二次函数的最值,一次函数的应用,解一元二次方程,解题的关键是熟练掌握题意,正确的找出题目的关系,从而进行解题.20.(1)y =﹣2x +160(2)销售单价应定为50元(3)当销售单价为54元时,每天获利最大,最大利润1248元【分析】(1)设每天的销售数量y (件)与销售单价x (元/件)之间的关系式为y =kx +b ,用待定系数法可得y =﹣2x +160;(2)根据题意得(x ﹣30)•(﹣2x +160)=1200,解方程并由销售单价不低于成本且不高于54元,可得销售单价应定为50元;(3)设每天获利w 元,w =(x ﹣30)•(﹣2x +160)=﹣2x 2+220x ﹣4800=﹣2(x ﹣55)2+1250,由二次函数性质可得当销售单价为54元时,每天获利最大,最大利润,1248元.【详解】(1)解:设每天的销售数量y (件)与销售单价x (元/件)之间的关系式为y =kx +b ,把(35,90),(40,80)代入得:35904080k b k b +=⎧⎨+=⎩, 解得2160k b =-⎧⎨=⎩, ①y =﹣2x +160;(2)根据题意得:(x ﹣30)•(﹣2x +160)=1200,解得x 1=50,x 2=60,①规定销售单价不低于成本且不高于54元,①x =50,答:销售单价应定为50元;(3)设每天获利w 元,w =(x ﹣30)•(﹣2x +160)=﹣2x 2+220x ﹣4800=﹣2(x ﹣55)2+1250,①﹣2<0,对称轴是直线x =55,而x ≤54,①x =54时,w 取最大值,最大值是﹣2×(54﹣55)2+1250=1248(元),答:当销售单价为54元时,每天获利最大,最大利润,1248元.【点睛】本题考查一次函数,一元二次方程和二次函数的应用,解题的关键是读懂题意,列出函数关系式和一元二次方程.21.(1)顶点P 的坐标为()2,2a -;(2)① 6个;①112a <≤,112a -≤<-. 【分析】(1)由抛物线解析式直接可求;(2)①由已知可知A (0,2),C ( ,-2),画出函数图象,观察图象可得; ①分两种情况求:当a >0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a=12 ,则12<a≤1;当a <0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-12,则-1≤a<-12.【详解】解:(1)①y=ax 2-4ax+2a=a (x-2)2-2a ,①顶点为(2,-2a );(2)如图,①①a=2,①y=2x 2-8x+2,y=-2,①A(0,2),C (,-2),①有6个整数点;①当a >0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,,12a =; ① 112a <≤. 当a<0时,抛物线顶点经过点(2,2)时,1a =-;抛物线顶点经过点(2,1)时,12a =-; ① 112a -≤<-. ①综上所述:112a <≤,112a -≤<-. 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.22.(1)0.55y x =-+(28x ≤≤,且x 为整数)(2)每平方米种植5株时,能获得最大的产量,最大产量为12.5千克【分析】(1)由每平方米种植的株数每增加1株,单株产量减少0.5千克,即可得求得解析式;(2)设每平方米小番茄产量为W 千克,由产量=每平方米种植株数×单株产量即可列函数关系式,由二次函数性质可得答案.【详解】(1)解:①每平方米种植的株数每增加1株,单株产量减少0.5千克, ①40.5(2)0.55y x x =--=-+(28x ≤≤,且x 为整数);(2)解:设每平方米小番茄产量为W 千克,22(0.55)0.550.5(5)12.5=-+=-+=--+w x x x x x .①当5x =时,w 有最大值12.5千克.答:每平方米种植5株时,能获得最大的产量,最大产量为12.5千克.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,列出函数关系式.23.(1)y =x 2−x +2(2)(−1,0)(3)见解析【分析】(1)把a =1代入二次函数的关系式,再把x =−1,y =4代入求出b 的值,进而确定二次函数的关系式;(2)令y =0,则ax 2+bx +2=0,当Δ=0时,求得b 2=8a ,据此写出一组a ,b 的值,化成顶点式即可求得顶点坐标;(3)根据题意得到4a +2b +2=2a +4b ,整理得b =a +1,则a 2+b 2=2a 2+2a +1=2(a +12)2+12,根据二次函数的性质即可得到a 2+b 2≥12.(1)解:把a =1代入得,y =x 2+bx +2,①当x =−1时,y =4,①4=1−b +2,①b =−1,①二次函数的关系式为y =x 2−x +2;(2)解:令y =0,则ax 2+bx +2=0,当Δ=0时,则b 2−8a =0,①b 2=8a ,①若a =2,b =4时,函数y =ax 2+bx +2的图象与x 轴只有一个公共点,①此时函数为y=2x2+4x+2=2(x+1)2,①此函数的顶点坐标为(−1,0);(3)证明:①二次函数y=ax2+bx+2的图象和直线y=ax+4b都经过点(2,m),①4a+2b+2=2a+4b,①2a+2=2b,①b=a+1,①a2+b2=a2+(a+1)2=2a2+2a+1=2(a+12)2+12,①a2+b2≥12.【点睛】本题考查二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,待定系数法求二次函数的解析式,解题的关键:(1)熟知待定系数法;(2)求得b=a+1;(3)熟知二次函数的性质.24.(1)66(2)①基准点K的高度h为21m;①b>9 10;(3)他的落地点能超过K点,理由见解析.【分析】(1)根据起跳台的高度OA为66m,即可得c=66;(2)①由a=﹣150,b=910,知y=﹣150x2+910x+66,根据基准点K到起跳台的水平距离为75m,即得基准点K的高度h为21m;①运动员落地点要超过K点,即是x=75时,y>21,故﹣150×752+75b+66>21,即可解得答案;(3)运动员飞行的水平距离为25m时,恰好达到最大高度76m,即是抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,可得抛物线解析式为y=﹣2125(x﹣25)2+76,当x=75时,y=36,从而可知他的落地点能超过K点.【详解】(1)解:①起跳台的高度OA为66m,①A(0,66),把A(0,66)代入y=ax2+bx+c得:c=66,故答案为:66;(2)解:①①a=﹣150,b=910,①y=﹣150x2+910x+66,①基准点K到起跳台的水平距离为75m,①y=﹣150×752+910×75+66=21,①基准点K的高度h为21m;①①a=﹣150,①y=﹣150x2+bx+66,①运动员落地点要超过K点,①当x=75时,y>21,即﹣150×752+75b+66>21,解得b>9 10,故答案为:b>9 10;(3)解:他的落地点能超过K点,理由如下:①运动员飞行的水平距离为25m时,恰好达到最大高度76m,①抛物线的顶点为(25,76),设抛物线解析式为y=a(x﹣25)2+76,把(0,66)代入得:66=a(0﹣25)2+76,解得a=﹣2 125,①抛物线解析式为y=﹣2125(x﹣25)2+76,当x=75时,y=﹣2125×(75﹣25)2+76=36,①36>21,①他的落地点能超过K点.【点睛】本题考查二次函数的应用,解题的关键是读懂题意,能根据题意把实际问题转化为数学问题.。

《二次函数》同步综合练习卷(含答案)

《二次函数》同步综合练习卷(含答案)

《二次函数》同步综合练习卷一.选择题1.下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1C.y=2x2﹣2(x2+1)D.y=2.若b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四图之一所示,根据图象分析,则a的值等于()A.﹣1 B.1 C.D.3.设函数y=kx2+(3k+2)x+1,对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值为()A.2 B.﹣2 C.﹣1 D.04.若二次函数y=x2﹣6x+c的图象过A(﹣1,a),B(2,b),C(5,c),则下列正确的是()A.a>b>c B.a>c>b C.b>a>c D.c>a>b5.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移个单位得到抛物线c′B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移个单位得到抛物线c′D.将抛物线c沿x轴向右平移6个单位得到抛物线c′6.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或27.已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(0,﹣3),且对称轴为x=2,则这条抛物线的顶点坐标为()A.(2,3)B.(2,1)C.(﹣2,1)D.(2,﹣1)8.用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2 B.y=(x﹣3)2﹣2 C.y=(x﹣6)2﹣2 D.y=(x﹣3)2+29.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:有以下几个结论:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2;其中正确的是()A.①④B.②④C.②③D.③④10.如表是一组二次函数y=x2+x﹣1的自变量x与函数值y的对应值.由上表可知,方程x2+x﹣1=0的一个近似解是()A.0.4 B.0.5 C.0.6 D.0.811.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B (3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个12.如图,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设⊙O1的半径为y,AM=x,则y关于x 的函数关系式是()A.y=﹣x2+x B.y=﹣x2+x C.y=﹣x2﹣x D.y=x2﹣x13.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m二.填空题14.有下列函数:①y=1﹣x2;②y=;③y=x(x﹣3);④y=ax2+bx+c;⑤y=2x+1.其中,是二次函数的有(填序号)15.二次函数y1=mx2、y2=nx2的图象如图所示,则m n(填“>”或“<”).16.若抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,且两抛物线的顶点相距3个单位长度,则c的值为.17.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有.①abc>0②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3③2a+b=0④当x>0时,y随x的增大而减小18.已知点(﹣1,m)、(2,n)在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a0(用“>”或“<”连接).19.将抛物线y=﹣3x2向左平移一个单位后,得到的抛物线解析式是.20.函数y=﹣(x﹣1)2﹣7的最大值为.21.有一个二次函数的图象,甲、乙、丙三位同学分别说出了它的特点:甲:对称轴是直线x=2;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形的面积为3.请你写出满足上述全部特点的一个二次函数解析式.22.将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.23.已知抛物线y=ax2+bx+c的图象与x轴交于点A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和C (2m﹣4,m﹣6),抛物线y=ax2+bx+c与y轴交于点D,点P在抛物线的对称轴上,连PA,PD,当PA+PD的长最短时,点P的坐标为.24.试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:.25.如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的说法有.(请填写正确说法的番号)26.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.27.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过米时就会影响过往船只在桥下的顺利航行.28.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE ﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论:①AD=BE=5;②当0<t≤5时,y=t2;③cos∠ABE=;④当t=秒时,△ABE∽△QBP;⑤当△BPQ的面积为4cm2时,时间t的值是或;其中正确的结论是.参考答案一.选择题1.解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选:A.2.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣<0,a>0,则b>0,正确;第三个图的对称轴﹣<0,a<0,则b<0,故与b>0矛盾.由于第三个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向上,a=1.故选:B.3.解:∵对于任意负实数k,当x<m时,y随x的增大而增大,∵k为负数,即k<0,∴函数y=kx2+(3k+2)x+1表示的是开口向下的二次函数,∴在对称轴的左侧,y随x的增大而增大,∵对于任意负实数k,当x<m时,y随x的增大而增大,∴x=﹣=﹣∴m≤﹣=.∵k<0,∴﹣>0∴,∵m≤对一切k<0均成立,∴m≤,∴m的最大整数值是m=﹣2.故选:B.4.解:∵二次函数y=x2﹣6x+c,∴该二次函数的抛物线开口向上,且对称轴为:x=3.∵点A(﹣1,a),B(2,b),C(5,c)都在二次函数y=x2﹣6x+c的图象上,而三点横坐标离对称轴x=3的距离按由远到近为:(﹣1,a)、(5,c)、(2,b),∴a>c>b,故选:B.5.解:∵抛物线C:y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为x=﹣1.∴抛物线与y轴的交点为A(0,﹣3).则与A点以对称轴对称的点是B(2,﹣3).若将抛物线C平移到C′,并且C,C′关于直线x=1对称,就是要将B点平移后以对称轴x=1与A点对称.则B点平移后坐标应为(4,﹣3)..因此将抛物线C向右平移4个单位.故选:B.6.解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.7.解:根据题意得:,解得:a=﹣1,b=4,c=﹣3,∴抛物线解析式为y=﹣x2+4x﹣3=﹣(x﹣2)2+1,则抛物线顶点坐标为(2,1).故选:B.8.解:y=x2﹣6x+11,=x2﹣6x+9+2,=(x﹣3)2+2.故选:D.9.解:设抛物线的解析式为y=ax2+bx+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.10.解:观察表格得:方程x2+x﹣1=0的一个近似根为0.6,故选:C.11.解:由图象可知,抛物线开口向下,则a<0,c>0∵抛物线的顶点坐标是A(1,4)∴抛物线对称轴为直线x=﹣∴b=﹣2a∴b>0,则①错误,②正确;方程ax2+bx+c=4方程的解,可以看做直线y=4与抛物线y=ax2+bx+c的交点的横坐标.由图象可知,直线y=4经过抛物线顶点,则直线y=4与抛物线有且只有一个交点.则方程ax2+bx+c=4有两个相等的实数根,③正确;由抛物线对称性,抛物线与x轴的另一个交点是(﹣1.0)则④错误;不等式x(ax+b)≤a+b可以化为ax2+bx+c≤a+b+c∵抛物线顶点为(1,4)∴当x=1时,y最大=a+b+c∴ax2+bx+c≤a+b+c故⑤正确故选:B.12.解:连接O1M,OO1,可得到直角三角形OO1M,依题意可知⊙O的半径为2,则OO1=2﹣y,OM=2﹣x,O1M=y.在Rt△OO1M中,由勾股定理得(2﹣y)2﹣(2﹣x)2=y2,解得y=﹣x2+x.故选:A.13.解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.二.填空题(共15小题)14.解:①y=1﹣x2;②y=,是反比例函数;③y=x(x﹣3);④y=ax2+bx+c,需要添加a≠0;⑤y=2x+1,是一次函数.其中,是二次函数的有:①y=1﹣x2;③y=x(x﹣3).故答案为:①③.15.解:根据抛物线的开口大小与二次函数的二次项系数的关系:系数越大,开口越小,故m>n,故答案为>.16.解:y=2(x﹣3)2+1对称轴是x=3,顶点坐标为(3,1),∵抛物线y=ax2﹣x+c与y=2(x﹣3)2+1对称轴相同,∴﹣=3,解得,a=,∵两抛物线的顶点相距3个单位长度,∴y=x2﹣x+c的顶点坐标为(3,4)或(3,﹣2),把(3,4)代入y=x2﹣x+c得,c=,把(3,﹣2)代入y=x2﹣x+c得,c=﹣,故答案为:或﹣.17.解:∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴>0,∴b>0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0,故①错误;∵抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故②正确;∵对称轴为直线x=1,∴=1,即2a+b=0,故③正确;∵由函数图象可得:当0<x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小,故④错误;故答案为②③.18.解:∵二次函数的解析式为y=ax2﹣2ax﹣1,∴该抛物线对称轴为x=1,∵|﹣1﹣1|>|2﹣1|,且m>n,∴a>0.故答案为:>.19.解:∵抛物线y=﹣3x2向左平移一个单位后的顶点坐标为(﹣1,0),∴所得抛物线的解析式为y=﹣3(x+1)2,故答案为:y=﹣3(x+1)2.20.解:∵在函数y=﹣(x﹣1)2﹣7中a=﹣1<0,∴当x=1时,y取得最大值,最大值为﹣7,故答案为:﹣7.21.解:对称轴是直线x=2,则一次项系数与二次项系数的比是﹣4,因而可设函数解析式是y=ax2﹣4ax+ac,与y轴交点的纵坐标也是整数,因而ac是整数,y=ax2﹣4ax+ac=a(x2﹣4x+c),与x轴两个交点的横坐标都是整数,即方程x2﹣4x+c=0有两个整数解,设是﹣1和+5,则c=﹣5,则y=ax2﹣4ax+ac=a(x2﹣4x﹣5),∵以这三个交点为顶点的三角形的面积为3,∴a=±.则函数是:y=±(x+1)(x﹣5).(答案不唯一).22.解:y=x2+6x+5,=x2+6x+9﹣4,=(x2+6x+9)﹣4,=(x+3)2﹣4.故答案是:y=(x+3)2﹣4.23.解:∵点A(m﹣4,0)和C(2m﹣4,m﹣6)在直线y=﹣x+p上∴,解得:m=3,p=﹣1,∴A(﹣1,0),B(3,0),C(2,﹣3),设抛物线y=ax2+bx+c=a(x﹣3)(x+1),∵C(2,﹣3),代入得:﹣3=a(2﹣3)(2+1),∴a=1∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,对称轴EF为x=1,当x=0时y=﹣3,即D点的坐标为(0,﹣3),作D关于EF的对称点N,连接AN,交EF于P,则此时P为所求,根据对称得N的坐标为(2,﹣3),设直线AN的解析式为y=kx+e,把A、N的坐标代入得:,解得:k=﹣1,e=﹣1,即y=﹣x﹣1,把x=1代入得:y=﹣2,即P点的坐标为(1,﹣2),故答案为:(1,﹣2).24.解:∵一元二次方程的一个根为0,另一个根在1到2,∴设两个根分别为0和,∴此一元二次方程可以是:x(x﹣)=0,∴二次函数关系式为:y=x(x﹣)=x2﹣x.故答案为:y=x2﹣x.25.解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y;1∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y>y1;2=2+,x2=2﹣(舍去),当M=2,﹣x2+4x=2,x∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故答案为②③.26.解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)227.解:设抛物线解析式为y=ax2,把点B(10,﹣4)代入解析式得:﹣4=a×102,解得:a=﹣,∴y=﹣x2,把x=9代入,得:y=﹣=﹣3.24,此时水深=4+2﹣3.24=2.76米.28.解:根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度分别是1cm/秒、2cm/秒∴BC=BE=10,∴AD=BC=10.∴①错误;又∵从M到N的变化是4,∴ED=4,∴AE=AD﹣ED=10﹣4=6.∵AD∥BC,∴∠EBQ=∠AEB,∴cos∠EBQ=cos∠AEB=,故③错误;如图1,过点P作PF⊥BC于点F,∵AD∥BC,∴∠EBQ=∠AEB,∴sin∠EBQ=sin∠AEB==,∴PF=PB sin∠EBQ=t,∴当0<t≤5时,y=BQ×PF=×2t×t=t2,故②正确,如图4,当t=时,点P在CD上,∴PD=﹣BE﹣ED=﹣10﹣4=,PQ=CD﹣PD=8﹣=,∴,,∴∵∠A=∠Q=90°,∴△ABE∽△QBP,故④正确.由②知,y=t2当y=4时, t2=4,从而,故⑤错误综上所述,正确的结论是②④.。

(完整版)二次函数综合应用---含答案

(完整版)二次函数综合应用---含答案

二次函数应用(能力提高)一、选择题:1.如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于( C )(A)8 (B)14 (C)8或14 (D)-8或-142.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过(B)(A)一、二、三象限(B)一、二、四象限(C)一、三、四象限(D)一、二、三、四象限3.当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是( A )(C)(D)第7题4.抛物线y=ax2+bx+c的图象如图,OA=OC,则( A )(A)ac+1=b (B)ab+1=c (C)bc+1=a (D)以上都不是5.若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c的变化范围是(C )(A)0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<16.将抛物线y=-2x2-1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( A )(A)个单位 (B)1个单位 (C)个单位 (D)个单位232127.如图,等腰梯形ABCD的底边AD在x轴上,顶点C在y轴正半轴上,B(4,2),一次函数y=kx-1的图象平分它的面积,关于x的函数y=mx2-(3m+k)x+2m+k的图象与坐标轴只有两个交点,则m的值为( D )(A)0(B)(C)-1(D)0或或-121-21-8.(2015浙江)设二次函数11212())0(()y a x x x x a x x=--≠≠,的图象与一次函数()2y dx e d=+≠的图象交于点1(0)x,,若函数21y y y=+的图象与x轴仅有一个交点,则( B )(A)12()a x x d-=(B)21()a x x d-=(C)212()a x x d-=(D)()212a x x d+=二、填空题:1.已知二次函数y=-4x2-2mx+m2与反比例函数y=的图像在第二象限内的一个交点的横坐标是xm42+-2,则m的值是 -7t h 2.已知抛物线的顶点坐标为(2,9),且它在x 轴上截得的线段长为6,则该抛物线的解析式为 _ y = −(x +1)(x −5)___3.已知二次函数y =ax 2(a≥1)的图像上两点A 、B 的横坐标分别是-1、2,点O 是坐标原点,如果△AOB 是直角三角形,则△OAB 的周长为 42+254.老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。

初三二次函数综合测试题及答案

初三二次函数综合测试题及答案

二次函数单元测评一、选择题(每题3分,共30分)1.下列关系式中,属于二次函数的是(x为自变量)( )A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是( )A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x轴上D. y轴上二、4. 抛物线的对称轴是( )A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是(A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<06.二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( ) A. 一B. 二C. 三 D. 四7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是( )A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2+bx 的图象只可能是( )9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线 上的点,且-1<x 1<x 2,x 3<-1,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3 B. y 2<y 3<y 1 C. y 3<y 1<y 2 D. y 2<y 1<y 3 10.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( ) A. B. C. D.二、填空题(每题4分,共32分)11. 二次函数y=x 2-2x+1的对称轴方程是______________.12. 若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.(m/s)竖直向上抛物16. 在距离地面2m高的某处把一物体以初速度v出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:=10m/s,则该物体在运(其中g是常数,通常取10m/s2).若v动过程中最高点距地面_________m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.的值是18. 已知抛物线y=x2+x+b2经过点,则y1三、解答下列各题(19、20每题9分,21、22每题10分,共38分)19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0) (1)求此二次函数图象上点A关于对称轴对称的点A′的坐标(2)求此二次函数的解析式;20.在直角坐标平面内,点 O为坐标原点,二次函数 y=x2+(k-5)x-(k+4)的图象交 x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的面积S△MCB1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3. 考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C.4. 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为.解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数的图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6.考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方在第四象限,答案选D.7.考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9. 考点:一次函数、二次函数概念图象与性质.解析:因为抛物线的对称轴为直线x=-1,且-1<x1<x2,当x>-1时,由图象知,y随x的增大而减小,所以y2<y1;又因为x3<-1,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.答案选D.10.考点:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13. 考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,.解析:需满足抛物线与x轴交于两点,与y轴有交点,与△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.答案:.19. 考点:二次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20.考点:二次函数的概念、性质、图象,求解析式. 解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x 1+1)(x 2+1)=-8 ∴x 1x 2+(x 1+x 2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5∴y=x 2-9为所求(2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5),P(2,-9).21. 解:(1)依题意:。

二次函数综合练习题及答案

二次函数综合练习题及答案

二次函数综合练习题及答案二次函数综合练习题及答案●基础巩固1.如果抛物线y =-2x 2+mx -3的顶点在x 轴正半轴上,则m =______. 2.二次函数y =-2x 2+x -21,当x =______时,y 有最______值,为______.它的图象与x 轴______交点(填“有”或“没有”).3.已知二次函数y =ax 2+bx +c 的图象如图1所示.①这个二次函数的表达式是y =______;②当x =______时,y =3;③根据图象回答:当x ______时,y >0.24.(-2,0),(5,0)两点二次函数的表达式:______.(写出一个符合要求的即可)5.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值围是______,此时关于一元二次方程2x 2-6x +m =0的解的情况是______(填“有解”或“无解”).6.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为______(只写一个),此类函数都有______值(填“最大”“最小”).7.如图2,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m).8.若抛物线y=x 2-(2k+1)x+k 2+2,与x 轴有两个交点,则整数k 的最小值是______.9.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,由抛物线的特征你能得到含有a 、b 、c 三个字母的等式或不等式为______(写出一个即可).10.等腰梯形的周长为60 cm ,底角为60°,当梯形腰x=______时,梯形面积最大,等于______. 11.找出能反映下列各情景中两个变量间关系的图象,并将代号填在相应的横线上. (1)一辆匀速行驶的汽车,其速度与时间的关系.对应的图象是______. (2)形的面积与边长之间的关系.对应的图象是______.(3)用一定长度的铁丝围成一个长方形,长方形的面积与其中一边的长之间的关系.对应的图象是_ _. (4)在220 V 电压下,电流强度与电阻之间的关系.对应的图象是______.xA B D12.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定围每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价______元,最大利润为______元.13.关于二次函数y =ax 2+bx +c 的图象有下列命题,其中是假命题的个数是()①当c =0时,函数的图象经过原点; ②当b =0时,函数的图象关于y 轴对称;③函数的图象最高点的纵坐标是ab ac 442;④当c >0且函数的图象开口向下时,方程ax 2+bx +c =0必有两个不相等的实根( ) A.0个 B.1个 C.2个 D.3个14.已知抛物线y =ax 2+bx +c 如图所示,则关于x 的方程ax 2+bx +c -8=0的根的情况是A.有两个不相等的正实数根 ;B.有两个异号实数根;C.有两个相等的实数根 ;D.没有实数根.15.抛物线y =kx 2-7x -7的图象和x 轴有交点,则k 的取值围是( )A.k >-47; B.k ≥-47且k ≠0; C.k ≥-47; D.k >-47且k ≠0 16.如图6所示,在一个直角三角形的部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( )A.424 m B.6 m C.15 mD.25 m图517.二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,△ABC 的面积为( )A.1B.3C.4D.618.无论m 为任何实数,二次函数y =x 2+(2-m )x +m 的图象总过的点是( )A.(-1,0);B.(1,0)C.(-1,3) ;D.(1,3)19.为了备战2008奥运会,中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门横梁底侧高)入网.若足球运行的路线是抛物线y =ax 2+bx +c (如图5所示),则下列结论正确的是( ) ①a <-601 ②-6010 ④0<-12a<="" p="">A.①③B.①④C.②③D.②④20.把一个小球以20 m/s 的速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系h=20t -5t 2.当h=20 m 时,小球的运动时间为() A.20 sB.2 sC.(22+2) sD.(22-2) s21.如果抛物线y=-x 2+2(m -1)x+m+1与x 轴交于A 、B 两点,且A 点在x 轴正半轴上,B 点在x 轴的负半轴上,则m 的取值围应是( ) A.m>1B.m>-1C.m<-1D.m<122.如图7,一次函数y=-2x+3的图象与x 、y 轴分别相交于A 、C 两点,二次函数y=x 2+bx+c 的图象过点c 且与一次函数在第二象限交于另一点B ,若AC ∶CB=1∶2,那么,这个二次函数的顶点坐标为( ) A.(-21,411) B.(-21,45) C.(21,411) D.(21,-411) 23.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( ) A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.524.如图8,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=-121x 2+32x+35,则该运动员此次掷铅球的成绩是( ) A.6 mB.12 mC.8 mD.10 mxy ABCOx yOABMO图925.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图9,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( )A.2 mB.3 mC.4 mD.5 m26.求下列二次函数的图像与x 轴的交点坐标,并作草图验证.(1)y=12x 2+x+1; (2)y=4x 2-8x+4; (3)y=-3x 2-6x-3; (4)y=-3x 2-x+427.一元二次方程x 2+7x+9=1的根与二次函数y=x 2+7x+9的图像有什么关系? 试把方程的根在图像上表示出来.28.利用二次函数的图像求下列一元二次方程的根. (1)4x 2-8x+1=0; (2)x 2-2x-5=0;(3)2x 2-6x+3=0; (3)x 2-x-1=0.29.已知二次函数y=-x 2+4x-3,其图像与y 轴交于点B,与x 轴交于A, C 两点. 求△ABC 的周长和面积.●能力提升30.某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m =140-2x .(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?31.已知二次函数y =(m 2-2)x 2-4mx +n 的图象的对称轴是x =2,且最高点在直线y =21x +1上,求这个二次函数的表达式.32.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m ?比较(1)(2)的结果,你能得到什么结论?33.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式I =2v 2 来表示,其中v (千米/分)表示汽车的速度; (1)列表表示I 与v 的关系.(2)当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍?34.如图7,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米. (1)建立如图所示的直角坐标系,求抛物线的表达式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少.(0,3.5)m xy35.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数的图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t 个月的利润总和S与t之间的关系).(1)根据图象你可获得哪些关于该公司的具体信息?(至少写出三条)(2)还能提出其他相关的问题吗?若不能,说明理由;若能,进行解答,并与同伴交流.36.把一个数m分解为两数之和,何时它们的乘积最大?你能得出一个一般性的结论吗?●综合探究37.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)?38.图中a是棱长为a的小体,图b、图c由这样的小体摆放而成,按照这样的方法继续摆放,自上而下分别叫第一层,第二层……,第n层,第n层的小形的个数记为S,解答下列问题:abcS13 6…(2)写出当n=10时,S=______;(3)根据上表中的数据,把S 作为纵坐标,n 作为横坐标,在平面直角坐标系中描出相应的各点; (4)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数的图象上,求出该函数的表达式;若不在,说明理由.nOS参考答案1.262.41 大-83 没有3.①x 2-2x ②3或-1 ③<0或>2 4. y =x 2-3x -10 5. m >29 无解 6.y =-x 2+x -1 最大 7.y =-81x 2+2x +1 16.5 8. 2 9.b 2-4ac>0(不唯一)10 . 15 cm23225 cm 211.(1)A (2)D (3)C (4)B 12. 5 625 13.B 14.C 15.B 16.D 17.B18.D 19.B 20.B 21.B 22.A 23.C 24.D25.B 〔提示:设水流的解析式为y=a(x -h)2+k,∴A(0,10),M(1,340).∴y=a(x -1)2+340,10=a+340. ∴a=-310.∴y=-310(x -1)2+340.令y=0得x=-1或x=3得B(3,0),即B 点离墙的距离OB 是3 m26.(1)没有交点;(2)有一个交点(1,0);(3)有一个交点(-1,0);(4)有两个交点( 1,0),(43,0),草图略. 27.该方程的根是该函数的图像与直线y=1的交点的横坐标.28.(1)x 1≈1.9,x 2≈0.1;(2)x 1≈3.4,x 2≈-1.4;(3)x 1≈2.7,x 2≈0.6;(4)x 1≈1.6,x 2≈-0 .6 29.令x=0,得y=-3,故B 点坐标为(0,-3).解方程-x 2+4x-3=0,得x 1=1,x 2=3.故A 、C 两点的坐标为(1,0),(3,0).所以=OB=│-3│=3. C △ABC =AB+BC+AC=2+△ABC =12AC ·OB=12×2×3=3. 30.(1)y =-2x 2+180x -2800.(2)y =-2x 2+180x -2800=-2(x 2-90x )-2800=-2(x -45)2+1250. 当x =45时,y 最大=1250.∴每件商品售价定为45元最合适,此销售利润最大,为1250元. 31.∵二次函数的对称轴x =2,此图象顶点的横坐标为2,此点在直线y =21x +1上. ∴y =21×2+1=2.∴y =(m 2-2)x 2-4mx +n 的图象顶点坐标为(2,2).∴-ab 2=2.∴-)2(242--m m=2.解得m =-1或m =2.∵最高点在直线上,∴a <0,∴m =-1.∴y =-x 2+4x +n 顶点为(2,2). ∴2=-4+8+n .∴n =-2.则y =-x 2+4x +2.32(1)依题意得鸡场面积y =-.350312x x +-∵y =-31x 2+350x =31-(x 2-50x )=-31(x -25)2+3625, ∴当x =25时,y 最大=3625,即鸡场的长度为25 m 时,其面积最大为3625m 2.(2)如中间有几道隔墙,则隔墙长为nx-50m.∴y =n x -50·x =-n 1x 2+n50x =-n 1(x 2-50x ) =-n 1(x -25)2+n 625,当x =25时,y 最大=n 625,即鸡场的长度为25 m 时,鸡场面积为n625 m 2.结论:无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25 m. 33(1)如下表(2)I =2·(2v )2=4×2v 2.当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的4倍.34(1)设抛物线的表达式为y =ax 2+bx +c .由图知图象过以下点:(0,3.5),(1.5,3.05).==-=?++===-.5.3,0,2.0,5.15.105.3,5.3,022c b a c b a c a b得∴抛物线的表达式为y =-0.2x 2+3.5. (2)设球出手时,他跳离地面的高度为h m ,则球出手时,球的高度为h +1.8+0.25=(h +2.05) m, ∴h+2.05=-0.2×(-2.5)2 +3.5,∴h=0.2(m).35 (1)信息:①1、2月份亏损最多达2万元.②前4月份亏盈吃平.③前5月份盈利2.5万元.④1~2月份呈亏损增加趋势.⑤2月份以后开始回升.(盈利)⑥4月份以后纯获利.…… (2)问题:6月份利润总和是多少万元?由图可知,抛物线的表达式为y=21(x -2)2-2, 当x=6时,y=6(万元)(问题不唯一).36.设m=a+b y=a ·b,∴y=a(m -a)=-a 2+ma=-(a -2m )2+42a ,当a=2m时,y 最大值为42a .结论:当两个数的和一定,这两个数为它们和的一半时,两个数的积最大. 37.(1)由题意知:p=30+x,(2)由题意知活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为L=Q -30000-400x=-10x 2 +500x=-10(x 2-50x) =-10(x -25)2+6250. 当x=25时,总利润最大,最大利润为6250元.38.(1)10 (2)55 (3)(略).(4)经猜想,所描各点均在某二次函数的图象上.设函数的解析式为S=an 2+bn+c.由题意知====++=++=++0.c ,21b ,21a ,639,324,1解得c b a c b a c b a ∴S=.21212n n +。

二次函数单元综合测试卷(含答案)

二次函数单元综合测试卷(含答案)

二次函数综合测试卷一、填空:(30分)1.二次函数的图象经过三个定点(2,0),(3,0),(•0,-•1),则它的解析式为________,该图象的顶点坐标为__________.2.当k=________时,直线x+2y+k+1=0和2x+y+2k=0的交点在抛物线y=-x2上.3.已知二次函数y=x2-2(k+1)x+k2+2的图象与x轴交点的横坐标分别为x1,x2,且(x1+1)(x2+1)=8,则k的值为__________.4.如果y与x2成正比例,并且它的图象上一点P的横坐标a和纵坐标b分别是方程x2-x-6=0的两根,那么这个函数的解析式为_________.5.抛物线y=x2-4x+11的对称轴是直线________,顶点坐标为________.6.如果抛物线y=-23x2+(m+2)x+27m的对称轴为直线x=32,则m的值为_________.7.把函数y=5x2+10mx+n的图象向左平移2个单位,向上平移3个单位,•所得图象的函数解析式为y=5x2+30x+44,则m=_______,n=_______.8.二次函数y=a x2+bx+c中的a、b、c满足条件________时,•它的图象经过坐标系中的四个象限.9.开口向下的抛物线y=a(x+1)(x-4)与x轴交于A、B两点,与y•轴交于点C.•若∠ACB=90°,则a的值为________.10.如图,二次函数y=x2-ax+a-5的图象交x轴于点A和B,交y轴于点C,当线段AB•的长度最短时,点C的坐标为________.二、选择题:(20分)11.在同一直角坐标系内,二次函数y1=ax2+bx+c与y2=cx2+bx+a的图象大致为()12.在同一直角坐标系内,函数y=ax2+bx与y=bx(b≠0)的图象大致为()13.给出下列四个函数:y=-2x,y=2x-1,y=3x(x>0),y=-x2+3(x>0),其中y随x•的增大而减小的函数有()A.3个 B.2个 C.1个 D.0个14.当m取任何实数时,抛物线y=-2(x-m)2-m的顶点所在的直线为()A.x轴 B.y轴 C.y=x D.y=-x15.当m取任何实数时,抛物线y=-2(x+m)2-m2的顶点所在的曲线为()A.y=x2 B.y=-x2 C.y=x2(x>0) D.y=-x2(x>0)16.已知抛物线y=ax2+bx+c(a≠0)与抛物线y=x2-4x+3关于x轴对称,则a、b、c•的值分别是() A.-1,4,-3 B.-1,-4,-3 C.-1,4,3 D.-1,-4,317.已知抛物线y=a x2+bx+c(a≠0)与抛物线y=x2-4x+3关于y轴对称,则函数y=ax2+bx+c的解析式为()A.y=x2+4x+3 B.y=x2-4x-3 C.y=x2+4x-3 D.y=-x2-4x+318.从一张矩形纸片ABCD的较短边AD上找一点E,过这点剪下两个半圆,它们的直径分别是AE、DE,要使剪下的两个半圆的面积和最小,点E应选在()A.边AD的中点外 B.边AD的13处 C.边AD的14处 D.边AD的15处19.对某条路线的长度进行n次测量,得到n个结果x1,x2,…,x n,如果用x作为这条路线长度的近似值,当x=p时,(x-x1)2+(x-x2)2+…+(x-x n)2最小,则p的值为()A.1n(x1+x2+…+x n) B.1n(x1-x2-…-x n)C.1nn+(x1+x2+…+x n) D.1nn+(x1+x2+…+x n)20.已知函数y=-(x-1)2-(x-3)2-(x-5)2-(x-7)2,当x=p时,函数y取得最大值,则p•的值为()A.4 B.8 C.10 D.16三、解答题:(90分)1.如图,△OAB是边长为2的等边三角形,直线x=t•截这个三角形所得位于直线左方的图形面积为y.(1)写出以自变量为t的函数y的解析式;(2)画出(1)中函数y的图象.2.如图,AB是半径为R的圆的直径,C为直径AB上的一点,•过点C•剪下两个正方形ADCE和BFCG,它们的对角线分别是AC、CB.要使剪下的两个正方形的面积和最小,•点C应选在何处?3.已知一个二次函数的图象过点A(-1,10),B(1,4),C(2,7),点D和B•关于抛物线的对称轴对称,问是否存在与抛物线只有一个公共点D的直线?如果存在,求出符合条件的直线;如不存在,请说明理由.4.如图,在直角坐标系xOy中,A、B是x轴上的两点,以AB为直径的圆交y轴于C,设过A、B、C三点的抛物线的解析式为y=x2-mx+n,方程x2-mx+n=0的两根倒数和为-2.(1)求n的值;(2)求此抛物线的解析式;(3)设平行于x轴的直线交此抛物线于E、F两点,问是否存在此线段EF•为直径的圆恰好与x轴相切,若存在,求出此圆的半径;若不存在,说明理由.5.某电厂规定,该厂家属区的每户居民如果一个月的用电量不超过x度,•那么这个月这户居民只交10元用电费.如果超过x度,这个月除了要交10元用电费外,超过部分按每度元交费.(1)该厂某户居民1月份用电90度,超过了x度的规定,试用x的代数式表示超过部分应交的电费(元);(2)下表是这户居民2月、3月的用电情况和交费情况,请根据表中的数据,•求出电厂规定的这个标准x度.月份用电量(度)交电费总数(元)2月 80 253月 45 106.如图(1),平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A•点坐标为(10,0),C点坐标为(0,6).D是BC边上的动点(与点B、C不重合),现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,使△BDE沿DE翻折,得到△GDE,并使直线DG,DF重合.(1)如图②,若翻折后点F落在OA边上,求直线DE的函数关系式;(2)设D(a,6),E(10,b),求b关于a的函数关系式,并求b的最小值;(3)一般地,请你猜想直线DE与抛物线y=-124x2+6的公共点的个数,•在图②的情形中通过计算验证你的猜想;如果直线DE与抛物线y=-124x2+6始终有公共点,请在图①中作出这样的公共点.附加题:(10分)当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x 2-2mx+m 2+3m-2. ① 得y=(x-m )2+3m-2 ②抛物线的顶点坐标为(m ,3m-2),即32x my m =⎧⎨=-⎩ 当m 的值变化时,x ,y 的值也随之变化,•因而y 值也随x 值的变化而变化.将③代入④,得y=3x-2 ⑤可见不论m 取任何实数抛物线顶点的纵坐标y 和横坐标x 都满足关系式y=3x-2,即抛物线①的顶点总在直线y=3x-2上.在上述过程中,由①到②所用的数学方法是__________;由③、④到⑤所用的数学方法是________.请解答:求出抛物线y=x 2-4mx+4m 2-2m•的顶点的纵坐标y 和横坐标x 之间的关系式.答案:一、填空: 1.y=-16x 2+56x-1 (52,124)2.13±63 3.14.y=-29x 2和y=34x 25.x=2 (2,7) 6.0 7.1 18.a 、c 异号,b 为任何实数 9.-10.(0,-3)(设A (x 1,0),B (x 2,0).(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=a 2-4a+20=(a-2)2+16.当a=2时,•线段AB 的长度最短为4,此时y=x 2-2x-3,点C 的坐标为(0,-3) 二、选择题:11.D 12.D 13.A 14.D 15.B 16.A 17.A 18.A 19.A 20.A 三、解答题:1.(1)y=223(01)23(2)3(2)2t t t t ⎧≤≤⎪⎪⎨⎪--+≤≤⎪⎩(2)如第1题图.2.设AC 长为x ,BC 长为2R-x ,S 正方形ADCE =12x 2,S 正方形BFCG =12(2R-x )2. 两个正方形面积之和为y=12x 2+12(2R-x )2=x 2-2Rx+2R 2=(x-R )2+R 2, 当x=R 时,两个正方形面积之和有最小值R 2,此时点C 应选在AB•的中点处,即圆心.3.过点A 、B 、C 的抛物线的解析式为y=2x 2-3x+5,其对称轴为直线x=34. 因D 和B 关于直线x=34对称,所以D 点坐标为(12,4). 与抛物线只有一个公共点D 的直线有两条:(1)平行于y 轴,即直线x=12. (2)不平行于y 轴,设直线为y=kx+b ,因为过D 点,所以4=12k+b . 即k=8-2b ,(8-2b )x+b=2x 2-3x+5.2x 2+(2b-11)x+5-b=0.方程有两个相等的实数根,△=(2b-11)2-8(5-b )=0,解得b=92,k=-1.所以y=-x+92.符合条件的直线为y=-x+92和x=12. 4.(1)设A (x 1,0),B (x 2,0),则OA=-x 1,OB=x 2.因为AB 是直径,OC ⊥AB ,所以CO 2=OA·OB ,•即n 2=-x 1x 2. 又x 1x 2=n ,所以n 2=-n ,n=-1,n=0(舍去). (2)11x +21x =1212x x x x +=-2,又x 1+x 2=m ,x 1x 2=-1,1m -=-2,m=2, 所求的抛物线的解析式为y=x 2-2x-1.(3)由(2)得抛物线的对称轴为x=1.设满足条件的圆的半径为│a │, 则点F•的坐标为(1+│a │,a ),点F 在抛物线上,a=(1+│a │)2-2(1+│a │)-1,即a 2-a-2=0,a 1=2,a 2=-1, 所求的圆的半径为1或2,故存在以EF 为直径的圆,恰好与x 轴相切. 5.(1)100x(90-x )元 (2)表格中的数据告诉我们,这户居民2月份用电超标,3•月份用电不超标, 可见45≤x<80,列出方程10+100x(80-x )=25,即x 2-80x+150=0,解得x 1=30,x 2=50. 因45≤x<80,所以x=30,电厂规定的标准是30度.6.(1)解:根据题意,可知D (6,6),E (10,2),直线DE 的函数关系式为y=-x+12. (2)解:根据题意,可知∠CDO=∠ODF ,∠BDE=∠GDE .∠CDO+∠ODF+∠BDE+∠GDE=180°,•∠CDO+∠BDE=90°,∠COD+∠CDO=90°,∠COD=∠BDE .又∠COD=∠DBE=90°,△COD ≌△BDE .CE COBE BD=. 根据题意,可知BE=6-b ,BD=10-a ,6610a b a =--,b+16a 2-53a+6=16(a-5)2+116. 当a=5时,b 最小值=116.(3)猜想:直线DE 与抛物线y=-124x 2+6只有1个公共点. 证明:由(1)可知,DE 所在直线为y=-124x+12. 代入抛物线y=-x 2+6,消去y ,得-124x 2+6=-x+12.化简,得x 2-24x+144=0,△=0. 直线DE 与抛物线y=-124x 2+6只有1个公共点. 作法一:延长OF 交DE 于点H ,作法二:在DB 上取点M ,使DM=CD ,过M 作MH ⊥BC ,交DE 于点H . 附加题:配方法; 消元法; y=-4x.。

苏科版九年级数学下册《二次函数综合》专项练习题-附带答案

苏科版九年级数学下册《二次函数综合》专项练习题-附带答案

苏科版九年级数学下册《二次函数综合》专项练习题-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.二次函数y=(x+1)2+2的最小值是()A.2 B.1 C.﹣1 D.﹣22.已知函数,当时,则m的取值范围是()A.m≥−2B.−2≤m≤−1C.−2≤m≤−1D.m≤−123.已知二次函数y=-2x2+4x+k(其中k为常数),分别取x1=-0.99;x2=0.98;x3=0.99,那么对应的函数值为y1、y2、y3中,最大的为( )A.y3B.y2C.y1D.不能确定,与k的取值有关4.在同一平面直角坐标系中,函数y=ax2+b与y=bx2+ax的图象可能是( )A.B.C.D.5.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x …﹣1 0 1 3 …y …﹣3 1 3 1 …A.a<0B.方程ax2+bx+c=﹣2的正根在4与5之间C.2a+b>0,y2)都在函数图象上,则y1<y2D.若点(5,y1)、(﹣326.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(1,n),其部分图像如图所示,下面结论错误的是()A.abc>0B.b2−4ac>0C.关于x的方程ax2+bx+c=n+1没有实数根D.关于x的方程ax2+bx+c=0的负实数根x1取值范围为:−1<x1<07.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x−m)2+n的顶点在线段AB上运动,与x 轴交于C、D两点(C在D的左侧),点C的横坐标最小值为−3,则点D的横坐标最大值为()A.−3B.1 C.5 D.88.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有()A.1个B.2个C.3个D.4个二、填空题9.将抛物线y=−2x3向上平移3个单位长度,所得抛物线解析式为.10.已知二次函y=−x2+2mx+1,当−2≤x≤1时最大值为4,则m的值为.11.已知抛物线y=x2+bx+c的部分图象如图所示,当y<0时,则x的取值范围是.12.如图,抛物线y=ax2+c与直线y=mx+n交于两点A(−1,p),B(4,q),则不等式ax2−mx+c<n 的解集是.13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:①abc<0;②2a﹣b=0;③a﹣b+c>0;④4a﹣2b+c<0.正确的是.三、解答题14.如图,二次函数的图象与轴分别交于点(点在点的左侧),且经过点,与y轴交于点C .(1)求的值.(2)将线段平移,平移后对应点O′和B′都落在拋物线上,求点的坐标.15.在国庆期间,大润发商场新上市了一款童装,进价每件80元,现以每件120元销售,每天可售出20件.在试销售阶段发现,若每件童装降价1元,那么每天就可多售2件,设每件童装单价降价了x元.(1)若销售单价降低5元,则该款童装每天的销售量为件,每天利润是元;(2)请写出每天销售该款童装的利润y(元)与每件童装降价x(元)之间的函数关系式;(3)当每件童装销售单价定为多少元时,商场每天可获得最大利润?最大利润是多少元?16.我市某乡镇实施产业精准扶贫,帮助贫困户承包了若干亩土地种植新品草莓,已知该草莓的成本为每千克10元,草莓成熟后投入市场销售,经市场调查发现,草莓销售不会亏本,且每天的销售量y(千克)与销售单价x(元/千克)之间函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围.(2)当该品种草莓的定价为多少时,每天销售获得利润最大?最大利润是多少?(3)某村今年草莓采摘期限30天,预计产量6000千克,则按照(2)中的方式进行销售,能否销售完这批草莓?请说明理由.17.如图,在平面直角坐标系xOy中,直线y=x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线y=-x2+bx+c交x轴于另一点C,点D是抛物线的顶点.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一点(不与点A、B重合),过点P作x轴的垂线交x轴于点H,交直线AB于点F,作PG⊥AB于点G.求出△PFG的周长最大值;(3)在抛物线y=ax2+bx+c上是否存在除点D以外的点M,使得△ABM与△ABD的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.18.中国女排队员平时刻苦训练,掌握了纯熟的技能,在赛场上敢拼敢打,是国民的骄傲,为备战杭州亚运会,女排队员克服重重困难,进行封闭集训.已知排球场的长度为18m,球网在场地中央且高度为2.24m.排球出手后的运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,排球运动过程中的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x−h)2+k(a<0).(1)若某队员第一次在O处正上方2米发球,当排球运行至离O的水平距离为6米时,到达最大高度2.8米.①求排球运动过程中的竖直高度y(单位:m)与水平距离x(单位:m)的函数关系式;②这次所发的球能否过网▲(填“能”或“否”).(2)若该队员第二次发球时,排球运动过程中的竖直高度y(单位:m)与水平距离x(单位:m)近似满(x−4)2+2.88,请问:该队员此次发球有没有出界?并说明理由.足函数关系y=−150答案1.A 2.B 3.C 4.D 5.B 6.C 7.D 8.D9.y =−2x 2+3 10.−√3 11.−1<x <3 12.−1<x <4 13.①④14.(1)解:将点、代入二次函数解析式得{16+4b +c =09−3b +c =7解得;(2)解:由(1)得二次函数的解析式为,由题意可得设平移后点和的坐标分别为,则为一元二次方程的两个根(),且 ∴x 2−2x −8−m =0 由根与系数的关系可得: ∴{x 2+x 1=2x 2−x 1=4 解得∴x 1x 2=−1×3=−8−m ∴m =5 ∴B ′(3,−5) . 15.(1)30;1050(2)解:由题意,得y =(120−80−x)(20+2x)=−2x 2+60x +800(0≤x ≤40) ∴y 与x 的函数关系式为y =−2x 2+60x +800(0≤x ≤40); (3)解:由(2)知:y =−2x 2+60x +800=−2(x −15)2+1250∵−2<0∴当x =15时,销售单价定价为120−15=105元时,商场每天可获得最大利润1250元.16.(1)解:设y 与x 的函数关系式为y=kx+b (k ≠0),把A (12,400),B (14,350)分别代入得,解得:,∴y 与x 的函数关系式为y=-25x+700,由题意知: ∴10≤x ≤28(2)解:设每天的销售利润为w 元,由题意知w=(x-10)(-25x+700)=-25x 2+950x-7000 =-25(x-19)2+2025.∵a=-25<0,∴当x=19时,w 取最大值,为2025.当该品种草莓定价为19元/千克时,每天销售获得的利润最大,为2025元. (3)解:能销售完这批草莓.理由如下:当x=19时,y=-25×19+700=225,225×30=6750>6000. ∴按照(2)中的方式进行销售,能销售完17.(1)解:∵直线AB :y =x +3与坐标轴交于A(-3,0)、B(0,3)两点 代入抛物线解析式y =-x 2+bx +c 中有 {0=−9−3b +c 3=c ∴{b =−2c =3∴抛物线解析式为:y =-x 2-2x +3(2)解:∵由题意可知△PFG 是等腰直角三角形 设P(m ,-m 2-2m +3) ∴F(m ,m +3)∴PF =-m 2-2m +3-m -3=-m 2-3m.△PFG 周长为:-m 2-3m + (-m 2-3m)=-(+1)(m +)2+ ∴△PFG 周长的最大值为:.(3)解:点M 有三个位置,如图所示的M 1、M 2、M 3,都能使△ABM 的面积等于△ABD的面积.此时DM1∥AB,M3M2∥AB,且与AB距离相等.∵D(-1,4),∴E(-1,2)、则N(-1,0)∵y=x+3中,k=1,∴直线DM1解析式为:y=x+5,直线M3M2解析式为:y=x+1.∴x+5=-x2-2x +3或x+1=-x2-2x+3,∴x1=-1(舍去),x2=-2,x3=,x4=,∴M1(-2,3),M2(,)M3(,).18.(1)解:①由题意可得抛物线的顶点为(6,2.8)设抛物线的解析式为y=a(x−6)2+2.8(a<0)把(0,2)代入,得a=−145(x−6)2+2.8.∴所求函数关系为y=−145②能.(2)解:没有出界.(x−4)2+2.88=0令y=0,则−150解得x1=−8(舍)x2=16.∵x2=16<18∴没有出界。

人教版九年级上册数学 二次函数 综合训练题(含答案)

人教版九年级上册数学   二次函数   综合训练题(含答案)

人教版九年级上册数学二次函数综合训练题一.选择题(共10小题)1.如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c 过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A.5 B.4 C.3 D.22.如图,点M是抛物线y=ax2(x>0)上的任意一点,MA⊥x轴于点A,MB⊥y轴于点B,连接AB,交抛物线于点P,则的值是()B.C.D.A.3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④ C.①②③D.①②③④4.已知二次函数y=x2﹣2ax+6,当﹣2≤x≤2时,y≥a,则实数a的取值范围是()A.B.﹣2≤a≤2 C.D.0≤a≤25.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x 1 1.1 1.2 1.3 1.4y ﹣1 ﹣0.49 0.04 0.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.36.在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为()A.15 B.18 C.21 D.247.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+3上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为()A.1 B.2 C.3 D.48.如图,抛物线y=x2﹣2x﹣3与y轴交于点C,点D的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为()A.1+B.1﹣C.﹣1 D.1﹣或1+9.二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中可能的图象为()A.B.C.D.10.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(﹣1,﹣4)C.开口向上,顶点坐标为(1,4) D.开口向下,顶点坐标为(1,4)二.填空题(共6小题)11.已知函数y=,其图象如图中的实线部分,图象上两个最高点分别是A,B,连接AB,则图中曲四边形ABCO(阴影部分)的面积是.12.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=﹣x2﹣5x+c经过点B、C,则菱形ABCD的面积为.13.如图,在平面直角坐标系中,抛物线y=﹣x2+4x的顶点为A,与x轴分别交于O、B两点,过顶点A分别作AC⊥x轴于点C,AD⊥y轴于点D,连接BD,交AC于点E,则△ADE与△BCE的面积和为.14 如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.15.如图,在平面直角坐标系中,抛物线y=a(x﹣3)2+2(a>0)的顶点为A,过点A作y轴的平行线交抛物线y=﹣x2﹣2于点B,则A、B两点间的距离为.16.如图,在平面直角坐标系中,正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,抛物线y=﹣x2+3bx+2b+经过B、C两点,则正方形OABC的周长为.三.解答题(共10小题)17.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.18.如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.19.如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).(1)求此二次函数的顶点B的坐标;(2)在抛物线上有一点P,满足S△AOP=1,请直接写出点P的坐标.20.如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.21.已知二次函数y=﹣x2﹣2x+3(1)求它的顶点坐标和对称轴;(2)求它与x轴的交点;(3)画出这个二次函数图象的草图.22.如图,二次函数y=ax2﹣2ax+3(a≠0)的图象与x、y轴交于A、B、C三点,其中AB=4,连接BC.(1)求二次函数的对称轴和函数表达式;(2)若点M是线段BC上的动点,设点M的横坐标为m,过点M作MN∥y轴交抛物线于点N,求线段MN的最大值;(3)当0≤x≤t时,则3≤y≤4,直接写出t的取值范围.23.如图1为抛物线桥洞,已知底面宽AB=16m,与拱顶M的距离4m.(1)在图2中,建立适当的坐标系,求抛物线的解析式;(2)若水深1米,求水面CD的宽度(结果用根号表示)24.如图,已知等腰直角△ABC的直角边长与正方形DEFG的边长均为8cm,EF与AC在同一条直线上,开始时点A与点F重合,让△ABC向左移动,运动速度为1cm/s,最后点A与点E重合.(1)试写出两图形重叠部分的面积y(cm2)与△ABC的运动时间x(s)之间的关系式;(2)当点A向左运动2.5s时,重叠部分的面积是多少?25.如图,对称轴为直线x=﹣1的抛物线y=x2+bx+c与x轴相交于A,B两点,其中A点的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,点C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.26.如图,抛物线y=(x+1)2﹣4与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.(1)求A、C两点的坐标;(2)抛物线的对称轴上存在一点P,使得△PBC的周长最小,求此时点P的坐标及最小周长;(3)点M是抛物线上一动点,且在第三象限,当四边形AMCO的面积最大时,求出四边形AMCO的最大面积及此时点M的坐标.答案一、选择1.C.2.A.3.C.4.C5.C.6.B.7.B.8.A9.A.10.A.二.填空题11.2.12.20.13.4.14.15.15.7.16.8.三.解答题17.解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD=×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x=,∴E(,0),∴BE=3﹣=∴S△BCD=S△BEC+S△BED=××(3a+a)=3a,∴S△BCD:S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x2﹣2x+;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y=x2﹣2x+.18.解:(1)∵抛物线y=﹣x2+mx+3过(3,0),∴0=﹣9+3m+3,∴m=2(2)由,得,,∴D(,﹣),∵S△ABP=4S△ABD,∴AB×|y P|=4×AB×,∴|y P|=9,y P=±9,当y=9时,﹣x2+2x+3=9,无实数解,当y=﹣9时,﹣x2+2x+3=﹣9,x1=1+,x2=1﹣,∴P(1+,﹣9)或P(1﹣,﹣9).19.解:(1)将A(﹣2,0)、O(0,0)代入解析式y=﹣x2+bx+c,得c=0,﹣4﹣2b+c=0,解得c=0,b=﹣2,所以二次函数解析式:y=﹣x2﹣2x=﹣(x+1)2+1,所以,顶点B坐标(﹣1,1);(2)∵AO=2,S△AOP=1,∴P点的纵坐标为:±1,∴﹣x2﹣2x=±1,当﹣x2﹣2x=1,解得:x1=x2=﹣1,当﹣x2﹣2x=﹣1时,解得:x1=﹣1+,x2=﹣1﹣,∴点P的坐标为(﹣1,1)或(﹣1+,﹣1))或(﹣1﹣,﹣1).20.解:(1)∵OM=ON=4,∴M点坐标为(4,0),N点坐标为(0,4),设抛物线解析式为y=a(x﹣4)2,把N(0,4)代入得16a=4,解得a=,所以抛物线的解析式为y=(x﹣4)2=x2﹣2x+4;(2)∵点A的横坐标为t,∴DM=t﹣4,∴CD=2DM=2(t﹣4)=2t﹣8,把x=t代入y=x2﹣2x+4得y=t2﹣2t+4,∴AD=t2﹣2t+4,∴l=2(AD+CD)=2(t2﹣2t+4+2t﹣8)=t2﹣8(t>4).21.解:(1)y=﹣x2﹣2x+3=﹣(x+1)2+4,顶点坐标为(﹣1,4),对称轴x=﹣1;(2)令y=0,得﹣x2﹣2x+3=0,解得:x1=1,x2=﹣3,故与x轴的交点坐标:(1,0),(﹣3,0)(3)画出函数的图象如图:22.解:(1)∵二次函数解析式为y=ax2﹣2ax+3,∴对称轴x=1,∵AB=4,∴A(﹣1,0),B(3,0),把(﹣1,0)代入二次函数的解析式得到a=﹣1,∴二次函数的解析式为y=﹣x2+2x+3.(2)∵直线BC的解析式为y=﹣x+3,设M(m,﹣m+3),则N(m,﹣m2+2m+3),∴NM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∵﹣1<0,∴m=时,MN有最大值,最大值为.(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标(1,4),∵y=3时3=﹣x2+2x+3,解得x=0或2,∴0≤x≤t时,则3≤y≤4,∴结合图象可知,1≤t≤2.23.解:(1)建立如图所示的坐标系,设这条抛物线的解析式为y=ax2+4(a≠0).由已知抛物线经过点B(8,0),可得0=a×82+4,有a=﹣,∴抛物线的解析式为y=﹣x2+4.(2)当y=1时,1=﹣x2+4,解得:x=±4,4﹣(﹣4)=8,∴水面CD的宽为8m.24.解(1)重叠部分的面积y与线段AF的长度x之间的函数关系式为y=x2.(2)当点A向左移动2cm,即x=2cm,当x=25时,y=×2.52=3.125(cm2).所以当点A向左移动2.5cm时,重叠部分的面积是3.125cm2.25.解:(1)∵抛物线的对称轴为x=﹣1,A点的坐标为(﹣3,0),∴点B的坐标为(1,0).(2)①将点A和点B的坐标代入抛物线的解析式得:解得:b=2,c=﹣3,∴抛物线的解析式为y=x2+2x﹣3.∵将x=0代入得y=﹣3,∴点C的坐标为(0,﹣3).∴OC=3.∵点B的坐标为(1,0),∴OB=1.设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=4S△BOC,∴OC•|a|=OC•OB,即×3×|a|=4××3×1,解得a=±4.当a=4时,点P的坐标为(4,21);当a=﹣4时,点P的坐标为(﹣4,5).∴点P的坐标为(4,21)或(﹣4,5).②如图所示:设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,∴直线AC的解析式为y=﹣x﹣3.设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).∴QD=﹣x﹣3﹣( x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴当x=﹣时,QD有最大值,QD的最大值=.26.解:(1)令x=0,得y=﹣3,∴点C坐标(0,﹣3).令y=0则(x+1)2﹣4=0,解得x=﹣3或1,∴点A坐标(﹣3,0),B(1,0),∴A(﹣3,0),C(0,﹣3).(2)如图1中,连接AC交对称轴于P,∵PB=PA,∴PB+PC=PB+PA,∴此时PB+PC最短,△PBC的周长最短,设直线AC解析式为y=kx+b则解得,∴直线AC解析式为y=﹣x﹣3,∵对称轴x=﹣1,∴点P坐标(﹣1,﹣2),在Rt△AOC中,∵∠AOC=90°,OA=OC=3,∴AC=3,∵BC===,∴△PBC周长的最小值为3+.(3)如图2中,设M(m,m2+2m﹣3),连接OM.∵S四边形AMCO=S△AOM+S△MOC=×3×(﹣m2﹣2m+3)+×3×(﹣m)=﹣m2﹣m+=﹣(m+)2+,∵﹣<0,∴m=﹣时,四边形AMCO面积最大,最大值为,此时点M(﹣,﹣).。

二次函数综合测评卷(含答案)

二次函数综合测评卷(含答案)

二次函数综合测评卷一、选择题(每题3分,共30分) 1.下列各式中,y 是x 的二次函数的是( ).A.x 2+2y 2=2B.x =y 2C.3x 2-2y =1D.21x +2y -3=0 2.对于二次函数y =(x -1)2+3的图象,下列说法正确的是( ). A.开口向下 B.对称轴是直线x =-1 C.顶点坐标是(1,3) D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个矩形花园的最大面积是( ).A.16m 2B.12m 2C.18m 2D.以上都不对 4.如果抛物线y =mx 2+(m -3)x -m +2经过原点,那么m 的值等于( ). A.0 B.1 C.2 D.3 5.如图所示,直线x =1是抛物线y =ax 2+bx +c 的对称轴,那么有( ). A.abc >0 B.b <a +c C.a +b +c <0 D.c <2b(第5题) (第6题) (第7题) (第8题)6.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是( ).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y =ax 2+bx +c 的顶点为点P (-2,2),与y 轴交于点A (0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A ′,则AA ′的长度为( ). A.343 B.241C.32D.3 8.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB =8m ,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC =1m ,则门高OE 为( ).A.9mB.764m C.8.7m D.9.3m 9.已知二次函数y =x 2+bx +c 与x 轴只有一个交点,且图象过A (x 1,m ),B (x 1+n ,m )两点,则m ,n 满足的关系为( ). A.m =21n B.m =41n C.m =21n 2 D.m =41n 2 10.已知二次函数y =-(x -1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为( ). A.25 B.2 C. 23 D. 21二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y =3x 2的图象重合,那么这个二次函数的表达式可以是 (只要写出一个).12.如图所示,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P (5,0)在抛物线上,则9a -3b +c 的值为 .(第12题)(第13题) (第14题) (第15题)13.如图所示,抛物线y =ax 2+bx +c 与x 轴相交于点A ,B (m +2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c ),则点A 的坐标是 .14.如图所示,将两个正方形并排组成矩形OABC ,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M ,N 的二次函数的图象也过矩形的顶点B ,C ,若三个正方形边长均为1,则此二次函数的表达式为 .15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w (元)与降价x (元)的函数关系如图所示.这种工艺品的销售量y (件)关于降价x (元)的函数表达式为 . 16.已知抛物线y =a (x -1)(x +a2)的图象与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是 . 三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25). (1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小?18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y =4x -21x 2的图象的一段,斜坡的截线OA 是一次函数y =21x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.19.(8分)若直线y =x +3与二次函数y =-x 2+2x +3的图象交于A ,B 两点,(1)求A ,B 两点的坐标. (2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x (km ),乘坐地铁的时间y 1(min )是关于x 的一次函数,其关系如下表所示:1(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x +78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.21.(10分)已知二次函数y =ax 2+bx +21(a >0,b <0)的图象与x 轴只有一个公共点A. (1)当a =21时,求点A 的坐标. (2)过点A 的直线y =x +k 与二次函数的图象相交于另一点B ,当b ≥-1时,求点B 的横坐标m 的取值范围.22.(12分)设函数y =kx 2+(2k +1)x +1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k ,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k ,当x <m 时,y 随着x 的增大而增大,试求出m 的一个值.23.(12分)如图1所示,点P (m ,n )是抛物线y =41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为点H . 【特例探究】(1)当m =0时,OP = ,PH = ;当m =4时,OP =,PH = . 【猜想验证】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想. 【拓展应用】(3)如图2所示,图1中的抛物线y =41x 2-1变成y =x 2-4x +3,直线l 变成y =m (m <-1).已知抛物线y =x 2-4x +3的顶点为点M ,交x 轴于A ,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y =m (m <-1)与对称轴交于点C ,若对于抛物线上每一点都满足:该点到直线y =m 的距离等于该点到点N 的距离.①用含m 的代数式表示MC ,MN 及GN 的长,并写出相应的解答过程. ②求m 的值及点N 的坐标.(第23题)二次函数综合测评卷一、选择题(每题3分,共30分) 1.下列各式中,y 是x 的二次函数的是(C ).A.x 2+2y 2=2B.x =y 2C.3x 2-2y =1D.21x+2y -3=0 2.对于二次函数y =(x -1)2+3的图象,下列说法正确的是(C ). A.开口向下 B.对称轴是直线x =-1 C.顶点坐标是(1,3) D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个矩形花园的最大面积是(C ).A.16m 2B.12m 2C.18m 2D.以上都不对 4.如果抛物线y =mx 2+(m -3)x -m +2经过原点,那么m 的值等于(C ). A.0 B.1 C.2 D.3 5.如图所示,直线x =1是抛物线y =ax 2+bx +c 的对称轴,那么有(D ). A.abc >0 B.b <a +c C.a +b +c <0 D.c <2b(第5题) (第6题) (第7题) (第8题)6.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是(C ).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y =ax 2+bx +c 的顶点为点P (-2,2),与y 轴交于点A (0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A ′,则AA ′的长度为(A ). A.343 B.241C.32D.3 8.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB =8m ,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC =1m ,则门高OE 为(B ).A.9mB.764m C.8.7m D.9.3m 9.已知二次函数y =x 2+bx +c 与x 轴只有一个交点,且图象过A (x 1,m ),B (x 1+n ,m )两点,则m ,n 满足的关系为(D ). A.m =21n B.m =41n C.m =21n 2 D.m =41n 2 10.已知二次函数y =-(x -1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为(D ). A.25 B.2 C. 23 D. 21(第10题答图)【解析】二次函数y =-(x -1)2+5的大致图象如答图所示:①当m ≤0≤x ≤n <1时,当x =m 时y 取最小值,即2m =-(m -1)2+5,解得m =-2或m =2(舍去).当x =n 时y 取最大值,即2n =-(n -1)2+5,解得n =2或n =-2(均不合题意,舍去).②当m ≤0≤x ≤1≤n 时,当x =m 时y 取最小值,由①知m =-2.当x =1时y 取最大值,即2n =-(1-1)2+5,解得n =25,或x =n 时y 取最小值,x =1时y 取最大值,2m =-(n -1)2+5,n =25,∴m =811.∵m <0,∴此种情形不合题意.∴m +n =-2+25=21.故选D. 二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y =3x 2的图象重合,那么这个二次函数的表达式可以是 y =3(x +2)2+3 (只要写出一个).12.如图所示,抛物线y =ax 2+bx +c (a >0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P (5,0)在抛物线上,则9a -3b +c 的值为 0 .(第12题)(第13题) (第14题) (第15题)13.如图所示,抛物线y =ax 2+bx +c 与x 轴相交于点A ,B (m +2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c ),则点A 的坐标是 (-2,0) .14.如图所示,将两个正方形并排组成矩形OABC ,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M ,N 的二次函数的图象也过矩形的顶点B ,C ,若三个正方形边长均为1,则此二次函数的表达式为 y =-34x 2+38x +1 . 15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w (元)与降价x (元)的函数关系如图所示.这种工艺品的销售量y (件)关于降价x (元)的函数表达式为 y =60+x . 16.已知抛物线y =a (x -1)(x +a2)的图象与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是 2或34或251 .三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25). (1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小? 【答案】(1)设抛物线的函数表达式为y =a (x -2)2-3,把(1,- 25)代入,得-25=a -3,即a =21. ∴抛物线的函数表达式为y =21x 2-2x -1.图略. (2)∵抛物线对称轴为直线x =2,且a >0,∴当x ≥2时,y 随x 的增大而增大;当x ≤2时,y 随x 的增大而减小.18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y =4x -21x 2的图象的一段,斜坡的截线OA 是一次函数y =21x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.【答案】(1)∵y =4x -21x 2=-21(x -4)2+8,∴网球抛出的最高点的坐标为(4,8). (2)由题意得4x -21x 2=21x ,解得x =0或x =7.当x =7时,y =21×7=27.∴网球在斜坡的落点A的垂直高度为27.19.(8分)若直线y =x +3与二次函数y =-x 2+2x +3的图象交于A ,B 两点, (1)求A ,B 两点的坐标. (2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?【答案】(1)由题意得⎩⎨⎧++-=+=3232x x y x y ,解得⎩⎨⎧==30y x 或⎩⎨⎧==41y x .∴A ,B 两点的坐标分别为(0,3),(1,4).(2)∵A ,B 两点的坐标是(0,3),(1,4),∴OA =3,OA 边上的高线长是1.∴S △OAB =21×3×1=23. (3)当x <0或x >1时,一次函数的值大于二次函数的值.20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x (km ),乘坐地铁的时间y 1(min )是关于x 的一次函数,其关系如下表所示:(1)求y 1关于x 的函数表达式.(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x +78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【答案】(1)设y 1=kx +b ,将(8,18),(9,20)代入,得⎩⎨⎧=+=+209188b k b k ,解得⎩⎨⎧==22b k .∴y 1关于x的函数表达式为y 1=2x +2.(2)设李华从文化宫回到家所需的时间为y .则y =y 1+y 2=2x +2+21x 2-11x +78=21x 2-9x +80.∴当x =9时,y 有最小值,y min =2149802142⨯-⨯⨯=39.5.∴李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5min . 21.(10分)已知二次函数y =ax 2+bx +21(a >0,b <0)的图象与x 轴只有一个公共点A. (1)当a =21时,求点A 的坐标. (2)过点A 的直线y =x +k 与二次函数的图象相交于另一点B ,当b ≥-1时,求点B 的横坐标m 的取值范围.【答案】(1)∵二次函数y =ax 2+bx +21 (a >0,b <0)的图象与x 轴只有一个公共点A ,∴Δ=b 2-4a ×21=b 2-2a =0.∵a =21,∴b 2=1.∵b <0,∴b =-1.∴二次函数的表达式为y =21x 2-x +21.当y =0时,21x 2-x +21=0,解得x 1=x 2=1,∴A (1,0). (2)∵b 2=2a ,∴a =21b 2,∴y =21b 2x 2+bx +21=21 (bx +1)2.当y =0时,x =-b 1,∴A (-b 1,0).将点A (-b 1,0)代入y =x +k ,得k =b 1.由⎪⎪⎩⎪⎪⎨⎧+=++=b x y bx x b y 1212122消去y 得21b 2x 2+(b -1)x +21-b 1=0,解得x 1=-b 1,x 2=22b b -.∵点A 的横坐标为-b 1,∴点B 的横坐标m =22bb -.∴m =22b b -=2(21b -b 21)=2(b 1-41)2-81.∵2>0,∴当b 1<41时,m 随b 1的增大而减小.∵-1≤b <0,∴b 1≤-1.∴m ≥2×(-1-41)2-81=3,即m ≥3. 22.(12分)设函数y =kx 2+(2k +1)x +1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k ,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k ,当x <m 时,y 随着x 的增大而增大,试求出m 的一个值.【答案】(1)如:y =x +1,y =x 2+3x +1,图略.(2)不论k 取何值,函数y =kx 2+(2k +1)x +1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明如下:由y =kx 2+(2k +1)x +1,得k (x 2+2x )+(x -y +1)=0.当x 2+2x =0,x -y +1=0,即x =0,y =1,或x =-2,y =-1时,上式对任意实数k 都成立,∴函数的图象必过定点(0,1),(-2,-1).∵当k =0时,函数y =x +1的图象与x 轴有一个交点;当k ≠0时,Δ=(2k +1)2-4k =4k 2+1>0,函数图象与x 轴有两个交点,∴函数y =kx 2+(2k +1)x +1的图象与x 轴至少有1个交点.(3)只要写出的m ≤-1就可以.∵k <0,∴函数y =kx 2+(2k +1)x +1的图象在对称轴直线x =-k k 212+的左侧,y 随x 的增大而增大.由题意得m ≤-k k 212+.∵当k <0时,k k 212+=-1-k 21>-1.∴m ≤-1.23.(12分)如图1所示,点P (m ,n )是抛物线y =41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为点H .【特例探究】(1)当m =0时,OP = 1 ,PH = 1 ;当m =4时,OP = 5 ,PH = 5 .【猜想验证】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想.【拓展应用】(3)如图2所示,图1中的抛物线y =41x 2-1变成y =x 2-4x +3,直线l 变成y =m (m <-1).已知抛物线y =x 2-4x +3的顶点为点M ,交x 轴于A ,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y =m (m <-1)与对称轴交于点C ,若对于抛物线上每一点都满足:该点到直线y =m 的距离等于该点到点N 的距离.①用含m 的代数式表示MC ,MN 及GN 的长,并写出相应的解答过程.②求m 的值及点N 的坐标.(第23题)【答案】 (1)1,1,5,5.(2)猜想:OP =PH .证明:设PH 交x 轴于点Q ∵P 在y =41x 2-1上,∴P (m ,41m 2-1),PQ =∣41m 2-1∣,OQ =|m |.∵△OPQ 是直角三角形,∴OP =22OQ PQ +=222141m m +⎪⎭⎫ ⎝⎛+=22141⎪⎭⎫ ⎝⎛+m =14m 2+1.∵PH =yp -(-2)=(41m 2-1)-(-2)=41m 2+1,∴OP =PH . (3)①∵M (2,-1),∴CM =MN =-m -1.GN =CG -CM -MN =-m -2(-m -1)=2+m .②点B 的坐标是(3,0),BG =1,GN =2+m .由勾股定理得BN =22GN BG +=()2221m ++.∵对于抛物线上每一点都有:该点到直线y =m 的距离等于该点到点N 的距离,∴1+(2+m )2=(-m )2,解得m =-45. ∵GN =2+m =2-45=43,∴N (2,-43).。

2024年福建中考数学专题复习:二次函数综合题(含答案)

2024年福建中考数学专题复习:二次函数综合题(含答案)

2024年福建中考数学专题复习:二次函数综合题一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为;②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为.(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P 抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.2024年福建中考数学专题复习:二次函数综合题(答案)一.定点问题(共3小题)1.已知抛物线y=x2﹣2mx﹣3(m为常数).(1)求抛物线的顶点坐标(用含m的代数式表示);(2)当m≥1时,求抛物线顶点到x轴的最小距离;(3)当m=0时,点A,B为该抛物线上的两点,顶点为D,直线AD的解析式为y1=k1x+b1,直线BD的解析式为y2=k2x+b2,若k1k2=﹣,求证:直线AB过定点.【答案】(1)(m,﹣m2﹣3);(2)抛物线顶点到x轴的最小距离为4;(3)直线AB过定点(0,﹣).2.已知抛物线y=x2+bx+c关于直线x=1对称,且过点(2,1).(1)求抛物线的解析式;(2)过D(m,﹣1)的直线DE:y=k1x+b1(k>0)和直线DF:y=k2x+b2(k2<0)均与抛物线有且只有一个交点.①求k1k2的值;②平移直线DE,DF,使平移后的两条直线都经过点R(1,0),且分别与抛物线相交于G、H和P、Q两点,若M、N分别为GH,PQ的中点,求证:直线MN必过某一定点.【答案】(1)y=x2﹣2x+1;(2)①k1k2=﹣4;②证明见解答过程.3.在平面直角坐标系中,抛物线l:y=x2﹣2mx﹣2﹣m(m>0)与x轴分别相交于A、B两点(点A在点B的左侧),与y轴相交于点C,设抛物线l的对称轴与x轴相交于点N,且OC=3ON(1)求m的值;(2)设点G是抛物线在第三象限内的动点,若∠GBC=∠ACO,求点G的坐标;(3)将抛物线y=x2﹣2mx﹣2﹣m向上平移3个单位,得到抛物线l′,设点P、Q是抛物线l′上在第一象限内不同的两点,射线PO、QO分别交直线y=﹣2于点P′、Q′,设P′、Q′的横坐标分别为x P′、x Q′,且x P′⋅x Q′=4,求证:直线PQ经过定点.【答案】(1)m=1;(2)点G的坐标为;(3)见解析.二.定值问题(共2小题)4.过原点的抛物线与x轴的另一个交点为A,且抛物线的对称轴为直线x=2,顶点为B.(1)求抛物线的解析式;(2)如图(1),点E是直线AB上方抛物线上一点,连接AB,BE,AE,若△ABE的面积为4,求点E的坐标;(3)如图(2),设直线y=kx﹣2k(k≠0)与抛物线交于C,D两点,点D关于直线x=2的对称点为D',直线CD'与直线x=2交于点P,求证:BP的长为定值.【答案】(1)解析式为:y=x2﹣2x;(2)E1(0,0),E2(6,6);(3)证明见解答过程.5.已知抛物线C1:y=mx2+n与x轴于A,B两点,与y轴交于点C,△ABC为等腰直角三角形,且n=﹣1.(1)求抛物线C1的解析式;(2)将C1向上平移一个单位得到C2,点M、N为抛物线C2上的两个动点,O为坐标原点,且∠MON=90°,连接点M、N,过点O作OE⊥MN于点E.求点E到y轴距离的最大值;(3)如图,若点F的坐标为(0,﹣2),直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线C1有且只有一个公共点,设点G的横坐标为b,点H的横坐标为a,则a﹣b是定值吗?若是,请求出其定值,若不是,请说明理由.【答案】(1)y=x2﹣1;(2);(3)定值1.三.线段之积(共2小题)6.如图,在平面直角坐标系中,抛物线y=x2+bx+c,交x轴于A、B两点(点A在点B的左侧,其中A点坐标(﹣1,0);交y轴负半轴于点C,C点坐标(0,﹣3).(1)求出抛物线的解析式;(2)如图1,若抛物线上有一点D,∠ACD=45°,求点D的坐标.(3)如图2,点P是第一象限抛物线上一点,过点P的直线y=mx+n(n<0)与抛物线交于另外一点Q,连接AP、AQ,分别交y轴于M、N两点.若OM•ON=2,试探究m、n之间的数量关系,并说明理由.【答案】(1)y=x2﹣2x﹣3;(2)D(4,5);(3)m、n之间的数量关系为n+3m=2.理由间接性.7.已知抛物线y=ax2+bx+c经过点A(﹣1,0),B(2,0),C(0,﹣1).(1)求抛物线的解析式;(2)D为抛物线y=ax2+bx+c上不与抛物线的顶点和点A,B重合的动点.①设抛物线的对称轴与直线AD交于点F,与直线BD交于点G,点F关于x轴的对称点为F′,求证:GF′的长度为定值;②当∠BAD=45°时,过线段AD上的点H(不含端点A,D)作AD的垂线,交抛物线于P,Q两点,求PH•QH的最大值.【答案】(1)y=x2﹣x﹣1;(2)①F′G=为定值;②PH•QH的最大值为:.四.线段数量关系(共5小题)8.抛物线C:y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左边),交y轴于点C.(1)直接写出点A,B的坐标;(2)如图1,直线y=x+1经过点A,交抛物线于另一点N,点D在抛物线上,满足△DAN的面积与△CAN的面积相等,求点D的横坐标;(3)如图2,将抛物线C向上平移,使其顶点M在x轴上,得到抛物线C1,P(x1,y1),Q(x2,y2)是抛物线C1上两点(P点在Q点左侧),直线PQ交抛物线C1对称轴于点E,过点Q作y轴的平行线分别交x轴,直线PM于F,H两点,EH交x轴于点G,求证:EG=GH.【答案】(1)A(﹣1,0),B(3,0);(2)3或;(3)见解析.9.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线经过点(﹣1,1)且对称轴为直线x=1,求a,c所满足的数量关系;(2)抛物线与y轴交于点,顶点为Q(2,0),过点的直线与抛物线交于E,F两点(点E在点F的左侧).①求△EQF面积的最小值;②过点E作x轴的垂线,垂足为M,直线EM与直线FQ交于点N,连接PM,求证:PM∥QN.【答案】(1)3a+c=1;(2)①4;②见解答.10.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,点P为抛物线上的一个动点,连接AB,BC,PA,PC,PC与AB相交于点Q.(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一个动点.设△APQ的面积为S1,△BCQ的面积为S2.求S1﹣S2的最大值,并求此时点P的坐标;(3)过点P作PD垂直于x轴于点D,与线段AB交于点N.设点D的横坐标为m,且2<m<4,PD中点为点M,AB中点为点E,若,求m的值.【答案】(1)y=﹣x2+3x+4;(2)S1﹣S2的最大值为,点P的坐标为:(,);(3)m=.11.抛物线y=﹣x2+bx+c经过点A(4,0),与y轴交于点B,对称轴为,点P是x轴上一点,过点P作垂直于x轴的直线分别交抛物线和直线AB于点E和点F.(1)求二次函数的表达式;(2)若E、F、P三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求点P的坐标;(3)分别过点E、F向抛物线的对称轴作垂线,交对称轴于点M、N,矩形EMNF与此抛物线相交,抛物线被截得的部分图象记作G,G的最高点的纵坐标为m,最低点纵坐标为n,当m﹣n=2OP时,求点P的坐标.【答案】(1);(2)(﹣1,0),,;(3)P(6,0).12.已知抛物线y=﹣﹣2x+3n(n>0)与x轴交于A,B两点(点A位于点B的左侧);与y轴交于点C,顶点为D.(1)如图1,若n=1.①则D的坐标为(﹣1,4);②当m≤x≤0时,抛物线的最小值为3,最大值为4,则m的取值范围为﹣2≤m≤﹣1 .(2)如图2,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线PB 同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2nd.①求证:AC∥PB.②连接AP、OD、OQ、DQ,若AP=QB,PQ=4n,试判断△DOQ的形状是否随着n的变化而变化?并说明理由.【答案】(1)①(﹣1,4);②﹣2≤m≤﹣1;(2)①证明见解析过程;②△DOQ的形状不会随着n的变化而变化,理由见解析过程.五.面积问题(共5小题)13.已知抛物线C1:y=﹣x2﹣2x﹣1,抛物线C2经过点A(﹣1,0),B(m+1,0)(m>0),E为抛物线C2的顶点,M(x M,0)是x轴正半轴上的点.(1)若E在抛物线C1上,求点E的坐标;(用含m的式子表示)(2)若抛物线C2:y=x2﹣mx+n,与y轴交于点C.①点D(m,y D)在抛物线C2上,当AM=AD,x M=5时,求m的值;②若m=2,F是线段OB上的动点,过F作GF⊥CF交线段BC于点G,连接CE,GE,求△CGE面积的最小值.【答案】(1)E(m,﹣m2﹣m﹣1);(2)①m=3﹣1;②6﹣6.14.如图,在直角坐标系中,抛物线y=x2+bx+c经过点A的坐标为(﹣2,0)和原点O,将线段OA绕原点O 顺时针旋转120°,得到线段OB.(1)求抛物线解析式,判断点B是否在抛物线上;(2)连接AB,作点O关于AB的对称点O′,求四边形AOBO′的面积;(3)点P(n,0)是x轴上一个动点,过P点作x轴的垂线交直线AB于点M,交抛物线于点N,将△ANB的面积记为S,若≤S≤,求n的取值范围.【答案】(1)y=x2+x;点B在抛物线上,理由见解答过程;(2)2;(3)≤n≤﹣或≤n≤或≤n≤.15.在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的函数解析式;(2)连接AC,BC,点D是直线BC下方抛物线上的一个的动点(不与B,C重合),①求△BCD面积的最大值;②若∠ACO+∠BCD=∠ABC,求点D的坐标.【答案】(1)y=x2﹣2x﹣3;(2)①△BCD面积的最大值为;②D(,﹣).16.在平面直角坐标系中,抛物线经过点和点B(4,0),与y轴交于点C,点P抛物线上一点.(1)求抛物线的解析式;(2)已知点P为第一象限内抛物线上的点,过点P作PH⊥AB,垂足为H,作PE⊥x轴,垂足为E,交AB于点F,设△PHF的面积为S1,△BEF的面积为S2,当时,求点P的坐标;(3)点N为抛物线对称轴上的动点,是否存在点N,使得直线BC垂直平分线段PN?若存在,请直接写出点N 坐标,若不存在,请说明理由.【答案】(1)y=﹣x2+x+4;(2);(3)存在点N,使得直线BC垂直平分线段PN;N的坐标是或.17.抛物线y=x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,C是第一象限抛物线上一点,直线AC交y轴于点P.(1)求抛物线解析式;(2)如图1,当OP=OA时,D是点C关于抛物线对称轴的对称点,M是抛物线上的动点,它的横坐标为m(﹣1<m<4),连接DM,CM,DM与直线AC交于点N.设△CMN和△CDN的面积分别为S1和S2,求的最大值.(3)如图2,直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为n.求的值.【答案】(1)y=x2﹣2x﹣3;(2);(3).。

九年级数学二次函数专项训练含答案精选5篇

九年级数学二次函数专项训练含答案精选5篇

九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y 关于x 的二次函数的是( ) A .y =4xB .y =3x ﹣5C .y =D .y =2x 2+12.已知:a >b >c ,且a +b +c =0,则二次函数y =ax 2+bx +c 的图象可能是下列图象中的( )A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),答:若降价2元,则每天的销售利润是1040元;(2)设每斤“阳光玫瑰葡萄”应降价x元,根据题意得:(30﹣15﹣x)(60+10x)=1100,整理得:x2﹣9x+20=0,解得x1=4,x2=5,∵为了尽快减少库存,∴x=5,此时30﹣x=25,答:每斤“阳光玫瑰葡萄”的售价应降至每斤25元;(3)设水果商每天获得的利润为y元,根据题意得:w=(30﹣x﹣15)(60+10x)=﹣10x2+90x+900=﹣10(x﹣)2+1102.5,∵﹣10<0,∴当x=时,y有最大值,最大值为1102.5,此时30﹣x=30﹣4.5=25.5,答:将商品的销售单价定为25.5元时,商场每天销售该商品获得的利润w最大,最大利润是1102.5元.21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.解:(1)把A(﹣1,0)、B(4,0)代入得:,解得,∴抛物线的解析式为y=x2﹣x﹣2;(2)∵y=x2﹣x﹣2=(x﹣)2﹣,∴抛物线的对称轴是直线x=,在y=x2﹣x﹣2中,令x=0得y=﹣2,∴C(0,﹣2),①若线段DE与线段BC关于点K成中心对称,C的对应点D在对称轴上,B的对应点在抛物线上,如图:设D(,m),E(n,n2﹣n﹣2),而B(4,0),C(0,﹣2),∵K是DC的中点,也是BE的中点,∴,解得,∴D(,);②若线段DE与线段BC关于点T成中心对称,B的对应点D在对称轴上,C的对应点在抛物线上,如图:设D(,m'),E(n',n'2﹣n'﹣2),而B(4,0),C(0,﹣2),∵T是EC的中点,也是BD的中点,∴,解得,∴D(,);综上所述,落在对称轴上的点的坐标为(,)或(,);(3)由B(4,0),C(0,﹣2)可得直线BC解析式为y=x﹣2,设M(t,t2﹣t﹣2),由M(t,t2﹣t﹣2),C(0,﹣2)可得直线MC解析式为:y=(t﹣)x﹣2,由MN∥BC设直线MN解析式为y=x+p,将M(t,t2﹣t﹣2)代入得:t2﹣t﹣2=t+p,∴p=t2﹣2t﹣2,∴直线MN解析式为y=x+t2﹣2t﹣2,由得或,∴N(﹣t+4,t2﹣t),由B(4,0),N(﹣t+4,t2﹣t)可得直线NB的解析式为y=(﹣t+)x+2t﹣10,解(﹣t+)x+2t﹣10=(t﹣)x﹣2得x=2,∴P的横坐标为2.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为(﹣5,2);(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.解:(1)∵﹣5<0,∴y'=﹣y=2,∴点(﹣5,﹣2)的“可控变点”坐标为(﹣5,2),故答案为:(﹣5,2);(2)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数的图象上.∵“可控变点”Q的纵坐标y′是7,∴当﹣x2+16=7时,解得x=3;当x2﹣16=7,解得x=﹣;综上所述“可控变点”Q的横坐标为或3;(3)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数的图象上,∵﹣16≤y'≤16,∴﹣16=﹣x2+16,∴x=,当x=﹣5时,x2﹣16=9,当y'=9时,x=,∴a的取值范围是.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为y=x+4,点M的坐标为(﹣2,﹣2).(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.解:(1)把A(﹣4,0),C(2,6)代入y=x2+bx+c得:,解得,∴抛物线解析式为y=x2+2x;(2)设直线AB解析式为y=mx+n,把A(﹣4,0),C(2,6)代入得:,解得,∴直线AB解析式为y=x+4,∵y=x2+2x=(x+2)2﹣2,∴抛物线的顶点M坐标为(﹣2,﹣2);故答案为:y=x+4,(﹣2,﹣2);(3)∵A(﹣4,0),A,A'关于y轴对称,∴A'(4,0),设直线A'Q解析式为y=m'x+n',把A'(4,0),M(﹣2,﹣2)代入得:,解得,∴直线A'Q解析式为y=x﹣,令x=0得y=﹣,∴Q(0,﹣);(4)存在点N,使以点A,O,C,N为顶点的四边形是平行四边形,理由如下:设N(p,q),又A(﹣4,0),O(0,0),C(2,6),①若AN,OC为对角线,则AN,OC的中点重合,∴,解得,∴N(6,6);②若ON,AC为对角线,则ON,AC的中点重合,∴,解得,∴N(﹣2,6);③若CN,AO为对角线,则CN,AO的中点重合,∴,解得,∴N(﹣6,﹣6).综上所述,N的坐标为(6,6)或(﹣2,6)或(﹣6,﹣6).九年级数学上册《二次函数》专题测试题(附答案)一.选择题(共8小题,满分32分)1.若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣12.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论错误的是()A.当x>0时,y随x的增大而减小B.该函数的图象一定经过点(0,1)C.该函数图象的顶点在函数y=x2+1的图象上D.该函数图象与函数y=﹣x2的图象形状相同3.已知:抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线()A.x=﹣1B.x=1C.x=2D.x=﹣24.将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为()A.y=2(x+5)2﹣3B.y=2(x+5)2+3C.y=2(x﹣5)2﹣3D.y=2(x﹣5)2+35.二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)4ac<b2;(2)abc<0;(3)2a+b<0;(4)(a+c)2<b2其中正确的个数是()A.1B.2C.3D.46.已知抛物线y=ax2+4ax﹣8与直线y=n相交于A,B两点(点A在点B左侧),AB=4,且抛物线与x轴只有一个交点,则n的值为()A.﹣8B.﹣4C.4D.87.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个整数根,其中一个根是3,则另一个根是()A.﹣5B.﹣3C.﹣1D.38.物理课上我们学习了竖直上抛运动,若从地面竖直向上抛一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m②小球抛出3s后,速度越来越快③小球抛出3s时速度为0④小球的高度h=30m时,t=1.5s其中正确的是()A.①②③B.①②C.②③④D.②③二.填空题(共8小题,满分32分)9.已知抛物线y=x2+bx+c关于直线x=2对称,设x=1,2,4时对应的函数值依次为y1,y2,y4,那么y1,y2,y4的大小关系是.(用“<”连接)10.已知抛物线y=ax2﹣2ax﹣1(a<0)(I)抛物线的对称轴为;(2)若当﹣2≤x≤2时,y的最大值是1,求当﹣2≤x≤2时,y的最小值是.11.已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x 的一元二次方程ax2﹣2ax+c=0的两根之积是.12.已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.13.将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是.15.抛物线y=ax2+bx+tc(a<0)交x轴于点A、B,交y轴于点C(0,3),其中点B坐标为(1,0),同时抛物线还经过点(2,﹣5).(1)抛物线的解析式为;(2)设抛物线的对称轴与抛物线交于点E,与x轴交于点H,连接EC、EO,将抛物线向下平移n(n>0)个单位,当EO平分∠CEH时,则n的值为.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).三.解答题(共6小题,满分56分)17.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.18.对于向上抛的物体,如果空气阻力忽略不计,有下面的关系式:h=v0t﹣gt2(h是物体离起点的高度,v0是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间).杂技演员抛球表演时,以10m/s的初速度把球向上抛出.(1)球抛出后经多少秒回到起点?(2)几秒后球离起点的高度达到1.8m?(3)球离起点的高度能达到6m吗?请说明理由.19.在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.20.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?21.如图,抛物线y=﹣x2+bx+c过点A(4,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点D、N.(1)求直线AB的表达式和抛物线的表达式;(2)若DN=3DM,求此时点N的坐标;(3)若点P为直线AB上方的抛物线上一个动点,当∠ABP=2∠BAC时,求点P的坐标.22.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣2),点C(0,﹣5),顶点为点M,过点A作AB∥x轴,交y轴于点D,交二次函数y=x2+bx+c的图象于点B,连接BC.(1)求该二次函数的表达式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若E为线段AB上一点,且BE:EA=3:1,P为直线AC上一点,在抛物线上是否存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.参考答案一.选择题(共8小题,满分32分)1.解:∵函数y=(a+1)x|a+3|﹣x+3是关于x的二次函数,∴|a+3|=2且a+1≠0,解得a=﹣5,故选:B.2.解:A.∵y=﹣(x﹣m)2+m2+1(m为常数),∴抛物线开口向下,对称轴为直线x=m,∴x>m时,y随x增大而减小,故A错误,符合题意;∵当x=0时,y=1,∴该函数的图象一定经过点(0,1),故B正确,不合题意;∵y=﹣(x﹣m)2+m2+1,∴抛物线顶点坐标为(m,m2+1),∴抛物线顶点在抛物线y=x2+1上,故C正确,不合题意;∵y=﹣(x﹣m)2+m2+1与y=﹣x2的二次项系数都为﹣1,∴两函数图象形状相同,故D正确,不合题意.故选:A.3.解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故选:C.4.解:将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为y=2(x+5)2+3,故选:B.5.解:根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac<b2,故(1)正确.∵抛物线开口朝下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故(2)正确;∵对称轴x=﹣>1,∴2a+b>0,故(3)错误;根据图象知道当x=1时,y=a+b+c>0,根据图象知道当x=﹣1时,y=a﹣b+c<0,∴(a+c)2﹣b2=(a+c+b)(a+c﹣b)<0,故(4)正确;故选:C.6.解:∵抛物线与x轴只有一个交点,∴a≠0且Δ=16a2﹣4a×(﹣8)=0,∴a=﹣2,∴抛物线解析式为y=﹣2x2﹣8x﹣8,∵抛物线的对称轴为直线x=﹣=﹣2,而AB平行x轴,AB=4,∴A点的横坐标为﹣4,B点的横坐标为0,当x=0时,y=﹣8,∴n的值为﹣8.故选:A.7.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴二次函数y=ax2+bx+c的图象与直线y=﹣m的一个交点的横坐标为3,∵对称轴是直线x=﹣1,∴二次函数y=ax2+bx+c的图象与直线y=﹣m的另一个交点的横坐标为﹣5,∴关于x的方程ax2+bx+c+m=0(m>0)的另一个根是﹣5,故选:A.8.解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得,∴函数解析式为,把h=30代入解析式得,,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选D.二.填空题(共8小题,满分32分)9.解:∵抛物线y=x2+bx+c的开口向上,对称轴是直线x=2,∴当x=2时取最小值,又|1﹣2|<|4﹣2|,∴y1<y4,故答案为:y2<y1<y4.10.解:(1)抛物线的对称轴为:直线x=﹣=1,故答案为:直线x=1;(2)∵抛物线y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1(a<0),∴该函数图象的开口向下,对称轴是直线x=1,当x=1时,取得最大值﹣a﹣1,∵当﹣2≤x≤2时,y的最大值是1,∴x=1时,y=﹣a﹣1=1,得a=﹣2,∴y=﹣2(x﹣1)2+1,∵﹣2≤x≤2,∴x=﹣2时,取得最小值,此时y=﹣2(﹣2﹣1)2+1=﹣17,故答案为:﹣17.11.解:∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该函数的对称轴是直线x=﹣=1,∴该函数图象与x轴的另一个交点坐标为(3,0),∴关于x的一元二次方程ax2﹣2ax+c=0的两实数根是x1=﹣1,x2=3,∴两根之积为﹣3,故答案为:﹣3.12.解:如图,当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5(﹣1≤x≤5),当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程x2﹣4x﹣5=﹣x+b有相等的实数解,解得b=﹣,所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为﹣<b<﹣1.故答案为:﹣<b<﹣1.13.解:将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为y=﹣(x﹣3﹣5)2﹣1+2,即y=﹣(x﹣8)2+1,故答案为:y=﹣(x﹣8)2+1.14.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,故答案为:x1=﹣3,x2=1.15.解:(1)将点C(0,3)、B(1,0)、(2,﹣5)代入抛物线y=ax2+bx+tc中,得:a+b+c=0,c=3,4a+2b+c=﹣5;解得:a=﹣1,b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)抛物线向下平移n个单位后,E为(﹣1,4﹣n),C为(0,3﹣n),∴EC=,∵CO∥EH,∴当CO=CE=时,∠CEO=∠COE=∠OCH,∴3﹣n=或n﹣3=,即n=3﹣或3+.16.解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.三.解答题(共6小题,满分56分)17.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.18.解:∵初速度为10m/s,g取10m/s2,∴h=10t﹣×10t2=10t﹣5t2,(1)当h=0时,。

2023年中考数学专题复习:二次函数综合题训练(含答案)

2023年中考数学专题复习:二次函数综合题训练(含答案)
(4)若点M在x轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.
9.如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 .抛物线 经过点 、 .
(1)求抛物线解析式及顶点 坐标;
(2) 为抛物线第一象限内一点,使得 面积最大,求 面积的最大值及此时点 的坐标;
3.(1)
(2)
(3)存在,
(4) 或
4.(1)
(2)①最大值为8,m=2;②存在, 或
5.(1)C(0,6);抛物线的解析式为y=−x2+5x+6
(2)P(3,12)
(3)点N的坐标为( , )或( , )
6.(1)y= x2﹣3x﹣8,点B坐标(8,0),点E坐标(3,﹣4)
(2)存在,F
(3)﹣ 或﹣
(3)将抛物线沿射线AC方向平移 个单位长度,若点F为新抛物线对称轴上一点,在平面直角坐标系内是否存在点M,使以点B、C、F、M为顶点的四边形为矩形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
12.如图,在平面直角坐标系中,二次函数 的图像与x轴交于点A( ,0)、B(4,0),与y轴交于点C.
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运点的三角形是等腰三角形?直接写出所有符合条件的t值.
3.如图,已知A(﹣2,0)、B(3,0),抛物线y=ax2+bx+4经过A、B两点,交y轴于点C.点P是第一象限内抛物线上的一动点,点P的横坐标为m.过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.过点P作PN⊥BC,垂足为点N.
(3)在(2)的条件下,有一条长度为 的线段 落在 上( 与点 重合, 与点 重合),将线段 沿 轴正方向以每秒 个单位向右平移,设移动时间为 秒,当四边形 周长最小时,求 的值.

完整版)初中数学二次函数综合题及答案

完整版)初中数学二次函数综合题及答案

完整版)初中数学二次函数综合题及答案二次函数题选择题:1、若y=(m-2)x^2-m是关于x的二次函数,则m=()A。

-1.B。

2.C。

-1或2.D。

m不存在2、下列函数关系中,可以看作二次函数y=ax^2+bx+c(a≠0)模型的是()A。

在一定距离内,汽车行驶的速度与行驶的时间的关系B。

我国人口自然增长率为1%,这样我国总人口数随年份变化的关系C。

矩形周长一定时,矩形面积和矩形边长之间的关系D。

圆的周长与半径之间的关系4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x^2,则抛物线的解析式是()A。

y=-(x-2)^2+2.B。

y=-(x+2)^2+2C。

y=-(x+2)^2+2.D。

y=-(x-2)^2-25、抛物线y=1/2x^2-6x+24的顶点坐标是()A。

(-6,-6)。

B。

(-6,6)。

C。

(6,6)。

D。

(6,-6)6、已知函数y=ax^2+bx+c,图象如图所示,则下列结论中正确的有()个①abc0.④2c<3bA。

1.B。

2.C。

3.D。

47、函数y=ax^2-bx+c(a≠0)的图象过点(-1,1),则b+c/a的值是()A。

-1.B。

1.C。

-2.D。

2二填空题:8、已知一次函数y=ax+c与二次函数y=ax^2+bx+c(a≠0),它们在同一坐标系内的大致图象是图中的()A。

A。

B。

B。

C。

C。

D。

D13、无论m为任何实数,总在抛物线y=x^2+2mx+m上的点的坐标是()m,m)16、若抛物线y=ax^2+bx+c(a≠0)的对称轴为直线x=2,最小值为-2,则关于方程ax^2+bx+c=-2的根为()1±√317、抛物线y=(k+1)x^2+k^2-9开口向下,且经过原点,则k=()2或-2解答题:(二次函数与三角形)1、已知:二次函数y=x^2+bx+c,其图象对称轴为直线x=1,且经过点(2,-2).1)求此二次函数的解析式.解:因为对称轴为x=1,所以顶点坐标为(1,k),其中k为最小值.又因为经过点(2,-2),所以方程组4+2b+c=k1+b+c=k解得b=-3,c=2,k=0,所以二次函数的解析式为y=x^2-3x+2.2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△XXX的面积最大,并求出最大面积.解:易得B、C两点坐标分别为(0,2)和(3,0).设点E的横坐标为x,则其纵坐标为y=x^2-3x+2.则△XXX的面积为S(x)=1/2(3-x)(x^2-3x+2-2),化简得S(x)=-1/2x^3+9/2x^2-8x+3.对S(x)求导得S'(x)=-3/2x^2+9x-8,令其等于0得x=2或4/3,代入S(x)得S(2)=4和S(4/3)=16/27,故△XXX的最大面积为4,当且仅当E的坐标为(2,-2)时取得.2、如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,2).1)求抛物线的函数表达式;2)在抛物线上取一点P,作△ABC的高PH,交AB于点H,求证:PH=2BP.解:(1)因为抛物线与x轴交于A、B两点,所以其解析式为y=a(x-a)(x-b),其中a<1<b.因为顶点为(1,2),所以方程组a(1-a)(1-b)=2a(b-a)(b-1)=4解得a=1/2,b=3/2,所以抛物线的函数表达式为y=1/2(x-1)^2+2.2)设点P的坐标为(x,y),则PH的长度为y-4,BP的长度为x-1.根据△ABC的面积公式得4=1/2y(x-1),即y=8/(x-1).又因为P在抛物线上,所以y=1/2(x-1)^2+2.将y代入上式得x^3-3x^2+2x-8=0,解得x=2或-1±√3.当x=2时,PH=2BP成立,当x=-1±√3时,PH≠2BP不成立.故结论成立.2、设抛物线的对称轴与轴交于点D,试在对称轴上找出点P,使△CDP为等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数综合练习题一、选择题1.〔2013,6,3分〕二次函数y =x 2-3x +m 〔m 为常数〕的图象与x 轴的一个交点为(1,0),那么关于x 的一元二次方程x 2-3x +m =0的两实数根是〔 〕. A .x 1=1,x 2=-1 B .x 1=1,x 2=2 C .x 1=1,x 2=0D .x 1=1,x 2=3 【答案】B .【解析】∵二次函数y =x 2-3x +m 的图象与x 轴的一个交点为〔1,0〕,∴0=12-3+m ,解得m =2,∴二次函数为y =x 2-3x +2.设y =0,那么x 2-3x +2=0.解得x 2=1,x 2=2,这就是一元二次方程x 2-3x +m =0的两实数根.所以应选B .【方法指导】考察一元二次方程的根、二次函数图象与x 轴交点的关系.当b 2-4ac ≥0时,二次函数y =ax 2+bx+c 的图象与x 轴的两个交点的横坐标是一元二次方程ax 2+bx+c =0的两个根.【易错警示】因审题不严,容易错选;或因解方程出错而错选.2.〔2013,8,3分〕方程0132=-+x x 的根可视为函数3+=x y 的图象与函数xy 1=的图象交点的横坐标,那么方程3210x x +-=的实根0x 所在的围是〔 〕. A .4100<<x B .31410<<x C .21310<<x D .1210<<x 【答案】C .【解析】首先根据题意推断方程x 3+2x -1=0的实根是函数y =x 2+3与xy 1=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x -1=0的实根x 0所在围.解:依题意得方程x 3+2x -1=0的实根是函数y =x 2+2与xy 1=的图象交点的横坐标,这两个函数的图象如下图,它们的交点在第一象限.当x =14时,y =x 2+2=2116,1y x ==4,此时抛物线的图象在反比例函数下方; 当x =13时,y =x 2+2=219,1y x ==3,此时抛物线的图象在反比例函数下方;当x =12时,y =x 2+2=214,1y x==2,此时抛物线的图象在反比例函数上方;当x =1时,y =x 2+2=3,1y x==1,此时抛物线的图象在反比例函数上方.所以方程3210x x +-=的实根0x 所在的围是21310<<x .所以应选C .【方法指导】此题考察了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点〞,还要善于分析各图象的变化趋势.【易错警示】不会得出函数解析式,不会观察图象而出错.3. 〔2013市(A ),12,4分〕一次函数y =ax +b 〔a ≠0〕、二次函数y =ax 2+bx 和反比例函数y =kx(k ≠0)在同一直角坐标系中的图象如下图,A 点的坐标为(-2,0).那么以下结论中,正确的选项是〔〕A .b =2a +kB .a =b +kC .a >b >0D .a >k >0 【答案】D .【解析】∵一次函数与二次函数的图象交点A 的坐标为〔-2,0〕,∴-2a +b =0,∴b =2a . 又∵抛物线开口向上,∴a >0,那么b >0.而反比例函数图象经过第一、三象限,∴k >0. ∴2a +k >2a ,即b <2a +k .故A 选项错误. 假设B 选项正确,那么将b =2a 代入a =b +k ,得a =2a +k ,a =-k .又∵a >0,∴-k >0,即k <0,这与k >0相矛盾,∴a =b +k 不成立.故B 选项错误.再由a >0,b =2a ,知a ,b 两数均是正数,且a <b ,∴b >a >0.故C 选项错误. 这样,就只有D 选项正确.【方法指导】此题考察一次函数、反比例函数、二次函数的图象,属于图象共存型问题.解决这类问题的关键是熟练掌握这三类函数的图象与性质,能根据图象所在象限的位置准确判断出各系数的符号.上面解法运用的是排除法,至于D 为何正确,可由二次函数y =ax 2+bx 与反比例函数y =k x (k ≠0)的图象,知当x =-2b a =-22aa=-1时,y =-k >-24b a =-244a a =-a ,即k <a .又因为a >0,k >0,所以a >k >0.【易错警示】二次函数a 、b 、c 的符号确实定与函数图象的关系混淆不清. 4. 〔2013,7,4分〕抛物线1)3(22+-=x y 的顶点坐标是〔 〕 A .(3,1) B .(3,-1)C .(-3,1)D .(-3,-1)【答案】:A【解析】抛物线2()y a x h k =-+的顶点是〔h ,k 〕【方法指导】求一个抛物线的顶点可以先把二次函数配方,再得到顶点坐标;也可以利用顶点公式24(,)24b ac b a a--求顶点坐标。

4.〔2013•,28,10分〕如图,二次函数y =x 2+bx -的图象与x 轴交于点A 〔-3,0〕和点B ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接DP ,过点P 作DP的垂线与y 轴交于点E .〔1〕请直接写出点D 的坐标: 〔-3,4〕 ;〔2〕当点P 在线段AO 〔点P 不与A 、O 重合〕上运动至何处时,线段OE 的长有最大值,求出这个最大值; 〔3〕是否存在这样的点P ,使△PED 是等腰三角形?假设存在,请求出点P 的坐标与此时△PED 与正方形ABCD 重叠局部的面积;假设不存在,请说明理由.考点:二次函数综合题.分析:〔1〕将点A的坐标代入二次函数的解析式求得其解析式,然后求得点B的坐标即可求得正方形ABCD的边长,从而求得点D的纵坐标;〔2〕PA=t,OE=l,利用△DAP∽△POE得到比例式,从而得到有关两个变量的二次函数,求最值即可;〔3〕分点P位于y轴左侧和右侧两种情况讨论即可得到重叠局部的面积.解答:解:〔1〕〔-3,4〕;〔2〕设PA=t,OE=l,由∠DAP=∠POE=∠DPE=90°得△DAP∽△POE,∴l=-+=-〔t-〕2+∴,∴当t=时,l有最大值,即P为AO中点时,OE的最大值为;〔3〕存在.①点P点在y轴左侧时,P点的坐标为〔-4,0〕由△PAD∽△OEG得OE=PA=1,∴OP=OA+PA=4。

∵△ADG∽△OEG,∴AG:GO=AD:OE=4:1∴AG==∴重叠局部的面积==②当P点在y轴右侧时,P点的坐标为〔4,0〕,此时重叠局部的面积为点评:此题考察了二次函数的综合知识,与二次函数的最值结合起来,题目的难度较大.5.〔2013·,18,2分〕某商场购进一批单价为4元的日用品.假设按每件5元的价格销售,每月能卖出3万件;假设按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y 〔件〕与价格x〔元/件〕之间满足一次函数关系.〔1〕试求y与x之间的函数关系式;〔2〕当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?考点:二次函数的应用.分析:〔1〕利用待定系数法求得y与x之间的一次函数关系式;〔2〕根据“利润=〔售价-本钱〕×售出件数〞,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.解答:解:〔1〕由题意,可设y=kx+b,把〔5,30000〕,〔6,20000〕代入得:,解得:,所以y与x之间的关系式为:y=-10000x+80000;〔2〕设利润为W,那么W=〔x-4〕〔-10000x+80000〕=-10000〔x-4〕〔x-8〕=-10000〔x2-12x+32〕=-10000[〔x-6〕2-4]=-10000〔x-6〕2+40000所以当x=6时,W取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.点评:此题主要考察利用函数模型〔二次函数与一次函数〕解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识.6.〔2013•东营,24,12分〕抛物线y =ax 2+bx +c 的顶点A 〔2,0〕,与y 轴的交点为B 〔0,-1〕.(1)求抛物线的解析式;(2)在对称轴右侧的抛物线上找出一点C ,使以BC 为直径的圆经过抛物线的顶点A .并求出点C 的坐标以与此时圆的圆心P 点的坐标.(3)在〔2〕的根底上,设直线x =t 〔0<t <10〕与抛物线交于点N ,当t 为何值时,△BCN 的面积最大,并求出最大值.分析:〔1〕抛物线的顶点坐标,可直接设抛物线的解析式为顶点式进展求解.〔2〕设C 点坐标为〔x ,y 〕,由题意可知090BAC ∠=.过点C 作CD x ⊥轴于点D ,连接AB ,AC .易证AOBCDA ∆∆,根据对应线段成比例得出,x y 的关系式24y x =-+,再根据点C 在抛物线上得2114y x x =-+-,联立两个关系式组成方程组,求出,x y 的值,再根据点C 所在的象限确定点C 的坐标。

P 为BC 的中点,取OD 中点H ,连PH ,那么PH 为梯形OBCD 的中位线.可得152OH OD ==,故点H 的坐标为〔5,0〕再根据点P 在BC 上,可求出直线BC 的解析式,求出点P 的坐标。

AO 〔第24题图〕xyB〔3〕根据BCN BMN CMN S S S ∆∆∆=+,得11052BCN S MN MN ∆=⨯=,所以求BCN S ∆的最大值就是求MN 的最大值,而M ,N 两点的横坐标一样,所以MN 就等于点N 的纵坐标减去点M 的纵坐标,从而形成关于MN 长的二次函数解析式,利用二次函数的最值求解。

解:(1) ∵抛物线的顶点是A (2,0),设抛物线的解析式为2(2)y a x .由抛物线过B (0,-1) 得41a ,∴14a.……………………2分 ∴抛物线的解析式为21(2)4y x . 即2114yx x .………………………………3分 (2)设C 的坐标为(x ,y ).∵A 在以BC 为直径的圆上.∴∠BAC =90°. 作CD ⊥x 轴于D ,连接AB 、AC .∵090BAO DAC ∠+∠=,090DAC DCA ∠+∠=∴BAO DCA ∠=∠ ∴△AOB ∽△CDA .………………………4分∴OB OAAD CD∴OB ·CD =OA ·AD .即1·y =2(x -2).∴y =2x -4. ∵点C 在第四象限. ∴24yx ………………………………5分〔第24(2)答案图〕由224,114yx yx x 解得1212102,100x x y y . ∵点C 在对称轴右侧的抛物线上.∴点C 的坐标为 (10,-16).……………………6分 ∵P 为圆心,∴P 为BC 中点.取OD 中点H ,连PH ,那么PH 为梯形OBCD 的中位线. ∴PH =21(OB +CD )=217.……………………7分∵D (10,0)∴H (5,0)∴P (5,172). 故点P 坐标为(5,172).…………………………8分 (3)设点N 的坐标为2114t t t ,,直线x=t 〔0<t<10〕与直线BC 交于点M .12BMNSMN t ,1(10)2CMNS MN t所以1102BCNBMN CMNSS SMN ………………………9分 设直线BC 的解析式为y kx b ,直线BC 经过B (0,-1)、C (10,-16)AxO yCBMN x=t〔第24(3)答案图〕所以1,1016b k b成立,解得:3,21k b…………………………10分 所以直线BC 的解析式为312yx ,那么点M 的坐标为.312t t , MN=2114t t 312t =21542t t ………………………11分 2115()10242BCNS t t =252542t t =25125(5)44t 所以,当t=5时,BCN S有最大值,最大值是1254.…………………………12分 点拨:〔1〕抛物线的顶点坐标〔h ,k 〕一般可设其解析式为()2y a x h k =-+.(2)求最值问题一般考虑根据条件构造二次函数求解.7.〔2013·,23,?分〕如图,直线y =-x +4与坐标轴分别交于点A 、B ,与直线y =x 交于点C .在线段OA 上,动点Q 以每秒1个单位长度的速度从点O 出发向点A 做匀速运动,同时动点P 从点A 出发向点O 做匀速运动,当点P 、Q 其中一点停止运动时,另一点也停止运动.分别过点P 、Q 作x 轴的垂线,交直线AB 、OC 于点E 、F ,连接EF .假设运动时间为t 秒,在运动过程中四边形PEFQ 总为矩形〔点P 、Q 重合除外〕. 〔1〕求点P 运动的速度是多少?〔2〕当t 为多少秒时,矩形PEFQ 为正方形?〔3〕当t 为多少秒时,矩形PEFQ 的面积S 最大?并求出最大值.考点:一次函数综合题.分析:〔1〕根据直线y =-x +4与坐标轴分别交于点A 、B ,得出A ,B 点的坐标,再利用EP ∥BO ,得出==,据此可以求得点P 的运动速度;〔2〕当PQ =PE 时,以与当PQ =PE 时,矩形PEFQ 为正方形,分别求出即可;〔3〕根据〔2〕中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.解答:解:〔1〕∵直线y=-x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴==,当t秒时,QO=FQ=t,那么EP=t,∵EP∥BO,∴==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;〔2〕如图1,当PQ=PE时,矩形PEFQ为正方形,那么OQ=FQ=t,PA=2t,∴QP=8-t-2t=8-3t,∴8-3t=t,解得:t=2,如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8-2t,∴QP=t-〔8-2t〕=3t-8,∴t=3t-8,解得:t=4;〔3〕如图1,当Q在P点的左边时,∵OQ=t,PA=2t,∴QP=8-t-2t=8-3t,∴S矩形PEFQ=QP•QF=〔8-3t〕•t=8t-3t2,当t=-=时,S矩形PEFQ的最大值为:=4,如图2,当Q在P点的右边时,∵OQ=t,PA=2t,∴QP=t-〔8-2t〕=3t-8,∴S矩形PEFQ=QP•QE=〔3t-8〕•t=3t2-8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴0≤t≤4,当t=-=时,S矩形PEFQ的最小,∴t=4时,S矩形PEFQ的最大值为:3×42-8×4=16,综上所述,当t=4时,S矩形PEFQ的最大值为:16.点评:此题主要考察了二次函数与一次函数的综合应用,得出P,Q不同的位置进展分类讨论得出是解题关键.8.〔2013省,25,12分〕某公司在固定线路上运输,拟用运营指数Q 量化考核司机的工作业绩.Q = W + 100,而W 的大小与运输次数n 与平均速度x 〔km/h 〕有关〔不考虑其他因素〕,W 由两局部的和组成:一局部与x 的平方成正比,另一局部与x 的n 倍成正比.试行中得到了表中的数据.〔1〕用含x 和n 的式子表示Q ;〔2〕当x = 70,Q = 450时,求n 的值; 〔3〕假设n = 3,要使Q 最大,确定x 的值;〔4〕设n = 2,x = 40,能否在n 增加m %〔m >0〕同时x 减少m %的情况下,而Q 的值仍为420,假设能,求出m 的值;假设不能,请说明理由.参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标是〔-b 2a ,4ac -b 24a〕解析:〔1〕设212W k x k nx =+,∴212100Q k x k nx =++由表中数据,得2122124204024010010060160100k k k k ⎧=+⨯+⎪⎨=+⨯+⎪⎩,解得121106k k ⎧=-⎪⎨⎪=⎩ ∴21610010Q x nx =-++········································ 4分 〔2〕由题意,得214507067010010n =-⨯+⨯+∴n=2 ··························································· 6分 〔3〕当n=3时,211810010Q x x =-++ 由1010a =-<可知,要使Q 最大,1812()10x =-⨯-=90 ··············· 9分 〔4〕由题意,得21420[40(1%)]62(1%)40(1%)10010m m m =--+⨯+⨯-+·········10分 即22(%)%0m m -=,解得1%2m =,或%m =0〔舍去〕∴m=50·························································· 12分次数n 2 1 速度x 40 60 指数Q 4201009.〔2013省市,23,10分〕某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.〔1〕不妨设该种品牌玩具的销售单价为x元〔x>40〕,请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:x应定为多少元.〔3〕在〔1〕问条件下,假设玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?10.〔2013省市,1,9分〕为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按本钱价提供产品给大学毕业生自主销售,本钱价与出厂价之间的差价由政府承当.明按照相关政策投资销售本市生产的一种新型节能灯.这种节能灯的本钱价为每件10元,出厂价为每件12元,每月销售量y〔件〕与销售单价x〔元〕之间的关系近似满足一次函数:y=﹣10x+500.〔1〕明在开场创业的第一个月将销售单价定为20元,那么政府这个月为他承当的总差价为多少元?〔2〕设明获得的利润为w〔元〕,当销售单价定为多少元时,每月可获得最大利润?〔3〕物价部门规定,这种节能灯的销售单价不得高于25元.如果明想要每月获得的利润不低于300元,那么政府为他承当的总差价最少为多少元?。

相关文档
最新文档