七年级数学试卷

合集下载

杨浦区2023学年第一学期七年级期末考试数学试卷

杨浦区2023学年第一学期七年级期末考试数学试卷

杨浦区2023学年第一学期七年级期末考试数学试卷一、选择题(40 分)1. triangle ABC is an equilateral triangle, AB = 3cm, what is the perimeter of the triangle?A. 9cmB. 6cmC. 3cmD. Cannot be determined2. Which of the following is an irrational number?A. 10B. 2C. 3....D. 1/23. Simplify the expression: 2x - 5y + 3x + 4yA. 5x - yB. 5y - 5xC. 5x + yD. -5x + y4. Which of the following pairs of numbers are equivalent?A. 0.25, 2/3B. -1.5, -1/2C. 0.4, 0.04D. All of them5. Jack earns $20 per hour and worked 40 hours this week. What is his total pay for the week?A. $800B. $400C. $200D. $1006. The radius of a circle is tripled, what happens to the area of the circle?A. It is halvedB. It is tripledC. It is quadrupledD. It is reduced to one-third7. Evaluate the following expression if x=3 and y=4: `(x^2 +y^2)/(x + y)`A. 5B. 3C. 7D. 48. Which of the following graphs represents a linear function?A.B.C.D.9. What is the slope of the line that passes through the point (-1, 5) and (2, -1)?A. -2B. -1/3C. 2D. 310. Simplify the following expression: `3(2x + 4) - 6`A. 6xB. 6x + 18C. 6x + 12D. 6x + 6二、填空题(30 分)1. If a + b = 3 and a - b = 1, then a = ______ and b = ______.2. The circumference of a circle is 20 cm. What is the diameter of the circle?3. The length of a rectangle is twice its width. If the width is 4 cm, then the length is ______ cm.4. Simplify the fraction: 40/60.5. The area of a square is 64 cm2. What is the length of one side of the square?6. The slope of the line that passes through the points (2, 4) and (4, 8) is ______.三、解答题(30 分)1. Given the equation of a line: y = 2x - 3. What is the y-intercept of the line?2. Use the distributive property to simplify the expression: 5(2x - 3) + 4(x + 7)3. Simplify the expression: `2x^2 + 4x + 3x - 2`4. Draw a line that has a slope of -2 and passes through the point (0, 6).5. A rectangular prism has a length of 6 cm, a width of 3 cm, and a height of 4 cm. What is its volume?6. If a student scores 85, 90, 95, and 80 on four tests, what is the average score? (Round to the nearest whole number)四、应用题(40 分)1. A pizza parlor offers customers the choice of the following toppings: pepperoni, sausage, mushrooms, green peppers, onions, and extra cheese. If a customer can order 1, 2, or 3 toppings on a pizza, how many different types of pizzas could be ordered?2. A rectangular fence is to be built using 600 ft of fencing. If the enclosed area must exceed ft2, what are the possible dimensions of the fence?3. In a certain school, the ratio of the number of boys to the number of girls is 3:4. If there are 180 students in the school, how many girls are there?4. The formula for the area of a trapezoid is A = (b1 + b2)h/2, where b1 and b2 are the lengths of the parallel bases and h is the height. If a trapezoid has a height of 10 cm, a length of b1 of 6 cm, and a length of b2 of 14 cm, what is its area?5. A cake recipe calls for 6 cups of flour to make a cake that feeds 12 people. How much flour is needed to make a cake that feeds 24 people?6. A survey of a small group of people showed that 20% of the people were left-handed. If there were 100 people surveyed, how many people were left-handed?。

河北省唐山市2022-2023学年七年级上学期期末数学试卷 含答案

河北省唐山市2022-2023学年七年级上学期期末数学试卷 含答案

唐山市2022-2023学年第一学期期末考试七年级 数学一、单选题1.我国幅员辽阔,南北跨纬度广,冬季温差较大,12月份的某天同一时刻,我国最南端的南海三沙市气温是28℃,而最北端的漠河镇气温是13-℃,则这天三沙市的气温比漠河镇的气温高( )A .15℃B .15-℃C .41℃D .41-℃ 2.如果1∠与2∠互余,2∠与3∠互补,则1∠与3∠的关系是( )A .13∠=∠B .1390∠=∠-︒C .1390∠=∠+︒D .13270∠+∠=︒ 3.小华做了以下4道计算题:①()202212022-=;②()011--=;③1115630-=;④1212÷=,请你帮她检查一下,她一共做对了( ).A .1道B .2道C .3道D .4道4.互不重合的A 、B 、C 三点在同一直线上,已知21AC a =+,4BC a =+,3AB a =,这三点的位置关系是( )A .点A 在B 、C 两点之间B .点B 在A 、C 两点之间 C .点C 在A 、B 两点之间D .无法确定 5.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -=D .由139322x x +=--得212x =- 6.下列叙述正确的是( )A .线段AB 可表示为线段BAB .射线CD 可表示为射线DC C .直线可以比较长短D .射线可以比较长短 7.下面各式的变形正确( )A .由2732x x -=+,得2327x x -=+B .由56%19%33%0.35x x -=+,得5619330.35x x -=+C .由248539x x -=-,得6485x x =-- D .由()()583365x x -+=-+,得5403365x x -+=--8.如图,“●、■、▲”分别表示三种不同的物体.已知前两架天平保持平衡,要使第三架也保持平衡.如果在“?”处只放“■”,那么应放“■”( )。

2023-2024学年北京市通州区七年级(上)期末数学试卷及答案解析

2023-2024学年北京市通州区七年级(上)期末数学试卷及答案解析

2023-2024学年北京市通州区七年级(上)期末数学试卷一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1.(2分)《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则﹣8℃表示气温为()A.零上8℃B.零下8℃C.零上2℃D.零下2℃2.(2分)下列各数中,﹣3的倒数是()A.3B.C.D.﹣33.(2分)下列算式中:①2﹣(﹣2)=0;②(﹣3)﹣(+3)=0;③(﹣3)﹣|﹣3|=0;④0﹣(﹣1)=1.其中正确的有()A.1个B.2个C.3个D.4个4.(2分)2021年《中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的总见》发布,明确了我国实现碳达峰碳中和的时间表、路线图,文件提出到2030年森林蓄积量达到190亿立方米.将19000000000用科学记数法表示应为()A.19×1010B.1.9×1010C.0.19×1011D.1.9×109 5.(2分)下列方程中变形正确的有()①3x+6=0变形为x+2=0;②﹣2x+4=5﹣x变形为﹣3x=1;③变形为4x=15;④4x=2变形为x=2.A.①④B.①③C.①②③D.①②④6.(2分)如图,是一个无盖正方体盒子,盒底标有一个字母m,现沿箭头所指方向将盒子剪开,则展开后的图形是()A.B.C.D.7.(2分)下列说法:①当a是有理数时,3+a>3﹣a;②当a是有理数时,总有|a|>0;③当a是有理数时,a2≥0;④当a是正有理数时,其中正确的序号是()A.①B.②C.③D.④8.(2分)远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.41天B.11天C.167天D.461天二、填空题(本题共8个小题,每小题2分,共16分)9.(2分)方程1﹣3x=0的解是.10.(2分)将多项式5x2﹣4﹣3x3按x的降幂排列为:.11.(2分)如图,小军从村庄(点O所在位置)到公路(直线l)有四条小道,分别是OA,OB,OC,OD,其中路程最短的是OC,小军判断的依据是.12.(2分)请用代数式表示“x与y差的平方”:.13.(2分)如果3ab2m﹣1与ab m+1是同类项,则m的值是.14.(2分)计算:180°﹣60°30'45″=.15.(2分)如图,是一副三角板拼成的一个四边形,拼成的图形中最大角的度数是.16.(2分)如图,a、b、c是数轴上点表示的有理数.计算:|a+b|﹣|a﹣c|﹣|b﹣1|=.三、解答题(17题5分,18-20每题6分,21-23每题5分,24-28每题6分,共68分)17.(5分)把下列各数:﹣4,|﹣3|,,﹣(﹣2),在数轴上表示出来,并用“<”把它们连接起来.18.(6分)计算:(1)﹣58﹣(﹣18)+45;(2).19.(6分)解方程.(1)7y+(3y﹣5)=y﹣2(7﹣3y)(2)=1.20.(6分)先化简,再求代数式的值:(1)x2+3xy﹣(2x2+4xy),其中x=﹣3,y=2.(2)6y3+4(x3﹣2xy)﹣2(3y3﹣xy),其中x=﹣2,y=3.21.(5分)已知代数式8x﹣7的值与代数式6﹣2x的值互为相反数,求x的值.22.(5分)如图,已知锐角∠AOC,按照下面给出的画法补全图形,并回答问题.(1)画法:①画∠AOC的角平分线OP,在射线OP上任意取一点E;②过点E画EM∥OA,交射线OC于点G.(2)问题:请通过观察、度量,判断你画出的图形中与∠AOP相等的角.直接写出两个即可.(∠AOP除外)23.(5分)七巧板是中国传统智力玩具,我们用下面方法制作一副七巧板:如图(1)所示,取一张正方形的硬纸板,联结对角线BD;分别取边BC、CD的中点E、F,连接EF;过点A作EF的垂线,分别交BD、EF于点G、点H;分别取BG、DG的中点M、N,联结MH、NF,沿图中实线剪开即可得到一副七巧板.小明将七巧板编上序号,如图(2).问题:(1)七巧板中的三角形、四边形板块中,与⑤号板块面积相等的有(填写序号).(2)小杰用七巧板拼成如图(3)所示的小房子,请你在小房子的图形上标注相应板块的序号.(3)小杰用七巧板拼成如图(4)所示的小鸽子图案,请你在小鸽子图案中通过连线画出七巧板中的每个图形板块.24.(6分)为了确保能够按时完成农田小麦收割任务,某小麦收割机配件车间需要在一周内完成2000件配件的生产任务.该车间接到任务后,计划平均每天加工400件,由于各种原因,每天实际加工的件数与每天计划加工的件数相比有出入,把超额或不足的部分分别用正、负数来表示,下表是这周加工这种配件的记录情况:星期一二三四五与每天的计划量相比的差值(单位:件)+55﹣20﹣25+60﹣50(1)这周共加工了件小麦收割机配件.(2)这周内加工最多的一天比加工最少的一天多加工了件.(3)已知该厂对这个车间实行计件工资制,每加工1件得10元,若超额完成任务,则超额部分每件再奖5元;若没有完成任务,则每少一件倒扣5元,求该车间这周的总收入.25.(6分)已知:线段AB上一点C,点D,E分别是线段AC,线段CB的中点,如果CD =3cm,AB=8cm,请求线段EB的长.26.(6分)某学校准备购买若干台电脑装备计算机教室,如果每个计算机教室安装40台,购买的电脑还缺15台;如果每个计算机教室安装35台,购买的电脑多出20台.学校购买了多少台电脑?装备多少个计算机教室?27.(6分)如图,点A,点B均在数轴上,且点A在点B的左侧,点A对应的有理数是﹣2,点B对应的有理数是m.(1)如果线段AB=2,则m=.(2)点C是线段AB上一点,点C对应的有理数是n,如果n=1,且2AC=CB,求m 的值.(3)点C是直线AB上一点,点C对应的有理数是n,且2AC=CB,求m的值(用含有n的代数式表示).28.(6分)已知有理数x、y满足方程3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.通过读题小凯发现题目中给出的方程是有两个未知数的方程,我们没有学习过,求值的代数式也有两个未知数.小凯观察发现如果方程①,方程②的左侧对应着相减,即:(3x ﹣y)﹣(2x+3y)化简后恰好出现代数式x﹣4y,方程①的左侧与方程②的左侧的2倍相加,即:(3x﹣y)+2(2x+3y)化简后恰好出现代数式7x+5y,依据所学知识可得:(3x ﹣y)﹣(2x+3y)=5﹣7=﹣2;(3x﹣y)+2(2x+3y)=5+2×7=19.因此,小凯求出:x﹣4y=﹣2,7x+5y=19.请你按照小凯思路解决下列问题:(1)如果4x+3y=15,x+2y=10,那么x+y=,2x﹣y=;(2)小凯为班集体购买活动奖品,第一次他购买了15支铅笔、5块橡皮、4本日记本共花了75元,第二次他购买了29支铅笔、9块橡皮、7本日记本共花了140元,第三次老师让小凯购买6支铅笔、6块橡皮、6本日记本共需要多少元?(3)对于有理数x、y,我们定义一个新运算:x*y=ax+by+c,等式右边是我们学习过的加法和乘法运算,其中a、b、c是常数,x,y是未知数.如果3*5=15,4*7=28,计算1*1的值.2023-2024学年北京市通州区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8个小题,每小题2分,共16分)每题均有四个选项,符合题意的选项只有一个.1.(2分)《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10℃记作+10℃,则﹣8℃表示气温为()A.零上8℃B.零下8℃C.零上2℃D.零下2℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣8℃表示气温为零下8℃.故选:B.【点评】此题主要考查正负数的意义,关键是理解正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(2分)下列各数中,﹣3的倒数是()A.3B.C.D.﹣3【分析】根据倒数定义,相乘得1的两个数互为倒数,即可得出答案.【解答】解:∵相乘得1的两个数互为倒数,且﹣3×﹣=1,∴﹣3的倒数是﹣.故选:B.【点评】题目考查了倒数的定义,题目整体较为简单,只要学生熟记倒数定义,即可轻松选对答案.3.(2分)下列算式中:①2﹣(﹣2)=0;②(﹣3)﹣(+3)=0;③(﹣3)﹣|﹣3|=0;④0﹣(﹣1)=1.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据有理数的减法运算法则对各小题分别进行计算即可继续进行判断.【解答】解:①2﹣(﹣2)=2+2=4,故本小题错误;②(﹣3)﹣(+3)=﹣3﹣3=﹣6,故本小题错误;③(﹣3)﹣|﹣3|=﹣3﹣3=﹣6,故本小题错误;④0﹣(﹣1)=0+1=1,故本小题正确;综上所述,正确的有④共1个.故选:A.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.4.(2分)2021年《中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的总见》发布,明确了我国实现碳达峰碳中和的时间表、路线图,文件提出到2030年森林蓄积量达到190亿立方米.将19000000000用科学记数法表示应为()A.19×1010B.1.9×1010C.0.19×1011D.1.9×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:19000000000=1.9×1010.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.5.(2分)下列方程中变形正确的有()①3x+6=0变形为x+2=0;②﹣2x+4=5﹣x变形为﹣3x=1;③变形为4x=15;④4x=2变形为x=2.A.①④B.①③C.①②③D.①②④【分析】根据等式的性质,逐一判断即可解答.【解答】解:①3x+6=0变形为x+2=0,故①正确;②﹣2x+4=5﹣x变形为﹣x=1,故②不正确;③变形为4x=15,故③正确;④4x=2变形为x=,故④不正确;所以,上列方程中变形正确的有①③,故选:B.【点评】本题考查了解一元一次方程,等式的性质,熟练掌握等式的性质是解题的关键.6.(2分)如图,是一个无盖正方体盒子,盒底标有一个字母m,现沿箭头所指方向将盒子剪开,则展开后的图形是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:∵正方体纸盒无盖,∴底面m没有对面,故选项C、D不符合题意,∵现沿箭头所指方向将盒子剪开,∴底面与侧面的从左边数第1个正方形相连,只有A选项图形符合.故选:A.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.7.(2分)下列说法:①当a是有理数时,3+a>3﹣a;②当a是有理数时,总有|a|>0;③当a是有理数时,a2≥0;④当a是正有理数时,其中正确的序号是()A.①B.②C.③D.④【分析】根据有理数的大小比较,非负数的性质及有理数的相关概念逐项判断即可.【解答】解:当a<0时,3+a<3﹣a,则①错误;当a=0时,|a|=0,则②错误;当a是有理数时,a2≥0,则③正确;当a=1时,a=,则④错误;综上,正确的是③,故选:C.【点评】本题考查有理数的大小比较,非负数的性质及有理数的相关概念,举出反例是解题的关键.8.(2分)远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.41天B.11天C.167天D.461天【分析】由于从右到左依次排列的绳子上打结,满七进一,所以从右到左的数分别为6,2×7,2×7×7和1×7×7×7,然后把它们相加即可.【解答】解:孩子自出生后的天数是:1×7×7×7+2×7×7+2×7+6=343+98+14+6=461,答:孩子自出生后的天数是461天.故选:D.【点评】本题考查了用数字表示事件.本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.二、填空题(本题共8个小题,每小题2分,共16分)9.(2分)方程1﹣3x=0的解是x=.【分析】方程移项,把x系数化为1,即可求出解.【解答】解:方程移项得:3x=1,解得:x=.故答案为:x=.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.10.(2分)将多项式5x2﹣4﹣3x3按x的降幂排列为:﹣3x3+5x2﹣4.【分析】运用多项式的降幂排列知识进行求解.【解答】解:由题意得,将多项式5x2﹣4﹣3x3按x的降幂排列为﹣3x3+5x2﹣4,故答案为:﹣3x3+5x2﹣4.【点评】此题考查了将多项式进行降幂排列的能力,关键是能准确理解并运用该知识进行求解.11.(2分)如图,小军从村庄(点O所在位置)到公路(直线l)有四条小道,分别是OA,OB,OC,OD,其中路程最短的是OC,小军判断的依据是垂线段最短.【分析】由垂线段最短,即可得到答案.【解答】解:小军判断的依据是垂线段最短.故答案为:垂线段最短.【点评】本题考查垂线段最短,关键是掌握垂线段最短.12.(2分)请用代数式表示“x与y差的平方”:(x﹣y)2.【分析】先表示出x与y的差,最后表示出平方即可.【解答】解:x与y差的平方表示为(x﹣y)2.故答案为:(x﹣y)2.【点评】此题主要考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”、“平方”等,从而明确其中的运算关系,正确地列出代数式.13.(2分)如果3ab2m﹣1与ab m+1是同类项,则m的值是2.【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:2m﹣1=m+1,解得:m=2.故答案为:2.【点评】本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.14.(2分)计算:180°﹣60°30'45″=119°29′15″.【分析】根据度分秒的进制,进行计算即可解答.【解答】解:∵180°﹣60°30'45″=179°59′60″﹣60°30'45″=119°29′15″,故答案为:119°29′15″.【点评】本题考查了度分秒的换算,准确熟练地进行计算是解题的关键.15.(2分)如图,是一副三角板拼成的一个四边形,拼成的图形中最大角的度数是105°.【分析】根据三角板的度数解答即可.【解答】解:由题意可知,拼成的图形中最大角的度数是45°+60°=105°.故答案为:105°.【点评】本题考查三角形内角和定理,熟记三角板的度数是解题的关键.16.(2分)如图,a、b、c是数轴上点表示的有理数.计算:|a+b|﹣|a﹣c|﹣|b﹣1|=﹣c ﹣1.【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后求出a+b,a﹣c,b﹣1的正负情况,再根据绝对值的性质去掉绝对值号,然后合并同类项即可得解.【解答】解:由图可知:b<a<0<c<1,所以可得a+b<0,a﹣c<0,b﹣1<0,|a+b|﹣|a﹣c|﹣|b﹣1|=﹣a﹣b+a﹣c+b﹣1=﹣c﹣1,故答案为:﹣c﹣1.【点评】本题考查了数轴,绝对值的性质,以及合并同类项,根据数轴判断出a、b、c 的正负情况以及绝对值的大小是解题的关键.三、解答题(17题5分,18-20每题6分,21-23每题5分,24-28每题6分,共68分)17.(5分)把下列各数:﹣4,|﹣3|,,﹣(﹣2),在数轴上表示出来,并用“<”把它们连接起来.【分析】先化简各数,然后根据正负数的定义把各数表示在数轴上,最后根据数轴上左边的数总比右边的数小得出比较结果.【解答】解:|﹣3|=3,,﹣(﹣2)=2,把各数表示在数轴上如下:∴.【点评】本题考查了数轴,绝对值,相反数,有理数的大小比较,熟练掌握有理数的大小比较方法是解题的关键.18.(6分)计算:(1)﹣58﹣(﹣18)+45;(2).【分析】(1)利用有理数的加减法则计算即可;(2)先算乘方,再算乘除,最后算减法即可.【解答】解:(1)原式=﹣58+18+45=﹣40+45=5;(2)原式=﹣1﹣(﹣)×÷9=﹣1﹣(﹣)××=﹣1+=﹣.【点评】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.19.(6分)解方程.(1)7y+(3y﹣5)=y﹣2(7﹣3y);(2)=1.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:7y+3y﹣5=y﹣14+6y,移项合并得:3y=﹣9,解得:y=﹣3;(2)去分母得:2x﹣5﹣9x﹣3=6,移项合并得:﹣7x=14,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.(6分)先化简,再求代数式的值:(1)x2+3xy﹣(2x2+4xy),其中x=﹣3,y=2.(2)6y3+4(x3﹣2xy)﹣2(3y3﹣xy),其中x=﹣2,y=3.【分析】将原式去括号,合并同类项后代入数值计算即可.【解答】解:(1)原式=x2+3xy﹣2x2﹣4xy=﹣x2﹣xy;当x=﹣3,y=2时,原式=﹣(﹣3)2﹣(﹣3)×2=﹣9+6=﹣3;(2)原式=6y3+4x3﹣8xy﹣6y3+2xy=4x3﹣6xy;当x=﹣2,y=3时,原式=4×(﹣2)3﹣6×(﹣2)×3=﹣32+36=4.【点评】本题考查整式的化简求值,熟练掌握相关运算法则是解题的关键.21.(5分)已知代数式8x﹣7的值与代数式6﹣2x的值互为相反数,求x的值.【分析】根据题意,先列出方程,再求方程的解.【解答】解:∵8x﹣7的值与代数式6﹣2x的值互为相反数,∴8x﹣7+6﹣2x=0.∴6x﹣1=0.∴x=.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.22.(5分)如图,已知锐角∠AOC,按照下面给出的画法补全图形,并回答问题.(1)画法:①画∠AOC的角平分线OP,在射线OP上任意取一点E;②过点E画EM∥OA,交射线OC于点G.(2)问题:请通过观察、度量,判断你画出的图形中与∠AOP相等的角.直接写出两个即可.(∠AOP除外)【分析】(1)根据角平分线的作图方法作出OP,再在射线OP上任取一点E,结合平行线的判定与性质作∠MEP=∠AOP,直线ME与射线OC交于点G.(2)根据角平分线的定义以及平行线的性质可得答案.【解答】解:(1)如图所示.(2)图中与∠AOP相等的角有:∠COP,∠MEP,∠OEG(任意写出两个即可).【点评】本题考查作图—复杂作图、角平分线的定义、平行线的判定与性质,熟练掌握角平分线的定义、平行线的判定与性质是解答本题的关键.23.(5分)七巧板是中国传统智力玩具,我们用下面方法制作一副七巧板:如图(1)所示,取一张正方形的硬纸板,联结对角线BD;分别取边BC、CD的中点E、F,连接EF;过点A作EF的垂线,分别交BD、EF于点G、点H;分别取BG、DG的中点M、N,联结MH、NF,沿图中实线剪开即可得到一副七巧板.小明将七巧板编上序号,如图(2).问题:(1)七巧板中的三角形、四边形板块中,与⑤号板块面积相等的有③⑦(填写序号).(2)小杰用七巧板拼成如图(3)所示的小房子,请你在小房子的图形上标注相应板块的序号.(3)小杰用七巧板拼成如图(4)所示的小鸽子图案,请你在小鸽子图案中通过连线画出七巧板中的每个图形板块.【分析】(1)根据题意找出与⑤号板块面积相等的有图形即可;(2)根据图(2)中图形的序号标注图(3)即可;(3)根据图(2)中的图形画出七巧板中的每个图形板块.【解答】解:(1)七巧板中的三角形、四边形板块中,与⑤号板块面积相等的有③⑦,故答案为:③⑦;(2)如图所示;(3)如图所示.【点评】本题考查了七巧板,正确地识别图形是解题的关键.24.(6分)为了确保能够按时完成农田小麦收割任务,某小麦收割机配件车间需要在一周内完成2000件配件的生产任务.该车间接到任务后,计划平均每天加工400件,由于各种原因,每天实际加工的件数与每天计划加工的件数相比有出入,把超额或不足的部分分别用正、负数来表示,下表是这周加工这种配件的记录情况:星期一二三四五与每天的计划量相比的差值(单位:件)+55﹣20﹣25+60﹣50(1)这周共加工了2020件小麦收割机配件.(2)这周内加工最多的一天比加工最少的一天多加工了110件.(3)已知该厂对这个车间实行计件工资制,每加工1件得10元,若超额完成任务,则超额部分每件再奖5元;若没有完成任务,则每少一件倒扣5元,求该车间这周的总收入.【分析】(1)根据正数和负数的实际意义列式计算即可;(2)根据正数和负数的实际意义列式计算即可;(3)结合(1)中所求列式计算即可.【解答】解:(1)2000+(55﹣20﹣25+60﹣50)=2000+20=2020(件),即这周共加工了2020件小麦收割机配件,故答案为:2020;(2)60﹣(﹣50)=60+50=110(件),即这周内加工最多的一天比加工最少的一天多加工了110件,故答案为:110;(3)2020×10+20×5=20200+100=20300(元),即该车间这周的总收入为20300元.【点评】本题考查正数和负数及有理数运算的实际应用,结合已知条件列得正确的算式是解题的关键.25.(6分)已知:线段AB上一点C,点D,E分别是线段AC,线段CB的中点,如果CD =3cm,AB=8cm,请求线段EB的长.【分析】根据线段中点的定义即可得到结论.【解答】解:∵点D是线段AC的中点,∴AC=2CD=6(cm),∵AB=8cm,∴BC=AB﹣AC=8﹣6=2(cm),∵E是线段CB的中点,∴BE=BC=1(cm),故线段EB的长为1cm.【点评】本题考查了两点间的距离,利用线段中点的性质得除DC,CE的长是解题关键.26.(6分)某学校准备购买若干台电脑装备计算机教室,如果每个计算机教室安装40台,购买的电脑还缺15台;如果每个计算机教室安装35台,购买的电脑多出20台.学校购买了多少台电脑?装备多少个计算机教室?【分析】设装备x个计算机教室,根据“每个计算机教室安装40台,购买的电脑还缺15台;每个计算机教室安装35台,购买的电脑多出20台”,可列出关于x的一元一次方程,解之可求出装备计算机教室的个数,再将其代入(40x﹣15)中,即可求出学校购买电脑的台数.【解答】解:设装备x个计算机教室,根据题意得:40x﹣15=35x+20,解得:x=7,∴40x﹣15=40×7﹣15=265(台).答:学校购买了265台电脑,装备7个计算机教室.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.(6分)如图,点A,点B均在数轴上,且点A在点B的左侧,点A对应的有理数是﹣2,点B对应的有理数是m.(1)如果线段AB=2,则m=0.(2)点C是线段AB上一点,点C对应的有理数是n,如果n=1,且2AC=CB,求m 的值.(3)点C是直线AB上一点,点C对应的有理数是n,且2AC=CB,求m的值(用含有n的代数式表示).【分析】(1)由数轴上任意两点间的距离=这两点表示的数的差的绝对值就可以求出结论;(2)由数轴上任意两点间的距离=这两点表示的数的差的绝对值就可以表示出AC和CB 的长度,再根据2AC=CB得出含有m的方程式即可得到答案;(3)进行分类讨论,同(2)建立含有m的方程式即可得到答案.【解答】解:(1)m=﹣2+2=0;故答案为:0;(2)AC=1﹣(﹣2)=3,BC=m﹣1,∵2AC=CB,∴2×3=m﹣1,解得:m=7;(3)①若点C在点A的左侧,则AC=﹣2﹣n,BC=m﹣n,∵2AC=CB,∴2×(﹣2﹣n)=m﹣n,整理,得m=﹣n﹣4;②若点C在AB之间,则AC=n﹣(﹣2)=n+2,BC=m﹣n,∵2AC=CB,∴2(2+n)=m﹣n,整理,得m=3n+4;③若点C在点B的右侧,则AC>CB,不合题意,舍去;综上所述:m=﹣n﹣4或m=3n+4.【点评】本题主要考查数轴上两点之间的长度,解决本题的关键是当点C在直线AB上时要进行分类讨论.28.(6分)已知有理数x、y满足方程3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.通过读题小凯发现题目中给出的方程是有两个未知数的方程,我们没有学习过,求值的代数式也有两个未知数.小凯观察发现如果方程①,方程②的左侧对应着相减,即:(3x ﹣y)﹣(2x+3y)化简后恰好出现代数式x﹣4y,方程①的左侧与方程②的左侧的2倍相加,即:(3x﹣y)+2(2x+3y)化简后恰好出现代数式7x+5y,依据所学知识可得:(3x ﹣y)﹣(2x+3y)=5﹣7=﹣2;(3x﹣y)+2(2x+3y)=5+2×7=19.因此,小凯求出:x﹣4y=﹣2,7x+5y=19.请你按照小凯思路解决下列问题:(1)如果4x+3y=15,x+2y=10,那么x+y=5,2x﹣y=﹣5;(2)小凯为班集体购买活动奖品,第一次他购买了15支铅笔、5块橡皮、4本日记本共花了75元,第二次他购买了29支铅笔、9块橡皮、7本日记本共花了140元,第三次老师让小凯购买6支铅笔、6块橡皮、6本日记本共需要多少元?(3)对于有理数x、y,我们定义一个新运算:x*y=ax+by+c,等式右边是我们学习过的加法和乘法运算,其中a、b、c是常数,x,y是未知数.如果3*5=15,4*7=28,计算1*1的值.【分析】(1)由①﹣③可求得2x﹣y,由①+②可求得x+y;(2)设1支铅笔x元,1块橡皮y元,1本日记本z元,由题意:买15支铅笔、5块橡皮、4本日记本共需75元,买29支铅笔、9块橡皮、7本日记本共需140元,列出方程组,再由整体思想”求出x+y+z=10,即可得出结论;(3)由定义新运算:x※y=ax+by+c得3※5=3a+5b+c=15①,4※7=4a+7b+c=28②,求出a+b+c=﹣11,即可得出结论.【解答】解:(1)联立4x+3y=15,x+2y=10,得①+②,得5x+5y=25,∴x+y=5.②×2,得2x+4y=20,③①﹣③得:2x﹣y=﹣5.故答案为:5,﹣5;(2)设1支铅笔x元,1块橡皮y元,1本日记本z元,由题意得:,①×2﹣②得:x+y+z=10,即购买1支铅笔、1块橡皮、1本日记本共需10元;∴购买6支铅笔、6块橡皮、6本日记本共需要6(x+y+z)=6×10=60(元);(3)∵x※y=ax+by+c,∴3※5=3a+5b+c=15①,4※7=4a+7b+c=28②,②﹣①得:a+2b=13,∴a=13﹣2b,②×3﹣①×4得:b﹣c=24,∴c=b﹣24,∴a+b+c=13﹣2b+b+b﹣24=﹣11,∴1※1=a+b+c=﹣11.【点评】本题考查了二元一次方程组的应用、整体思想以及新运算等知识;熟练掌握整体思想和新运算,找准等量关系,列出方程组是解题的关键。

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。

湖北省武汉市部分学校2023-2024学年第一学期七年级期末考试数学试卷(word版含答案)

湖北省武汉市部分学校2023-2024学年第一学期七年级期末考试数学试卷(word版含答案)

2023-2024学年度第一学期七年级期末调研考试数 学 试 卷亲爱的同学,在答题前,请认真阅读下面的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,三大题,24小题,全卷共6页,考试时间120分钟,满分120分.2. 试卷选择题及非选择题答案均写在答题卡上,写在试卷上无效.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效.1.数轴上表示的点在原点的左侧,距离原点( )个单位长度.(A )0(B )1(C )2(D )32.下列立体图形,其中圆柱体是( ).(A ) (B ) (C ) (D )3.下列计算正确的是( ).(A ) (B ) (C )(D )4.如图,学校A 在小红家B 南偏西25°的方向上,点C 表示超市所在的位置,∠ABC =90°,则超市C 在小红家B 的( ).(A )南偏东65°的方向上 (B )南偏东55°的方向上(C )北偏东65°的方向上 (D )北偏东55°的方向上5.若是关于x 的一元一次方程,则k 的值不可能是( ).(A )(B )0 (C )2 (D )6.如图,OB 平分∠AOC ,下列结论错误的是( ).3-532a a -=-32a a a -+=232a a a -=235a b ab+=()210k x -+=1-2-D东(A )∠AOB =∠BOC (B )∠COD +∠AOC =∠BOD (C )∠AOD -∠BOC =∠BOD (D )∠BOC +∠AOD =2∠BOD 7.下列变形正确的是( ).(A )若,则 (B )若,则(C )若,则(D )若,则8.我国古代数学著作《增删算法统宗》中记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿子的长为尺,依题意可列方程为( ).(A ) (B ) (C )(D )9.如图,点C ,D 在线段上AB ,O 为AB 上方一点,∠OAB =90°,连接OC ,OD ,OB ,下列结论:①图中互余的角有3对;②图中共有线段10条;③图中共有8个锐角;④若AC =CD =5,BD =3,P 为线段AB 上一点,则点P 到点A,C ,D ,B 的距离之和最小为18.其中正确的说法有( ).(A )①②④(B )③④ (C )①②③ (D )①③④10.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.(A )12(B )14(C )15(D )1612a b =11a b -=+12a b +-=3a b =+a b =22a c b c -=-a b =11a b c c =--x ()15252x x +=-()1552x x +=-1552x x +=-()1552x x -=+(第9题)OD C BA第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.冬季某一天的温差是3℃,这天最低气温是-2℃,最高气温是℃.12.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是.13.已知m ,n 为正整数,若多项式合并同类项后只有两项,则的值为.14.数轴上点A 表示的数为,点B ,C 表示的数分别为,,若点B 为线段AC的中点,则的值为.15.如图,P的边BC 上一点,将∠ABP ,∠DCP 分别沿AP ,DP 向上折叠,点B 落在点处,点C 恰好落在AD 边上的处,.下列说法:①∠BPD=135°;②;③若平分,则;④若,则.其中一定正确的结论有(填序号即可).16.从如图1(边长为a )的正方形纸片上剪去两个相同的小长方形,得到如图2的图案(横向、纵向的宽度均为b ),再将剪下的两个小长方形拼成一个新长方形(如图3),若,则图3中新长方形的周长为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)计算:(1); (2).232123m n a b a b a b --+m n +1-35m -1m +m B 'C 'B PD α'∠=22.52APC α'∠=︒+PC 'APB '∠15α=︒108APD B PC ''∠+∠=︒9α=︒23a b -=902832'︒-︒()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭(第15题)P C /B /DBCA18.(本题8分)解方程:(1);(2).19.(本题8分)先化简,再求值.已知,其中,,.20.(本题8分)根据图中的信息解答下面的问题(单位:cm ).(1)放入一个大球水面升高_____cm ,放入一个小球水面升高_____cm ;(2)若放入大球、小球共8个后水面高度为27 cm ,大球、小球各放入多少个?21.(本题8分)对于有理数a ,b 满足,我们称使等式成立的一对有理数a ,b为“相伴有理数对”,记为(a ,b ).如(,2)满足:;(2,)满足:;所以数对(,2),(2,)都是“相伴有理数对”.(1)数对(,1),(1,0)中,是“相伴有理数对”是________;(2)若(,3)是“相伴有理数对”,求x 的值;(3)若(,)是“相伴有理数对”,则的值为 .的312x x -=+121132x x +--=()()22222322a b ab a b ab a b ab ⎡⎤-+---⎣⎦1a =2b =-1a b ab -=+3-32321--=-⨯+131122133-=⨯+3-131-21x -m n ()1372n mn mn m n ⎡⎤-+-+⎣⎦的3放入体积相同的22.(本题10分)某校组织趣味数学知识竞赛,共设20道选择题,各题分值相同.下表记录了4位参赛者的答题及得分情况.参赛者答题总数答对题数答错题数总得分A 20200100B 2019193C 1714364D1311251(1)从上表可以看出:答对1题得 分,答错1题得 分,未作答1题得 分;(2)参赛者E 完成18道答题得69分,他答对了多少道题?(3)参赛者F 得了67分,请直接写出他答对题;答错题;未作答题.23.(本题10分)如图,已知∠COD =∠AOB=,射线OM 平分∠COD ,ON 平分∠AOD .(1)如图1,若OC 与OB 重合,,请补全图形并直接写出∠MON 的度数为 °;(2)如图2,若∠MON=55°,求∠AOC 的度数;(3)若,将∠COD 从图1的位置以每秒5°的速度绕点O 逆时针方向旋转一周,经过秒能使∠MON=45°(直接写出结果).12α20α=︒25α=︒图1ODB (C )A图2NBM AODC备用图ABO24.(本题12分)数轴上A ,B 三个点表示的数分别是a ,b ,且满足,动点P 从点A 出发,以每秒3个单位长度的速度向右移动秒.(1)直接写出a = ,b = ;(2)如图1,若M 为PA 的中点,N 为PB 的中点,试判断在P 点运动的过程中,线段MN的长度是否发生变化,请说明理由;(3)对于数轴上的点P ,Q ,给出如下定义:记点P 到点A 的距离为m ,点Q 到P的距离为n ,如果,那么称点Q 是点P 的“关联点”.①若m =1,直接写出点P 的“关联点”Q 在数轴上对应的数为 ;②若,试求的值.数学参考答案一、选择题:题号12345678910答案DCBACDCBAD二、填空题:11.1; 12.; 13.6或4; 14.2;15.①②③④;16.12.(说明:13题对一空2分,15题1~2个正确都给1分,3个正确2分)第10题提示:①若所有作业展示成一排,则:……1,最多11张作业;()2620a b ++-=t 2n m -==2BQ BP t 3-()252211-÷=图1备用图②若所有作业展示成两排,则:……1,最多张作业;③若所有作业展示成三排,则:……1,最多张作业;④若所有作业展示成四排,则:……1,最多张作业; ⑤若所有作业展示成五排,则:……1,最多张作业…… 故最多可展示16张作业.第15题提示:依题意,∠BPC=45°,即∠BPD=135°;②因为,,所以;③依题意,,则;④由,又∠BPC=45°,,即∠BPC++45°=108°,所以.第16题提示:新长方形长为:,宽为:,因为,所以新长方形长为:.三、解答题:17.(1)原式=, ……3分= ;……4分(2)原式, ……6分……7分. ……8分18.(1),……3分解得; ……4分(2)去分母,得 ……6分()25337-÷=7214⨯=()25445-÷=5315⨯=()25554-÷=4416⨯=()25663-÷=3515⨯=B PD α'∠=()113567.522APB B PD α'∠=︒-∠=︒-22.52APC α'∠=︒+22.5452APC B PC αα'''∠=∠=︒+=︒-15α=︒108APD B PC ''∠+∠=︒67.5APB α∠=︒-67.52APB α∠=︒-9α=︒a b -3a b -23a b -=()()23424312a b a b a b -+-=-=⨯=89602832''︒-︒6128'︒()111723=--⨯⨯-716=-+16=23x =32x =22636x x +-+=……7分解得 . ……8分19.化简得,……3分=, ……5分=……6分……8分20.(1)2.5,1.5; ……4分(2)设放入大球个,依题意列方程,, ……6分解得;8-5=5. 答:放入大球3个,小球5个.……8分21.(1)(1,0);……3分(2)依题意列方程得,……5分解得; ……6分(3). ……8分22.(1)5,,0;……3分(2)依题意,设参赛者E 答对了道题,依题意列方程得:,……5分解得,,……6分答:设参赛者E 答对了15道题;……7分(3)15,4,1. ……10分23.(1)20°;(正确画图1分)……4分(2)∵OM 平分∠COD ,ON 平分∠AOD ,∠COD =∠AOB=,41x -=14x =-222223222a b ab a b ab a b ab ⎡⎤-+--+⎣⎦2222a b ab a b ⎡⎤-+⎣⎦22ab -()22128-⨯⨯-=-x ()2.5 1.582712x x +-=-3x =()2133211x x --=-+12x =-12-2-x ()521869x x ⨯--=15x =12α∴∠COM =∠DOM =,∠AON =∠DON , ……5分又∠MON=55°,∴∠CON =∠MON -∠COM =, ……6分∴∠AON =∠DON =,……7分∴∠AOC =∠AON+∠CON=+=;……8分(3)8或44……10分依题意∠AON =∠DON ,∠COM =∠DOM =,又∠MON=45°,①如图1,∠CON =∠MON -∠COM =32.5°,∴∠AON =∠DON =45°+12.5°=57.5°,∴∠BON =57.5°-50°=7.5°,∴旋转过的角度∠BOC =∠BON+∠CON =32.5°+7.5°=40°,(秒);②如图2,∴∠AON =∠DON=∠MON -∠DOM =45°-12.5°=32.5°,∴∠BOC =∠COD+∠DON +∠AON+∠AOB =140°,∴旋转过的角度为:360°-140°=220°,(秒).24.(1),2;……2分(2)依题意,AB=8,AP=3t ,,∵M 为PA 的中点,N 为PB 的中点,2α552α︒-552α︒+552α︒+552α︒-110︒12.5︒4058÷=220544÷=6-()23683BP t t =--=-DOM CNBA图1COA BNMD图2,,①如图1,当点P 在AB 之间时,,; ……4分②如图2,当点P 在AB 延长线上时,,;综上所述,线段MN 的长度保持不变. ……6分(说明:学生用绝对值方程分类讨论相应给分)(3)①或;……8分②依题意,,点P 表示的数为,又,即点Q 到P 的距离为,Ⅰ当点Q 在P 的左侧时,点Q 表示的数为; ……9分,,由得,,解得或; ……10分Ⅱ当点Q 在P 的右侧时,点Q 表示的数为;……11分,,由得,, 解得;1322t MP AM AP ===118322PN BN BP t ===-83BP t =-()3183422t MN MP BN t =+=+-=38BP t =-()3138422t MN MP NP t =-=--=2-8-3m t =36t -2n m -=232n m t =+=+()36328t t --+=-10BQ =()23683BP t t =--=-=2BQ BP 28310t -=1t =133t =()363264t t t -++=-()26466BQ t t =--=-()23683BP t t =--=-=2BQ BP 66283t t -=-116t =图1图2七年级数学试卷第11页 (共6页)综上所述,、或. ……12分1t =133t =116t =。

福建省泉州实验中学2022-2023学年七年级上学期期末考试数学试卷(解析版)

福建省泉州实验中学2022-2023学年七年级上学期期末考试数学试卷(解析版)

泉州实验中学2022-23学年上学期期末质量检测初一年数学(满分:150分 考试时间:120分钟)一、选择题 (每题4分,共40 分)1.-3的倒数为( ) A.13B. -13C. 3D. 3−【答案】B【分析】直接利用倒数的定义:乘积是1的两数互为倒数.得出答案.【详解】解:3−的倒数为13−,故选:B .【点睛】此题主要考查了倒数的定义,正确掌握相关定义是解题关键. 2. 在数轴上表示数1−和 2021 的两个点之间的距离为( )个单位长度 A. 2022 B. 2021C. 2020D. 2019【答案】A【分析】直接利用数轴上两点之间的距离公式进行计算即可.【详解】解:数轴上表示数1−和 2021 的两个点之间的距离为:()20211202112022−−=+=,故选A . 【点睛】本题考查的是数轴上两点之间的距离,理解两点之间的距离的含义是解本题的关键. 3. 如果a >0,b <0,且|a |<|b |,则下列正确的是( ) A. a +b <0 B. a +b C. a +b =0D. ab =0【答案】A【分析】根据a >0,b <0,且|a |<|b |,可得a <-b ,即a +b <0. 【详解】∵a >0,b <0,且|a |<|b |, ∴a <-b ,即a +b <0.故选A .【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a <-b . 4. 下列说法中,错误的是( ) A. 数字1也是单项式B. 单项式35x y −的系数是5−C. 多项式321x x −+−的常数项是1D. 223332x y xy y −+是四次三项式【答案】C【分析】根据单项式的概念与系数的含义可判断A ,B ,根据多项式的项可判断C ,根据多项式的含义可判断D ,从而可得答案.【详解】解:A 、1是单独的一个数,也是单项式,原说法正确,故此选项不符合题意;B 、单项式35x y −的系数是5−,原说法正确,故此选项不符合题意;C 、多项式321x x −+−的常数项是1−,原说法错误,故此选项符合题意;D 、223332x y xy y −+是四次三项式,原说法正确,故此选项不符合题意.故选:C .【点睛】本题考查的是单项式的含义与系数的含义,多项式的概念与项的含义,次数的含义,熟记单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,多项式的概念是解答此题的关键.5. 如图为一个几何体的表面展开图,则该几何体是( ) A. 三棱锥 B. 四棱锥C. 四棱柱D. 圆锥【答案】B【分析】底面为四边形,侧面为三角形可以折叠成四棱锥. 【详解】解:由图可知,底面为四边形,侧面为三角形, ∴该几何体是四棱锥,故选:B .【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键. 6. 如图,直线a 与b 相交,12240∠+∠=°,3∠=( ) A. 40° B. 50°C. 60°D. 70°【答案】C【分析】直接根据对顶角相等以及邻补角性质解题即可. 【详解】解:12240∠+∠=° ,又1=2∠∠ ,1=2=120∴∠∠°,23180∠+∠=° ,3=18012060∴∠°−°=°,故选:C .【点睛】本题主要考查对顶角及邻补角的性质,关键是掌握对顶角相等,邻补角相加等于180°. 7. 在解方程13132x x x −++=时,方程两边乘 6,去分母后,正确的是( ) A. 2163(31)x x x −+=+ B. ()()11 3 1x x −+=+ C. )21 3 )1((3x x x +−=+ D. 2(1)63(31)x xx −+=+ 【答案】D【分析】方程两边乘6,进行化简得到结果,即可作出判断.【详解】解:方程两边乘6得:()()216331x x x −+=+,故选:D .【点睛】本题考查了一元一次方程的解,掌握解一元一次方程是关键. 8. 如图,下列说法正确的是( )A. 1∠和B ∠是同位角B. 2∠和3∠是内错角C. 3∠和4∠是对顶角D. B ∠和4∠是同旁内角【答案】B【分析】根据同位角、内错角、同旁内角的定义结合图形进行判断即可. 【详解】解:A .1∠和B ∠不是同位角,原说法错误,故此选项不符合题意; B .2∠和3∠是内错角,原说法正确,故此选项符合题意; C .3∠和4∠是邻补角,原说法错误,故此选项不符合题意;D .B ∠和4∠不是同旁内角,原说法错误,故此选项不符合题意; 故选:B .【点睛】本题考查同位角、内错角、同旁内角,理解同位角、内错角、同旁内角的定义是正确判断的前提. 9. 如图,阿杜同学用两块大小一样的等腰直角三角板先后在EOF ∠内部作了射线OG 和射线OH .则下列说法正确的是( ) A. 75EOF ∠=° B. 3GOH EOF ∠=∠ C. GOH ∠与EOF ∠互余 D. 射线 OH 平分GOF ∠【答案】C【分析】由45FOG HOE ∠=∠=°,证明FOH GOE ∠=∠,再逐一分析各选项即可. 【详解】解:由题意可得:45FOG HOE ∠=∠=°, ∴45FOH HOG HOG GOE ∠+∠=∠+∠=°, ∴FOH GOE ∠=∠,而HOG ∠与FOH ∠不一定相等,∴3EOF GOH ∠=∠不一定正确,故B 不符合题意;4575EOF FOH ∠=∠+°=°,不一定正确,故A 不符合题意;射线 OH 平分GOF ∠不一定正确,故D 不符合题意;∴90GOH EOF GOH FOH HOE FOG HOE ∠+∠=∠++∠=∠+∠=°, 故C 符合题意;故选C .【点睛】本题考查的是角的和差运算,角平分线的含义,理解题意,利用角的和差关系进行判断是解本题的关键.10. 将数组111,,234中的3个数分别求出各数的相反数与1和的倒数,第一次操作后得到的结果组成的数组记为{1a ,2a ,3a },第二次操作是将数组{1a ,2a ,3a }.再次重复上次操作方式得到新的数组{4a ,5a ,6a },……,如此重复操作,最后得到数组{211a ,212a ,213a }.则123456*********a a a a a a a a a ++++++++…+的值为( )A. 2−B. 9−C. -1112D. 1312− 【答案】D【分析】根据所给的操作方式,求出前面的数,再分析存在的规律,从而可求解.【详解】解:由题意得:112112a ==−+,2131213a ==−+,3141314a ==−+, 41121a ==−−+,512312a ==−−+,613413a ==−−+,711(1)12a ==−−+,811(2)13a ==−−+,911(3)14a ==−−+, …,则每3次操作,相应的数会重复出现, 12345678934111121232323412a a a a a a a a a ++++++++=++−−−+++=− , 213923......6÷= ,312345*********a a a a a a a a a ∴++++++…+++11112412234=−×−−−37131212=−=−.故选:D . 【点睛】本题主要考查数字的变化规律,解答的关键是求出前面的几个数,发现其存在的规律.二、填空题(每题4分,共24分)11. 习近平总书记提出了五年“精准扶贫”的战略构想,意味着每年要减贫约11600000人,将数据11600000用科学记数法表示为__________.【答案】1.16×107【分析】科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:11600000=1.16×107,故答案为:1.16×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.12. 如图,经过刨平的木板上的 A ,B 两个点,可以弹出一条笔直的墨线,能解释这一实际应 用的数学知识是__.【答案】两点确定一条直线【分析】根据题意分析可得两点确定一条直线.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是“两点确定一条直线”.故答案为:两点确定一条直线.【点睛】本题考查了两点确定一条直线,掌握两点确定一条直线这个基本事实是解题的关键.13. 已知33x y −=,则代数式397x y −+的值为___________. 【答案】16【分析】观察所求代数式可知,可以将已知整体代入求代数式的值. 【详解】解:∵x −3y =3,∴3x −9y +7=3(x -3y )+7=9+7=16故答案为:16.【点睛】本题考查了代数式的求值运算,根据式子的特点,采用整体代入的方法.14. 若430a b −++=,则ab =____________. 【答案】12−【分析】根据绝对值的非负性,得40a −=,30b +=,由此即可求解.【详解】解:∵40a −≥,0b +,且430a b −++=, ∴40a −=,30b +=,∴4a =,3b =−,则4(3)12ab =×−=−,故答案为:12−.【点睛】本题主要考查绝对值的非负性,理解绝对值的非负性,绝对值与绝对值的和为零,则每个绝对值的值为零是解题的关键.15. 从海岛A 点观察海上两艘轮船 B 、C .轮船B 在点A 的北偏东 6025′°方向;轮船C 在点A 的南偏东1537′°方向,则BAC ∠=__________. 【答案】10358′°【分析】首先根据题意画出草图,然后由方向角的定义,确定AB 、AC 与正北方向、正南方向的夹角;然后根据角的关系计算,即可求出BAC ∠的度数. 【详解】解:如图,∵轮船B 在点A 的北偏东6025′°方向;轮船C 在点A 的南偏西1537′°方向,∴1806025153710358ABC ′′′∠=°−°−°=°.故答案为:10358′°.【点睛】本题主要考查了与方向角有关的计算,解决本题的关键是掌握方向角的定义. 16. 下列结论:①若1x =是关于x 的方程0a bx c ++=的一个解,则0a b c ++=; ②若(1)(1)a x b x −=−有唯一的解,则a b ¹;③若2b a =,则关于x 的方程0ax b +=的解为2x =−;④若1b c a +=+,且0a ≠,则=1x −一定是方程1ax b c ++=的解: 其中正确的有__________(填正确的序号) 【答案】①②③④【分析】根据一元一次方程的解的概念解答进行判断即可.【详解】解:①把1x =代入0a bx c ++=得:0a b c ++=,故结论正确;; ②若(1)(1)a x b x −=−有唯一的解是1x =时,a b ¹,故结论正确; ③若2b a =,则2b a=,方程移项,得:ax b =−,则2bx a =−=−,则结论正确; ④把=1x −代入1ax b c a b c ++=−++=,方程一定成立,则=1x −一定是方程1ax b c ++=的解,故结论正确.故答案为:①②③④.【点睛】此题考查的是一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.三、解答题(共86分)17 计算:(1)1554()(1)( 3.2)566+−+++−. (2)4211(10.5)2(3)3−−−××−− . 【答案】(1)2 (2)16【分析】(1)利用加法的运算律进行运算较简便;(2)先算乘方,再算括号里的运算,接着算乘法,最后算加减即可.【小问1详解】 解:1554()(1)( 3.2)566+−+++−1554 3.21566=−+−11=+2=; 【小问2详解】4211(10.5)2(3)3 −−−××−− ()1121293=−−××−()111723=−−××−761=−+16= 【点睛】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握..18. 解下列方程:(1)4385−+x x ;(2)7531132y y −−=−. 【答案】(1)2x =−; (2)5y =.分析】(1)通过移项、合并同类项、系数化成1,三个步骤进行解答便可; (2)根据解一元一次方程的一般步骤进行解答便可.【小问1详解】 解:4385−+x x4835−=+x x48x −= 2x =−.小问2详解】 解:7531132y y −−=−()()2756331y y −=−−1410693y y −=−+ 1096314y y −+=+−5y −=−5y =.【点睛】本题考查了解一元一次方程,解题关键是熟记解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化成1.19. 先化简再求值:()()222232322x x y x y x y y −−−++ ,其中12x =−,=3y −.【答案】28x y −;6;【分析】先去括号,再合并同类项,得到化简的结果,再把12x =−,=3y −代入计算即可. 【详解】解:原式()2222363222x x y x y x y y =−−−++ 2222363222x x y x y x y y =−−+−−28x y =− 当12x =−,=3y −时, 原式()21832 =−×−×−()1834=−××− 6=. 【点睛】本题考查是整式的加减运算中的化简求值,掌握“去括号,合并同类项”是解本题的关键.【【的20. 若用点A 、B 、C 分别表示有理数a 、b 、c 如图:(1)判断下列各式的符号:a+b 0;c ﹣b 0;c-a 0 (2)化简|a+b|﹣|c ﹣b|﹣|c ﹣a| 【答案】(1)<,<,>;(2)﹣2b .【分析】(1)数轴上的数,右边的数总比左边的数大,利用这个特点可比较三个数的大小.(2)由数轴可知:b >0,a <c <0,所以可知:a+b <0,c-b <0, c-a >0.根据负数的绝对值是它的相反数可求值.【详解】解:(1)a+b <0,c ﹣b <0,c ﹣a >0.故答案为<,<,>;(2)|a+b|﹣|c ﹣b|﹣|c ﹣a|=﹣(a+b )+(c ﹣b )﹣(c ﹣a )=﹣a ﹣b+c ﹣b ﹣c+a =﹣2b . 【点睛】此题考查绝对值,有理数大小比较,数轴,解题关键在于结合数轴判断各数的大小. 21. (1)如图,已知A 、B 、C 三点,画射线BA 、线段AC 、直线BC ;(2)己知ABC �的面积为 5,3AB =,求C 点到射线AB 的距离. 【答案】(1)见解析;(2)103【分析】(1)根据直线,射线,线段的定义画图即可; (2)根据三角形的面积和点到直线的距离直接计算即可.【详解】解:(1)如图,即为所求; (2)∵ABC �的面积为 5,3AB =, ∴C 点到射线AB 的距离为:105233×÷=.【点睛】本题主要考查了直线、射线、线段的定义,点到直线的距离,利用面积法求解是解题的关键. 22. 已知点B 在线段AC 上,点D 在线段AB 上.(1)如图1,若AB =6cm ,BC =4cm ,D 为线段AC 的中点,求线段DB 的长度; (2)如图2,若BD =14AB =13CD ,E 为线段AB 的中点,EC =12cm ,求线段AC 的长度.【答案】(1)1cm ;(2)18cm【分析】(1)由线段的中点,线段的和差求出线段DB 的长度为1cm ; (2)由线段的中点,线段的和差倍分求出AC 的长度为18cm . 【详解】(1)如图1所示:∵AC=AB+BC ,AB=6cm ,BC=4cm∴AC=6+4=10cm 又∵D 为线段AC 的中点 ∴DC=12AC=12×10=5cm ∴DB=DC-BC=6-5=1cm(2)如图2所示: 设BD=xcm ∵BD=14AB=13CD∴AB=4BD=4xcm ,CD=3BD=3xcm , 又∵DC=DB+BC , ∴BC=3x-x=2x , 又∵AC=AB+BC , ∴AC=4x+2x=6xcm ,∵E 为线段AB 的中点 ∴BE=12AB=12×4x=2xcm 又∵EC=BE+BC , ∴EC=2x+2x=4xcm 又∵EC=12cm ∴4x=12 解得:x=3,∴AC=6x=6×3=18cm .【点睛】本题综合考查了线段的中点,线段的和差倍分等相关知识点,重点掌握直线上两点之间的距离公式计算方法.23. 小语家新买了一套商品房,其建筑平面图如图所示,其中b a <(单位:米). (1)这套住房的建筑总面积是 平方米;(用含a 、b 的式子表示) (2)当5a =,4b =时,求出小语家这套住房的具体面积.(3)地面装修要铺设地砖或地板,小语家对各个房间的装修都提出了具体要求,明确了选用材料的品牌以及规格、品质要求.现有两家公司按照要求拿出了装修方案,两个方案中选用的材料品牌、规格、品质完全一致,但报价不同;甲公司:客厅地面每平方米240元,书房和卧室地面每平方米220元,厨房地面每平方180元,卫生间地面每平方米150元;乙公司:全屋地面每平方米210元;请你帮助小语家测算一下选择哪家公司比较合算,请说明理由.【答案】(1)(11515)a b ++ (2)90平方米 (3)选择乙公司比较合算.理由见解答 【分析】(1)根据图形,可以用代数式表示这套住房的建筑总面积;(2)将5a =,4b =代入(1)中的代数式即可求得小语家这套住房的具体面积; (3)根据住房的面积×每平方米的单价计算出甲公司和乙公司的钱数,即可得到结论. 【小问1详解】解:由题意可得:这套住房的建筑总面积是:(245)(511)(32)(41)(11515)a b a b ++×+−+×++×−=++平方米,即这套住房的建筑总面积是(11515)a b ++平方米.故答案为:(11515)a b ++; 【小问2详解】当5a =,4b =时,11515115541555201590a b ++=×+×+=++=(平方米). 答:小语家这套住房的具体面积为90平方米; 【小问3详解】选择乙公司比较合算.理由如下:甲公司的总费用:4240(55)220218092206150a a b a ×++×+×+×+×960110011003601980900a a b a =+++++(242011002880)a b ++(元), 乙公司的总费用:(11515)210(231010503150)a b a b ++×=++(元), 242011002880(231010503150)(11050270)a b a b a b ∴++−++=+−(元),2a b >> ,50100b ∴>,110220a >, 110502700a b ∴+−>, 所以选择乙公司比较合算.【点睛】本题考查了列代数式、代数式求值,解题的关键是明确题意,列出相应的代数式,求出相应的代数式的值. 24. 【概念与发现】当点C 在线段AB 上,AC nAB =时,我们称n 为点C 在线段AB 上的“点值”,记作AC d n AB=. 例如,点C 是AB 的中点时,即12AC AB =,则12AC d AB = ;反之,当12AC d AB = 时,则有12AC AB =. 因此,我们可以这样理解:“AC d n AB =”与“AC nAB =”具有相同的含义. (1)【理解与应用】 如图,点C 在线段AB 上.若3AC =,4AB =,则AC d AB =________;若2AC d AB m = ,则BC AB =________.(2)【拓展与延伸】 已知线段10cm AB =,点P 以1cm/s 的速度从点A 出发,向点B 运动.同时,点Q 以3cm/s 的速度从点B 出发,先向点A 方向运动,到达点A 后立即按原速向点B 方向返回.当P ,Q 其中一点先到达终点时,两点均停止运动.设运动时间为t (单位:s ).①小王同学发现,当点Q 从点B 向点A 方向运动时,AP AQ d m d AB AB +⋅的值是个定值,求m 的值; ②t 为何值时,35AQ AP d d AB AB −= . 【答案】(1)34,2m m − (2)①13;②1或8 【分析】(1)根据“点值”的定义得出答案;(2)①设运动时间为t ,再根据AP AQ d m d AB AB +⋅的值是个定值即可求出m 的值;②分点Q 从点B 向点A 方向运动时和点Q 从点A 向点B 方向运动两种情况分析即可.【小问1详解】解:3AC = ,4AB =,34AC AB ∴=, 3()4AC d AB ∴=, 2()mAC d AB = , 2AC AB m∴=, ∴22m BC AB AC AB AB AB m m−∴=−=−=, ∴2BC m AB m −= 故答案为:34,2m m −;【小问2详解】①设运动时间为t ,则AP t =,103AQt =−, 根据“点值”的定义得:()10AP t d AB =,103()10AQ t d AB −=, AP AQ d m d AB AB +⋅的值是个定值, ()1013103101010m m t t t m +−−∴+⋅=的值是个定值, 13m =∴; ②当点Q 从点B 向点A 方向运动时,53AQ AP d d AB AB −= , ∴103101053t t −−=, 1t ∴=;当点Q 从点A 向点B 方向运动时,53AQ AP d d AB AB −=, ∴310310105t t −−=, 8t ∴=,t ∴的值为1或8.【点睛】本题考查了一元一次方程的应用,理解新定义并能运用是本题的关键.25. 已知2AOC BOC ∠=∠,(1)如图甲,已知O 为直线AB 上一点,80DOE ∠=°,且DOE ∠位于直线AB 上方①当OD 平分AOC ∠时,EOB ∠度数为 ;②点F 在射线OB 上,若射线OF 绕点O 逆时针旋转()060n n °<<,3FOA AOD ∠=∠.请判断FOE ∠和EOC ∠的数量关系并说明理由;(2)如图乙,AOB ∠是一个小于108°的钝角,12∠=∠DOE AOB ,DOE ∠从OE 边与OB 边重合开始绕点O 逆时针旋转(OD 旋转到OB 的反向延长线上时停止旋转),当32AOD EOC BOE ∠+∠=∠时,求:COD BOD ∠∠的值【答案】(1)①40°;②2EOF COE ∠=∠; (2):COD BOD ∠∠的值为:1731或1113. 【分析】(1)①先求解120AOC ∠=°,60BOC ∠=°,再求解1602DOC AOC ∠=∠=°,20COE ∠=°,再利用角的和差关系可得答案;②当OE 在OC 的右侧,射线OF 绕点O 逆时针旋转()060n n °<<,求解120COD AOD ∠=°−∠,40COE DOE COD AOD ∠=∠−∠=∠−°,结合EOF AOF AOE ∠=∠−∠ 当OE 在OC 的左侧,射线OF 绕点O 逆时针旋转()060n n °<<,如图,此时40AOD ∠<°,而3FOA AOD ∠=∠,则120FOA ∠<°,则>60n °,不符合题意,舍去.(2)由2AOC BOC ∠=∠,设()108AOB y y ∠=°<,可得23AOC y ∠=°,13BOC y ∠=°,12DOE y ∠=°,分情况讨论:当OE 在BOC ∠内部时,如图,设BOE x ∠=°,当OE ,OD 在AOC ∠内部时,如图,设BOE x ∠=°,当OE 在AOC ∠内部,OD 在AOC ∠外部时,如图,设BOE x ∠=°,当OD ,OE 都在AOB ∠外部,如图,再分别建立方程求解x ,y 之间的关系,再求解比值即可,【小问1详解】解:①∵2AOC BOC ∠=∠,180AOC BOC ∠+∠=°, ∴18020231AOC ∠=×°=°,1180603BOC ∠=×°=°, ∵当OD 平分AOC ∠时, ∴1602DOC AOC ∠=∠=°, ∵80DOE ∠=°,∴806020COE ∠=°−°=°,602040BOE BOC COE ∠=∠−∠=°−°=°.②当OE 在OC 的右侧,射线OF 绕点O 逆时针旋转()060n n °<<,∵120AOC ∠=°,∴120COD AOD ∠=°−∠,∵80DOE ∠=°,∴8012040COE DOE COD AOD AOD ∠=∠−∠=°−°+∠=∠−°,∵3FOA AOD ∠=∠,∴EOF AOF AOE ∠=∠−∠()3AOD AOC COE ∠−∠+∠312040AOD AOD =∠−°−∠+°()240AOD =∠−°2COE =∠;当OE 在OC 的左侧,射线OF 绕点O 逆时针旋转()060n n °<<,如图,此时40AOD ∠<°,而3FOA AOD ∠=∠,则120FOA ∠<°,则>60n °,不符合题意,舍去.【小问2详解】∵2AOC BOC ∠=∠,()108AOB y y ∠=°<, ∴23AOC y ∠=°,13BOC y ∠=°, ∵12∠=∠DOE AOB , ∴12DOE y ∠=°, 当OE 在BOC ∠内部时,如图,设BOE x ∠=°, 则13COE BOC BOE y x ∠=∠−∠=°−°,111236COD DOE COE y y x y x ∠=∠−∠=°−°+°=°+°, 211362AOD AOC COD y y x y x ∠=∠−∠=°−°−°=°−°,12BOD BOE DOE y x ∠=∠+∠=°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232y x y x x −+−=, 解得:215y x =, ∴1216617651633631625y x x x COD y x BOD y x y x x x ++∠+====∠+++, 当OE ,OD 在AOC ∠内部时,如图,设BOE x ∠=°, 则13COE x y ∠°−°,111236COD y y x y x ∠=°−°+°=°+°,211362AOD y y x y x ∠=°−°−°=°−°,12BOD y x ∠=°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232y x x y x −+−=,解得:9y x =, 此时>BOE BOC ∠∠,即1>3x y ,则3y x <,故不符合题意,舍去, 当OE 在AOC ∠内部,OD 在AOC ∠外部时,如图,设BOE x ∠=°, 则13COE x y ∠°−°,111236COD y y x y x ∠=°−°+°=°+°, 121632AOD y x y x y ∠°+°−°°−°,12BOD y x ∠=°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232x y x y x −+−=, 解得:35y x =,而BOE AOB ∠<∠,即y x >,故不符合题意,舍去, 当OD ,OE 都在AOB ∠外部,如图,设BOE x ∠=°, 则13COE x y ∠°−°,1136COD y y x y x ∠=°−°+°=°+°, 121632AOD y x y x y ∠°+°−°°−°,12BOD x y ∠°+°, ∵32AOD EOC BOE ∠+∠=∠, ∴113232x y x y x −+−=, 解得:35y x =, ∴13661165193613625y x x x COD y x BOD y xy x x x ++∠+====∠+++, 综上::COD BOD ∠∠的值为:1731或1113. 【点睛】本题考查的是角的和差运算,角的旋转定义的理解,角平分线的定义,一元一次方程的应用,求解代数式的值,对于七年级学生来说,本题难度大,清晰的分类讨论是解本题的关键.。

2023-2024学年湖南省长沙市长沙县七年级(上)期末数学试卷(含解析)

2023-2024学年湖南省长沙市长沙县七年级(上)期末数学试卷(含解析)

2023-2024学年湖南省长沙市长沙县七年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−12024的倒数是( )A. −2024B. 2024C. 12024D. −120242.下列整式中,是二次单项式的是( )A. x2+1B. xyC. x2yD. 22x3.若单项式2x m y2与−3x3y n是同类项,则m+n的值为( )A. 5B. 6C. 1D. 94.下列说法不正确的是( )A. 若a=b,则a+2c=b+2cB. 若am =bm,则a=bC. 若ac=b c,则a=bD. 若a=b,则a2=b25.如果a+b<0,ba>0,那么下列结论成立的是( )A. a>0,b>0B. a<0,b<0C. a>0,b<0D. a<0,b>06.下面各式的变形正确的是( )A. 由6−x=5,得x=5−6B. 由x−(2+3x)=1,得x−2+3x=1C. 由11%x−42%=15%x−3,得11x−42=15x−3D. 由3−2x−15=x+12,得30−2(2x−1)=5(x+1)7.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A. 两点之间,线段最短B. 两点确定一条直线C. 直线可以向两边延长D. 两点之间线段的长度,叫做这两点之间的距离8.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是( )A. 3x−2=2x+9B. 3(x−2)=2(x+9)C. x3+2=x2−9 D. 3(x−2)=2x+99.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是( )A. 9和13B. 2和9C. 1和13D. 2和810.如图,点E在CD延长线上,下列条件中不能判定AC//BD的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠CD. ∠C+∠BDC=180°二、填空题:本题共6小题,每小题3分,共18分。

2023-2024学年河南省三门峡市灵宝市七年级(上)期末数学试卷(含解析)

2023-2024学年河南省三门峡市灵宝市七年级(上)期末数学试卷(含解析)

2023-2024学年河南省三门峡市灵宝市七年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−2024的绝对值是( )A. 2024B. −2024C. 12024D. −120242.下列计算正确的是( )A. 5a2b−3ab2=2abB. 2a2−a2=aC. 4x2−2x2=2D. −(−2x)−5x=−3x3.根据等式的性质,下列变形正确的是( )A. 如果x3=0,那么x=3 B. 如x=y,那么x−4=4−yC. 如果−2x=6,那么x=3D. 如果8x=5x+3,那么x=14.下列说法正确的个数是( )①−|−3|=3.②(−1)2024=1.③倒数等于本身的数有1和−1.④单项式−2πa3的系数是−23,次数是2.⑤多项式2a−3b+1是三次三项式,常数项是1.A. 2个B. 3个C. 4个D. 5个5.如图,OA是北偏东30°方向的一条射线,若∠AOB=90°,OB的方位角是( )A. 西偏北60°B. 北偏西60°C. 北偏东60°D. 东偏北60°6.如图是某个几何体的展开图,则这个几何体是( )A. 圆柱B. 正方体C. 长方体D. 三棱柱7.如图,O是直线AB上一点,OC是∠AOB的平分线,∠COD=32°,则∠AOD的度数是( )A. 78°B. 68°C. 58°D. 48°8.下面解方程变形正确的是( )A. 方程4x+1=2x+1,移项,得4x+2x=0B. 方程x+12=3x−12−1,去分母得x+1=3x−1−1C. 方程−56x=−5,系数化为1得x=−6D. 方程107x+10x=7.5+1,合并,得807x=8.59.已知∠α=30°18′,∠β=30.18°,∠γ=30.3°,则相等的两个角是( )A. ∠α=∠βB. ∠α=∠γC. ∠β=∠γD. 无法确定10.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有4人不能就座.设该校准备的桌子数为x,则可列方程为( )A. 10(x−1)=8x−4B. 10(x+1)=8x−4C. 10(x−1)=8x+4D. 10(x+1)=8x+4二、填空题:本题共5小题,每小题3分,共15分。

2023-2024学年天津市和平区 七年级(上)期末数学试卷(含解析)

2023-2024学年天津市和平区  七年级(上)期末数学试卷(含解析)

2023-2024学年天津市和平区七年级(上)期末数学试卷一、选择题:本题共12小题,每小题2分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算−3−2的值为( )A. −5B. −1C. 5D. 12.南京长江四桥线路全长约29000米,将29000用科学记数法表示为( )A. 0.29×105B. 2.9×103C. 2.9×104D. 29×1033.下列说法正确的是( )A. 单项式−3xy的系数是−3B. 单项式2πa3的次数是4C. 多项式x2y2−2x2+3是二次三项式D. 多项式x2−2x+6的项分别是x2、2x、34.如图所示,几何体由6个大小相同的立方体组成,其俯视图是( )A.B.C.D.5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠BFE=( )A. 70°B. 65°C. 60°D. 50°6.如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为( )A. 159°B. 141°C. 111°D. 69°7.下列等式变形错误的是( )A. 若a=b,则a1+x2=b1+x2B. 若a=b,则3a=3bC. 若a=b,则ax=bxD. 若a=b,则am =bm8.若(m−2)x|2m−3|=6是一元一次方程,则m等于.( )A. 1B. 2C. 1或2D. 任何数9.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设共有x人,则可列方程为( )A. 8x+3=7x−4B. 8x−3=7x+4C. x−38=x+47D. x+38=x−4710.将一副三角板按如图所示的位置摆放,其中∠α与∠β一定互余的是( )A. B.C. D.11.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN 的长度是( )A. 3cmB. 5cmC. 7cmD. 7cm或3cm12.现定义运算“∗”,对于任意有理数a,b满足a∗b={2a−b,a≥ba−2b,a<b.如5∗3=2×5−3=7,1 2∗1=12−2×1=−32,若x∗3=5,则有理数x的值为( )A. 4B. 11C. 4或11D. 1或11二、填空题:本题共6小题,每小题3分,共18分。

2023-2024学年北京市西城区七年级(上)期末数学试卷及答案解析

2023-2024学年北京市西城区七年级(上)期末数学试卷及答案解析

2023-2024学年北京市西城区七年级(上)期末数学试卷一、选择题。

(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.(2分)﹣3的绝对值是()A.3B.C.D.﹣32.(2分)特色产业激发乡村发展新活力.据报道,截至2023年10月9日,全国已建设180个优势特色乡村产业集群,全产业链产值超过4600000000000元,辐射带动1000多万户农民.数字4600000000000用科学记数法表示为()A.4.6×1013B.4.6×1012C.46×1013D.46×1012 3.(2分)如图,是某个几何体的展开图,则这个几何体是()A.三棱柱B.圆柱C.四棱柱D.圆锥4.(2分)下列各式计算中正确的是()A.3x+3y=6xy B.﹣3a2﹣2a2=﹣a2C.xy+2xy=3xy D.4xy2﹣5xy2=﹣15.(2分)如果一个角等于它余角的2倍,那么这个角的度数是()A.30°B.60°C.90°D.120°6.(2分)有理数a,b在数轴上的对应点的位置如图所示,下列结论正确的是()A.a<﹣3B.|a|<b C.a+b>0D.|ab|>17.(2分)下列解方程的变形过程正确的是()A.方程3x=2x﹣1,移项得3x+2x=﹣1B.方程,系数化为1得C.方程4﹣2(3x﹣1)=1,去括号得4﹣6x+2=1D.方程,去分母得3(3x﹣1)=1+2(2x+1)8.(2分)如图,某乡镇的五户居民依次居住在同一条笔直的小道边的A处,B处,C处,D处,E处,且这五户居民的人数依次有1人,2人,3人,3人,2人.乡村扶贫改造期间,该乡镇打算在这条小道上新建一个便民服务点M,使得所有居民到便民服务点的距离之和(每户所有居民均需要计算)最小,则便民服务点M应建在()A.A处B.B处C.C处D.D处二、填空题。

数学母题七年级试卷

数学母题七年级试卷

一、选择题(每题4分,共40分)1. 下列各数中,属于有理数的是()A. √9B. √16C. √25D. √362. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 13. 下列各数中,是正数的是()A. -3B. -2C. 0D. 14. 若a=2,b=-3,则a-b的值是()A. -5B. 5C. 0D. 15. 下列各数中,不是同类二次根式的是()A. √18B. 3√2C. 2√3D. √126. 若x²=25,则x的值是()A. 5B. -5C. 5或-5D. 无法确定7. 若a²+b²=1,则a²-b²的值是()A. 1B. -1C. 0D. 28. 下列各数中,是偶数的是()A. 7B. 8C. 9D. 109. 若a=2,b=3,则a²+b²的值是()A. 13B. 11C. 9D. 710. 下列各数中,不是正比例函数的是()A. y=2xB. y=3xC. y=4xD. y=5x二、填空题(每题4分,共40分)11. 若a=5,b=-3,则a+b的值是______。

12. 若a=4,b=2,则a²-b²的值是______。

13. 下列各数中,是负数的是______。

14. 若x²=16,则x的值是______。

15. 若a²+b²=100,则a²-b²的最大值是______。

16. 若a=3,b=4,则a²+b²的值是______。

17. 下列各数中,是正数的是______。

18. 若a=2,b=3,则a²+b²的值是______。

19. 若a=5,b=-3,则a²-b²的值是______。

20. 下列各数中,不是同类二次根式的是______。

三、解答题(每题10分,共40分)21. 简化下列二次根式:√(27x²y³)。

北京市朝阳区2023-2024学年七年级上学期期末数学试题含参考答案

北京市朝阳区2023-2024学年七年级上学期期末数学试题含参考答案

北京市朝阳区2023~2024学年度第一学期期末检测七年级数学试卷(选用)(考试时间90分钟满分100分)考生须知1.本试卷共6页.在试卷和答题卡上准确填写学校名称、班级、姓名和考号.2.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.3.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.4.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(共24分,每题3分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1.2-的绝对值为()A .2-B .2--C .12-D .22.2023年我国规模以上内容创作生产营业收人累计值前三个季度分别约为6500亿元13000亿元,20000亿元,合计约39500亿元.将39500用科学记数法表示应为()A .239510⨯B .43.9510⨯C .33.9510⨯D .50.39510⨯3.若34x y -与ax y 是同类项,则a 的值为()A .2-B .2C .3D .44.下列图形中可以作为一个正方体的展开图的是()A .B .C .D .5.如果a b =,那么下列等式一定成立的是()A .33a b +=-B .0a b +=C .44a b=D .1ab =6.已知α∠与β∠互为补角,并且α∠的2倍比β∠大30︒,则,αβ∠∠分别为()A .70︒,110︒B .40︒,50︒C .75︒,115︒D .50︒,130︒7.,a b 是有理数,它们在数轴上的对应点的位置如图所示.下列各式正确的是()A .b a a b -<-<<B .a b a b -<-<<C .b a a b <-<<-D .b b a a<-<-<8.对幻方的研究体现了中国古人的智慧.如图1是一个幻方的图案,其中9个格中的点数分别为1,2,3,4,5,6,7,8,9.每一横行、每一竖列、每一斜对角线上的点数的和都是15.如图2是一个没有填完整的幻方,如果它处于同一横行、同一竖列、同一斜对角线上的3个数的和都相等,那么正中间的方格中的数字为()图1图2A .5B .1C .0D .1-二、填空题(共24分,每题3分)9.如果60m 表示向东走60m ,那么80m -表示______.10.请写出一个次数为3,系数是负数的单项式:______.11.计算:2(2)43-÷⨯=______.12.计算:48296021''︒+︒=______.13.北京冬季某一天的温差是10℃,若这天的最高气温是t ℃,则最低气温是______℃.(用含t 的式子表示)14.举例说明“若,a b 是有理数,则a b a +>”是错误的,请写出一个b 的值:b =______.15.如图,一艘快艇S 从灯塔O 南偏东60︒的方向上的某点出发,绕着灯塔O 逆时针方向以每个时间单位3︒的转速旋转1周,当14AOS BOS ∠=∠时,快艇S 旋转了______个时间单位.16.某社区为增强居民体质,体现以人民为中心的理念,准备到一家健身器材专卖店购置一批健身器材供居民健身使用.该专卖店推出两种优惠活动,并规定只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满..400元减100元.(如:所购商品原价为400元,可减100元,需付款300元;所购商品原价为900元,可减200元,需付款700元)(1)若购买一件原价为550元的健身器材,更合算的选择方式为活动______;(2)若购买一件原价为(01200)a a <<元的健身器材,选择活动二比选择活动一更合算,则a 的取值范围是______.三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分)17.如图,已知线段AB 和点,C D 是线段AB 的中点.(1)根据要求画图:①画直线DC ;②画射线BC ;③连接AC 并延长到点E ,使CE AC =;④连接BE .(2)(1)中线段,DC BE 之间的等量关系是______.18.计算:()()81021-+++-.19.计算:()12112236⎛⎫--⨯-⎪⎝⎭.20.当x 取何值时,式子37x +与式子322x -的值相等?21.解方程:21224x x+-=.22.先化简,再求值:()()2222545x x x x ----+,其中2x =-.23.小明家经营一家文化创意产品商店,他在课余时间关注了文化创意背包和文化创意摆件两种商品的销售情况,如下表:统计日期售出文化创意背包件数(件)售出文化创意摆件件数(件)总售价12月30日018012月31日124201月1日551700若小明家的文化创意产品商店售出文化创意背包和文化创意摆件共15件,总售价为3000元,那么售出文化创意背包和文化创意摆件各多少件?24.如图,长方形的一组邻边长分别为10,(1015)m m <<,在长方形的内部放置4个完全相同的小长方形纸片(图中阴影所示),这样得到长方形ABCD 和长方形EFGH .(1)线段,FG EF 之间的等量关系是______;(2)记长方形ABCD 的周长为1C ,长方形EFGH 的周长为2C ,对于任意的m 值,12C C +的值是否为一个确定的值?若是一个确定的值,请写出这个值,并说明理由;若不是一个确定的值,请举出反例.25.已知AOB ∠与COD ∠共顶点,,O AOB COD αβ∠=∠=.图1图2(1)如图1,点,,A O C 在一条直线上,若60,30,OM αβ=︒=︒为AOD ∠的平分线,ON 为COB ∠的平分线,求MON ∠的度数;(2)若2,,AOB COD αβ=∠∠绕点O 运动到如图2所示的位置,OE 为BOD ∠的平分线,用等式表示AOD ∠与COE ∠之间的数量关系,并说明理由.26.对于数轴上的两条线段,给出如下定义:若其中一条线段的中点恰好是另一条线段的一个三等分点,则称这两条线段互为友好线段.(1)在数轴上,点A 表示的数为-4,点B 表示的数为2,点1C 表示的数为52-,点2C 表示的数为2-,点3C 表示的数为4,在线段123,,BC BC BC 中,与线段AB 互为友好线段的是______;(2)在数轴上,点,,,A B C D 表示的数分别为39,2,,22x xx x ----,且,A B 不重合.若线段,AB CD 互为友好线段,直接写出x 的值.北京市朝阳区2023~2024学年度第一学期期末检测七年级数学试卷参考答案及评分标准2024.1一、选择题(共24分,每题3分)题号12345678答案DBCBCACB二、填空题(共24分,每题3分)9.向西走80m 10.答案不唯一,如3x-11.312.10850'︒13.10t -14.答案不唯一,如1b =-15.34或5016.(1)一(2)400500a ≤<或8001000a ≤<三、解答题(共52分,第17-24题,每题5分,第25-26题,每题6分)17,解:(1)根据要求所画的图形如图所示:(2)12DC BE =.18.解:原式()()102811293=++-+-=-=.19.解:()121126824236⎛⎫--⨯-=-++=⎪⎝⎭.20.解:根据题意,得37322x x +=-.32327x x +=-.525x =.5x =.所以当5x =时,式子37x +与式子322x -的值相等.21.解:21224x x+=.()2218x x +-=.428x x +-=.36x =.2x =.22.解:原式2222454591x r x x x x =--+++=++.当2x =-时,原式13=-.23.解:根据题意可得每件文化创意背包单价260元,每件文化创意摆件单价80元.设小明家的文化创意产品商店售出文化创意背包x 件.根据题意,得()26080153000x x +-=.解得10x =.所以155x -=.答:小明家的文化创意产品商店售出文化创意背包10件,文化创意摆件5件.24.解:(1)2EF FC =;(2)1240C C +=.说明:设FG a =.根据题意可知2EF a =.所以()226C FG EF a =+=.因为长方形的一组邻边长分别为10,m ,所以102,2,10BC a AB m a m a =-=--=.所以()122028C AB BC m a =+=+-.所以1220286C C m a a+=+-+2022m a =+-()202m a =+-40=.25.解:(1)因为点,,A O C 在一条直线上,所以180AOC ∠=︒.因为60,30αβ=︒=︒,所以150,120AOD COB ∠=︒∠=︒.因为OM 为AOD ∠的平分线,ON 为COB ∠的平分线,所以1175,6022DOM AOD CON COB ∠=∠=︒∠=∠=︒.所以30DON CON COD ∠=∠-∠=︒.所以45MON DOM DON ∠=∠-∠=︒.(2)2AOD COE ∠=∠.说明:如图,因为OE 为BOD ∠的平分线,所以12DOE BOD ∠=∠.因为COE DOE COD ∠=∠-∠,所以12COE BOD COD ∠=∠-∠.因为2αβ=,所以1122COE BOD α∠=∠-.因为AOD DOB AOB DOB α∠=∠-∠=∠-,所以2AOD COE ∠=∠.26.解:(1)12,BC BC .(2)225,7,9,26.。

2023-2024学年河北省石家庄市桥西区七年级上学期期末数学试卷及参考答案

2023-2024学年河北省石家庄市桥西区七年级上学期期末数学试卷及参考答案

石家庄市桥西区2023~2024学年度第一学期期末质量监测七年级数学注意事项:本试卷共6页,总分100分,考试时间90分钟.一、选择题(本大题共16个小题,共32分,每小题2分.在每个小题给出的四个选项中只有一项是符合要求的.)1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若收入100元记作+100元,则支出37元记作( ) A.+137元 B.0元 C.+37元 D.-37元2.如果1x =是关于x 的方程325x m -=的解,则m 的值是( ) A.-1B.1C.2D.-23.代数式2x -的意义可以是( )A.-2与x 的和B.-2与x 的差C.-2与x 的积D.-2与x 的商4.要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是( ) A.过一点有无数条直线 B.线段中点的定义 C.两点之间线段最短 D.两点确定一条直线5.下列说法正确的是( ) A.22x -的系数是2B.32xy+是单项式 C.8既是单项式,也是整式 D.x 的次数是0 6.已知2018A ∠=︒',若A ∠与B ∠互余,则B ∠=( )A.69°82′B.69°42′C.159°82′D.159°42′7.已知有理数a ,b 在数轴上的位置如图所示,下列结论正确的是( )A.a b >B.0ab <C.0b a ->D.0a b +>8.如图,用尺规作NCB AOC ∠=∠,作图痕迹中弧FG 是( )A.以点C 为圆心,OD 为半径的弧B.以点C 为圆心,DM 为半径的弧C.以点E 为圆心,OD 为半径的弧D.以点E 为圆心,DM 为半径的弧9.下图为小亮某次测试的答卷,每小题20分,他的得分应是( )A.100分B.80分C.60分D.40分10.如图,将ABC △绕点A 顺时针旋转90°到ADE △,若50BAC ∠=︒,则CAD ∠=( )A.90°B.50°C.40°D.30°11.若代数式22y y -的值为3,则代数式2635y y -+的值等于 A.14B.9C.8D.-412.如图是一个计算程序图,若输入x 的值为6,则输出的结果是( )A.-18B.18C.-66D.66 13.某文具店店庆促销,单价为100元的书包,打x 折后,每个再减10元,降价后售价为70元.则x 的值为( ) A.六 B.七 C.八 D.九14.按如图的方法折纸,下列说法不正确...的是( )A.1∠与3∠互余B.290∠=︒C.1∠与AEC ∠互补D.AE 平分BEF ∠15.正方形ABCD 的边长2AB =,其顶点A 在数轴上且表示的数为-1,若点E 也在数轴上且AB AE =,则点E 所表示的数为( ) A.-3B.3C.-3或1D.-3或316.射线OC 在AOB ∠的内部,图中共有3个角:AOB ∠,AOC ∠和BOC ∠,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是AOB ∠的“巧分线”.关于“巧分线”有下列4种说法: ①一个角的平分线是这个角的“巧分线” ②一个角的“巧分线”只有角平分线这一条③40AOC ∠=︒,20BOC ∠=︒,则射线OC 是AOB ∠的“巧分线”④若60AOB ∠=︒,且射线OC 是AOB ∠的“巧分线”,则20BOC ∠=︒或30°其中正确的有( ) A.1.个B.2个C.3个D.4个二、填空题(本大题有3个小题,共10分.17、18题每题3分,19题每空2分)17.比较大小:-7__________-9(用“>,<”或“=”号填空);18.定义一种新运算:2*3a b a b =-,如22*12311=-⨯=,则()*(1)2--的结果为__________;19.如图,在直角三角形ABC 中,90A ∠=︒,10cm AB =,5cm AC =,点P 从点A 开始以2cm /s 的速度向点B 移动,点Q 从点C 开始以3cm /s 的速度沿C →A →B 的方向移动.如果点P ,Q 同时出发,P 点到达B 点时,P ,Q 两点都停止运动,移动时间用t (s )表示.(1)当点Q 在AC 上运动时,AQ =___________(用含t 的代数式表示); (2)当QA AP =时,t =___________.三、解答题(本大题共7个小题,共58分.20~24题每题8分,25题、26题每题9分.解答应写出文字说明、证明过程或演算步骤)20.计算(本小题满分8分) (1)()75---;(2)1171631224⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭. 21.解方程(本小题满分8分) (1)()3224x x -+=; (2)123132x x ---=. 22.(本小题满分8分)如图,线段8AB =,点D 是线段AB 上一点,且2BD =,点C 是线段AD 的中点.(1)求线段BC 的长;(2)若E 是线段AB 上一点,且满足CE DB =,求AE 的长.23.(本小题满分8分)先化简,再求值:()()22222322a b ab a b ab a b --+-,其中21303a b ⎛⎫++-= ⎪⎝⎭.24.(本小题满分8分)现有甲、乙、丙三种正方形和长方形卡片各若干张,如图1所示(1a >).小明分别用6张卡片拼出了如图2和图3的两个长方形(不重叠无缝隙),其面积分别为1S ,2S .(1)请用含a 的式子分别表示1S ,2S ; (2)当3a =时,通过计算比较1S 与2S 的大小. 25.(本小题满分9分)某班举行了演讲活动,班长安排淇淇去购买奖品,下图是淇淇与班长的对话:淇淇 班长 请根据淇淇与班长的对话,解答下列问题:(1)若找回55元钱,则淇淇买了两种笔记本各多少本?(2)可能找回68元钱吗?若能,求出此时买了两种笔记本各多少本;若不能,说明理由. 26.(本小题满分9分)如图1,将一副直角三角板摆放在直线AD 上(直角三角板OBC 和直角三角板MON ),OBC MON ∠=∠90=︒,45BOC ∠=︒,30MNO ∠=︒,保持三角板OBC 不动,将三角板MON 绕点O 以每秒10°的速度顺时针旋转(如图2),旋转时间为t (09t <<)秒.计算 当OM 平分BOC ∠时,求t 的值;判断 判断MOC ∠与NOD ∠的数量关系,并说明理由;操作 若在三角板MON 开始旋转的同时,另一个三角板OBC 也绕点O 以每秒5°的速度顺时针旋转,当三角板MON 停止时,三角板OBC 也停止,直接写出在旋转过程中,MOC ∠与NOD ∠的数量关系.2023~2024学年度第一学期期末质量监测七年级数学试题参考答案一、选择题(本大题共16个小题,共32分,每小题2分.在每个小题给出的四个选项中,只有一项是符合要求的.二、填空题(本大题有3个小题,共10分.17、18题每题3分,19题每空2分)17.> 18.7 19.(1)53t - (2)1或5三、解答题(本大题共7个小题,共58分.20~24题每题8分,25题、26题每题9分.解答应写出文字说明、证明过程或演算步骤)20.计算(本小题满分8分)解:(1)()75752---=-+=- ······························································································ 4分 (2)()1171117246312246312⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1172424246312=⨯-⨯+⨯ ······································································································ 6分 481410=-+= ···················································································································· 8分 21.解方程(本小题满分8分) (1)()3224x x -+=3624x x -+=······················································································································ 2分 2x = ·································································································································· 4分 (2)123132x x ---= ()()213236x x ---= ·········································································································· 6分 22696x x --+=14x =·································································································································· 8分 22.(本小题满分8分)解:(1)∵8AB =,2BD =,∴826AD AB BD =-=-=.∵点C 是线段AD 的中点,∴132CD AC AD ===. ∴235BC BD CD =+=+=. ·································································································· 4分 (2)∵2BD =,CE BD =,∴2CE =. ··················································································· 6分 当E 在C 的左边时,321AE AC CE =-=-=; ········································································ 7分 当E 在C 的右边时,325AE AC CE =+=+=. ········································································· 8分 ∴AE 的长为1或5. 23.(本小题满分8分)解:()()22222222222322342a b ab a b ab a b a b ab a b ab a b ab --+-=-++-=. ······························· 4分∵21|3|03a b ⎛⎫++-= ⎪⎝⎭,∴3a =-,13b =. ·············································································· 6分∴原式211133393⎛⎫=-⨯=-⨯=- ⎪⎝⎭. ···························································································· 8分24.(本小题满分8分)解:(1)2132S a a =++,251S a =+. ····················································································· 4分 (2)当3a =时,21333220S =+⨯+=,253116S =⨯+=. ························································ 6分 ∵2016>,∴12S S >. ············································································································ 8分 25.(本小题满分9分)解:(1)设买x 本5元的笔记本,则买()40x -本8元的笔记本,根据依题意,得()584030055x x +-=-, ················································································ 2分 解得25x =, ························································································································ 4分 则4015x -=(本). ·············································································································· 5分 答:淇淇买了5元的笔记本25本,8元的笔记本15本. (2)不能设买y 本5元的笔记本,则买()40y -本8元的笔记本,根据题意,得()584030068y y +-=-, ·················································································· 7分 解得883y =, ······················································································································· 8分 ∵883不是整数,∴不能找回68元. ···························································································· 9分26.(本小题满分9分)解:计算∵45BOC ∠=︒,OM 平分BOC ∠ ∴122.52BOM BOC ︒∠=∠= ∵三角板MON 绕点O 以每秒10°的速度顺时针旋转,∴22.510 2.25︒÷︒=.∴t 的值为2.25. ························································································· 4分 判断当0 4.5t <≤时,如图1图1据题意,得10BOM t ∠=︒∴4510MOC BOC BOM t ∠=∠-∠=︒-︒ ∵90MON ∠=︒∴1809010NOD MON BOM t ∠=︒-∠-∠=︒-︒∴45NOD MOC ∠-∠=︒ ······································································································· 6分 当4.59t <<时,如图2图2 据题意,得10BOM t ∠=︒∴1045MOC BOM BOC t ∠=∠-∠=︒-︒ ∵90MON ∠=︒∴1809010NOD MON BOM t ∠=︒-∠-∠=︒-︒∴45NOD MOC ∠+∠=︒; ···································································································· 8分 操作12MOC NOD ∠=∠. ········································································································ 9分。

2023-2024学年北京市东城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市东城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市东城区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图是一个几何体的表面展开图,这个几何体是()A. B. C. D.2.我国的长城始建于西周时期,被国务院确定为全国重点文物保护单位.长城总长约6700000米.数据6700000用科学记数法表示应为()A. B. C. D.3.若数在数轴上表示的点的位置如图所示,则下列结论正确的是()A. B. C. D.4.下列说法中正确的是()A.是单项式B.的系数是C.是二次二项式D.与是同类项5.下列选项中,计算错误的是.()A. B.C. D.6.若是关于x的方程的解,则m的任是.()A. B. C. D.87.如图所示四幅图中,符合“射线PA与射线PB是同一条射线”的图为.()A. B. C. D.8.如图,OA 的方向是北偏东,OB 的方向是西北方向,若,则OC 的方向是.()A.北偏东B.北偏东C.北偏东D.北偏东9.王涵同学在某月的日历上圈出了三个数a ,b ,c ,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是.()A. B. C. D.10.某商店在甲批发市场以每包m 元的价格进了60包茶叶,又在乙批发市场以每包n 元的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店的盈亏情况为.()A.盈利元B.亏损元C.盈利元D.没盛利也没亏损二、填空题:本题共8小题,每小题2分,共16分。

11.一个单项式含有字母x 和y ,系数是2,次数是3,这个单项式可以是__________.12.比较大小:__________,__________填“>”“=”或“<”号13.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房,求该店有客房多少间?设该店有客房x 间,则可列方程为__________.14.如图,O 是直线AB 上一点,若,则__________.15.如图,C 为线段AD 上一点,点B 为CD 的中点,且,则__________16.已知点是数轴上的两个点,点A到原点的距离等于3,点B在点A左侧,并且距离A点2个单位长度,则点B表示的数是__________.17.已知a,b是常数,若的项不含二次项,则__________.18.对于个位数字不为零的任意三位数M,将其个位数字与百位数字对调得到,则称为M的“倒序数”,将一个数与它的“倒序数”的差的绝对值与99的商记为例如523为325的“倒序数”,__________;对于任意三位数满足:的值是__________.三、计算题:本大题共2小题,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学试卷
1、有 理数 a 等于它的倒数 , 有理数 b 等于它的相反数 , 则 a 2008 b 2008 等于 (

( A)1
( B) - 1
( C) 1
( D) 2
2、用一根长 80 cm 的绳子围成一个长方形,且长方形的长比宽长
面积是


10 cm ,则这个长方形的
(A) 25 cm2
(B) 45
0.02 x
10、解方程 (1) 5(x - 1) - 2(x+1)=3(x - 1)+x+1(2)
1
0.03
0.18x 0.18 1.5 3x
0.12
2
11、用棋子摆出下列一组图形:
( 1)
(2)
( 3)
(1)填写下表:
图形编号
1
2
3
图形中的棋子枚数
(2)照这样的方式摆下去,写出摆第 n 个图形棋子的枚数; (用含 n 的代数式表示)
14. 已知关于 x 的方程( m+3)x|m|-2 +6m=0…①与 nx-5=x(3-n) …②的解相同, 其中方程①是一元一次方程,求代数式( m+x) 2000·(- m2n+xn2)+ 1 的值 .
15. 某一家服装厂接受一批校服订货任务,按计划天数进行生产,如果每天平均 生产 20 套,就比订货任务少 生产 100 套,如果每天平均生产 23 套,就可超过 订货任务 20 套,问这批服装订货任务是多少套?原计划多少 天完成?
5、如图 3 所示 , 把一根绳子对折成线段
1
AB, 从 P 处把绳子剪断 , 已知 AP= PB, 若剪断后
2
的各段绳子中最长的一段为 40cm, 则绳子的原长为
( A)30 cm
( B) 60 cm
( C) 120 cm


( D) 60 cm 或 120 cm
8、某商店购进一种商品,出售时要在进价基础上加一定的利润,销售量
( B) DA边上
( C) BC边上
( D)CD边上
图1
图3
4、如图 2 所示, OB、 OC是∠ AOD的任意两条射线 , OM平分∠ AOB, ON平分∠ COD,若∠ MON=
α , ∠BOC=β , 则表示∠ AOD的α-β
(C)α +β
( D)以上都不正确
(3)如果某一图形共有 99 枚棋子,你知道它是第几个图形吗? 12、如图所示 , 设 l =AB+AD+CD, m=BE+CE, n=BC.试比较 m、 n、 l 的大小 , 并说明理由 .
13. 若∠ AOB=∠ COD= 1 ∠AOD,已知∠ COB=80°,求∠ AOB、∠ AOD的度数 . 6
cm2
(C) 375
cm2 (D) 1575
cm2
3、如图 1 所示 , 两人沿着边长为 90m的正方形 , 按 A→ B→ C→ D→A……的方向行走 . 甲从 A
点以 65m/min 的速度、乙从 B 点以 72m/min 的速度行走 , 当乙第一次追上甲时 , 将在正
方形的


( A)AB 边上
x 与售价 C间的关
系如下表:
销售数量 x (千克) 价格 C(元)
1 2.5+0.2
2 5+0.4
3 7.5+0.6
( 1)用数量 x 表示售价 C 的公式, C=___ __ __
4 10+0.8
…… ……
( 2)当销售数量为 12 千克时,售价 C 为 _____ _
9、先化简,后计算: 2(a 2b+ab2)- [2ab 2 -(1-a 2b)] -2 ,其中 a= -2 , b= 1 2
相关文档
最新文档