SOR迭代法求解线性方程组
迭代法求解线性方程组的研究(精选.)
迭代法求解线性方程组的研究【摘要】:本文总结了解线性方程组的三个迭代法,Jacobi 迭代法,Gauss-seidel 迭代法,SOR迭代法,并且介绍了现代数值计算软件MATLAB 在这方面的应用,即分别给出三个迭代法的数值实验。
【关键字】:Jacobi 迭代法 Gauss-seidel 迭代法 SOR 迭代法 数值实验一. 引言迭代法是用某种极限过程去逐步逼近线性方程组精确解的方法,它是解高阶稀疏方程组的重要方法。
迭代法的基本思想是用逐次逼近的方法求解线性方程组。
设有方程组b Ax = …① 将其转化为等价的,便于迭代的形式f Bx x += …② (这种转化总能实现,如令b f A I B =-=,), 并由此构造迭代公式 f Bx xk k +=+)()1( …③式中B 称为迭代矩阵,f 称为迭代向量。
对任意的初始向量)0(x,由式③可求得向量序列∞0)(}{k x ,若*)(lim x xk k =∞→,则*x 就是方程①或方程②的解。
此时迭代公式②是收敛的,否则称为发散的。
构造的迭代公式③是否收敛,取决于迭代矩阵B 的性质。
本文介绍三种解线性方程组的最主要的三种迭代法:Jacobi 迭代法,Gauss-Seidel 迭代法和SOR 迭代法。
本文结构如下:第二部分介绍Jacobi 迭代法及其数值实验,第三部分介绍Gauss-Seidel 迭代法及其数值实验,第四部分介绍SOR 迭代法及其数值实验,第五部分总结。
二. 雅克比(Jacobi )迭代法1. 雅克比迭代法的格式设有方程组),,3,2,1(1n i b x aj j nj ij==∑= …①矩阵形式为b Ax =,设系数矩阵A 为非奇异矩阵,且),,3,2,1(,0n i a ii =≠从式①中第i 个方程中解出x ,得其等价形式)(111j nj j ijiii x ab a x ∑≠=-= …②取初始向量),,,()0()0(2)0(1)0(n x x x x=,对式②应用迭代法,可建立相应的迭代公式:)(111)()1(∑≠=++-=nj j i k j ij ii k ib x a a x …③ 也可记为矩阵形式:J x J k F B xk +==)()1( …④若将系数矩阵A 分解为A=D-L-U ,式中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn a a a D2211,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--0000121323121nn n n a a a a a a L ,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=--0000122311312n n n n a a a a a a D 。
高斯—塞德尔迭代法
上式至少有一个不等号严格成立。
*定义 每行每列只有一个元素是1,其余 元素是零的方阵称为置换阵(或排列阵).
定理8(对角占优定理)若矩阵A按行(或列)严格对角占优 或按行(或列)弱对角占优且不可约;则矩阵A非奇异。
定理9 若矩阵A按行(或列)严格对角占优,或按行(或列) 对角占优不可约;则Jacobi迭代、Gauss-Seidel迭代都 收敛。
高斯—塞德尔迭代法又等价于:对k=0,1,…,
三、逐次超松驰(SOR)迭代法
SOR迭代法的计算公式:对k=0,1,…,
说明:1)ω=1,GS; 2)ω>1超松驰,ω<1低松驰;
3)控制迭代终止的条件: 例3 用上述迭代法解线性代数方程组
初值x(0)=0,写出计算格式。
四、三种迭代法的收敛性
定理7 对线性方程组Ax=b,A,D非奇异,则 Jacobi迭代法收敛的充要条件是 GS迭代法收敛的充要条件是 SOR迭代法收敛的充要条件是 定义6 (1)按行严格对角占优:
证明 若矩阵A按行严格对角占优,或按行(或列)弱对角占优不可
则GS迭代收敛。假若不然,ρ(BG)≥1,即迭代矩阵BG的某一特征 值λ使得|λ|≥1,并且
类似地,若矩阵A按行严格对角占优,或按行(或列)弱对角占优不
可约,则Jacobi迭代收敛。假若不然,ρ(BJ)≥1,即迭代矩阵BJ 的某一特征值λ使得|λ|≥1,并且
定理10 对线性方程组Ax=b,若A为对称正定矩阵,则 1)GS迭代法收敛. 2)若2D-A也是对称正定矩阵,则Jacobi迭代法收敛。
例8 见书上
定理12 对于线性方程组Ax=b,若A为对称正定矩阵,则
当0<ω<2时,SOR迭代收敛. 证明 只需证明λ<1(其中λ为Lω的任一特征值) .
数值分析6-用SOR方法求解线性方程组
程序 clear;clc; A=[4,3,0;3,4,-1;0,-1,4]; b=[24,30,-24]'; N=length(b); %解向量的维数 fprintf('库函数计算结果:'); x=inv(A)*b %库函数计算结果 x=[1;1;1];%迭代初始值 %-----(A=D-E-F)-----D=diag(diag(A)); E=-tril(A,-1);%下三角 F=-triu(A,1);%上三角 w=1.5; %松弛因子,一般 0<w<2 B=inv(D-w*E)*[(1-w)*D+w*F];g=w*inv(D-w*E)*b; eps=1e-8;%相邻解的距离小于该数时,结束迭代 %--------开始迭代------for k=1:100 %最大迭代次数为 100 fprintf('第%d 次迭代:',k); y=B*x+g; if abs(x-y)<eps break; end x=y end x
程序结果
当比较松弛因Biblioteka 取 1.0 时当比较松弛因子取 1.25 时
当比较松弛因子取 1.5 时
作业七:编写用 SOR 方法求解线性方程组 Ax=B 的标准程序,并求下 列方程组的解, 并比较松弛因子取 1.0、 1.25、 1.5 时所需迭代的次数。 可取初始向量 X(0) =(1,1,1)’;迭代终止条件||x(k+1)-x(k)||<=10e-8
4 30 ������1 24 3 4 − 1 x2 = 30 0 − 14 x3 −24
实验报告四线性方程组的求解_迭代
浙江大学城市学院实验报告课程名称 科学计算实验项目名称 线性方程组的求解-迭代法实验成绩 指导老师(签名 ) 日期 2012-4-6一. 实验目的和要求1. 掌握Jacobi 迭代方法.Gauss-Seidel 迭代方法.SOR 迭代方法的编程思想.能够分别用分量形式和矩阵形式编写相关程序。
2. 观察SOR 迭代法中松弛因子变化情况对收敛的影响。
3. 了解Hilbert 矩阵的病态性和作为线性方程组系数矩阵的收敛性。
二. 实验内容和原理编程题2-1要求写出Matlab 源程序(m 文件).并有适当的注释语句;分析应用题2-2.2-3.2-4要求将问题的分析过程、Matlab 源程序和运行结果和结果的解释、算法的分析写在实验报告上。
2-1 编程注释 设11121121222212,n n n n nn n a a a b a a a b A b a a a b ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对下述求解线性方程组的Matlab 程序添上注释语句.其中A 和b 分别为线性方程组的系数矩阵和右端向量;0x 为迭代初始向量(0)X;max N 为容许迭代最大次数.eps 为迭代终止条件的精度(容许误差).终止条件为前后两次迭代解的差的向量2-范数。
1) Jacobi 迭代:Jacobimethod(A,b,x0,Nmax,eps)2) Gauss-Seidel 迭代:GaussSeidelmethod(A,b,x0,Nmax,eps)3) 松弛迭代:SORmethod(A,b,x0,Nmax,eps,w)2-2 分析应用题利用2-1中的程序来分析用下列迭代法解线性方程组:123456410100014101050141012101410501014120010146x x x x x x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----=⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 的收敛性.并求出使(1)()20.0001k k X X +-≤的近似解及相应的迭代次数.其中取迭代初始向量(0)X 为零向量。
sor迭代法手算例题
sor迭代法手算例题SOR迭代法是求解线性方程组的一种经典方式,其基本思想是通过不断迭代来逼近方程组的解。
这种方法在大规模问题上具有很好的效率,因此得到了广泛的应用。
本文将介绍SOR迭代法的基本原理,并以一个手算例题来展示其具体步骤和计算结果。
一、SOR迭代法的基本原理在介绍SOR迭代法的原理之前,我们先来看一下迭代法本身的思想。
假设有一个线性方程组:$$Ax=b$$其中,A是一个$n\times n$的系数矩阵,b是一个$n\times 1$的常数向量,x是一个$n\times 1$的未知向量。
迭代法的基本思想是将方程组表示为:$$x^{(k+1)}=Tx^{(k)}+C$$其中,$x^{(k)}$表示第k次迭代的近似解,$T$是一个$n\times n$的矩阵,$C$是一个$n\times 1$的常数向量。
迭代法的步骤是从一个初始点$x^{(0)}$开始,不断应用上述公式来寻找更好的解$x^{(k+1)}$。
当接近真解时,迭代的过程会不断收敛,即$x^{(k+1)}$会不断逼近真解$x$。
那么,如何确定矩阵$T$和向量$C$呢?最简单的方法是将方程组表示为:$$x^{(k+1)}=(I-\omega A)x^{(k)}+\omega b$$其中,I是$n\times n$的单位矩阵,$\omega$是一个常数,称作松弛因子。
当$\omega=1$时,这就是最基本的迭代法——雅克比迭代法。
但是,雅克比迭代法的收敛速度比较慢,因此需要调整$\omega$的值,从而得到更好的迭代效果。
SOR迭代法就是一种改良的迭代方法,其基本思想是通过加速松弛因子的变化来改善雅克比迭代法的效率。
具体来说,SOR迭代法的公式为:$$x_i^{(k+1)}=(1-\omega)x_i^{(k)}+\frac{\omega}{a_{ii}}\left(b_i-\sum_{j<i}a_{ij}x_j^{(k+1)}-\sum_{j>i}a_{ij}x_j^{(k)}\right)$$其中,$i=1,2,\cdots,n$。
第一次迭代解法之SOR
种相容范数都有 ρ(A)≤||A||
(6.2)
2021/6/17
13
另一个更深刻的结果,对于任意的ε>0,必存在一种相
容的矩阵范数,使
|| A ||≤ ρ(A) +ε
(6.3)
式(6.2)和(6.3)表明,矩阵A的谱半径是它所有相 容范数的下确界。
定义6.4 设有n×n矩阵序列 A(k) (ai(jk) ), k 1, 2, 方阵A=(aij), 如果
多大算病态没有标准。如果主元很小或者元素数量级相差大,可能是病态
cond ( A) A A1 AA1 1
2021/6/17
18
§2 迭代解法与收敛性
一、迭代解法
设有线性方程组
Ax=b
(1)
A∈Rn×n, b∈Rn .
对A 进行分裂, A=A1+A2 , 其中 A1 可逆,
则 (A1+A2)x=b A1x = - A2x+b x = - A1-1 A2 x + A1-1 b
再由 Ax =b,得到 || b||= || Ax || ≤||A || ||x||
2021/6/17
16
于是,由 || △x ||≤||A-1 || ||△b||
及 ||b || ≤||A || ||x|| 1 A
x
b
得到解的相对误差为
x A
A1
b
x
b
令 Cond(A)=||A || ||A-1 || ,并称其为矩阵A的条件数。
14 20
则它的特征方程为:
I AT A 10 14
2 30 4 0
14
20
2021/6/17
10
此方程的根为矩阵ATA的特征值,解得
数值分析第三章线性方程组解法
数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。
线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。
线性方程组的解法包括直接解法和迭代解法两种方法。
一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。
这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。
1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。
这种方法可以减少计算量,提高计算效率。
1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。
它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。
Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。
二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。
它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。
Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。
2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。
它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。
Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。
2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。
它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。
SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。
三、总结线性方程组解法是数值分析中的一个重要内容。
直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。
追赶法,高斯消元法,逆矩阵法,迭代法——解线性方程组精仪学院马金玉
追赶法,高斯消元法,逆矩阵法,迭代法 —— 解线性方程组精仪学院 马金玉 1012202030本文主要详细介绍了追赶法,高斯法,逆矩阵法的方法原理,运用这三种方法分别进行线性方程的求解举例,给出MATLAB 相应程序,最后做结果分析,比较说明追赶法和高斯法的特点。
最后对三种典型迭代方法Jacobi 迭代,Gauss-Seidel 迭代,SOR 迭代进行简单的分析比较。
1. 追赶法1.1).追赶法方法介绍追赶法用于求解以下形式的方程组(三对角方程组)d Ax =其中 1[,,]T n d d =d ,系数矩阵(三对角矩阵)11222111n n n n n b c a bc a b c a b ---⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦A系数矩阵A 的元素满足1100 0 (2,,1)0i i i i i n n b c b a c a c i n b a ⎧>>⎪≥+>≠=-⎨⎪>>⎩第一步:实现A=LU 的分解,按照递推公式1111//()i i i i i c b c b a βββ-=⎧⎨=-⎩ 计算 123,,...........βββ:第二步:求解方程组LY=f,相应的递推公式 11111/()/()i i i i i i i y f b y f a y b a β--=⎧⎨=--⎩ 第三部:求解方程组UX=Y ,相应的递推公式1()n nii i i x y x y x β-=⎧⎨=-⎩ 求得x因为计算1231......n ββββ-→→→→ 及 1231......n y y y y -→→→→的过程是追赶的过程,结出结果X 。
1.2).追赶法解线性方程组的matlab实例解线性方程组第一步:编写M文件如下:function [x,y,beta]=zhuiganfa(a,b,c,f)%a,b,c是三对角阵的对角线上的元素,f是自由项.n=length(b);beta(1)=c(1)/b(1);for i=2:nbeta(i)=c(i)/(b(i)-a(i)*beta(i-1));endy(1)=f(1)/b(1);for i=2:ny(i)=(f(i)-a(i)*y(i-1))/(b(i)-a(i)*beta(i-1));endx(n)=y(n);for i=n-1:-1:1x(i)=y(i)-beta(i)*x(i+1);enddisp(sprintf('k x(k) y(k) beta(k)')); for i=0:n-1disp(sprintf('%d %15.4f %15.4f %15.4f',i,x(i+1),y(i+1),beta(i+1))); end追赶法M文件程序截图如图1所示图1 追赶法M文件程序截图第二步:根据所求方程,在命令窗口中输入如下命令,并按ENTER 键确认。
SOR迭代法
ω
0.6 0.8 1 1.1 1.15 1.25 1.3 1.5 1.8
迭代次数 16 10 8 7 8 11 15 15 15
近似解与 5 5 5 5 5 5 5 4 1 准确解重 复合位数
使 SOR 法收敛最快的松弛因子通常称为最 优 松
弛因子。目前,只有少数特殊类型的矩阵,才有确定 的最优松弛因子的理论公式,但实际使用时也有一定 困难。通常的办法,是选不同的 进行试算,以确定
SOR迭代法常以这种形式进行计算。
格式(3.4)的矩阵形式为
X (k1) (1 ) X k D1 b LX k UX (k) ,
3.5
其中
a11
D
a22
O
0
0
,
ann
0 a12 L
U
0O
O
0
a1n
an1,n
0
显然,A D L U.
0
0
L
a21
O
OO
aij x(jk )
3.1
若记
i1
n
r(k)
i
(bi
a x(k 1) ij j
aij
x
(k j
)
),
j 1
j i
i 1,2,L ,n
则 3.1 式可写为
x( k 1) i
x(k) i
1 aii
r(k)
i
3.2
由此可以看出, Gauss Seidel 迭代法的第 k 1
步 ,相当于在第 k 步的基础上每一个分量增加
上述定理说明,对于任何系数矩阵 A,若要 SOR
法收敛,必须选取松弛因子 0,2 , 然而,当松
弛因子满足条件 0 2 时,并不是对所有系数矩 阵 A 来说,SOR 法都是收敛的。但是,对一些特殊矩 阵来说,这一条件是充分的。
SOR迭代法
aij x(jk )
3.1
若记
i1
n
r(k)
i
(bi
a x(k 1) ij j
aij
x
(k j
)
),
j 1
j i
i 1,2,L ,n
则 3.1 式可写为
x( k 1) i
x(k) i
1 aii
r(k)
i
3.2
由此可以看出, Gauss Seidel 迭代法的第 k 1
步 ,相当于在第 k 步的基础上每一个分量增加
SOR迭代法常以这种形式进行计算。
格式(3.4)的矩阵形式为
X (k1) (1 ) X k D1 b LX k UX (k) ,
3.5
其中
a11
D
a22
O
0
0
,
ann
0 a12 L
U
0O
O
0
a1n
an1,n
0
显然,A D L U.
0
0
L
a21
O
OO
上述定理说明,对于任何系数矩阵 A,若要 SOR
法收敛,必须选取松弛因子 0,2 , 然而,当松
弛因子满足条件 0 2 时,并不是对所有系数矩 阵 A 来说,SOR 法都是收敛的。但是,对一些特殊矩 阵来说,这一条件是充分的。
定理7 如果矩阵 A 是对称正定的,则 SOR 法 对于0 2 是收敛的。
其 Gauss Seidel 迭 代 格 式 可写为 (aii 0) :
x(k1) i
x(k) i
1 aii
bi
a x(k1) i1 1
L
a x(k1) i,i1, i1
线性方程组的J-迭代,GS-迭代,SOR-迭代,SSOR-迭代方法
线性⽅程组的J-迭代,GS-迭代,SOR-迭代,SSOR-迭代⽅法西京学院数学软件实验任务书【实验课题】雅克⽐迭代、⾼斯—赛德尔迭代、超松弛迭代【实验⽬的】学习和掌握线性代数⽅程组的雅克⽐迭代、⾼斯—赛德尔迭代、超松弛迭代法,并且能够熟练运⽤这些迭代法对线性⽅程组进⾏求解。
【实验内容】 1、问题重述:对于线性⽅程组A b X =,即:1111221n 12112222n 21122nn n n n n n na x a x a xb a x a x a x b a x a x a x b +++=??+++=??+++= (1),其中,111212122111 0 - - 0 - 0 0 () - - - 0 n ij n nn n nn nn a a a a a a a a a a ?--A ==--??0n D L U≡--()1,n b b b T=如何运⽤雅克⽐迭代、⾼斯—赛德尔迭代、超松弛迭代法对线性⽅程组进⾏求解。
2、⽅法原理: 2.1雅克⽐迭代迭代思想:⾸先通过A b X =构造形如()x f x =的等式,然后给定⼀个初值(0)(0)(0)(0)12(,,)n x x x X = ,再通过(1)()()k k f +X =X 进⾏迭代。
step1 :对(1)相应第i ⾏中的i x ⽤其它元素表⽰为:11111121111122,12211111()()11()()11()()n nj j j j j j n ni i ij ji j j j i j i j iin nn n nj j n n nj j j j nn nn x b a x x b a x a a x b a x x b a x a a x b a x x b a x a a ===≠=-==?=-=+-??=-=+-??=-=+-∑∑∑∑∑∑即:()D b L U X =-+XStep 2 :进⾏迭代(0)(0)(0)(0)12(1)11()(,,)()n k k x x x D b D L U +--?X =?X=-+X ? ,0,1,2k = ,取它的判断条件为()(1)k k -X -X ⼩于⼀个确定的误差值ε,跳出循环。
迭代法求线性方程组
数学与计算科学学院实验报告
实验项目名称迭代法求线性方程组
所属课程名称数值方法A
实验类型验证型
实验日期2011.11.03
班级
学号
姓名
成绩
(2) 取初值为(1,2,1),结果如下:
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致。
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。
3.实验原理:简要说明本实验项目所涉及的理论知识。
4.实验环境:实验用的软、硬件环境。
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。
概括整个实验过程。
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。
对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。
对于创新性实验,还应注明其创新点、特色。
6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。
7.实验结论(结果):根据实验过程中得到的结果,做出结论。
8.实验小结:本次实验心得体会、思考和建议。
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。
SOR方法的收敛性问题
∑a
n
kj x j ≤ (1 − ω ) akk ⋅ xk + ω
j = k +1
∑a
n
n
kj x j ≤ (1 − ω ) akk ⋅ xk + ω
j = k +1
∑
n
akj ⋅ x j
≤ (1 − ω ) akk ⋅ xk + ω
这样,
n ⎡ ⎤ akj ⋅ xk = ⎢(1 − ω ) akk + ω ∑ akj ⎥ xk j = k +1 j = k +1 ⎣ ⎦
⎤ ⎥≥0 ⎦
(1 − ω ) akk + ω
λ ≤
j = k +1
∑
n
akj <1
akk − ω ∑ akj
j =1
k −1
至此,结论得证! 对于 A 为对称正定的情形,我们有如下的结论。
定理 11.若 A 为对称正定矩阵, 0 < ω < 2 ,则 SOR 方法收敛。
证明方法与定理 8 类似。
证明:
((1 −
1
ω
)D + U )x = λ (
1
ω
D + L) x , ((ω − 1) D + ωU ) x = λ ( D + ω L) x
将其写为分量形式,即为
(ω − 1)aii xi + ω ∑ aij x j = λ ( aii xi + ω ∑ aij x j ) , i = 1, 2, ⋅⋅⋅, n
因此,
ω
2
)p+
ω
2
( p + 2α ) > (1 −
解线性方程组的迭代法资料
解线性方程组的迭代法Haha送给需要的学弟学妹摘要:因为理论的分析表明,求解病态的线性方程组是困难的,但是实际情况是否如此,需要我们来具体检验。
系数矩阵H 为Hilbert 矩阵,是著名的病态问题。
因而决定求解Hx b =此线性方程组来验证上述问题。
详细过程是通过用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法求解Hx b =线性方程组。
关键词:病态方程组、Gauss 消去法、J 迭代法、GS 迭代法、SOR 迭代法目录:一、问题背景介绍二、建立正确额数学模型 三、求解模型的数学原理1、Gauss 消去法求解原理2、Jacobi 迭代法求解原理3、G-S 迭代法求解原理4、SOR 迭代法求解原理5、Jacobi 和G-S 两种迭代法收敛的充要条件 四、计算过程(一)Hilbert 矩阵维数n=6时1、Gauss 消去法求解2、Jacobi 迭代法求解3、G-S 迭代法求解4、SOR 迭代法求解(二)Hilbert 矩阵维数n=20、50和100时1、G-S 迭代法求解图形2、SOR 迭代法求解图形 五、编写计算程序 六、解释计算结果1、Gauss 消去法误差分析2、G-S 迭代法误差分析3、SOR 迭代法误差分析G-S 迭代法与SOR 迭代法的误差比较 七、心得体会正文:一、问题背景介绍。
理论的分析表明,求解病态的线性方程组是困难的。
实际情况是否如此,会出现怎样的现象呢?二、建立正确的数学模型。
考虑方程组Hx b =的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(), , ,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。
通过首先给定解(为方便计算,笔者取x 的各个分量等于1),再计算出右端,b Hx =这样Hx b =的解就明确了,再用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法分别求解,Hx b =将求解结果与给定解比较,而后求出上述四种方法的误差,得出哪种方法比较好。
sor迭代法matlab代码
sor迭代法matlab代码标题:SOR迭代法的MATLAB代码实现及应用摘要:本文将深入探讨SOR(逐次超松弛)迭代法的原理、算法实现以及MATLAB代码实现。
SOR迭代法是一种迭代求解线性方程组的方法,广泛应用于科学计算、数值模拟和工程计算等领域。
文章首先简要介绍了SOR迭代法的基本原理,然后详细阐述了算法实现过程,并给出了MATLAB代码示例。
最后,文章探讨了SOR迭代法在不同应用场景下的优缺点及适用性。
关键词:SOR迭代法、MATLAB代码、线性方程组、逐次超松弛、数值计算1. 引言- 线性方程组求解问题的背景和重要性- 迭代法解决线性方程组的优势和挑战2. SOR迭代法的原理- 逐次超松弛的思想和原理- SOR迭代法的收敛性分析3. SOR迭代法算法实现- 迭代过程及更新公式推导- 松弛因子的选择策略- 收敛性判定条件4. MATLAB代码实现- SOR迭代法的基本结构- 实现思路和关键代码解读- 参数调节和优化技巧5. SOR迭代法的应用案例- 流体力学模拟中的应用- 结构力学问题求解- 电磁场计算中的应用6. 优缺点与适用性分析- SOR迭代法的优点与局限性 - 不同应用场景下的适用性分析7. 结论- 对SOR迭代法的总结与回顾 - 对未来研究和应用的展望观点和理解:SOR迭代法作为一种求解线性方程组的常用方法,具有一定的优势和局限性。
在文章的观点和理解部分,我将从以下几个方面展开:- SOR迭代法相比于其他迭代方法的优势和特点- 松弛因子的选择对迭代收敛性的影响- 不同应用场景下使用SOR迭代法的优缺点- SOR迭代法在数值计算中的地位和前景通过详细的算法讲解、MATLAB代码实现和实际应用案例的介绍,本文旨在帮助读者深入理解SOR迭代法的基本原理和实现过程,并对其在不同领域中的应用进行探讨和评估。
最后,总结性的内容将对读者对SOR迭代法的理解提供全面、深刻和灵活的指导。
用sor法解方程组
用sor法解方程组
SOR法是一种迭代算法,可以用来解线性方程组。
它的方法是在Jacobi迭代的基础上加入松弛因子,以加快收敛速度。
对于一个n阶线性方程组Ax=b,SOR法的迭代公式为:
x_i^{(k+1)}=(1-omega)x_i^{(k)}+frac{omega}{a_{ii}}left(b_i-sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)}-sum_{j=i+1}^{n}a_{ij}x_j^{ (k)}right)
其中,x_i^{(k)}表示第k次迭代中第i个未知数的值,a_{ij}表示方程组中系数矩阵的第i行第j列的元素,b_i表示方程组的右侧常数,omega为松弛因子,一般取值为0<omega<2。
SOR法的收敛性与松弛因子有关,如果选择合适的松弛因子,则可以保证收敛。
此外,SOR法也可以用于解非对称矩阵的线性方程组。
- 1 -。
LAB07_解线性方程组的基本迭代法实验
Lab07.解线性方程组的基本迭代法实验【实验目的和要求】1.使学生深入理解Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法;2.通过对Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法的程序设计,以提高学生程序设计的能力;3.应用编写的程序解决具体问题,掌握三种基本迭代法的使用,通过结果的分析了解每一种迭代法的特点。
【实验内容】1.根据Matlab 语言特点,描述Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法。
2.编写Jacobi 迭代法、Gauss-Seidel 迭代法和SOR 迭代法的M 文件。
3.给定2020⨯∈R A 为五对角矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------------321412132141412132141412132141412132141213 (1)选取不同的初始向量)0(x 及右端面项向量b ,给定迭代误差要求,分别用编写的Jacobi 迭代法和Gauss-Seidel 迭代法程序求解,观察得到的序列是否收敛?若收敛,通过迭代次数分析计算结果并得出你的结论。
(2)用编写的SOR 迭代法程序,对于(1)所选取的初始向量)0(x 及右端面项向量b 进行求解,松驰系数ω取1<ω<2的不同值,在5)1()(10-+≤-k k x x 时停止迭代,通过迭代次数分析计算结果并得出你的结论。
【实验仪器与软件】1.CPU 主频在1GHz 以上,内存在128Mb 以上的PC ;2.Matlab 6.0及以上版本。
实验讲评:实验成绩:评阅教师: 200 年 月 日Lab07.解线性方程组的基本迭代法实验一、算法描述1、雅可比迭代法描述如下:将线性方程组b Ax =中的系数矩阵n n ij R a A ⨯∈=)(分为三部分UL D a a a a a a a a aa a a a a a A n n n n n n n n n n n n nn --=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------⎪⎪⎪⎪⎪⎭⎫⎝⎛=------00000000,121,211,1121,212,11,1212211设),,2,1(0n i a ii =≠选取M 为A 的对角元素部分,即选取M=D (对角矩阵),A=D-N,由⎪⎩⎪⎨⎧=+=+,,1,0,)(1)(k (0)k f Bx xx k初始向量得到解Ax=b 的雅可比迭代法 ⎪⎩⎪⎨⎧=+=+,,1,0,)(1)(k (0)k f Bx xx k初始向量其中b D f J U L D A D I B 111,)(---=≡+=-=,称J 为解Ax=b 的雅可比迭代法的迭代矩阵。
回归问题——线性方程组求解的迭代法
第六章回归问题线性方程组求解的迭代法6.1回归问题6.1.1问题的引入在数理统计中,把研究对象的全体称为总体,而把组成总体的每个单元称为个体,要了解总体的规律性,必须对其中的个体进行统计观测。
但若对全部个体进行观测,这样能对总体有充分的了解,但实际上行不通,而且也不经济。
所以对整体进行随机抽样观测,再根据抽样观察的结果来推断总体的性质成为一种重要的方法。
许多数理统计建模的实际问题中,一个随机变量与另一个随机变量的关系不是线性关系,而是曲线关系,那么如何确定回归方程呢?下表给出了某种产品每件平均单价 y (元)与批量x (件)之间的关系的一组数据,试确定y与x的函数关系6.1.2模型的分析先将表6.1.1中的数据进行曲线拟合,然后根据经过拟合的曲线形状确定回归方程的次数。
用MATLAB做出拟合图如下,由下图知,可建立二次回归多项式模型。
图6.1.1 散点图6.1.3模型的假设假设上表给出的数据是真实的,且以上数据是随机抽取的可以较准确地推断 单位与批量的关系,假设单价与批量的函数关系是一个多项式函数,可用多项回 归来建立模型。
6.1.4模型的建立根据模型的分析,可以建立多项式模型 y = 5「i x 「2X 2「,;L N (0,:.2), 令为=x,x 2 =x 2,则回归方程可写成y = 心农亠爲;N (0,「.2),这是6.2线性方程组迭代法概述迭代法:即用某种极限过程逐步逼近线性方程组精确解的方法。
迭代法具有 需要计算机存储较少、程序设计简单、原始系数矩阵在计算过程中始终不变等优 点,但有收敛性或收敛速度的问题。
迭代法是解大型稀疏矩阵方程组的重要方法。
迭代法能保持矩阵的稀疏性,具有计算简单、编制程序容易的优点,并在许多情 况下收敛较快。
故能有效地解一些高阶方程组。
迭代法的基本思想是构造一串收敛到解的序列,即建立一种从已有近似解计 算新的近似解的规则。
由不同的计算规则得到不同的迭代法。
对线性方程组AX=b ,其中,A=(a j 鳥非奇异矩阵,b = (b i ,川,bn b 构造其形如x=Mx ,g 的同解方程组,其中M 为n 阶方阵,R n任取初始向量R n,代入迭代公式x k1:'=Mx k g k = 0,1,2,||l 产生向量 序列「x k [,当k 充分大时,x k 作为方程组AX =b 的近似解,这就是求解线性 方程组的单步定长线性迭代法。
用SOR迭代法
一、数值求解如下正方形域上的Poisson 方程边值问二、2222(,)2,0,1(0,)(1,)(1),01(,0)(,1)0,01u u f x y x y x y u y u y y y y u x u x x ⎧⎛⎫∂∂-+==<<⎪ ⎪∂∂⎪⎝⎭⎨==-≤≤⎪⎪==≤≤⎩二、用椭圆型第一边值问题的五点差分格式得到线性方程组为2,1,1,,1,10,1,,0,141,?,?,?,?0,1i j i j i j i j i j ijj N j i i N u u u u u h f i j N u u u u i j N -+-+++----=≤≤====≤≤+,写成矩阵形式Au=f 。
其中 三、基本原理程序步骤:所有的步骤基本一致 1. 设置u ,n ,并给u ,n 赋初值; 2. While 语句循环,到的6步 3. Up 我第K 次迭代的值; 4. 分别进行计算,sum=0; 例如:Jacobi :sun= sum+A(i,j)*Ub; SOR 和Gauss_Seidel= sum+A(i,j)*u; 各自进行相应的下不运算。
5. 计算|Up-u|<ep 的绝对值,判断是否停机 6. 如果小于规定误差,迭代终止; 7. 输出结果u 和迭代次数k8. 在块的迭代中调用了追赶法的求解子程序zg ,在SOR 设计了A 得自动生成子程序creat_matix.1122N N v b v b u f v b ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭4114114ii A -⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭11,12,1,121,22,2,21,2,,2211,12,1,121,22,2,221,2,,(,,...,),(,,...,),......,(,,...,)(,,...,)?,(,,...,)?,......,(,,...,)?1,999,0.10.011T T N N TN N N N N T T N N T N N N N N v u u u v u u u v u u u b h f f f b h f f f b h f f f h N h N ====+=+=+===+取或则或,2,,1,2,...,i j f i j N==1122NN A I I A A I IA -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭四、编写求解线性方程组Au=f的算法程序,用下列方法编程计算,并比较计算速度。