(优选)第三章固定化酶催化反应动力学.

合集下载

第三章固定化酶反

第三章固定化酶反

球状固定化酶之模型的建立
• 假定球状固定化酶的半径为R,在距球中心为r处取一壳层,其厚度为dr,底物通过微孔
由外向内扩散,且通过此壳层,底物在(r+dr)处扩散进入,在r处离开,并在壳层内发
生酶促反应而消耗底物,以扩散方面为正方向,则单位时间内扩散进入微元壳层的底物
的量为
N sr d r4(r d)2 r 4(r d)2 r D e sd drS r r dr
V
为固定化酶的体积
p
Ap为固定化酶的外表面积
对于球形固定化酶, R
3
rmax ,则有
Km Des
D e(sd d2S 2r2 rd d)S rrS D e[sd(d d d) rS r2 rd d]S rrS

d[d(S0 S)


Des{
d(Rr)

d(Rr)
2


Rr
dd((SR 0 r S))}K rm m aS xS rr
底物浓度沿半径分布图
• 从右图可以看出,对同一位置r 处,随着Φ 的增加,底物浓度 在减少。
• Ф 的大小,表征了内扩散阻力 的大小,因此随内扩散阻力的 增大,同一位置处底物浓度减 小,而且当Ф 不变时,愈往颗 粒内部,底物浓度越小。
上式可变为 (r2 2 rd dr 2)D red s drr S r d rr2 D ed s drr S r r2 dr r S,重排后得
D e[ sr ( 2 2 rd )d d r rS r r d rr 2d d rS r r ] r 2 d r r S
两边同除以r2dr, 得



即:d2S2 2 dS

第3章 固定化酶催化反应过程动力学

第3章 固定化酶催化反应过程动力学
有外扩散影响时的实际反应速率 RSi = 无扩散影响时的反应速率 RS 0
6、固定化酶催化反应外扩散效应影响的判断依据。主要有两个:Da 和η E 。
(1) Da=
rmax 最大反应速率 = ,为丹克莱尔准数,无因次量 k L aCS 0 最大传质速率
当Da ! 1时,反应速率远快于传质速率,为扩散控制; 当Da " 1时,反应速率远慢于传质速率,为动力学控制。 (2) 当ηE=1时,不存在外扩散影响,为动力学控制; 当ηE <1时,存在外扩散影响,宏观反应速率变慢; 当ηE " 1时,完全为扩散控制。 7、改变固定化酶催化反应外扩散效应影响的方法。主要从 Da 考虑,提高底物 浓度和体积传质系数(提高搅拌速度或提高反应流速)可增加 Da,减少外扩散 的影响;降低固定化最大反应速率也可以减少外扩散的影响。反之亦反。
CS = CS 0 + rmax 2 2 2 DiCS 0 。 (l − L ),其中存在有最大膜片厚度Lmax= 2D rmax
当酶反应动力学方程符合 M-M 方程时,无解析解,仅有数值解。 13、从宏观的角度来看,单计算颗粒内各位置的底物浓度并不能计算出宏观反应
14
生物反应工程习题精解
第三章 固定化酶催化反应过程动力学
此时,对此微分方程需要根据不同酶动力学特征进行求解。 当酶反应动力学方程为一级反应动力学时, rS =
r ) R ,其中φ= R 3 r sinh(3φ )
rmax CS ,可解得: Km
CS = CS 0
R sinh(3φ
rmax 。 Km iD
当酶反应动力学方程为零级反应动力学时, rS = rmax ,可解得:
散影响变得很明显;当 Φ > 10 时,对于一级动力学,η ≈ 学, η ≈

酶催化反应机理与动力学

酶催化反应机理与动力学

酶催化反应机理与动力学酶是一种生物催化剂,可以加速生物体内大量的反应。

其作用原理是更改反应活化能,从而改变反应速度。

酶催化反应机理和动力学的研究,对于理解生命现象和开发生物制品具有重要意义。

酶催化反应机理酶和它所催化的反应之间具有高度特异性。

酶能够选择性地与它的底物或反应物结合,形成酶-底物复合物。

在这种状态下,酶能够更改底物的电子云密度和空间结构,从而改变反应速率。

在酶-底物复合物形成之后,发生了酶活化。

酶活化机制通常与这个复合物的结构和构象变化有关。

酶的结构和构象可以在空间中调整,以适应底物的分子大小和构象。

这样,酶可以保持复合物的相对稳定性,并在反应结束后解离复合物,释放产品。

酶催化可以通过两种基本的机制实现。

一种是物理催化机制,另一种是化学催化机制。

通过物理催化机制,酶可以影响底物分子之间的相互作用,以增加它们之间发生反应的可能性。

通过化学催化机制,酶可以调整底物分子的电子结构,从而使它们更容易发生反应。

酶催化反应动力学酶催化反应动力学是研究酶催化作用的动力学参数,例如反应速率和物质浓度的变化。

酶反应速率是酶作用强度和催化反应条件(如底物激活能、温度和pH)的函数。

酶催化反应动力学可以通过酶反应速率方程来描述。

酶反应速率方程基于酶和底物的浓度,以及温度和pH等因素。

通常情况下,酶反应速率方程可以表示为:v = k [E][S]其中,v 是反应速率,[E] 是酶的浓度,[S] 是底物的浓度,k是反应常数。

酶反应速率方程表明,酶催化速率与酶和底物的浓度有关。

当酶的浓度增加或者底物的浓度降低时,酶反应速率也会增加。

除浓度外,反应条件对酶反应动力学也有重要影响。

例如,温度影响酶和底物之间的自由能变化和复合物的构型。

pH可以影响酶的电荷状态和酶催化剂的亲和力等特性。

这些因素都是在开发新的药物和生物工艺制品时需要考虑的关键因素。

结论酶催化反应机理和动力学是生物化学和工业生命科学中的重要领域。

对酶催化反应的深入研究,可以为药物开发和生物制品制造提供基本知识。

酶催化反应机理与动力学分析

酶催化反应机理与动力学分析

酶催化反应机理与动力学分析酶是一种生物催化剂,其存在速度远快于非酶催化的化学反应,而且能够高度选择性地催化特定反应。

酶催化反应机理和动力学分析是当前生物技术与医药学领域的热门研究方向之一。

一、酶催化反应机理酶催化反应的机理可以分为两个阶段:反应前期和反应后期。

反应前期包括酶与底物结合、酶底物复合物的构成、酶底物复合物向过渡态的转化等,在此期间,酶的底物亲和力是至关重要的。

底物在进入酶分子内部前,需要先经过酶的活性位点,同时酶通过某些氨基酸残基与底物形成的亚结构使得中间产物更有利于进一步反应。

反应后期是逐步分离酶与产物、催化过程的结束。

在酶催化反应过程中,有关酶和底物结合的问题是最基本的。

酶和底物的结合解决了基本的反应前期问题。

酶的活性结构上的微细构造可以使酶和底物发生拟吸附,从而加速活性物质的靶向作用,而底物分子的局部作用,也可以促使中间产物更趋于产生。

化学反应的速度还会受到其他条件的影响。

二、酶催化反应动力学酶催化反应的动力学是对反应速率的研究。

酶催化反应速度受到各种因素的影响,包括温度、pH值、底物浓度和酶浓度等。

底物浓度是影响酶催化动力学的关键因素。

在低浓度条件下,酶过程的速率与底物浓度的关系呈指数关系;而在高浓度条件下,速率与底物浓度的关系则将趋于平稳。

反应的速率也跟温度有着密切的关系。

在常温下,酶美中心的活性结构是在水分子中拥有最佳亲和力的,因此当温度过低时,酶的活性会下降。

同时,过高的温度则会造成酶分子氨基酸残基的变性而导致酶失去催化活性。

除了温度和底物浓度外,pH值也会直接影响到酶催化反应的速率。

不同酶的最适pH值范围不相同,某些酶在低pH值下尤其活跃。

三、总结酶催化反应机理和动力学分析是当今生物技术和医药学领域的热门研究方向之一。

酶催化的反应机理研究对于揭示生物化学过程奠定了基础;而酶催化反应动力学则为生命科学研究提供基本方法和技术工具,同时也为药物研发和生物工程开发提供了指引。

第三章 固定化酶催化反应过程(wfw)

第三章  固定化酶催化反应过程(wfw)

界面内侧的底物浓 度为Csg,界面外侧的 底物浓度为Csi,则分配 系数K为: K=Csg/Csi
Cso—液相主体的浓度, Csi——外扩散造成的界 面外侧浓度。 Csg—由分配效应造成 的微环境的底物浓度。
静电效应的影响表现在对Km值的影响。 通常酶可能被固定在带电荷的酶膜上或载体上。底物 在溶液中也会离子化,这样在固定载体上的电荷和移动 的离子之间,常会发生静电交互作用,产生分配效应。 使底物或产物浓度之间出现不均匀分布。
(生物传感器是由生物活性物质与换能器组成的分析系统, 可以简便、快速地测定各种特异性很强的物质 )
• 固定化葡萄糖氧化酶传感器是其中应用最为广泛的一种, 将葡萄糖氧化酶、过氧化氢酶和一种显色剂一起固定在试 纸上,只要将该试纸浸入被检尿样中几秒钟就可以马上检 测出尿样的葡萄糖是否超标,从而断定该妇女是有血糖、 尿糖还是妊娠。 • 生化分析中最常用的H电极也绝大多数是固定化酶产品:固 定化青霉素酶电极 • 重组海洛因酯酶传感器检测违禁药品 • 用聚丙烯酰胺凝胶包埋细菌电极可快速测定污水中的BOD。
微囊型
特点:固定化酶颗粒一般为直径 是几微米到几百微米的球状体,比 网格型颗粒小得多,有利于底物和 产物扩散;半透膜能阻止蛋白质分 子渗漏和进入,注入体内既可避免 引起免疫过敏反应,也可使酶免遭 蛋白水解酶的降解,具有较大的医 学价值.但反应条件要求高,制备成 本也高。
制备方法:界面沉淀法、界 面聚合法、二级乳化法和脂质 体包埋法等.
根据Boltzman分配定律,分配系数K为
ZFU K exp( ) RT
Z--底物分子所带电荷;F--法拉第常数;U--静电电势。 当载体与底物所带电荷相反时,即Z为正、 U为负 时,K大于1; 当两者带有相同电荷时,则K小于1。

反应工程第三章 固定化酶反应过程动力学.

反应工程第三章 固定化酶反应过程动力学.

rso
•外扩散控制:酶的催化效率很高,底物的传质速率很慢。
R si k La(Cso - Csi ) kLaCso rd
•介于上述两种情况之间
第三章 固定化酶反应动力学
Rsi总是接近于动力学反应速度和扩散速度两者中比较小的那个。
Rs rso
rd Rsi
主体浓度co
第三章 固定化酶反应动力学
2.0×10-4
第三章 固定化酶反应动力学
3.3.3影响固定化酶促反应的主要因素
1)分子构象的改变
溶液酶
分子构象改变
2)位阻效应
第三章 固定化酶反应动力学
溶液酶
位阻效应
3)分配效应
第三章 固定化酶反应动力学
宏观环境
cS0 cSg
cSi
由于固定化酶的亲水性、疏水性及静电作用等引起固定化酶 载体内部底物或产物浓度与溶液主体浓度不同的现象称为分 配效应。
E

有外扩散影响时的实际 反应速率 无外扩散影响时的固定 化酶外表面处的反应速


R si rso
R si

rmax csi Km csi
rso

rmax cso Km cso
E

cs (1 K) cs K
cs csi / cso
Km

Km cso
Da rmax k Lacso
第三章 固定化酶反应动力学
3.3.2 颗粒内的浓度分布与有效因子
(1)颗粒内的浓度分布
第三章 固定化酶反应动力学
De
(
dcS dr
4r2 )
r r

D
e
(
dcS dr

固定化酶

固定化酶
亲和配基(凝集素)
Eschericia coli β-galactosidase
二硫苏糖醇DTT
Approaches to enzyme immobilization, irreversible methods.
赖氨酸 半胱氨酸 天冬氨酸和谷氨酸
凝胶、纤维膜 明胶、琼脂、琼脂糖、聚 丙烯酰胺、光交联树脂、 海藻酸钠
酶的固定化方法
制备固定化酶的方法有很多,一般分为三大类: 1. 载体结合法: 物理吸附法、离子结合法和共价结合法 2. 交联法 3. 包埋法 凝胶包埋法、微胶囊法
Approaches to enzyme immobilization, reversible methods.
活性炭、氧化铝、硅藻土、 多孔陶瓷、硅胶、羟基磷 灰石、大孔合成树脂 DEAE-纤维素、DEAE-葡 聚糖凝胶、Amerlite IRA-93等阴离子交换剂和 CM-纤维素、Amerlite CG-50、Dowex-50等阳 离子交换剂
包埋在高分子半透膜中 几微米到几百微米 胶囊和脂质体 硝酸纤维素、聚苯乙烯、 聚甲基丙烯酸甲酯等
双功能试剂或多功能试剂 戊二醛、乙二胺、顺丁烯 二酸酐等
酶的固定化方法
固定化方法
物理吸附法
载体结合法 离子结合法
共价结合法
交联法
包埋法
制备难易 结合程度 酶活回收率 对底物专一性
再生 固定化成本
易 弱 高,但酶易流 失 不变 可能 低
异麦芽糖
固定化酶在食品工业的应用
6. 在油脂改性中的应用 • 尼龙和纤维素酯固定脂酶对巴西棕榈油进行酶解
改性制备代可可脂 • 固定化酶用于催化酸解鳕鱼肝油制备富含多不饱
和脂肪酸的结构脂、改造猪油制备功能性脂 7. 在食品分析与检测中的应用 • 固定化酶多酶生物传感器用于乳制品中乳糖以及

第三章酶催化反应动力学详解演示文稿

第三章酶催化反应动力学详解演示文稿

RO X
P + E OH R'O O 有机磷化合物 羟基酶
RO O E
P
+ HX
R'O O
磷酰化酶

有机磷化合物 羟基酶 解毒 -- -- -- 解磷定(PAM)
第二十四页,共48页。
+ CHNOH N
CH3 解磷定
+
N
E OH
O OR' P
CHNO OR
CH3
SH Cl E + As
SH Cl
方程式来表示:
E + S k1 ES k3 E + P
k2
第十页,共48页。
酶底物中间络合物学说
酶已全部被底物所饱和
第十一页,共48页。
酶还未被底物所饱和
2.2 酶促反应的动力学方程式(米氏方程)
❖ 1913年Michaelis和Menten两位科学家在前人工
作的基础上,根据酶促反应的中间络合物学说,推 导出一个数学方程式,用来表示底物浓度与酶反应 速度之间的量化关系,通常把这个数学方程式称为 米氏方程:
第三十六页,共48页。
反竞争性抑制反应模式
❖ 反竞争性抑制的特点是,酶(E)必须先与底物(S)结 合,然后才与抑制剂(I)结合,即抑制剂(I)与酶-底 物复合物(ES)的结合是可逆的,因此存在着如下的化
学平衡式:
第三十七页,共48页。
+
ES
+
ES E P ESI
图3-7 反竞争性抑制曲线
特点:
⑴ Vm值和Km值都随[I]的增加而降低; ⑵ 双倒数作图所得为一组平行线; ⑶必须有底物存在,抑制剂才能对酶产生抑制作用;抑制程度

酶催化反应动力学解析

酶催化反应动力学解析

酶催化反应动力学解析背景介绍:酶是一种生物催化剂,能够加速化学反应速率。

它们在许多生物体内起着至关重要的作用,包括代谢过程、信号转导、分子识别和DNA复制等。

了解酶催化反应动力学是理解生物学中许多关键过程的关键。

酶动力学:酶催化反应的动力学是关于酶催化反应速率与底物浓度、温度和pH等环境因素之间关系的研究。

通过实验测量酶活性并分析数据可以获得这些关系,这对我们理解和控制酶催化反应至关重要。

酶催化反应速率的表达式:酶催化反应速率可以用麦克斯韦-玛格努斯方程(Michaelis-Menten equation)来表达:v = Vmax * [S] / (Km + [S])其中,v是酶催化反应速率,[S]是底物浓度,Vmax是在无限大底物浓度下酶反应速率的最大值,Km是米氏常数,代表底物浓度为一半时的酶催化反应速率。

米氏常数Km的意义:酶的米氏常数Km反映了底物与酶之间相互作用的亲和力。

Km越小,酶的亲和力越大;Km越大,底物与酶的结合较弱。

Km值对于酶活性的影响非常重要,它决定了在给定底物浓度下酶催化反应速率的快慢。

酶催化反应速率与底物浓度的关系:麦克斯韦-玛格努斯方程中的[S] / (Km + [S]) 这一项表示底物浓度对酶催化速率的贡献。

当底物浓度远小于Km值时,可以简化为[S] / Km,速率与底物浓度成正比,速率随着底物浓度的增加而增加;当底物浓度远大于Km值时,可以简化为1,速率不再受底物浓度的影响。

酶反应速率对底物浓度的响应图像通常符合麦克斯韦-玛格努斯方程预测的双曲线形状。

图像的初始阶段速率随底物浓度线性增加,当底物浓度达到一定程度后,速率趋于平缓。

催化常数kcat:酶的催化常数kcat是与酶催化效率相关的参数。

它表示在单位时间内酶分子催化底物数量的能力。

kcat的大小与酶催化底物的速率相关,kcat越大,酶的催化效率越高。

抑制剂对酶催化动力学的影响:抑制剂是一种可以降低酶催化反应速率的物质。

第三章 酶催化反应动力学

第三章 酶催化反应动力学

32
33
二、影响酶催化作用的因素
34
2.1 底物浓度的影响
底物浓度是决定酶催化反应速度的主要因素。在其他条件不变的情况下, 酶催化反应速度与底物浓度的关系如图。
35
2.2 酶浓度的影响
在底物浓度足够高的条件下,酶催化反应速度与酶浓度 成正比,它们之间的关系可以用下式表示:
36
2.3 温度对反应速度的影响
When [S] << KM, the enzyme is largely unbound and [E]≈[E]T
27
S+E
kcat/KM
E+P
When [S] << KM, kcat/KM is the rate constant for the interaction of E and S. kcat/KM can be used as a measure of catalytic efficiency.
24
25
(3). Kcat/Km
Kcat:反映的是一种酶被底物饱和时的 酶性质。在低[S]下, Kcat则失去了意义。 当[s]<<km, Kcat/Km是一个比较酶催 化效率较好的一个动力学参数。
26
(3)酶的催化效率:kcat/KM 评价
kcat/KM通常被看做酶的效率,Kcat越大或是Km越小,都使得Kcat/Km越 大 在生理条件下,大多数的酶不被底物所饱和,且底物浓度与Km相比要小 的多 。
酶工程与蛋白质工程
第三章 酶催化反应动力学
1
本节主要内容
一、酶催化反应动力学 二、影响酶催化作用的因素 三、酶活测定
2
动力学研究的主要目的

第3章 固定化酶催化反应动力学

第3章 固定化酶催化反应动力学

3.1 固定化酶的制备方法
交联法
交联法:它是用双功能试剂使酶与酶之间交联的固定化方 法。此法与共价结合法一样也是利用共价键固定酶的,不同 的是它不使用载体。
交联剂有:戊二醛(形成希夫碱) 异氰酸脂(形成肽键) 双重氮联苯胺(发生重氮偶合反应) 此法反应条件比较激烈,酶活回收率低。
3.1 固定化酶的制备方法
Rsi,可采用两种方法求出:
3.3 外扩散限制效应
3.3.1 外扩散速率对酶催化反应速率的限制
( 1 )由 C si值确定 Rsi。因为根据式( 3-8),可得出下式: rmax Csi Cs 0 − Csi = ⋅ k L a Km + Csi ( 3−13 ) 引入 C s= C si / C s 0, = K m / Cs 0 K 并定义 Da = r max ( 3 − 14 ) k L ⋅ a ⋅ C s0 Cs K + C s ( 3−15 )
3.3 外扩散限制效应
3.3.1 外扩散速率对酶催化反应速率的限制
假定对一非带电的固定化酶,其外表面上的反应速率符合 M-M方程,即:
r max⋅ Csi (3 − 6) Rsi = Km + Csi 式中:Rsi — 底物在固定化酶外表面 上的消耗速率,又称 宏观反应速率, mol /( L ⋅ s ) Csi — 底物在固定化酶外表面 上的浓度,mol / L。
3.3 外扩散限制效应
3.3.1 外扩散速率对酶催化反应速率的限制
定态条件下,应存在Rsi=Rsd,即
r max⋅ Csi ( 3 − 8) kLa ⋅ (Cs 0 − Csi) = Km + Csi
该式表示了在定态条件下,外扩散传质速率等于在固定化酶外表面上底物反应 速率。 (1) 当外扩散传质速率很快,而固定化酶外表面反应速率相对较慢时, 并成为该反应过程速率的控制步骤时,酶的外表面上底物浓度应为 液相主 体溶液的浓度,即为CS0,此时的反应速率应为:

酶促反应动力学

酶促反应动力学
1、米氏方程 2、操作参数对酶促反应的影响 3、抑制剂对酶促反应速率的影响 三、多底物酶促反应动力学
均相酶催化反应:
指酶与反应物系同处液相的酶催化 反应. 因此不存在相间的物质传递.
均相酶催化反应动力学所描述的反应 速率与反应物系的基本关系,反映了该 反应过程的本征动力学关系,而且酶与 反应物的反应是分子水平上的反应.
1925年,Briggs和Haldane对米氏方程的推导作了 一项很重要的修正。他们认为,当k+2>k-1时米氏 假设中的快速平衡(ripid equilibrium)不一定能够 成立,所以,不能用上述“平衡学说”推导。即当 从中间复合物生成产物的速率与其分解成酶和底物 的速率相差不大时,米氏方程的平衡假设不适用。 他们提出了“拟稳态”假设,认为由于反应体系中 底物浓度要比酶的浓度高的多,中间复合物分解时 所产生的酶又立即与底物相结合,从而使反应体系 中复合物浓度维持不变,即中间复合物的浓度不随 时间而变化。
第三章 酶促反应动力学
学习目的: 1、了解酶促反应特点及与一般化学反应的区别。 2、掌握0、1级和米氏酶促反应动力学及应用原理; 3、了解存在抑制时的酶促反应动力学特征; 4、具备固定化酶反应中的过程分析能力和内外不同
阶段的固定化酶动力学的应用能力; 5、熟悉酶的失活动力学与反应过程中酶失活动力学
CS

CS Km
复合态酶浓度 游离态酶浓度
⑤动力学参数的求取
将米氏方程线性化,用作图法求取动力 学参数rmax(或k+2)和Km值。
k1, k2 ——各步反应的速率常数;
(3-5) (3-6) (3-7)
如果A的初始浓度为a0, B和C的初始浓度为0,
并且a+b+c=a0,则可求得:

第三章 酶和细胞的固定化技术及其应用

第三章 酶和细胞的固定化技术及其应用

固定化酶的活性 固定化酶的活性较水溶性酶有所下降 原因: 原因: 酶分子空间结构的变化,影响活性中心氨基酸。 空间位阻影响底物与酶的定位作用。 外扩散和内扩散阻力影响底物与酶的接触。 个别固定化酶活力增强可能是酶得到化学修饰或稳定性增 加。
共价结合法由于反应剧烈,最容易改变酶蛋白构象,对酶 活性影响很大。 载体材料可通过影响反应组分的分配效果而改变固定化酶 的反应活性。 提高搅拌速度、加快流体流动可以改善外扩散限制。
常用固定化材料
无机材料 碳酸钙 氧化铝 活性炭
有机材料 聚乙烯醇 聚乙烯 尼龙
生物材料 纤维素 葡聚糖 海藻酸盐
新型固定化载体
纳米材料
磁性微球
等离子体材料
固定化方法
酶的固定化方法主要可分为五类:吸附法、包埋法、 微囊法、共价键结合法和交联法等。吸附法和共价键结合 法又可统称为载体结合法。
吸附法
细胞固定化
将细胞限制或定位于特定空间位置的方法称为细胞固定化 技术。 被限制或定位于特定空间位置的细胞称为固定化细胞。 一般采用对细胞伤害较小的吸附法和包埋法。 特点: 特点: 密度大、可增殖。 提高生产能力,缩短发酵周期。 稳定性高,可反复利用。 有利于产品分离纯化。
吸附法固定细胞
采用各种固体吸附剂,将细胞吸附在其表面而使细胞固定 化的方法称为吸附法。 吸附法是细胞固定化中使用最广泛的方法。
载体和固定化方法
Байду номын сангаас
固定化酶性质
目标要求、反应器特点、 目标要求、反应器特点、各部分特性
载体选择的原则
必须注意维持酶的构象,特别是活性中心的构象。酶的催 化反应取决于酶本身蛋白质分子所特有的高级结构和活性 中心,为了不损害酶的催化活性及专一性,酶在固定化状 态下发挥催化作用时,既需要保证其高级结构,又要使构 成活性中心的氨基酸残基不发生变化。这就要求酶与载体

第三章 酶促反应动力学(简)-2

第三章 酶促反应动力学(简)-2

分配效应造成的结果是使微现环境与宏观 环境之间的底物浓度出现了差别,因而影 响了酶催化的反应速率。如果在上述本征 动力学的基础上,仅仅考虑由于这种分配 效应而造成的浓度差异对动力学产生的影 响,所建立的动力学称为固有动力学,对 该种动力学比较简单的处理方法是:动力 学方程仍然服从M-M方程形式,仅对动力 学参数予以修正。
此时,固定化酶与反应物系相接触,该反应过程包括三步: ① 底物从液相主体扩散到达固定化酶的外表面; ② 底物在固定化酶的外表面上进行反应; ③ 产物从酶外表面扩散进入液相主体。
其中,(1)(3)为单纯的传质过程,(2)为催化反应过程。并且认为 这三步是串联过程,其中任一过程发生变化,都影响整个过程。
rmax [ S ] Rsi = = rs 0 (2 − 4 − 4) K m + [S ]
1 外扩散速率对酶催化反应速率的限制
(2) 当外扩散传质速率很慢,而酶表面上的反应速率很快,此时外扩散速率 成为反应的控制步骤。固定化酶外表面上底物浓度趋于零。 故:
扩散最大速率
Rsi = k L a[ S ] = rd (2 − 4 − 5)
3.3 固定化酶促反应动力学
一、 固定化酶催化的动力学特征
1 影响固定化酶动力学的因素 2 固定化酶反应动力学
二、固定化酶促反应中的过程分析
1 外扩散限制对酶催化反应速率的限制 2 内扩散限制效应
酶的固定化,不仅使酶的活性发生了变 化,而且由于固定化酶的引入,反应体系 变为多相体系,例如液-固体系、气-液-固 体系等。因此在研究固定化酶催化反应动 力学时,不仅要考虑酶催化反应的本征动 力学规律,更要研究反应物的质量传递规 律,研究物质的质量传递对酶催化反应过 程的影响。建立起同时包括物质传质速率 和催化反应速率的动力学方程;这种方程 一般称为宏观动力学方程。它是设计固定 化酶催化反应器和确定其操作条件的理论 基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章 固定化酶催化应动力学>>概述
(三)固定化酶反应器的特点 2、固定化酶的缺点 ◆但由于固定化酶是通过反应而被结合在载体上,固 定化过程中酶的活力难免有一定损失; ◆而底物则要求是水溶性的,这样才能够接触酶而发 生反应; ◆也不适宜于需要辅助因子的反应。
第3章 固定化酶催化应动力学>>概述
(四)酶的固定化方法
第三章固定化酶催化反应动力学
2020/8/4
第3章 固定化酶催化应动力学>>概述
(一)固定化酶的应用 1、食品工业
影响:出汁率低;果汁浊, 黏度高,易出现沉淀。
■果汁生产,果胶存在,提产及去浊澄清问题?
固定化果胶酶
■啤酒、果蔬汁等 贮藏 浑浊或沉淀现象?
原因:酚类与蛋白质生成大分子物质
方法:漆酶
漆酶是一种结合多个铜离子的蛋白质,属于铜蓝氧化酶
silica
O Si
O
(CH2)3
H NCON
O O
NH2
silica
O Si
(CH2)3
H
H
NCN
O
Enzyme
D-Glucosamine NH2
silica
O Si
(CH2)3
H
H
NCN
O
Enzyme
H
H
O Si (CH2)3 N C N D-Glucosamine
O
Synthesis of the IMER using DSC method
什么是固定化酶?
水溶性酶
水不溶性载体
固定化技术 水不溶性酶 (固定化酶)
第3章 固定化酶催化应动力学>>概述
(三)固定化酶反应器的特点 1、自由酶反应器
优点:酶解效率高、使用比较方便,特别是在大 批量样品处理时。
缺点:不能重复使用、寿命短、产物分离难度大
第3章 固定化酶催化应动力学>>概述
(三)固定化酶反应器的特点 2、固定化酶的优点 ◆易于将酶与底物及产物分离,产物相对容易提纯; ◆酶能够重复利用,使用效率提高,成本低; ◆大多数情况下可以提高酶的稳定性; ◆可以增加产物的收率,提高产物质量; ◆有利于实现管道化、连续化以及自动化操作,易于与 各种分离手段联用。
(四)酶的固定化方法 2、包埋法(Entrapment)
包埋法是将游离酶包埋于格子或微胶囊内,格子的结构可以防 止酶渗出到周围的培养基中,而底物分子仍能渗入格子内与酶 接触。
包埋类型可有:网格型、微囊型及脂质体液膜型。
第3章 固定化酶催化应动力学>>概述
(四)酶的固定化方法 3、共价键合法(Covalent bonds)
1.戊二醛法
matrix O Si (CH2)3 NH2
OHCCH2CH2CH2CHO
Enzyme
NH2
matrix O Si (CH2)3 N CH (CH2)3CHO
matrix O Si (CH2)3 N CH (CH2)3 CH N
Enzyme
Synthesis of IMER using glutaraldehyde method
O
(CH3O)3SiOCH2CH CH2 Matrix OH
Matrix
O Si
O O CH2CH CH2
Enzyme
NH2
Matrix
OH H
O Si O CH2CH N
Enzyme
The synthesis oe formation
pH,影响载体和酶的电荷变化,影响酶吸附;离子强度,一般认为盐阻止吸附; 蛋白质浓度,蛋白质浓度增加,吸附量也增加,直至饱和;温度,蛋白质往往 是随温度上升而减少吸附;吸附速度,蛋白质在固体载体上的吸附速度要比小 分子慢得多;载体,对于非多孔性载体,则颗粒越小吸附力越强。
第3章 固定化酶催化应动力学>>概述
Ionic bond Covalent bond Cross linkage
Investment
Microcapsule
◆ ◆
第3章 固定化酶催化应动力学>>概述
(四)酶的固定化方法
1、吸附法(Adsorption)
◆吸附法有物理吸附、离子吸附及螯合或金属结合法。
常用的载体如淀粉、谷蛋白等有机类载体,活性炭、多孔玻璃、 硅胶等无机类载体,大孔型的合成树脂,陶瓷以及纤维素衍生 物类。阴、阳离子交换剂 影响酶蛋白在载体上吸附程度的因素
Rawale, S., et al. J. Med. Chem., 2002, 45: 937-43 Calleri, E., et al., J. Pharm. Biomed. Anal., 2003,32:715-24
第3章 固定化酶催化应动力学>>概述
(四)酶的固定化方法
常用的共价键合方法
3、β-羟胺形式 (β-hydroxylamine formation)
Marle I. , et al. J. Chromatogra. 1992, A, 604:185-196
◆固定化酶药物 蛋白类口酶口服易分解,固定后有助于保持活性
第3章 固定化酶催化应动力学>>概述
(二)固定化酶与游离酶
◆自由酶 (Free Enzyme) 酶直接加入至溶液中,酶自身的空间
结构不发生改变,保持自己的生物特性
◆固定化酶 (Immobilized Enzyme) 通过物理或化学的手段,将酶固载在某种基体上。
交联法和肽键键合法 氨基:赖氨酸的氨基和多肽链的末端氨基; 羧基:天冬氨酸的羧基,谷氨酸的羧基和末端羧基; 酚基:酪氨酸的酚环; 巯基:半胱氨酸、蛋氨酸的巯基; 羟基:丝氨酸、苏氨酸和酪氨酸的羟基; 咪唑基:组氨酸的咪唑基; 吲哚基:色氨酸的吲哚基。
第3章 固定化酶催化应动力学>>概述
(四)酶的固定化方法 常用的共价键合方法
Ye, M. L. et al. Electrophoresis, 2005, 25:1319-1326
第3章 固定化酶催化应动力学>>概述
(四)酶的固定化方法 常用的共价键合方法 2、二琥珀酰亚胺碳酸酯法(DSC)
silica O Si (CH2)3 NH2 Enzyme
O O
NOC
O ON
O
O
■食品工业的绿色生产问题?
淀粉糖/高果糖浆
第3章 固定化酶催化应动力学>>概述
(一)固定化酶的应用 2、燃料工业(生物柴油)
主要酸碱催化。
固定化脂酶
第3章 固定化酶催化应动力学>>概述
(一)固定化酶的应用 3、医药工业
◆固定化青霉素酰化酶 合成头孢羟氨苄(代替青霉素) ◆固定化脂肪酶 合成VC棕榈酸酯
相关文档
最新文档