高等数学(上册)-第一章教案
《高等数学》(经管类专业适用) 教案 第一章 1.1.1教学设计
课题 1.1.1初等函数教学目标知识目标1)深刻理解函数的意义,特别是函数的两要素;理解分段函数的概念特征,会求简单函数的定义域和函数值;2)理解反函数的概念特征,会求简单函数的反函数;3)熟练掌握基本初等函数的图形、性质与变化趋势; 4)理解复合函数的概念特征,会分析复合函数的复合过程。
能力目标通过函数知识的教学活动,训练学生对现实生活中事物之间和现象的正确分析,准确判断,使学生体会量与量之间的关系,提高实际应变能力,发展学生思维,培养学生分析解决问题的能力。
教学重点函数的概念和两要素,复合函数的分解式教学难点求函数的反函数。
教法学法以问题来引入课题的讲授法和以理解和巩固概念的练习法教学反思函数概念在初中数学教学已经引入,这里注重实际应用,特别在经济上的应用,如何提高学生数学应用的能力,为以后章节学习以及后期专业课程的学习,打下坚实基础。
教学过程设计意图 一、知识回顾圆的周长、面积公式 二、情境引入问题1:设某公司每天最多能生产某产品200吨,固定成本为30000元,每生产该产品1吨成本增加1200元,那么该公司每天生产该产品的总成本C 与产量Q 有什么关系?这种变量C 和Q 的对应关系(C=1200Q+30000)便是函数关系。
三、合作探究问题2:给出圆半径R 与圆边长L 与圆面积S 之间的关系式?设x 和y 是两个变量,D 是一个非空实数集,如果对于数集D 中的每一个数x ,按照一定的对应法则f 都有唯一确定的实数y 与之对应,则称y 是x的函数,记作 )(x f y =,D x ∈ ,其中D 称为函数的定义域,x 称为自变量,y 称为因变量,f 是函数的对应法则.如果对于确定的0x D ∈,通过对应法则f ,有唯一确定的实数0y 与之对应,则称0y 为)(x f y =在0x 处的函数值,记作000|()x x y y f x ===.函数值的集合{}D x x f y y M ∈==),(|称为函数的值域.2y x =与y x =是相同的函数;而函数()2lg f x x =与()2lg f x x=是不相同的二个函数(二者定义域不同). 问题3:函数的只能用数学公式来表示吗?函数通常有三种表示方法:解析法、列表法、图像法; 问题4:由用解析式表示的函数的定义域一般如何求得?求函数的定义域时,应注意如下条件: ①分式函数的分母不能为零;②偶次根式的被开方式必须大于等于零; ③对数函数的真数必须大于零;引导学生有目的地复习,为后面的学习做准备设置问题情境,引入如何用数学式子表示量与量之间的关系,为给出变量量之间的函数关系做准备。
高一数学必修1第一章集合全章教案
第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.1.1.1集合的含义与表示(一)集合的有关概念:⒈定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。
2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
3.集合相等:构成两个集合的元素完全一样。
4.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
5.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。
如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。
“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。
.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑶大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸血压很高的人;7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。
《高等数学》第一章课程教案
《高等数学》第一章课程教案《高等数学》第一章课程教案《高等数学》第一章课程教案一.课程名称:高等数学 \Calculus 二.学时与学分:72学时4学分三.适用专业:教育技术,计算机,人体,康复四.课程教材:《高等数学》,第四版. 同济大学数学教研室编,高等教育出版社五.上课教师:刘蓉老师六.课程的性质、目的和任务:高等数学是工科大学生最重要的基础理论课之一,它作为工程教育中的一个重要内容,目的在于培养工程技术人员必备的基本数学素质。
任务:通过本课程的学习,使学生理解微积分中极限、导数、积分等基本概念;掌握基本的运算技巧;使学生能用所学的知识去解决各种领域中的一些实际问题;训练学生数学推理的严密性,使学生具有一定的数学修养和对实际问题具有抽象、归纳、推广的能力,能用数学的语言描述各种概念和现象,能理解其它学科中所用的数学理论和方法;培养学生学习数学的兴趣,帮助学生养成自学数学教材和其它数学知识的能力,为以后学习其它学科打下良好的基础。
七、教学方式(手段):主要采用讲授新课的方式第一章函数极限与连续一、教学目标与基本要求 1、理解函数的概念,会求函数的定义域、表达式及函数值。
会求分段函数的定义域、函数值,并会作出简单的分段函数图像,掌握函数的表示方法。
2、了解函数的奇偶性、单调性、周期性和有界性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形。
5、会建立简单应用问题中的函数关系式。
6、理解极限的概念,理解函数在极限与右极限的概念,以及极限存在与左、右极限之间的关系。
7、掌握极限的性质及四则运算法则。
8、掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
9、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
10、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
11、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值、最小值定理和介值定理),并会应用这些性质。
高数教学设计(共8篇)
高数教学设计〔共8篇〕第1篇:高数教案设计教案设计教材:《高等数学》〔第三版〕上册,第一章函数与极限,第三节函数的极限。
一、方案学时本小节分为两个局部,对于初学者来说有一定的难度,所以也就分为两个学时进展教学。
第一学时:自变量趋于有限值时函数的极限。
第二学时:自变量趋于无穷大时函数的极限。
〔本次教案主要说明第一学时的内容。
〕二、教材处理通过第一节关于函数根本知识的学习,以及高中时已经对函数极限有过一定的学习理解与铺垫,所以就要通过一些根本的例如,来一步步引导学生接触本节的内容,并进一步学习与研究。
来扩展同学们的知识面,并易于承受新内容。
三、教学目的知识和才能目的:1、通过教学过程培养学生的思维才能、运算才能、以及数学创新意识。
让你给同学们积极考虑、敢于提出自己的想法。
2、让同学们掌握一些本节教学中所涉及的技能技巧。
3、通过数学知识为载体,增强学生们的逻辑思维才能,进步学习的兴趣和才能。
传达出数学的人文价值。
四、教学难点和重点1、如何让学生较快的承受新的理念与知识,而改掉以前类似的学习中的定势与习惯性思维。
2、让学生们纯熟的运用书中所涉及的公式与理解一些重要的定理,从而更好的做题。
五、教学设计1、总体思路先通过在黑板上写一些以前学过的相关知识的例题,让同学们到黑板上去做。
然后,对题目做一些变形,就成了本小节所学的知识,此时,就要通过一步步的引导,让同学们呢理解步骤的方法技巧。
最后,就是先要学生们自己总结本节的内容与规律技巧,之后,再告诉同学们本节所需要重点掌握的知识。
2、教学过程〔1〕先让同学们大致看一下本小节内容,对本节内容有一定的理解。
〔4分钟〕设计说明:通过让同学们进展自主学习,对本小节内容有大志的理解,以便于学生更易于承受新知识。
〔2〕通过小例子让大家熟悉并初步认识一下极限的概念。
如:问题:当x无限接近于1的时候,函数f(x)=2x-1的取值。
解析:问题可转化成|f(x)-1|最小取值,因为|f(x)-1|可以无限变小,也就是无限趋近于0,所以当x无限接近于1的时候,函数f(x)=2x-1的取值就是0.〔5分钟〕设计说明:通过引导学生们的思维,带到新的内容,培养学生们的逻辑思维才能以及发撒思维才能。
高一数学必修1第一章教案
第一章 第一课时 集合的含义 总序1【学习导航】学习目标1.初步理解集合的含义,常用数集及其记法;2.集合中的元素的特性;3.理解属于关系和相等的意义;集合的分类;4.集合的分类.自学评价1.集合的含义: 构成一个集合(set).注意:(1)集合是数学中原始的、不定义的概念,只作描述.(2)集合是一个“整体.(3)构成集合的对象必须是“确定的”且“不同”的2.集合中的元素:集合中的每一个对象称为该集合的元素(element ).简称元.集合一般用大写拉丁字母表示,如集合A, 元素一般用小写拉丁字母表示.如a,b,c ……等.思考:构成集合的元素是不是只能是数或点?【答】3.集合中元素的特性:(1)确定性.设A 是一个给定的集合,x 是某一元素,则x 是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立.(2)互异性.对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性.集合与其中元素的排列次序无关.4.常用数集及其记法:一般地,自然数集记作_______正整数集记作______或_____整数集记作___有理数记作____实数集记作________5.元素与集合的关系:如果a 是集合A 的元素,就记作__________ 读作“___________________”;如果a 不是集合A 的元素,就记作______或______读作“_______________”;6.集合的分类:按它的元素个数多少来分:(i ) _________________叫做有限集;(ii )________________________叫做无限集;(iii ) _______________叫做空集,记为_____________【精典范例】一、运用集合中元素的特性来解决问题例1.下列研究的对象能否构成集合(1)世界上最高的山峰 (2)高一数学课本中的难题 (3)中国国旗的颜色(4)充分小的负数的全体 (5)book 中的字母 (6)立方等于本身的实数(7)不等式2x-8<13的正整数解【同步练习】:下列研究的对象能否构成集合:① 某校个子较高的同学; ② 倒数等于本身的实数③ 所有的无理数④中国的直辖市 ⑤中国的大城市 ⑥不等式320x +>的解;⑦直线21y x =-上所有的点;⑧不大于10且不小于1的奇数。
高等数学-第一章第一节 函数 电子教案 完整
三.
反函数
10分钟
1.反函数定义
设函数 的定义域为D,值域为W.如果对于任一数值 ,在D中都有唯一确定的值 ,使得 ,则得到一个以 为自变量, 为因变量的新的函数,这个新的函数叫做函数的 的反函数,记作 ,其定义域为W,值域为D。
由于习惯上用 为自变量, 为因变量,所以反函数也写成
()在上无界可描述为:若为任意大的正数,总存在_0∈,使|(_0 )|>成立。
例如:"y" =1/在区间内(0,1)无界,在区间(1,2)内Байду номын сангаас界。
1.课堂练习7页
2(1),
1.学生掌握确定两个函数相同必须两个函数的两个要素相同。
2.复习函数定义域的求解。
3.讲解例题1,例题2要认真听每一个步骤的由来,对不理解的要在课本例题上做详细的批注。
内容分析:
本节内容是基础性知识点,包含函数的概念,函数的定义域,值域,函数的两个要素,函数的三种表示法,分段函数的定义。函数的基本性质:奇偶性,周期性,单调性,有界性。函数的反函数,复合函数,基本初等函数的定义,以及六种基本初等函数的表达式,基本性质,图形,定义域,值域。大部分是要求记忆的知识点,本节知识点小又多,要求学生理解基础上记忆。
1.学生阅读函数的定义;
2.学生听讲,做笔记,记录教师提醒注意的要点,认真理解定义。
多媒体教学软件和硬件。
2.
函数的两个要素
(10钟的内容)
1.多媒体呈现函数的两个要素并要求学生阅读。
函数两个要素:
定义域D与对应法则唯一确定函数 ,故定义域与对应法则称为函数的两个要素。如果两个要素相同,那么它们就是相同的函数,否则,就是不同的函数。
高等数学教案第一章
第一章函数与极限一、教学内容1.函数:常量与变量、函数的定义;2.函数的表示方法:解析法、图示法、表格法;函数的性质:单调性、奇偶性、有界性和周期性;3.初等函数:基本初等函数、反函数、复合函数、初等函数、分段表示的函数,并会建立函数关系;4.极限:数列极限、函数极限、左右极限、极限四则运算法则、两个重要极限、无穷小量、无穷大量、无穷小量的性质;5.连续:连续、间断、初等函数的连续性、闭区间上连续函数的性质。
二、教学目的1.理解函数的概念及其性质,熟练掌握求函数定义域和函数值的方法;2.掌握基本初等函数的解析表达式、定义域、主要性质和图形;3.了解反函数的概念及互为反函数的函数图象之间的关系;理解复合函数、分段函数的概念;了解初等函数的概念;会建立函数关系;4.了解数列极限与函数极限的概念(描述性定义);会求左右极限;5.掌握极限四则运算法则;掌握用两个重要极限求极限的方法;能熟练进行极限运算;6.理解无穷小量、无穷大量的概念及相互关系;7.理解函数连续概念;掌握由初等函数的连续性求极限的方法;了解闭区间上连续函数的性质。
三、教学重点1.函数的概念及其性质、基本初等函数、复合函数;2.极限的运算。
3.无穷小量、无穷大量的概念及相互关系;4.函数连续概念、闭区间上连续函数的性质。
四、教学难点1.极限的概念;2.无穷小量、无穷大量的概念及相互关系; 3.函数连续概念。
第一节 函数一、集合 1、集合概念具有某种特定性质的事物的总体叫做集合。
组成这个集合的事物称为该集合的元素。
表示方法:用A ,B ,C ,D 表示集合;用a ,b ,c ,d 表示集合中的元素1)},,,{321 a a a A = 2)}{P x x A 的性质=元素与集合的关系:A a ∉ A a ∈一个集合,若它只含有有限个元素,则称为有限集;不是有限集的集合称为无限集。
常见的数集:N ,Z ,Q ,R ,N + 元素与集合的关系:A 、B 是两个集合,如果集合A 的元素都是集合B 的元素,则称A 是B 的子集,记作B A ⊂。
第一章高数教案
第一章高数教案第一章高等数学教案教案概述:本教案旨在引导学生理解和掌握高等数学中的基本概念和基本运算法则。
通过本章的学习,学生将能够熟练运用函数、极限、导数等概念解决实际问题,并为后续章节的学习打下坚实的基础。
一、教学目标:1. 理解函数的定义、性质和基本运算法则。
2. 掌握极限的概念和计算方法。
3. 理解导数的概念和计算方法,并能应用导数解决实际问题。
4. 培养学生的数学思维和分析问题的能力。
二、教学重点和难点:1. 函数的定义和性质。
2. 极限的计算方法。
3. 导数的概念和计算方法。
三、教学内容和学时安排:本章共分为三个部分,分别是函数、极限和导数。
具体学时安排如下:第一节:函数(2学时)1. 函数的定义和性质。
2. 常见函数的图像和性质。
3. 函数的运算法则。
第二节:极限(4学时)1. 极限的定义和性质。
2. 极限的计算方法。
3. 极限存在的条件和判定方法。
第三节:导数(6学时)1. 导数的定义和性质。
2. 导数的计算方法。
3. 导数的应用:切线、切线方程和极值问题。
四、教学方法:1. 讲授法:通过教师的讲解,向学生介绍函数、极限和导数的基本概念和运算法则。
2. 实例演练法:通过解析具体的例题,引导学生运用所学知识解决实际问题。
3. 讨论法:组织学生进行小组讨论,激发学生的思考能力和合作意识。
五、教学资源和学具准备:1. 教材:高等数学教材(教师版和学生版)。
2. 教具:黑板、彩色粉笔、投影仪等。
六、教学评价方法:1. 课堂练习:通过课堂练习,检查学生对所学知识的掌握情况。
2. 作业评定:布置作业并批改,评价学生的学习情况和作业完成情况。
3. 小组讨论:评价学生在小组讨论中的表现和合作能力。
七、教学过程安排:1. 第一节:函数- 引入函数的概念,讲解函数的定义和性质。
- 通过示例介绍常见函数的图像和性质。
- 讲解函数的运算法则,并进行相关例题演练。
2. 第二节:极限- 引入极限的概念,讲解极限的定义和性质。
大学高数第一章教案
一、教学目标1. 知识目标:(1)掌握函数、极限与连续的基本概念;(2)熟悉一元函数微分学的相关概念和计算方法;(3)了解一元函数积分学的基本概念和计算方法。
2. 能力目标:(1)培养学生运用数学知识解决实际问题的能力;(2)提高学生的逻辑思维和抽象思维能力;(3)培养学生严谨的数学素养。
3. 情感目标:(1)激发学生对数学学习的兴趣和热情;(2)培养学生的团队合作精神;(3)树立学生克服困难的信心。
二、教学内容1. 函数、极限与连续(1)函数的定义、性质和图像;(2)极限的概念和运算法则;(3)连续函数的定义和性质。
2. 一元函数微分学(1)导数的定义、性质和运算法则;(2)求导法则的应用;(3)微分的应用。
3. 一元函数积分学(1)定积分的定义、性质和计算方法;(2)不定积分的定义、性质和计算方法;(3)积分的应用。
三、教学过程1. 导入新课(1)通过实际例子,引导学生回顾函数、极限与连续的相关知识;(2)介绍本章学习的重要性和必要性。
2. 讲授新课(1)函数、极限与连续- 讲解函数的定义、性质和图像,结合实例进行说明;- 介绍极限的概念和运算法则,通过实例让学生理解极限的求法;- 讲解连续函数的定义和性质,让学生了解连续函数的特点。
(2)一元函数微分学- 讲解导数的定义、性质和运算法则,通过实例让学生掌握求导方法;- 介绍求导法则的应用,让学生能够灵活运用求导法则;- 讲解微分的应用,让学生了解微分在实际问题中的应用。
(3)一元函数积分学- 讲解定积分的定义、性质和计算方法,通过实例让学生掌握定积分的计算;- 介绍不定积分的定义、性质和计算方法,让学生能够求出不定积分;- 讲解积分的应用,让学生了解积分在实际问题中的应用。
3. 课堂练习(1)布置课堂练习题,让学生巩固所学知识;(2)指导学生解题,及时解答学生提出的问题。
4. 课堂小结(1)总结本章所学内容,让学生回顾重点知识;(2)强调学习方法,提高学生的自学能力。
(完整word版)高等数学教案
高等数学教案教 学 过 程§3 函数的极限一、函数的极限1.自变量趋于有限值时函数的极限定义:如果当x 无限接近于xo , 函数f(x)的值无限接近于常数A , 则称当x 趋于x0 时, f(x)以A 为极限. 记作 0lim x x →f(x)A 或f(x)→A(当x →0x ).定义的简单表述:A x f x x =→)(lim 0⇔∀ε>0, ∃δ>0, 当0<|x -x0|<δ时, |f(x)-A|<ε .2. 单侧极限:若当x →x0- 时, f(x)无限接近于某常数A , 则常数A 叫做函数f(x)当x →x0时的左极限, 记为A x f x x =-→)(lim 0或f(0x -)=A ;若当x →x0+ 时, f(x)无限接近于某常数A , 则常数A 叫做函数f(x)当x →x0时的右极限, 记为A x f x x =+→)(lim 0或f(0x +)=A .3.自变量趋于无穷大时函数的极限设f(x)当|x|大于某一正数时有定义. 如果存在常数A , 对于任意给定的正数ε, 总存在着正数X , 使得当x 满足不等式|x|>X 时, 对应的函数数值f(x)都满足不等式|f(x)-A|<ε,则常数A 叫做函数f(x)当x →∞时的极限, 记为A x f x =∞→)(lim 或f(x)→A(x →∞). A x f x =∞→)(lim ⇔∀ε >0, ∃X >0, 当|x|>X 时, 有|f(x)-A|<ε .类似地可定义A x f x =-∞→)(lim 和A x f x =+∞→)(lim .结论:A x f x =∞→)(lim ⇔A x f x =-∞→)(lim 且A x f x =+∞→)(lim .y y =x -1 -1 1 y =x +1 xO教 学 过 程§4 无穷大与无穷小.无穷大与无穷小1. 无穷小定义:如果函数f(x)当x →x0(或x →∞)时的极限为零, 那么称函数f(x)为当x →x0(或x →∞)时的无穷小.特别地, 以零为极限的数列{xn}称为n →∞时的无穷小.例如,因为01lim =∞→x x , 所以函数x 1为当x →∞时的无穷小.因为0)1(lim 1=-→x x , 所以函数为x -1当x →1时的无穷小.因为011lim =+∞→n n , 所以数列{11+n }为当n →∞时的无穷小.讨论: 很小很小的数是否是无穷小?0是否为无穷小?提示: 无穷小是这样的函数, 在x →x0(或x →∞)的过程中, 极限为零. 很小很小的数只要它不是零, 作为常数函数在自变量的任何变化过程中, 其极限就是这个常数本身, 不会为零.无穷小与函数极限的关系:定理1 在自变量的同一变化过程x →x0(或x →∞)中, 函数f(x)具有极限A 的充分必要条件是f(x)=A +α, 其中α是无穷小.证明: 设Ax f x x =→)(lim 0, ∀ε >0 , ∃δ >0, 使当0<|x -x0|<δ时, 有|f(x)-A|< .令α=f(x)-A , 则α是x →x0时的无穷小, 且f(x)=A +α .这就证明了f(x)等于它的极限A 与一个无穷小α之和.反之, 设f(x)=A +α , 其中A 是常数, α是x →x0时的无穷小, 于是|f(x)-A|=|α|.因α是x →x0时的无穷小, ∀ε >0 , ∃δ >0, 使当0<|x -x0|<δ, 有|α|< 或|f(x)-A|这就证明了A 是f(x) 当 x →x0时的极限.简要证明: 令α=f(x)-A , 则|f(x)-A|=|α|.如果∀ε >0 , ∃δ >0, 使当0<|x -x0|<δ, 有f(x)-A|,就有|α|< ; 反之如果∀ε >0 , ∃δ >0, 使当0<|x -x0|<δ, 有|α|<,就有f(x)-A| .这就证明了如果A 是f(x) 当 x →x0时的极限, 则α是x →x0时的无穷小; 如果α是x →x0时的无穷小, 则A 是f(x) 当 x →x0时的极限.类似地可证明x →∞时的情形. 例如, 因为333212121x x x +=+, 而021lim 3=∞→x x , 所以2121lim 33=+∞→x x x . 定理2 有限个无穷小的和也是无穷小定理3 有界函数与无穷小的乘积是无穷小 2. 无穷大定义:如果当x →x0(或x →∞)时, 对应的函数值的绝对值|f(x)|无限增大, 就称函数 f(x)为当x →x0(或x →∞)时的无穷大. 记为∞=→)(lim 0x f x x(或∞=∞→)(lim x f x ).应注意的问题: 当x →x0(或x →∞)时为无穷大的函数f(x), 按函数极限定义来说, 极限是不存在的. 但为了便于叙述函数的这一性态, 我们也说“函数的极限是无穷大”, 并记作∞=→)(lim 0x f x x (或∞=∞→)(lim x f x ).定理2 (无穷大与无穷小之间的关系):在自变量的同一变化过程中, 如果f(x)为无穷大, 则)(1x f 为无穷小; 反之, 如果f(x)为无穷小, 且f(x)≠0, 则)(1x f 为无穷大.简要证明: 如果0)(lim 0=→x f x x , 且f(x)≠0, 那么对于M 1=ε, ∃δ>0, 当0<|x -0x |<δ时,有M x f 1|)(|=<ε, 由于当0<|x -0x |<δ时, f(x)≠0, 从而M x f >|)(1|, 所以)(1x f 为x →x0时的无穷大.如果∞=→)(lim 0x f x x , 那么对于ε1=M , ∃δ>0,当0<|x -0x |<δ时,有ε1|)(|=>M x f , 即ε<|)(1|x f , 所以为x →x 时的无穷小.简要证明:如果f(x)→0(x →x0)且f(x)≠0, 则∀ε >0, ∃δ>0,当0<|x - x0|<δ时, 有|f(x)|<ε , 即, 所以f(x)→∞(x →x0). 如果f(x)→∞(x →x0), 则∀M >0, ∃δ>0,当0<|x - x0|<δ时, 有|f(x)|>M , 即, 所以f(x)→0(x →x0).教 学 过 程§5 极限运算法则一、极限运算法则定理1 如果lim f (x)=A , lim g (x)=B , 那么(1) lim [f (x)±g(x)] = lim f (x) ±lim g (x) =A ± B ; (2) lim f (x)⋅g(x) = lim f (x) ⋅ lim g (x) =A ⋅B ;(3)B Ax g x f x g x f ==)(lim )(lim )()(lim(B ≠0).证明(1): 因为lim f (x)=A , lim g (x)=B , 根据极限与无穷小的关系, 有f (x)=A +α,g (x)=B +β,其中α及β 为无穷小. 于是f (x) ±g (x)=(A +α) ± (B +β) =(A ± B) +(α± β),即f (x) ± g (x)可表示为常数(A ± B)与无穷小(α± β)之和. 因此lim [f (x) ± g (x)] =lim f (x) ± lim g (x) = A ± B .定理2 如果(x)≥(x), 而lim (x)=a , lim ψ(x)=b , 那么a ≥b . 推论1 如果lim f (x)存在, 而c 为常数, 则lim [c f (x)]=c lim f (x).推论2 如果lim f (x)存在, 而n 是正整数, 则lim [f (x)]n =[lim f (x)]n .例3. 求93lim 2 3--→x x x .教 学 过 程§6 极限存在准则·两个重要极限极限存在准则·两个重要极限 1. 夹逼准则准则I 如果数列{xn }、{yn}及{zn}满足下列条件:(1)yn ≤xn ≤zn(n 1, 2, 3, ⋅ ⋅ ⋅), (2)ay n n =∞→lim ,az n n =∞→lim ,那么数列{xn }的极限存在, 且ax n n =∞→lim .证明:因为a y n n =∞→lim , a z n n =∞→lim , 以根据数列极限的定义, ∀ε >0, ∃N 1>0, 当n >N 1时,有|y n -a |<ε ; 又∃N 2>0, 当n >N 2时, 有|z n -a |<ε . 现取N =max{N 1, N 2}, 则当 n >N 时, 有|y n -a |<ε , |z n -a |<ε同时成立, 即a -ε<y n <a +ε , a -ε<z n <a +ε ,同时成立. 又因yn ≤xn ≤zn , 所以当 n >N 时, 有a -ε<y n ≤x n ≤z n <a +ε ,即 |x n -a |<ε . 这就证明了ax n n =∞→lim .简要证明: 由条件(2), ∀ε >0, ∃N >0, 当n >N 时,有 |y n -a |<ε 及|z n -a |<ε , 即有 a -ε<y n <a +ε , a -ε<z n <a +ε , 由条件(1), 有a -ε<y n ≤x n ≤z n <a +ε , 即 |x n -a |<ε . 这就证明了a x n n =∞→lim .准则I '如果函数f(x)、g(x)及h(x)满足下列条件:(1) g(x)≤f(x)≤h(x);(2) lim g(x)=A , lim h(x)=A ; 那么lim f(x)存在, 且lim f(x)=A .第一重要极限:1sin lim 0=→xx x证明 首先注意到, 函数x xsin 对于一切x ≠0都有定义. 参看附图: 图中的圆为单位圆,BC ⊥OA , DA ⊥OA . 圆心角∠AOB x (0<x <2 π). 显然 sin x CB , x ⋂AB , tan x AD .因为S ∆AOB <S 扇形AOB <S ∆AOD ,所以21sin x <21x <21tan x ,即 sin x <x <tan x . 不等号各边都除以sin x , 就有x x x cos 1sin 1<<, 或 1sin cos <<x x x .注意此不等式当2 π<x <0时也成立. 而1cos lim 0=→x x , 根据准则I ', 1sin lim 0=→x x x .简要证明: 参看附图, 设圆心角∠AOBx (2 0π<<x ). 显然 BC < AB <AD , 因此 sin x < x < tan x ,从而 1sin cos <<x x x (此不等式当x <0时也成立).因为1cos lim 0=→x x , 根据准则I ', 1sin lim 0=→x x x .应注意的问题: 在极限)()(sin limx x αα中, 只要(x)是无穷小, 就有1)()(sin lim =x x αα.这是因为, 令u(x), 则u →0, 于是)()(sin limx x αα1sin lim 0==→u u u .1sin lim 0=→xx x1)()(sin lim=x x αα((x)→0)2. 单调有界收敛准则准则II 单调有界数列必有极限.如果数列{x n}满足条件x 1≤x 2≤x 3≤ ⋅ ⋅ ⋅ ≤x n ≤x n 1≤ ⋅ ⋅ ⋅,就称数列{x n}是单调增加的; 如果数列{x n}满足条件x 1≥x 2≥x 3≥ ⋅ ⋅ ⋅ ≥x n ≥x n 1≥ ⋅ ⋅ ⋅,就称数列{x n}是单调减少的. 单调增加和单调减少数列统称为单调数列. 如果数列{x n}满足条件x n ≤x n 1, n ∈N +,在第三节中曾证明: 收敛的数列一定有界. 但那时也曾指出: 有界的数列不一定收敛. 现在准则II 表明: 如果数列不仅有界, 并且是单调的, 那么这数列的极限必定存在, 也就是这数列一定收敛.O CADB 1 x准则II 的几何解释:单调增加数列的点只可能向右一个方向移动, 或者无限向右移动, 或者无限趋近于某一定点A , 而对有界数列只可能后者情况发生.根据准则II , 可以证明极限nn n )11(lim +∞→存在.设nn n x )11(+= 现证明数列{xn}是单调有界的.按牛顿二项公式, 有nn n n n n n n n n n n n n n n n n n x 1!)1( )1( 1!3)2)(1(1!2)1(1!11)11(32⋅+-⋅⋅⋅-+⋅⋅⋅+⋅--+⋅-+⋅+=+= )11( )21)(11(!1 )21)(11(!31)11(!2111n n n n n n n n --⋅⋅⋅--+⋅⋅⋅+--+-++=,)111( )121)(111(!1 )121)(111(!31)111(!21111+--⋅⋅⋅+-+-+⋅⋅⋅++-+-++-++=+n n n n n n n n x n )11( )121)(111()!1(1+-⋅⋅⋅+-+-++n n n n n .比较x n , x n +1的展开式, 可以看出除前两项外, x n 的每一项都小于x n +1的对应项, 并且x n +1还多了最后一项, 其值大于0, 因此 x n < x n +1 ,这就是说数列{xn}是单调有界的.这个数列同时还是有界的. 因为xn 的展开式中各项括号内的数用较大的数1代替, 得3213211211121 212111!1 !31!2111112<-=--+=+⋅⋅⋅++++<⋅⋅⋅++++<--n nn n n x第二重要极限:根据准则II , 数列{xn}必有极限. 这个极限我们用e 来表示. 即en n n =+∞→)11(lim .我们还可以证明ex x x =+∞→)11(lim . e 是个无理数, 它的值是e 2. 718281828459045⋅ ⋅ ⋅.指数函数y e x 以及对数函数y ln x 中的底e 就是这个常数. 在极限)(1)](1lim[x x αα+中, 只要(x)是无穷小, 就有e x x =+)(1)](1lim[αα.这是因为, 令)(1x u α=, 则u →∞, 于是)(1)](1lim[x x αα+e u u u =+=∞→)11(lim .e x x x =+∞→)11(lim , ex x =+)(1)](1lim[αα((x)→0).例3. 求xx x )11(lim -∞→.解: 令t x , 则x →∞时, t →∞. 于是x x x)11(lim -∞→tt t -∞→+=)11(lim e t t t 1)11(1lim=+=∞→.教 学 过 程§8 函数的连续性函数的连续性 1. 变量的增量:设变量u 从它的一个初值u1变到终值u2, 终值与初值的差u2u1就叫做变量u 的增量, 记作u , 即u u2u1.设函数y f(x)在点x0的某一个邻域内是有定义的. 当自变量x 在这邻域内从x0变到x0x 时, 函数y 相应地从f(x0)变到f(x0x), 因此函数y 的对应增量为y f(x0x) f(x0).2. 函数连续的定义设函数y f(x)在点x0 的某一个邻域内有定义, 如果当自变量的增量x x x0趋于零时, 对应的函数的增量y f(x0x) f(x0 )也趋于零, 即 0lim 0=∆→∆y x , 或)()(lim 00x f x f x x =→,那么就称函数y f(x)在点x0 处连续.注: ①0)]()([lim lim 000=-∆+=∆→∆→∆x f x x f y x x②设xx0+x , 则当x →0时, x →x0, 因此0lim 0=∆→∆y x ⇔0)]()([lim 00=-→x f x f x x ⇔)()(lim 00x f x f x x =→.函数连续的等价定义2:设函数y f(x)在点x0的某一个邻域内有定义, 如果对于任意给定义的正数 , 总存在着正数 , 使得对于适合不等式|x x0|< 的一切x , 对应的函数值f(x)都满足不等式|f(x)f(x0)|< ,那么就称函数y f(x)在点x0处连续.3. 左右连续性:如果)()(lim 00x f x f x x =-→, 则称y f(x)在点0x 处左连续.如果)()(lim 00x f x f x x =+→, 则称y f(x)在点0x 处右连续. 左右连续与连续的关系:函数y f(x)在点x0处连续⇔函数y f(x)在点x0处左连续且右连续. 函数在区间上的连续性:在区间上每一点都连续的函数, 叫做在该区间上的连续函数, 或者说函数在该区间上连续. 如果区间包括端点, 那么函数在右端点连续是指左连续, 在左端点连续是指右连续.4. 连续函数举例:1. 如果f(x)是多项式函数, 则函数f(x)在区间(∞, ∞)内是连续的. 这是因为, f(x)在(∞, ∞)内任意一点x0处有定义, 且)()(lim 00x P x P x x =→2. 函数x x f =)(在区间[0, ∞)内是连续的.3. 函数y sin x 在区间(∞, ∞)内是连续的. 证明: 设x 为区间(∞, ∞)内任意一点. 则有y =sin(x +x)-sin x)2cos(2sin2x x x ∆+∆=,因为当x →0时,y 是无穷小与有界函数的乘积,所以lim 0=∆→∆y x .这就证明了函数y sin x 在区间(∞, ∞)内任意一点x 都是连续的.4. 函数y cos x 在区间(∞, ∞)内是连续的.函数的间断点 1. 间断定义:设函数f(x)在点x0的某去心邻域内有定义. 在此前提下, 如果函数f(x)有下列三种情形之一:(1)在x0没有定义; (2)虽然在x0有定义, 但limx x →f(x)不存在;(3)虽然在x0有定义且0lim x x →f(x)存在, 但0limx x →f(x)≠f(x0);则函数f(x)在点x0为不连续, 而点x0称为函数f(x)的不连续点或间断点.例1. 正切函数ytan x 在2 π=x 处没有定义, 所以点2 π=x 是函数tan x 的间断点.因为∞=→x x tan lim 2π, 故称2 π=x 为函数tan x 的无穷间断点. 例2.函数x y 1sin =在点x 0没有定义, 所以点x 0是函数x 1sin 的间断点. 当x →0时, 函数值在1与1之间变动无限多次, 所以点x0称为函数x 1sin 的振荡间断点. 例3. 函数112--=x x y 在x1没有定义, 所以点x 1是函数的间断点. 因为11lim 21--→x x x 2)1(lim 1=+=→x x , 如果补充定义: 令x1时y 2, 则所给函数在x1成为连续. 所以x 1称为该函数的可去间断点.例4.设函数⎪⎩⎪⎨⎧=≠==1 211)(x x x x f y .因为1lim )(lim 11==→→x x f x x ,21)1(=f , )1()(lim 1f x f x ≠→, 所以x1是函数f(x)的间断点.如果改变函数f(x)在x 1处的定义:令f(1)1, 则函数f(x)在x 1 成为连续, 所以x 1也称为该函数的可去间断点.例5.设函数⎪⎩⎪⎨⎧>+=<-=0 1000 1)(x x x x x x f . 因为1)1(lim )(lim 00-=-=--→→x x f x x , 1)1(lim )(lim 00=+=++→→x x f x x)(lim )(lim 00x f x f x x ++→→≠,所以极限)(lim 0x f x →不存在, x =0是函数f(x)的间断点. 因函数f(x)的图形在x0处产生跳跃现象, 我们称x 0为函数f(x)的跳跃间断点.2. 间断点的分类:通常把间断点分成两类:如果x0是函数f(x)的间断点, 但左极限f(x00)及右极限f(x00)都存在, 那么x0称为函数f(x)的第一类间断点. 不是第一类间断点的任何间断点, 称为第二类间断点. 在第一类间断点中, 左、右极限相等者称为可去间断点, 不相等者称为跳跃间断点. 无穷间断点和振荡间断点显然是第二间断点.初等函数的连续性1. 连续函数的和、积及商的连续性 定理1设函数f(x)和g(x)在点x0连续, 则函数f(x)±g(x), f(x)⋅g(x),)()(x g x f (当0)(0≠x g 时)在点x0也连续.f(x)±g(x)连续性的证明:因为f(x)和g(x)在点x0连续, 所以它们在点x0有定义, 从而f(x)±g(x)在点x0也有定义, 再由连续性和极限运算法则, 有)()()(lim )(lim )]()([lim 000x g x f x g x f x g x f x x x x x x ±=±=±→→→.根据连续性的定义, f(x)±g(x)在点x0连续.例1. sin x 和cos x 都在区间(-∞, +∞)内连续,故由定理3知tan x 和cot x 在它们的定义域内是连续的.三角函数sin x , cos x , sec x , csc x , tan x , cot x 在其有定义的区间内都是连续的. 二、反函数与复合函数的连续性定理2 如果函数f(x)在区间Ix 上单调增加(或单调减少)且连续, 那么它的反函数x =f -1(y)也在对应的区间Iy ={y|y =f(x),x ∈Ix}上单调增加(或单调减少)且连续. 证明(略).例2. 由于y =sin x 在区间]2 ,2[ππ-上单调增加且连续, 所以它的反函数y =arcsin x在区间[-1, 1]上也是单调增加且连续的.同样,y =arccos x 在区间[-1, 1]上也是单调减少且连续; y =arctan x 在区间(-∞, +∞)内单调增加且连续;y =arccot x 在区间(-∞, +∞)内单调减少且连续.总之, 反三角函数arcsin x 、arccos x 、arctan x 、arccot x 在它们的定义域内都是连续的. 定理3 设函数y =f[g(x)]由函数y =f(u)与函数u =g(x)复合而成,gf D x U⊂)(0. 若)lim 0u x g x x =(→, 而函数y =f(u)在0u 连续, 则)()(lim )][lim 00u f u f x g f u u x x ==(→→.简要证明 要证∀ε >0, ∃δ>0, 当0<|x -x0|<δ 时, 有|f[g(x)]-f(u0)|<ε .因为f(u)在0u 连续, 所以∀ε >0, ∃η>0, 当|u -u0|<η 时, 有|f(u)-f(u0)|<ε .又g(x)→u0(x →x0), 所以对上述η>0, ∃δ>0, 当0<|x -x0|<δ 时, 有|g(x)-u0|<η. 从而 |f[g(x)]-f(u0)|<ε . (2)定理的结论也可写成)](lim [)]([lim 0x g f x g f x x x x →→=. 求复合函数f[g(x)]的极限时, 函数符号f 与极限号可以交换次序.)(lim )]([lim 0u f x u f u u x x →→=表明,在定理3的条件下, 如果作代换u =g(x),那么求)]([lim 0x g f x x →就转化为求)(lim 0u f u u →, 这里)(lim 00x g u x x →=.把定理5 中的x →x0换成x →∞, 可得类似的定理.例3. 求93lim23--→x x x .解93lim23--→x x x 93lim 23--=→x x x 61=.提示:932--=x x y 是由u y =与932--=x x u 复合而成的. 93lim 23--→x x x 61=, 函数u y =在点61=u 连续 =g(x0)定理4 设函数y =f[g(x)]由函数y =f(u)与函数u =g(x)复合而成, U(x0)⊂Df og . 若函数u =g(x)在点x0连续, 函数y =f(u)在点u0=g(x0)连续, 则复合函数y =f[(x)]在点x0也连续. 证明: 因为(x)在点x0连续, 所以limx x →(x)=(x0)=u0.又y =f(u)在点u =u0连续, 所以 0limx x →f[(x)]=f(u0)=f[(x0)].这就证明了复合函数f[(x)]在点x0连续.例4. 讨论函数x y 1sin =的连续性. 解: 函数x y 1sin =是由y =sin u 及x u 1=复合而成的. sin u 当-∞<u<+∞时是连续的,x 1当-∞<x<0和0<x<+∞时是连续的,根据定理4, 函数x 1sin 在无限区间(-∞, 0)和(0, +∞)内是连续的.2、初等函数的连续性在基本初等函数中, 我们已经证明了三角函数及反三角函数的它们的定义域内是连续的.我们指出, 指数函数ax (a>0, a ≠1)对于一切实数x 都有定义,且在区间(-∞, +∞)内是单调的和连续的, 它的值域为(0, +∞).由定理4, 对数函数log ax (a>0, a ≠1)作为指数函数ax 的反函数在区间(0, +∞)内单调且连续.幂函数y =x 的定义域随的值而异, 但无论为何值, 在区间(0, +∞)内幂函数总是有定义的.可以证明, 在区间(0, +∞)内幂函数是连续的. 事实上, 设x>0, 则y =x =xa a log μ, 因此, 幂函数x 可看作是由y =au , u =logax 复合而成的, 由此, 根据定理6, 它在(0, +∞)内是连续的.如果对于取各种不同值加以分别讨论, 可以证明幂函数在它的定义域内是连续的.结论: 基本初等函数在它们的定义域内都是连续的.最后, 根据初等函数的定义, 由基本初等函数的连续性以及本节有关定理可得下列重要结论:一切初等函数在其定义区间内都是连续的. 所谓定义区间, 就是包含在定义域内的区间.初等函数的连续性在求函数极限中的应用:如果f(x)是初等函数, 且x0是f(x)的定义区间内的点, 则limx x →f(x)=f(x0).例5求21lim x x -→解 初等函数f(x)=21x -在点00=x 是有定义的,所以 111lim 20==-→x x .例6求xx sin ln lim 2π→解 初等函数f(x)=ln sin x 在点2 0π=x 是有定义的, 所以 02 sin ln sin ln lim 2==→ππx x .例7. 求x x x 11lim 20-+→.解: x x x 11lim 20-+→)11()11)(11(lim 2220++++-+=→x x x x x02011lim 20==++=→x x x .例8. 求x x a x )1(log lim0+→.教 学 过 程§1 导数概念一、 导数概念 1. 引例直线运动的速度设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: S =f (t ),求动点在时刻t 0的速度. 考虑比值000)()(t t t f t f t t s s --=--,这个比值可认为是动点在时间间隔t =t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样:令t =t 0→0, 取比值0)()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 00)()(lim 0t t t f t f v t t --=→,这时就把这个极限值v 称为动点在时刻t 0的速度.2.切线问题设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线.设曲线C 就是函数y f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0000)()(tan x x x f x f x x y y --=--=ϕ, 其中为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存在, 设为k , 即 00)()(limx x x f x f k x x --=→存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k tan ,其中是切线MT 的倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线.二、导数的定义1. 函数在一点处的导数与导函数从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00)()(lim 0x x x f x f x x --→.令△x =x -x 0, 则△y =f (x 0+△x )-f (x 0)=f (x )-f (x 0), x →x 0相当于△x →0, 于是0)()(limx x x f x f x x --→成为xyx ∆∆→∆0lim 或xx f x x f x ∆-∆+→∆)()(lim 000.定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量△x (点x 0+△x 仍在该邻域内)时, 相应地函数y 取得增量△y =f (x 0+△x )-f (x 0); 如果△y 与△x 之比当△x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即xx f x x f xyx f x x ∆-∆+=∆∆='→∆→∆)()(lim lim )(0000,也可记为0|x x y =',0 x x dx dy =或0)(x x dx x df =. 函数f (x )在点x 0处可导有时也说成f (x )在点x 0具有导数或导数存在.导数的定义式也可取不同的形式, 常见的有hx f h x f x f h )()(lim )(0000-+='→, 000)()(lim )(0x x x f x f x f x x --='→.在实际中, 需要讨论各种具有不同意义的变量的变化“快慢”问题, 在数学上就是所谓函数的变化率问题. 导数概念就是函数变化率这一概念的精确描述.如果极限xx f x x f x ∆-∆+→∆)()(lim000不存在, 就说函数y =f (x )在点x 0处不可导.如果不可导的原因是由于∞=∆-∆+→∆xx f x x f x )()(lim000, 也往往说函数y =f (x )在点x 0处的导数为无穷大.如果函数y =f (x )在开区间I 内的每点处都可导, 就称函数f (x )在开区间I 内可导, 这时, 对于任一x ∈I , 都对应着f (x )的一个确定的导数值. 这样就构成了一个新的函数, 这个函数叫做原来函数y =f (x )的导函数, 记作 y ',)(x f ',dx dy , 或dxx df )(. 2. 导函数的定义式:xx f x x f y x ∆-∆+='→∆)()(limhx f h x f h )()(lim-+→. f '(x 0)与f '(x )之间的关系:函数f (x )在点x 0处的导数f '(x )就是导函数f '(x )在点x =x 0处的函数值, 即0)()(0x x x f x f ='='.导函数f '(x )简称导数, 而f '(x 0)是f (x )在x 0处的导数或导数f '(x )在x 0处的值. 左右导数: 所列极限存在, 则定义f (x )在0x 的左导数:hx f h x f x f h )()(lim )(0000-+='-→-;f (x )在0x 的右导数:hx f h x f x f h )()(lim )(0000-+='+→+.如果极限hx f h x f h )()(lim 000-+-→存在,则称此极限值为函数在x 0的左导数.如果极限hx f h x f h )()(lim 000-++→存在,则称此极限值为函数在x 0的右导数.导数与左右导数的关系:A x f =')(0⇔A x f x f ='='+-)()(00.三、求导数举例例1.求函数f (x )C (C 为常数)的导数.解: hx f h x f x f h )()(lim)(0-+='→0lim 0=-=→hC C h . 即(C ) '=0.例2 求xx f 1)(=的导数解 hxh x h x f h x f x f h h 11lim )()(lim )(00-+=-+='→→2001)(1lim )(limx x h x x h x h h h h -=+-=+-=→→例3求x x f =)(的导数解 hx h x h x f h x f x f h h -+=-+='→→00lim )()(lim)( xx h x x h x h h h h 211lim )(lim 00=++=++=→→ 例4.求函数f (x )x n (n 为正整数)在x a 处的导数.解: f '(a )a x a f x f ax --=→)()(lima x a x n n a x --=→lim ax →=lim (x n1ax n2⋅ ⋅ ⋅a n 1)=na n 1.把以上结果中的a 换成x 得 f '(x )=nx n 1, 即 (x n )'=nx n 1. (C )'=0, 21)1(xx-=', xx 21)(=', 1)(-⋅='μμμx x .例5.求函数f (x )sin x 的导数.解: f '(x )hx f h x f h )()(lim-+=→h x h x h sin )sin(lim 0-+=→ 2sin )2cos(21lim 0h h x h h +⋅=→ x h hh x h cos 22sin )2cos(lim 0=⋅+=→.即 (sin x )'=cos x .用类似的方法, 可求得 (cos x )'=-sin x . 例6.求函数f (x )a x (a >0, a ≠1) 的导数.解: f '(x )h x f h x f h )()(lim0-+=→h a a x h x h -=+→0limh a a h h x 1lim 0-=→t a h =-1令)1(log lim 0t t a a t x +→ a a ea x a x ln log 1==.特别地有(e x )′=e x .例7.求函数f (x )log a x (a >0, a ≠1) 的导数.解: hx h x hx f h x f x f a a h h log )(log lim )()(lim )(0-+=-+='→→h xa h a h a h xh x x h h x x x h x h )1(log lim 1)1(log lim 1)(log 1lim 000+=+=+=→→→ a x e x a ln 1log 1==.解:h xh x x f a ah log )(log lim )(0-+='→)1(log 1lim 0xh h a h +=→ h xa h x h x )1(log lim 10+=→ax e x a ln 1log 1==.即 ax x a ln 1)(log ='. :特殊地 xx 1)(ln ='.ax x a ln 1)(log ='xx 1)(ln ='.1.单侧导数:极限h x f h x f h )()(lim0-+→存在的充分必要条件是hx f h x f h )()(lim 0-+-→及h x f h x f h )()(lim 0-++→都存在且相等.f (x )在0x 处的左导数:hx f h x f x f h )()(lim )(00-+='-→-, f (x )在0x 处的右导数:hx f h x f x f h )()(lim )(00-+='+→+.2.导数与左右导数的关系:函数f (x )在点x 0处可导的充分必要条件是左导数左导数f '(x 0) 和右导数f '(x 0)都存在且相等.如果函数f (x )在开区间(a , b )内可导, 且右导数f '(a ) 和左导数f '(b )都存在, 就说f (x )有闭区间[a , b ]上可导. 例8.求函数f (x )x |在x 0处的导数.解: 1||lim )0()0(lim )0(00-==-+='--→→-h h hf h f f h h , 1||lim )0()0(lim )0(00==-+='++→→+h h hf h f f h h ,因为f '(0)≠ f '(0), 所以函数f (x )|x |在x 0处不可导.四、导数的几何意义函数y =f (x )在点x 0处的导数f '(x 0)在几何上表示曲线y =f (x )在点M (x 0, f (x 0))处的切线的斜率, 即f '(x 0)=tan , 其中是切线的倾角.如果y =f (x )在点x 0处的导数为无穷大, 这时曲线y =f (x )的割线以垂直于x 轴的直线x =x 0为极限位置, 即曲线y =f (x )在点M (x 0, f (x 0))处具有垂直于x 轴的切线x =x 0. : 由直线的点斜式方程, 可知曲线y f (x )在点M (x 0, y 0)处的切线方程为 y -y 0=f '(x 0)(x -x 0).过切点M (x 0, y 0)且与切线垂直的直线叫做曲线y =f (x )在点M 处的法线如果f '(x 0)≠0, 法线的斜率为)(10x f '-, 从而法线方程为)()(1000x x x f y y -'-=-.例9. 求等边双曲线x y 1=在点)2 ,21(处的切线的斜率, 并写出在该点处的切线方程和法线方程.解: 21xy -=', 所求切线及法线的斜率分别为 4)1(2121-=-==x xk , 41112=-=k k .所求切线方程为)21(42--=-x y , 即4xy 40. 所求法线方程为)21(412-=-x y , 即2x8y150.例10. 求曲线x x y =的通过点(0, -4)的切线方程.解 设切点的横坐标为x 0, 则切线的斜率为 0212302323)()(0x x x x f x x =='='=. 于是所求切线的方程可设为 )(230000x x x x x y -=-.根据题目要求, 点(0, -4)在切线上, 因此 )0(2340000x x x x -=--,解之得x 0=4. 于是所求切线的方程为 )4(42344-=-x y , 即3x -y -4=0.五、函数的可导性与连续性的关系设函数yf (x )在点x 0 处可导, 即)(lim 00x f xy x '=∆∆→∆存在. 则00)(lim lim lim lim 00000=⋅'=∆⋅∆∆=∆⋅∆∆=∆→∆→∆→∆→∆x f x x yx xy y x x x x .这就是说, 函数y f (x )在点x 0 处是连续的. 所以, 如果函数y =f (x )在点x 处可导, 则函数在该点必连续.另一方面, 一个函数在某点连续却不一定在该点处可导.例7. 函数3)(x x f =在区间(∞, ∞)内连续, 但在点x =0处不可导. 这是因为函数在点x =0处导数为无穷大hf h f h )0()0(lim0-+→+∞=-=→h h h 0lim 30.x(u +v -w )'=u '+v '-w '.(uvw )'=[(uv )w]'=(uv )'w +(uv )w '=(u 'v +uv ')w +uvw '=u 'vw +uv 'w +uvw '.即 (uvw )'=u 'vw +uv 'w +uvw '.在法则(2)中, 如果v =C (C 为常数), 则有 (Cu )'=Cu '.例1.y =2x 3-5x 2+3x -7, 求y '解: y '=(2x 3-5x 2+3x -7)'= (2x 3)'-5x 2)'+3x )'-7)'= 2(x 3)'- 5x 2)'+ 3x )' =2⋅3x 2-5⋅2x +3=6x 2-10x +3.例2.2 sin cos 4)(3π-+=x x x f , 求f '(x )及)2(πf '.解: x x x x x f sin 43)2(sin )cos 4()()(23-='-'+'='π,443)2 (2-='ππf .例3.y =e x (sin x +cos x ), 求y '.解: y '=e x )'(sin x +cos x )+ e x (sin x +cos x )' = e x (sin x +cos x )+ e x (cos x -sin x ) =2e x cos x . 例4.y =tan x , 求y '.解: xx x x x x x x y 2cos )(cos sin cos )(sin )cos sin ()(tan '-'='='='x xx x x 22222sec cos 1cos sin cos ==+=.即 (tan x )'=sec 2x . 例5.y =sec x , 求y '.解: xx x xx y 2cos )(cos 1cos )1()cos 1()(sec '⋅-'='='='xx2cos sin ==sec x tan x . 即 (sec x )'=sec x tan x .用类似方法, 还可求得余切函数及余割函数的导数公式: (cot x )'=-csc 2x ,(csc x )'=-csc x cot x .例8设x =a y (a >0, a ≠1)为直接函数, 则y =log a x 是它的反函数. 函数x =a y 在区间I y =(-∞, +∞)内单调、可导, 且 (a y )'=a y ln a ≠0.因此, 由反函数的求导法则, 在对应区间I x =(0, +∞)内有 ax aa a x y ya ln 1ln 1)(1)(log =='='.到目前为止, 所基本初等函数的导数我们都求出来了, 那么由基本初等函数构成的较复杂的初等函数的导数如可求呢?如函数lntan x 、3x e 、的导数怎样求?复合函数的求导法则定理3 如果u =g (x )在点x 可导, 函数y =f (u )在点u =g (x )可导, 则复合函数y =f [g (x )]在点x 可导, 且其导数为)()(x g u f dxdy'⋅'=或dx du du dy dx dy ⋅=.证明: 当u =g (x )在x 的某邻域内为常数时, y =f [(x )]也是常数, 此时导数为零,结论自然成立.当u =g (x )在x 的某邻域内不等于常数时, u ≠0, 此时有 xx g x x g x g x x g x g f x x g f x x g f x x g f xy ∆-∆+⋅-∆+-∆+=∆-∆+=∆∆)()()()()]([)]([)]([)]([xx g x x g u u f u u f ∆-∆+⋅∆-∆+=)()()()(,xx g x x g u u f u u f x y dx dy x u x ∆-∆+⋅∆-∆+=∆∆=→∆→∆→∆)()(lim )()(lim lim 000= f '(u )⋅g '(x ).简要证明x u u y x y dx dy x x ∆∆⋅∆∆=∆∆=→∆→∆00lim lim )()(lim lim 00x g u f xu u yx u ''=∆∆⋅∆∆=→∆→∆. 例9 3x e y =, 求dxdy.解 函数3x e y =可看作是由y =e u , u =x 3复合而成的, 因此32233x u e x x e dxdu du dy dx dy =⋅=⋅=. 例10 212sin xx y +=, 求dx dy.解 函数212sin x x y +=是由y =sin u , 212xx u +=复合而成的,因此 2222222212cos )1()1(2)1()2()1(2cos xx x x x x x u dx du du dy dx dy +⋅+-=+-+⋅=⋅=. 对复合函数的导数比较熟练后, 就不必再写出中间变量, 例11.lnsin x , 求dxdy .解:)(sin sin 1)sin (ln '⋅='=x x x dx dyx x xcot cos sin 1=⋅=. 例12.3221x y -=, 求dxdy.解: )21()21(31])21[(2322312'-⋅-='-=-x x x dx dy 322)21(34x x --=.复合函数的求导法则可以推广到多个中间变量的情形. 例如, 设y =f (u ), u =ϕ(v ),v =ψ(x ), 则dxdv dv du du dy dx du du dy dx dy ⋅⋅=⋅=. 例13.y =lncos(e x ), 求dxdy.解: ])[cos()cos(1])cos([ln '⋅='=x x x e e e dx dy)tan()()]sin([)cos(1x x x x x e e e e e -='⋅-⋅=.例14.x e y 1sin =, 求dxdy.解: )1(1cos )1(sin )(1sin 1sin 1sin '⋅⋅='⋅='=x x e x e e dx dy x x xxe x x 1cos 11sin2⋅⋅-=. 例15设x >0, 证明幂函数的导数公式 (x μ)'=μ x μ-1.解 因为x μ=(e ln x )μ=e μ ln x , 所以(x μ)'=(e μ ln x )'= e μ ln x ⋅(μ ln x )'= e μ ln x ⋅μ x -1=μ x μ-1.基本求导法则与导数公式 1.基本初等函数的导数:(1)(C )'=0,(2)(x )'= x -1, (3)(sin x )'=cos x , (4)(cos x )'=-sin x , (5)(tan x )'=sec 2x , (6)(cot x )'=-csc 2x ,(7)(sec x )'=sec x ⋅tan x , (8)(csc x )'=-csc x ⋅cot x , (9)(a x )'=a x ln a , (10)(e x )'=e x , (11) ax x a ln 1)(log =',(12) xx 1)(ln =',(13) 211)(arcsin x x -=', (14) 211)(arccos xx --='.(15) 211)(arctan xx +=',(16) 211)cot arc (xx +-='.2.函数的和、差、积、商的求导法则 设u =u (x ), v =v (x )都可导, 则 (1)(u ±v )'=u '±v ',(2)(C u )'=C u ', (3)(u v )'=u '⋅v +u ⋅v ',(4)2)(vv u v u vu '-'='. 反函数的求导法则设x =f (y )在区间I y 内单调、可导且f '(y )≠0, 则它的反函数y =f -1(x )在I x =f (I y )内也可导, 并且)(1])([1y f x f '='-. 或dydx dxdy1=.复合函数的求导法则设y =f (x ), 而u =g (x )且f (u )及g (x )都可导, 则复合函数y =f [g (x )]的导数为 dxdudu dy dx dy ⋅=或y '(x )=f '(u )⋅g '(x ). 例16. 求双曲正弦sh x 的导数.解因为)(21sh x x e e x --=, 所以x e e e e x x x x x ch )(21)(21)sh (=+='-='--,即 (sh x )'=ch x . 类似地, 有(ch x )'=sh x . 例17. 求双曲正切th x 的导数解因为x x x ch sh th =, 所以xx x x 222ch sh ch )(th -='x 2ch 1=.例18. 求反双曲正弦arsh x 的导数解 因为)1ln(arsh 2x x x ++=, 所以 22211)11(11)arsh (x x x x x x +=++⋅++='. 由)1ln(arch 2-+=x x x , 可得11)arch (2-='x x .由x x x -+=11ln 21arth , 可得211)arth (xx -='.类似地可得11)arch (2-='x x 211)arth (x x -='例19.y =sin nx ⋅sin n x (n 为常数), 求y '.解: y '=(sin nx )' sin n x + sin nx ⋅ (sin n x )'= n cos nx ⋅sin n x +sin nx ⋅ n ⋅ sin n -1 x ⋅(sin x )'= n cos nx ⋅sin n x +n sin n -1 x ⋅ cos x =n sin n -1 x ⋅ sin(n +1)x .教 学 过 程§4 高阶导数一般地, 函数y =f (x )的导数y '=f '(x )仍然是x 的函数. 我们把y '=f '(x )的导数叫做函数y =f (x )的二阶导数, 记作 y ''、f ''(x )或22dxyd ,即 y ''=(y ')', f ''(x )=[f '(x )]',)(22dxdydx d dx y d =.相应地, 把y =f (x )的导数f '(x )叫做函数y =f (x )的一阶导数.类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, ⋅ ⋅ ⋅, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作y ''', y (4), ⋅ ⋅ ⋅ , y (n ) 或33dx y d , 44dx y d , ⋅ ⋅ ⋅ , nn dxyd . 函数f (x )具有n 阶导数, 也常说成函数f (x )为n 阶可导. 如果函数f (x )在点x处具有n 阶导数, 那么函数f (x )在点x 的某一邻域内必定具有一切低于n 阶的导数. 二阶及二阶以上的导数统称高阶导数.y '称为一阶导数 y '' y ''' y (4) ⋅ ⋅ ⋅ y (n )都称为高阶导数例1.y ax +b , 求y ''. 解: y '=a , y ''=0.例2.s =sin t , 求s ''.解: s '=cos t , s ''=-sin t . 例3.证明: 函数22x x y -=满足关系式y3y ''+1=0.证明: 因为22212222x x xxx x y --=--=',22222222)1(2x x x x xx x x y -------='')2()2()1(22222x x x x x x x ----+-=32321)2(1yx x -=--=所以y 3y ''+1=0.例4.求函数y =e x 的n 阶导数. 解; y '=e x , y ''=e x , y '''=e x , y ( 4)=e x , 一般地, 可得y ( n )=e x , 即 (e x )(n )=e x .例5.求正弦函数与余弦函数的n 阶导数. 解: y =sin x ,)2sin(cos π+=='x x y ,)22sin()2 2sin()2cos(ππππ⋅+=++=+=''x x x y ,)23sin()2 2 2sin()2 2cos(ππππ⋅+=+⋅+=⋅+='''x x x y ,)24sin()2 3cos()4(ππ⋅+=⋅+=x x y ,一般地, 可得)2sin()(π⋅+=n x y n , 即)2sin()(sin )(π⋅+=n x x n .用类似方法, 可得)2cos()(cos )(π⋅+=n x x n .例6.求对函数ln(1+x )的n 阶导数解: y =ln(1+x ), y '=(1+x )1, y ''=-(1+x )2,y '''(-1)(-)(1-x )3, y (4)=(-1)(-2)(-3)(1+x )4, 一般地, 可得y (n )=(-1)(-2)⋅ ⋅ ⋅(n -1)(1-x )n nn x n )1()!1()1(1+--=-, 即 nn n x n x )1()!1()1()]1[ln(1)(+--=+-. 例7.求幂函数y =x (是任意常数)的n 阶导数公式.解: : y '=μx μ-1,y ''=μ(μ-1)x μ-2,y '''=μ(μ-1)(μ-2)x μ-3,y ( 4)=μ(μ-1)(μ-2)(μ-3)x μ-4, 一般地, 可得y (n )=μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n , 即 (x μ )(n ) =μ(μ-1)(μ-2) ⋅ ⋅ ⋅ (μ-n +1)x μ-n . 当μ=n 时, 得到(x n )(n ) = μ(μ-1)(μ-2) ⋅ ⋅ ⋅ 3 ⋅ 2 ⋅ 1=n ! . 而 (x n )( n +1)=0 .如果函数u =u (x )及v =v (x )都在点x 处具有n 阶导数, 那么显然函数u (x )±v (x )也在点x 处具有n 阶导数, 且(u ±v )(n )=u (n )+v (n ) .教 学 过 程§5 隐函数的导数以及由参数方程所确定的函数的导数 一、隐函数的导数显函数: 形如y =f (x )的函数称为显函数. 例如y sin x , y =ln x ++e x .隐函数: 由方程F (x , y )=0所确定的函数称为隐函数. 例如, 方程x +y 3 -1=0确定的隐函数为y 31x y -=. 如果在方程F (x , y )=0中, 当x 取某区间内的任一值时, 相应地总有满足这方程的唯一的y 值存在, 那么就说方程F (x , y )=0在该区间内确定了一个隐函数.把一个隐函数化成显函数, 叫做隐函数的显化. 隐函数的显化有时是有困难的, 甚至是不可能的. 但在实际问题中, 有时需要计算隐函数的导数, 因此, 我们希望有一种方法, 不管隐函数能否显化, 都能直接由方程算出它所确定的隐函数的导数来.例1.求由方程e y +xy -e =0 所确定的隐函数y 的导数. 解: 把方程两边的每一项对x 求导数得 (e y )'+(xy )'-(e )'=(0)', 即 e y ⋅ y '+y +xy '=0,从而 y e x yy +-='(x +e y ≠0). 例2.求由方程y 5+2y -x -3x 7=0 所确定的隐函数y =f (x )在x =0处的导数y '|x =0.解: 把方程两边分别对x 求导数得 5y ⋅y '+2y '-1-21x 6=0,由此得 2521146++='y x y . 因为当x =0时, 从原方程得y =0, 所以 21|25211|0460=++='==x x y x y .例3.求椭圆191622=+y x 在)323 ,2(处的切线方程.解: 把椭圆方程的两边分别对x 求导, 得 0928='⋅+y y x .从而 yx y 169-='.当x =2时, 323=y , 代入上式得所求切线的斜率43|2-='==x y k .所求的切线方程为)2(43323--=-x y , 即03843=-+y x .例4.求由方程0sin 21=+-y y x 所确定的隐函数y 的二阶导数.解: 方程两边对x 求导, 得。
《高等数学》(1-3章)教学教案(全)
高等数学教学教案第1章函数、极限与连续授课序号01(是一个给定的非空数集.若对任意的授课序号02的左邻域有定义,如果自变量为当0x x →时函数授课序号032n n ++)(1,2,n x =授课序号04授课序号05授课序号06高等数学教学教案第2章导数与微分授课序号01授课序号02授课序号03授课序号04高等数学教学教案第3章微分中值定理与导数的应用授课序号01授课序号02授课序号03!n +!n +()()!n x n +!n +!n +[cos (x θ+=21)2!!x n α-++)(1(1)!n n αθ-++()nx R x +授课序号04(1)在生产实践和工程技术中,经常会遇到求在一定条件下,怎样才能使“成本最低”、“利润最高”、“原材料最省”等问题.这类问题在数学上可以归结为建立一个目标函数,求这个函数的最大值或最小值问题.(2)对于实际问题,往往根据问题的性质就可以断定函数()f x 在定义区间内部存在着最大值或最小值.理论上可以证明这样一个结论:在实际问题中,若函数()f x 的定义域是开区间,且在此开区间内只有一个驻点0x ,而最值又存在,则可以直接确定该驻点0x 就是最值点,0()f x 即为相应的最值. 四.例题讲解例1.讨论函数32()29123f x x x x =-+-的单调增减区间. 例2.判断函数3()=f x x 的单调性.例3.设3,0,()arctan ,0.x x f x x x x ⎧-<=⎨≥⎩确定()f x 的单调区间.例4.证明:当0x >时,e 1x x >+. 例5.求函数32()(1)f x x x =-的极值.例6.求函数22()ln f x x x =-的极值.例7.求函数233()2f x x x =+在区间1[8]8-,上的最大值与最小值.例8.水槽设计问题有一块宽为2a 的长方形铁皮如图3.8所示,将宽所在的两个边缘向上折起,做成一个开口水槽,其横截面为矩形,问横截面的高取何值时水槽的流量最大(流量与横截面积成正比). 图3.8例9.用料最省问题要做一圆柱形无盖铁桶,要求铁桶的容积V 是一定值,问怎样设计才能使制造铁桶的用料最省? 例10.面积最大问题将一长为2L 的铁丝折成一个长方形,问如何折才能使长方形的面积最大.授课序号05授课序号06教学基本指标教学课题第3章第6节弧微分与曲率课的类型新知识课教学方法讲授、课堂提问、讨论、启发、自学教学手段黑板多媒体结合教学重点曲率的计算公式教学难点曲率的计算参考教材同济七版《高等数学》上册作业布置课后习题大纲要求了解曲率和曲率半径的概念,会计算曲率和曲率半径。
高等数学教案Word版第一章1
第一章函数与极限(4课时)Ⅰ授课题目(章节)1.1 映射与函数Ⅱ教学目的与要求:1. 理解集合、区间、邻域等基本概念,掌握集合的运算及构造法2. 理解函数的概念;明确函数定义有两个要素;依赖关系、定义域;掌握函数表达式的运用3. 了解函数的基本性质;知道判定诸性质的思路4. 掌握将复合函数由外及里分解为简单函数的方法Ⅲ教学重点与难点重点:理解集合、邻域的概念难点:函数的性质Ⅳ讲授内容一.集合1.集合概念集合是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素(简称:元)注:本课程中所有说的集合必须具有明确的界定,即对任何一个对象都可以按标准判断其是否属于所说的“总体”介绍子集、真子集、空集、集合的相等,等概念2. 集合的运算集合的基本运算有以下几种:并、交、差、直积介绍全集(基本集)与余集(补集)的概念3.区间和邻域设δ>0,点X0的δ领域是指满足X-X0 δ的一切实数X的集合。
X0称为改邻域的中心,δ成为该邻域的半径二.映射1. 定义:设X,Y是两个非空集合,如果存在一个法则f,使得对X中每个元素x,按法则f,在Y中有唯一确定的元素y与之对应,则称f为从X到Y的映射,记作f:X→Y、其中y称为元素x(在映射f下)的像,并记作f(x),即y=f(x),而元素x称为元素y(在映射f下)的一个原像注:映射是指两个集合之间的一种对应关系。
判断两集合之间的对应关系是否构成一个映射,关键是抓住两个要点:第一,对于第一个集合中的每一个元素,按照规则能否在另一个集合中找到一个与之对应的元素;第二,对于第一个集合中的每一个元素,第二个集合与之对应的元素是不是唯一的2. 逆映射定义:设fX到Y的单射,则由定义,对每个y∈Rf,有唯一的x∈X,适合f(x)=y。
于是,我们可定义一个从Rf到X的新映射g,即g:Rf→X,对每个y∈Rf,规定g(y)=x,这x满足f(x)=y。
这个映射g称为f的逆映射,记作f2.复合映射: -1,其定义域Df-1=Rf,值域Rf-1=X定义:设有两个映射g:X→Y1,f:Y2→Z,其中Y1⊂Y2,则由映射g和f可以定出一个从X到Z的对应法则,它将每个x∈X映成f[g(x)]∈Z。
《高等数学》教案第一章函数
《高等数学》教案第一章函数教学内容:本章主要介绍函数的基本概念、常见函数及其性质、函数的运算与初等函数的图形与性质。
通过本章的学习,学生能够掌握函数的定义和性质,了解各种常见函数的图像和性质,掌握函数的运算法则,进一步培养学生的数学思维和分析问题的能力。
教学目标:1.了解函数的定义,理解函数的自变量、函数值、定域和值域的概念。
2.掌握函数的画图方法,了解各种常见函数的图像特点。
3.掌握函数的运算法则,包括函数的四则运算、复合函数及其性质。
4.了解初等函数的性质,包括多项式函数、指数函数、对数函数、三角函数等。
教学重点:1.函数的基本概念和性质。
2.常见函数的图像和性质。
3.函数的运算法则。
教学难点:1.函数的复合与反函数的判断。
2.函数的图像的基本特点与应用。
教学过程:一、函数的定义及基本概念(20分钟)1.引入函数的概念,从实际问题引入函数的概念,解释函数的自变量、函数值、定域和值域等概念。
2.补充函数的符号表示及常用函数的例子。
二、常见函数的图像与性质(30分钟)1.多项式函数:直线函数、一次函数、二次函数等的图像与性质。
2.指数函数:指数函数的图像与性质,正指数函数与负指数函数的比较。
3.对数函数:对数函数的图像与性质,指数与对数函数的关系。
4.三角函数:正弦函数、余弦函数、正切函数的图像与性质。
三、函数的运算法则(40分钟)1.函数的四则运算:加减乘除的运算法则。
2.函数的复合与反函数:复合函数的定义和判断,反函数的定义和判断,举例说明。
四、初等函数的图形与性质(30分钟)1.函数的绘图:使用计算机或手工绘图工具,绘制常见函数的图像,观察图形特点。
2.性质的分析:利用函数的性质,分析函数图像在定域上的增减性、奇偶性、周期性等。
五、例题解析与练习(40分钟)1.结合所学的函数的性质,通过一些典型例题解析,让学生加深对函数的理解。
2.练习题:布置一些相关的函数练习题,巩固函数的知识。
六、小结与作业(10分钟)1.对本章的重点知识进行小结,并强调需要注意的要点。
高等数学上册教案
高等数学上册教案一、第一章:函数与极限1.1 函数定义:函数是一种关系,使一个集合(称为定义域)中的每个元素对应到另一个集合(称为值域)中的唯一元素。
性质:单调性、连续性、奇偶性、周期性等。
1.2 极限极限的定义:当自变量x趋近于某一值a时,函数f(x)趋近于某一值L,即lim(x →a)f(x)=L。
极限的性质:保号性、保不等式性、夹逼定理、单调有界定理等。
1.3 无穷小与无穷大无穷小的定义:当自变量x趋近于0时,函数f(x)趋近于0。
无穷大的定义:当自变量x趋近于某一正无穷大值时,函数f(x)趋近于正无穷大或负无穷大。
1.4 极限运算法则极限的四则运算法则:lim(x→a)(f(x)+g(x))=lim(x→a)f(x)+lim(x→a)g(x),lim(x →a)(f(x)g(x))=lim(x→a)f(x)lim(x→a)g(x),lim(x→a)(f(x)/g(x))=lim(x→a)f(x)lim(x→a)(1/g(x))。
极限的复合运算法则:lim(x→a)(f(g(x)))=lim(x→a)g(x)lim(x→a)f(g(x))。
1.5 极限存在的条件介值定理:如果函数f(x)在区间[a,b]上连续,且f(a)=L1,f(b)=L2,对于任何介于L1和L2之间的实数L,都存在c∈(a,b),使得f(c)=L。
单调有界定理:如果函数f(x)在区间[a,b]上单调且有界,lim(x→a)f(x)和lim(x →b)f(x)都存在且相等。
二、第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在x=a处的导数定义为lim(h→0)(f(a+h)-f(a))/h。
导数的几何意义:函数在某一点的导数等于该点处的切线斜率。
2.2 导数的计算法则基本导数公式:常数c的导数为0,x的导数为1,常数倍函数的导数等于常数乘以原函数的导数,幂函数的导数等。
和差、积、商的导数法则:和差函数的导数等于各函数导数的和差,积函数的导数等于原函数的导数乘以另一函数,除函数的导数等于除函数的导数乘以被除函数减去除函数,再除以被除函数的平方。
高一数学第一章的优秀教案实用1篇
高一数学第一章的优秀教案实用1篇高一数学第一章的优秀教案 1(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。
(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的`含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。
理解集合与元素的关系。
【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(__ 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。
【问题6】例1的讲解。
同学们能用列举法表示不等式__73的解集吗?【问题7】例2的讲解。
请同学们思考课本第6页的思考题。
[设计意图] 帮助学生在表示具体的集合时,如何从列举法与描述法中做出选择。
高等数学上册教案
高等数学上册教案一、前言1. 教材版本:同济大学数学系编《高等数学》(第七版)2. 教学目标:通过本课程的学习,使学生掌握高等数学的基本概念、理论和方法,培养学生的数学思维能力和解决问题的能力。
3. 适用对象:本科一年级学生二、教学内容1. 第一章:函数与极限1.1 函数的概念与性质1.2 极限的概念与性质1.3 极限的计算2. 第二章:导数与微分2.1 导数的定义与计算2.2 微分的概念与计算2.3 微分在实际问题中的应用3. 第三章:积分及其应用3.1 不定积分的概念与计算3.2 定积分的概念与计算3.3 积分的应用4. 第四章:级数4.1 数项级数的概念与性质4.2 幂级数的概念与计算4.3 傅里叶级数5. 第五章:常微分方程5.1 微分方程的基本概念5.2 线性微分方程的解法5.3 非线性微分方程的解法三、教学方法1. 讲授法:通过讲解高等数学的基本概念、理论和方法,使学生掌握相关知识。
2. 案例分析法:通过分析实际问题,引导学生将数学知识应用到实际中。
3. 练习法:通过布置课后习题,巩固所学知识,提高学生的解题能力。
四、教学评价1. 平时成绩:考察学生的出勤、作业和课堂表现。
2. 期中考试:检验学生对高等数学知识的掌握程度。
3. 期末考试:全面评估学生的学习成果。
五、教学计划1. 课时安排:共计32周,每周2课时。
2. 教学进度:按照教材的章节顺序进行教学,每个章节安排2-4周课时。
六、第六章:多元函数微分学6.1 多元函数的概念与性质6.2 多元函数的偏导数6.3 全微分6.4 多元函数的极值七、第七章:重积分7.1 二重积分的概念与计算7.2 三重积分的概念与计算7.3 重积分的应用八、第八章:向量代数与空间解析几何8.1 向量的概念与运算8.2 空间解析几何的基本概念8.3 线性方程组与矩阵九、第九章:常微分方程续9.1 线性微分方程组9.2 常系数线性微分方程的解法9.3 非线性微分方程简介十、第十章:数值计算方法简介10.1 数值计算的基本概念10.2 插值法与函数逼近10.3 数值积分与数值解微分方程十一、教学方法与评价(续)六、七、八、九、十章的教学方法与评价可参照第一至五章的做法,根据各章节的特点进行适当调整。
高等数学(上册)教案04 无穷小于无穷大、无穷小的比较
第1章 函数、极限与连续无穷小与无穷大【教学目的】:1. 了解无穷小与无穷大的定义;2. 掌握无穷小的性质;3. 掌握无穷小和无穷大的关系;4. 学会两个无穷小量的比较;5. 熟练使用等价无穷小计算极限。
【教学重点】:1. 掌握无穷小的性质;2. 学会两个无穷小量的比较;3. 熟练使用等价无穷小计算极限。
【教学难点】:1. 学会两个无穷小量的比较;2. 熟练使用等价无穷小计算极限。
【教学时数】:2学时【教学过程】:1.3.1 无穷小量1、无穷小量定义1 如果当0x x →(或∞→x )时,函数)(x f 的极限为0,那么就称函数)(x f 为0x x →(或∞→x )时的无穷小量,简称无穷小.记作()0lim 0=→x f x x (或()0lim =∞→x f x ) 注意:(1))(x f 是否为无穷小量与自变量的变化过程密切相关.0→x 时,x sin 是无穷小量,而2π→x 时,x sin 不是无穷小量. (2)无穷小量不是一个很小的数,而是极限为零的一个变量.特殊地,函数0)(≡x f ,它在自变量的任何变化过程中均为无穷小量.2、无穷小的性质性质1 有限个无穷小量的代数和是无穷小量.性质2 有限个无穷小量的乘积是无穷小量.性质3 有界函数与无穷小量的乘积是无穷小量.特别地,常量与无穷小量的乘积是无穷小量.例1 求xx x 1sin lim 0→. 解 因为0lim 0=→x x ,所以x 是0→x 时的无穷小;而|x 1sin |≤1,所以x 1sin 是有界函数,根据无穷小的性质3,可知01sin lim 0=→xx x .1.3.2 无穷大量定义2 如果当0x x →时,函数)(x f 的绝对值无限增大,那么称函数)(x f 为当0x x →时的无穷大量,简称无穷大.如果函数)(x f 为当0x x →时的无穷大,那么它的极限是不存在的.但为了便于描述函数的这种变化趋势,也称“函数的极限是无穷大”,并记作∞=→)(lim 0x f x x 例如:当0→x 时,x 1无限增大,所以当0→x 时x1是无穷大量.即∞=→x x 1lim 0. 定理1 在自变量的同一变化过程中,如果函数)(x f 是无穷大量,那么)(1x f 是无穷小量;反之,如果函数)(x f 是无穷小量,且)(x f ≠0,那么)(1x f 是无穷大量.1.3.3 无穷小的比较定义3 设βα,均为x 的函数0lim 0=→x x α,0lim 0=→βx x ,且0≠β(0x 可以是∞±或∞), (1) 如果0lim 0=→βαx x ,则称当0x x →时α是β的高阶无穷小,或称β是α的低阶无穷小,记作)(βαo =,(0x x →); (2) 如果C a x =→βαlim ,(0≠C ),则称当0x x →时α与β是同阶无穷小;特别地,当1=C 时,称当0x x →时α与β是等价无穷小,记作βα~(0x x →).常用的等价无穷小为:当x → 0时:x x ~sin ,x x ~tan ,x x ~arcsin ,x x ~arctan ,221~cos 1x x -, x e x ~1-,x x ~)1ln(+,x nx n 1~11-+. 例6 求x x e x x x 2sin )cos 1()1(lim 20--→.解 因为x →0时 x e x~1-, x 2sin ~2x , x cos 1-~x 221, 所以 1221lim 2sin )cos 1()1(lim 22020=⋅⋅=--→→x x x x x x e x x x x .【教学小节】:无穷小与无穷大是极限运算的重要工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:函数、极限与连续教学目的与要求1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。
2.解函数的奇偶性、单调性、周期性和有界性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形。
5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
所需学时:18学时(包括:6学时讲授与2学时习题)第一节:集合与函数一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作∅,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A⊆A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
记作A∪B。
(在求并集时,它们的公共元素在并集中只能出现一次。
)即A∪B={x|x∈A,或x∈B}。
⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。
记作A∩B。
即A∩B={x|x∈A,且x∈B}。
⑶、补集:①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。
通常记作U。
②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。
简称为集合A的补集,记作C U A。
即C U A={x|x∈U,且x A}。
集合中元素的个数⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
⑵、用card来表示有限集中元素的个数。
例如A={a,b,c},则card(A)=3。
⑶、一般地,对任意两个集合A、B,有card(A)+card(B)=card(A∪B)+card(A∩B)我的问题:1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C={x|x是参加四百米跑的同学}。
学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。
⑴、A∪B;⑵、A∩B。
2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。
3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。
试判断B是不是A的子集?是否存在实数a使A=B成立?4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?2、区间⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
区间的名称区间的满足的不等式区间的记号区间在数轴上的表示闭区间a≤x≤b[a,b]开区间a<x<b (a,b)半开区间a<x≤b或a≤x<b (a,b]或[a,b)以上我们所述的都是有限区间,除此之外,还有无限区间:[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
3、复合函数复合函数的定义:若y是u的函数y=f(u),而u又是x的函数:u=φ(x),且u=φ(x)的函数值的全部或部分在f(u)的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数y=f(u)及u=φ(x)复合而成的函数,简称复合函数,记作y=f(φ(x)),其中u叫做中间变量。
注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。
例题:函数y=arcsinx与函数u=2+x2是不能复合成一个函数的。
因为对于u=2+x2的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使y=arcsinu都没有定义。
4、初等函数⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。
下面我们用表格来把它们总结一下:函数名称函数的记号函数的图形函数的性质指数函数a):不论x为何值,y总为正数;b):当x=0时,y=1.对数函数a):其图形总位于y轴右侧,并过(1,0)点b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增.幂函数a为任意实数这里只画出部分函数图形的一部分。
令a=m/na):当m为偶数n为奇数时,y是偶函数;b):当m,n都是奇数时,y是奇函数;c):当m奇n偶时,y在(-∞,0)无意义.三角函数(正弦函数)这里只写出了正弦函数a):正弦函数是以2π为周期的周期函数b):正弦函数是奇函数且反三角函数(反正弦函数)这里只写出了反正弦函数a):由于此函数为多值函数,因此我们此函数值限制在[-π/2,π/2]上,并称其为反正弦函数的主值.⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.5、双曲函数及反双曲函数(补充)⑴、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述)函数的名称函数的表达式函数的图形函数的性质双曲正弦a):其定义域为:(-∞,+∞);b):是奇函数;c):在定义域内是单调增双曲余弦a):其定义域为:(-∞,+∞);b):是偶函数;c):其图像过点(0,1);双曲正切a):其定义域为:(-∞,+∞);b):是奇函数;c):其图形夹在水平直线y=1及y=-1之间;在定域内单调增;课后作业及小结:1、学习了集合概念与函数概念2、掌握复合函数与反函数计算方法。
作业:P9.1,7,8第二节:数列的极限1、引入⑴、数列:若按照一定的法则,有第一个数a1,第二个数a2,…,依次排列下去,使得任何一个正整数n对应着一个确定的数a n,那末,我们称这列有次序的数a1,a2,…,a n,…为数列.数列中的每一个数叫做数列的项。
第n项a n叫做数列的一般项或通项.注:我们也可以把数列a n看作自变量为正整数n的函数,即:a n=,它的定义域是全体正整数⑵、极限:极限的概念是求实际问题的精确解答而产生的。
例:我们可通过作圆的内接正多边形,近似求出圆的面积。
设有一圆,首先作圆内接正六边形,把它的面积记为A1;再作圆的内接正十二边形,其面积记为A2;再作圆的内接正二十四边形,其面积记为A3;依次循下去(一般把内接正6×2n-1边形的面积记为A n)可得一系列内接正多边形的面积:A1,A2,A3,…,An,…,它们就构成一列有序数列。
我们可以发现,当内接正多边形的边数无限增加时,An也无限接近某一确定的数值(圆的面积),这个确定的数值在数学上被称为数列A1,A2,A3,…,An,… 当n→∞(读作n趋近于无穷大)的极限。
注:上面这个例子就是我国古代数学家刘徽(公元三世纪)的割圆术。
2、数列极限的概念(1)、数列的极限:一般地,对于数列x1,x2,x3,…,x n,来说,若存在任意给定的正数ε(不论其多么小),总存在正整数N,使得对于n>N时的一切x n不等式都成立,那末就称常数a是数列x n的极限,或者称数x n收敛于a .记作:或注:此定义中的正数ε只有任意给定,不等式才能表达出x n与a无限接近的意思。
且定义中的正整数N与任意给定的正数ε是有关的,它是随着ε的给定而选定的。
(2)、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。
数列x n极限为a的一个几何解释:将常数a及数列x1,x2,x3,…,x n在数轴上用它们的对应点表示出来,再在数轴上作点a 的ε邻域即开区间(a-ε,a+ε),如下图所示:因不等式与不等式等价,故当n>N时,所有的点x n都落在开区间(a-ε,a+ε)内,而只有有限个(至多只有N个)在此区间以外。