万有引力与航天题型归纳 一中
高中物理万有引力与航天常见题型及答题技巧及练习题(含答案)
高中物理万有引力与航天常见题型及答题技巧及练习题 (含答案)一、高中物理精讲专题测试万有引力与航天1.据报道,一法国摄影师拍到 天宫一号”空间站飞过太阳的瞬间•照片中, 天宫一号”的天宫一号”正以速度v =7.7km/s 绕地球做匀速圆M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的(1 )求M 、N 间感应电动势的大小 E ; (2)在太阳帆板上将一只 “ 1.5V0.3W 的小灯泡与M 、N 相连构成闭合电路,不计太阳帆 板和导线的电阻•试判断小灯泡能否发光,并说明理由; (3) 取地球半径 R=6.4 X3km ,地球表面的重力加速度g = 9.8 m/s 2,试估算 天宫一号"距 离地球表面的高度 h (计算结果保留一位有效数字). 【答案】(1) 1.54V (2)不能(3) 4 105m【解析】 【分析】 【详解】(1) 法拉第电磁感应定律E=BLv代入数据得E=1.54V(2) 不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有匀速圆周运动解得gR 22太阳帆板轮廓清晰可见•如图所示,假设 周运动,运动方向与太阳帆板两端磁感应强度垂直于 v , MN 所在平面的分量B=1.0 X 10 T ,将太阳帆板视为导体.MmmgMm (R+ h)22v m 一 R+ hv 代入数据得【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基 础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生•本题难度不 大,但第二问很容易出错,要求考生心细,考虑问题全面.2 • a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动, a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为 R,表面的重力加速度为 g ,试求: (1) a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3 )若某吋刻两卫星正好同时通过赤道同 --点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1) 2 J 匚,16 (2)速度之比为2 ;【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得 运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比 ;由根据相距最远时相差半个圆周求解 ; 解:(1)卫星做匀速圆周运动,F 引F 向 ,对地面上的物体由黄金代换式 G*? mg十冃GMma 卫星 厂R R解得v a ,冒解得入16(2)卫星做匀速圆周运动,2mv ab 卫星b 卫星G 卫比(4R)2v 2 m ——R g3. —名宇航员抵达一半径为 R 的星球表面后,为了测定该星球的质量,做下实验:将一 个小球从该星球表面某位置以初速度v 竖直向上抛出,小球在空中运动一间后又落回原抛 出位置,测得小球在空中运动的时间为 t ,已知万有引力恒量为 G ,不计阻力,试根据题中所提供的条件和测量结果,求:(1) 该星球表面的"重力”加速度 g 的大小; (2) 该星球的质量M ;(3) 如果在该星球上发射一颗围绕该星球做匀速圆周运动的卫星,则该卫星运行周期 T 为多大?【答案】(1)g( 2)Mt【解析】 【详解】(1)由运动学公式得:t =2-g(2)质量为m 的物体在该星球表面上受到的万有引力近似等于物体受到的重力,则对该 星球表面上的物体,由牛顿第二定律和万有引力定律得:Gt(3)当某个质量为 m'的卫星做匀速圆周运动的半径等于该星球的半径 R 时,该卫星运行【点睛】重力加速度 g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.本题 要求学生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向 心力由万有引力提供.解得V b所以Va2 V b(3)最远的条件",口8解得t 2vR 2 Gt(3) T解得该星球表面的 重力”加速度的大小2vt解得该星球的质量为2vR 2 的周期T 最小,则由牛顿第二定律和万有引力定律解得该卫星运行的最小周期T = 2m M GV4 2m R T a4. 在月球表面上沿竖直方向以初速度 已知该月球半径为 R ,万有引力常量为 (1) 月球的密度; (2) 月球的第一宇宙速度。
万有引力与航天题型归纳一中
万有引力与航天题型总结题型一、求天体的质量(或密度)1.根据天体表面上物体的重力近似等于物体所受的万有引力.由mg=G 2RMm 得 G g R M 2=.式中M 、g 、R 分别表示天体的质量、天体表面的重力加速度和天体的半径.已知一名宇航员到达一个星球,在该星 球的赤道上用弹簧秤测量一物体的重力为G 1,在 两极用弹簧秤测量该物体的重力为G 2,经测量该星球的半径为R,物体的质量为m.求:该星球的质量.设星球的质量为M,物体在两极的重力等于万有引力,即 解得2.根据绕中心天体运动的卫星的运行周期和轨道半径.求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供.利用牛顿第二定律得222224Tmr mr r v m r Mm G πω===.若已知卫星的轨道半径r 和卫星的运行周期T 、角速度ω或线速度v .可求得中心天体的质量为G r GTr G rv M 3223224ωπ===例1、下列几组数据中能算出地球质量的是(万有引力常量G 是已知的)( CD )A.地球绕太阳运行的周期T 和地球中心离太阳中心的距离rB.月球绕地球运行的周期T 和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T 和轨道半径r[解析]要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量.而不能求出地球的质量.所以A 项不对.已知月球绕地球运行的周期和地球的半径.不知道月球绕地球的轨道半径.所以不能求地球的质量.所以B 项不对.已知月球绕地球运动的角速度和轨道半径.由22ωmr rMm G=可以求出中心天体地球的质量.所以C 项正确.由2224T mr r Mm G π=求得地球质量为2324GT r M π=.所以D 项正确. 例2. 天文学家新发现了太阳系外的一颗行星。
这颗行星的体积是地球的4.7倍.是地球的25倍。
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试万有引力与航天
1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t落回抛出点,已知该星球半径为R,引力常量为G,求:
(1)该星球表面的重力加速度;
(2)该星球的密度;
(3)该星球的“第一宇宙速度”.
(1)木星的质量M;
(2)木星表面的重力加速度 .
【答案】(1) (2)
【解析】
(1)由万有引力提供向心力
可得木星质量为
(2)由木星表面万有引力等于重力:
木星的表面的重力加速度
【点睛】万有引力问题的运动,一般通过万有引力做向心力得到半径和周期、速度、角速度的关系,然后通过比较半径来求解.
8.阅读如下资料,并根据资料中有关信息回答问题
(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.
a.因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T,半径为r0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M;
3.设地球质量为M,自转周期为T,万有引力常量为G.将地球视为半径为R、质量分布均匀的球体,不考虑空气的影响.若把一质量为m的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.
(1)若把物体放在北极的地表,求该物体对地表压力的大小F1;
(2)若把物体放在赤道的地表,求该物体对地表压力的大小F2;
2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤 是从高度为h处下落,经时间t落到月球表面.已知引力常量为G,月球的半径为R.
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)(20211108122947)
高考物理万有引力与航天常有题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.“天宫一号”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞翔器运转周期T,地球半径为R,地球表面的重力加快度为g,“天宫一号”围绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g(2)v gR (3)h3gT2 R2R 4 GR42【分析】(1)在地球表面重力与万有引力相等:Mmmg ,GR2M M地球密度:V 4 R33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mg m v2R v gR(3)天宫一号的轨道半径 r R h,Mm h 42据万有引力供给圆周运动向心力有:G2 m R2,R h T解得:h3gT 2 R2R242.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017 年 7 月 13 日朱诺号飞行器近距离拍摄的土星表面的气体涡旋( 大红斑 ) ,假定朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。
土星视为球体,已知土星质量为M,半径为R,万有引力常量为G. 求:1 土星表面的重力加快度g;23朱诺号的运转速度v ;朱诺号的运转周期T 。
GM GMR h 【答案】1 ? R 22 ?3 ?2 R hR hGM【分析】【剖析】土星表面的重力等于万有引力可求得重力加快度;由万有引力供给向心力并分别用速度与周期表示向心力可求得速度与周期。
【详解】Mm(1)土星表面的重力等于万有引力:GmgGM可得 gR 2(2)由万有引力供给向心力:Mm mv 2 Gh)2R h( RGM可得: vhR(3)由万有引力供给向心力:GMm m R h ( 2)2( R h) 2T可得:T 2R h R hGM3. 如下图是一种丈量重力加快度 g 的装置。
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)含解析
高考物理万有引力与航天常有题型及答题技巧及练习题( 含答案 ) 含分析一、高中物理精讲专题测试万有引力与航天1.如下图,宇航员站在某质量散布平均的星球表面一斜坡上P 点沿水平方向以初速度v0抛出一个小球,测得小球经时间 t 落到斜坡上另一点 Q,斜面的倾角为α,已知该星球半径为 R,万有引力常量为 G,求:(1)该星球表面的重力加快度;(2)该星球的质量。
2v0 tan2v0 R2tan【答案】(1)g(2 )t Gt【分析】【剖析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,依据平抛运动的规律求出星球表面的重力加快度;依据万有引力等于重力争出星球的质量;【详解】(1)依据平抛运动知识可得y 1gt22gttanv0t2v0x2v0 tan解得 gtGMm(2)依据万有引力等于重力,则有R2mggR22v0 R2tan解得MG Gt2.一宇航员站在某质量散布平均的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为,求:R G(1)该星球表面的重力加快度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)v2v0 R t2πRGt t【分析】(1) 依据竖直上抛运动规律可知,小球上抛运动时间2v0 tg可得星球表面重力加快度: g 2v0.tGMm(2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mg得:M gR 22v0 R2G Gt由于V 4 R 33则有:M3v0V2πRGtR2(3)重力供给向心力,故该星球的第一宇宙速度v2mg mR2v0R v gRt【点睛】此题主要抓住在星球表面重力与万有引力相等和万有引力供给圆周运动向心力,掌握竖直上抛运动规律是正确解题的重点.3.经过逾 6 个月的飞翔,质量为 40kg 的洞察号火星探测器终于在北京时间2018 年 11 月27 日 03: 56 在火星安全着陆。
高考物理万有引力与航天试题类型及其解题技巧及解析
高考物理万有引力与航天试题类型及其解题技巧及解析一、高中物理精讲专题测试万有引力与航天1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度v ==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMT h R π=- 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-3.如图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内.已知地球自转角速度为0ω ,地球质量为M ,B 离地心距离为r ,万有引力常量为G ,O 为地球中心,不考虑A 和B 之间的相互作用.(图中R 、h 不是已知条件)(1)求卫星A 的运行周期A T (2)求B 做圆周运动的周期B T(3)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)02A T πω=(2)32B rT GM=3)03t GM r ω∆=-【解析】【分析】 【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得: 32B r T GMπ= (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆= 解得:03t GM r ω∆=- 点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.4.在物理学中,常常用等效替代、类比、微小量放大等方法来研究问题.如在牛顿发现万有引力定律一百多年后,卡文迪许利用微小量放大法由实验测出了万有引力常量G 的数值,如图所示是卡文迪许扭秤实验示意图.卡文迪许的实验常被称为是“称量地球质量”的实验,因为由G 的数值及其它已知量,就可计算出地球的质量,卡文迪许也因此被誉为第一个称量地球的人.(1)若在某次实验中,卡文迪许测出质量分别为m 1、m 2相距为r 的两个小球之间引力的大小为F ,求万有引力常量G ;(2)若已知地球半径为R ,地球表面重力加速度为g ,万有引力常量为G ,忽略地球自转的影响,请推导出地球质量及地球平均密度的表达式.【答案】(1)万有引力常量为212Fr G m m =.(2)地球质量为2R gG,地球平均密度的表达式为34g RG ρπ=【解析】 【分析】根据万有引力定律122m m F Gr =,化简可得万有引力常量G ;在地球表面附近的物体受到重力等于万有引力2MmG mg R =,可以解得地球的质量M ,地球的体积为343V R π=,根据密度的定义M Vρ=,代入数据可以计算出地球平均密度. 【详解】(1)根据万有引力定律有:122m m F Gr = 解得:212Fr G m m =(2)设地球质量为M ,在地球表面任一物体质量为m ,在地球表面附近满足:2MmGmg R = 得地球的质量为: 2R gM G =地球的体积为:343V R π=解得地球的密度为:34gRGρπ=答:(1)万有引力常量为212Fr G m m =.(2)地球质量2R gM G=,地球平均密度的表达式为34gRGρπ=.5.我国预计于2022年建成自己的空间站。
最新高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)
最新高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)32()2BR hTgRp+= (2)23()tgRR hω=-+【解析】【详解】(1)由万有引力定律和向心力公式得()()2224BMmG m R hTR hπ=++①,2MmG mgR=②联立①②解得:()322BR hTR gπ+=③(2)由题意得()02Btωωπ-=④,由③得()23BgRR hω=+⑤代入④得()23tR gR hω=-+2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m=2.0 kg的小物块从斜面底端以速度9 m/s沿斜面向上运动,小物块运动1.5 s时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R=1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有 G ③ (3分) G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到: (2)根据万有引力等于重力:,则:,,代入数据得5.侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全部都拍摄下来,卫星在通过赤道上空时,卫星上的摄影像机至少应拍地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T .【答案】234()h R l Tgπ+=【解析】 【分析】 【详解】设卫星周期为1T ,那么:22214()()Mm m R h G R h T π+=+, ① 又2MmGmg R=, ② 由①②得312()h R T R gπ+=设卫星上的摄像机至少能拍摄地面上赤道圆周的弧长为l ,地球自转周期为T ,要使卫星在一天(地球自转周期)的时间内将赤道各处的情况全都拍摄下来,则12Tl R T π⋅=. 所以23124()RT h R l T Tgππ+==【点睛】摄像机只要将地球的赤道拍摄全,便能将地面各处全部拍摄下来;根据万有引力提供向心力和万有引力等于重力求出卫星周期;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再根据弧长与圆心角的关系求解.6.某宇航员乘坐载人飞船登上月球后,在月球上以大小为v 0的速度竖直向上抛出一物体(视为质点),测得物体上升的最大高度为h ,已知月球的半径为R ,引力常量为G 。
高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)及解析
高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hRt【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR, 解得该星球的第一宇宙速度为:2hRv gR ==2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .3.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。
高中物理万有引力与航天技巧小结及练习题及解析
高中物理万有引力与航天技巧小结及练习题及解析一、高中物理精讲专题测试万有引力与航天1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-=解得t =2.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)地球同步卫星的线速度大小.【答案】(1) GgR M 2= (2)v = 【解析】 【详解】(1)两极的物体受到的重力等于万有引力,则2GMmmg R= 解得GgR M 2=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则()2277GMmv m RR =而2GM gR =,解得v =.3.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
高考物理力学知识点之万有引力与航天知识点总复习附答案解析(1)
高考物理力学知识点之万有引力与航天知识点总复习附答案解析(1)一、选择题1.2017年6月19日,“中星9A”卫星在西昌顺利发射升空。
卫星变轨如图所示,卫星先沿椭圆轨道Ⅰ飞行,后在远地点Q改变速度成功变轨进入地球同步轨道Ⅱ,P点为椭圆轨道近地点。
下列说法正确的是()A.卫星在椭圆轨道Ⅰ运行时,在P点的速度等于在Q点的速度B.卫星在椭圆轨道Ⅰ的Q点加速度大于在同步轨道Ⅱ的Q点的加速度C.卫星在椭圆轨道Ⅰ的Q点速度小于在同步轨道Ⅱ的Q点的速度D.卫星耗尽燃料后,在微小阻力的作用下,机械能减小,轨道半径变小,动能变小2.图甲为“中星9A”在定位过程中所进行的10次调整轨道的示意图,其中的三条轨道如图乙所示,曲线Ⅰ是最初发射的椭圆轨道,曲线Ⅱ是第5次调整后的椭圆轨道,曲线Ⅲ是第10次调整后的最终预定圆轨道;轨道Ⅰ与Ⅱ在近地点A相切,轨道Ⅱ与Ⅲ在远地点B 相切。
卫星在变轨的过程中质量变化忽略不计,下列说法正确的是()A.卫星在轨道Ⅲ上运行的速度大于第一宇宙速度B.卫星在轨道Ⅱ上经过B点时的速度小于卫星在轨道Ⅲ上经过B点时的速度C.卫星在轨道Ⅰ上经过A点时的机械能大于卫星在轨道Ⅲ上经过B点时的机械能D.卫星在轨道Ⅱ上经过B点时的加速度小于卫星在轨道Ⅲ上经过B点时的加速度3.2015年7月25日,我国发射的新一代北斗导航卫星,全部使用国产微处理器芯片(CPU),圆了航天人的“中国芯”之梦,该卫星在圆形轨道运行速度v满足()A.v<7.9 km/sB.7.9 km/s<v<11.2 km/sC.11.2 km/s<v<16.7 km/sD.v>16.7 km/s4.如图所示,一颗人造卫星原来在椭圆轨道1绕地球E运行,在P点变轨后进入轨道2做匀速圆周运动.下列说法正确的是:()A.不论在轨道1还是轨道2运行,卫星在P点的速度都相同B.不论在轨道1还是轨道2运行,卫星在P点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量(动量P=mv,v为瞬时速度)5.太空——110轨道康复者”可以对卫星在太空中补充能源,使卫星的寿命延长10年或更长。
专题05 万有引力与航天问题(讲义)(解析版)(1)
专题05 万有引力与航天问题01专题网络·思维脑图02考情分析·解密高考03高频考点·以考定法04核心素养·难点突破05创新好题·轻松练习考点内容考情预测一般题型即求m 、ρ、g 、v 、ω、T 等 万有引力与航天问题在所有省份的高考题中属于必考题型,基本以每年各国发射卫星或天文观测数据为命题点。
对于一般性求m 、ρ、g 、v 、ω、T 等和卫星参数问题以及卫星发射变轨问题属于简单的公式化简命题,只需要熟悉万有引力等于向心力和地球表面的万有引力等于重力两个公式即可解决问题。
对于卫星追及和双星问题属于较难题型,需要进行复杂的公式运算,需重点记忆这两类问题的公式。
卫星和赤道上物体参数的大小问题卫星发射和变轨问题 卫星追及问题 双星问题学 习 目 标 1. 熟悉掌握一般性求m 、ρ、g 、v 、ω、T 等天体问题,将万有引力等于向心力和地球表面的万有引力等于重力两个公式联立即可解决问题。
2.理解卫星参数问题中的两类,一类是卫星与卫星的比较,一类是卫星与赤道上的物体进行比较。
3.掌握卫星变轨的规律,理解v 、a 、T 、E 在各个轨道上的大小关系,记住三大宇宙速度。
4.熟悉追及相遇问题的两类问题的计算公式。
5.熟悉掌握双星系统的计算公式,理解处理方法,以及记住双星的周期和角速度相等。
【典例1】(2023·广东·统考高考真题)如图(a )所示,太阳系外的一颗行星P 绕恒星Q 做匀速圆周运动。
由于P 的遮挡,探测器探测到Q 的亮度随时间做如图(b )所示的周期性变化,该周期与P 的公转周期相同。
已知Q 的质量为M ,引力常量为G 。
关于P 的公转,下列说法正确的是( )A .周期为2t 1−t 0B .半径为√GM (t 1−t 0)24π23C .角速度的大小为πt 1−t 0D .加速度的大小为√2πGM t 1−t 03【答案】B【详解】A .由图(b )可知探测器探测到Q 的亮度随时间变化的周期为T =t 1−t 0则P 的公转周期为t 1−t 0,故A 错误;B .P 绕恒星Q 做匀速圆周运动,由万有引力提供向心力可得GMm r 2=m 4π2T2r 解得半径为r =√GMT 24π23=√GM (t 1−t 0)24π23故B 正确; C .P 的角速度为ω=2πT =2πt 1−t 0故C 错误;D .P 的加速度大小为a =ω2r =(2πt 1−t 0)2⋅√GM (t 1−t 0)24π23=2πt 1−t 0⋅√2πGM t 1−t 03故D 错误。
高中物理万有引力与航天常见题型及答题技巧及练习题(含答案)
高中物理万有引力与航天常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R= 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.2.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)h R = 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:h R =3.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
高中物理万有引力与航天试题经典及解析
高中物理万有引力与航天试题经典及分析一、高中物理精讲专题测试万有引力与航天1. 如下图,质量分别为 m 和 M 的两个星球 A 和 B 在引力作用下都绕 O 点做匀速圆周运动,星球 A 和 B 二者中心之间距离为 L .已知 A 、B 的中心和 O 三点一直共线, A 和 B 分别在 O 的双侧,引力常量为 G .求:(1)A 星球做圆周运动的半径 R 和 B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L, r= m L,( 2) 2πL 3【答案】 (1) R=m Mm MG M m【分析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力供给,则有:GmM 4 2 4 2L 2mR2Mr2TT 可得R=M,又因为 LR rrm因此能够解得: M L , rm L ;RMmMm(2)依据( 1)能够获得 : GmM4 2 4 2 M L 2m2 Rm2MLTTm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不可以把它们的距离当作轨道半径 .2. 从在某星球表面一倾角为 的山坡上以初速度 v 0 平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,全部阻力不计,引力常量为G ,求:( 1)该星球表面的重力加快度的大小g( 2)该星球的质量 M .2v 0 tan2v 0 R 2 tan【答案】 (1)(2)tGt【分析】【剖析】(1)物体做平抛运动,应用平抛运动规律能够求出重力加快度.( 2)物体在小球的表面遇到的万有引力等于物体的重力,由此即可求出.【详解】(1)物体做平抛运动,水平方向:x v 0t ,竖直方向: y1 gt 22由几何关系可知:y gttan2v 0x解得: g2vtantMmmg(2)星球表面的物体遇到的重力等于万有引力,即:GR 2可得: MgR 2 2v 0R 2tanGGt【点睛】此题是一道万有引力定律应用与运动学相联合的综合题,考察了求重力加快度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律能够解题;解题时要注意“黄金代换”的应用.3. 已知地球同步卫星到地面的距离为地球半径的 6 倍,地球半径为 R ,地球视为平均球体,两极的重力加快度为g ,引力常量为 G ,求:( 1)地球的质量;( 2)地球同步卫星的线速度大小.【答案】 (1) gR 2 gRM(2)vG7【分析】【详解】(1)两极的物体遇到的重力等于万有引力,则GMmR2mg解得MgR 2 ;G(2)地球同步卫星到地心的距离等于地球半径的7 倍,即为 7R ,则GMmv 2 2m7R7R而 GMgR 2 ,解得gR v.74. 用弹簧秤能够称量一个相关于地球静止的小物体m 所受的重力,称量结果随处理地点的变化可能会有所不一样。
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)及解析
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试万有引力与航天1.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)地球同步卫星的线速度大小.【答案】(1) GgR M 2= (2)v = 【解析】 【详解】(1)两极的物体受到的重力等于万有引力,则2GMmmg R = 解得GgR M 2=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则()2277GMmv m RR =而2GM gR =,解得v =.2.宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速度增大到2倍,则抛出点.已知两落地点在同一水平面上,该星球的半径为R ,万有引力常量为G ,求该星球的质量M .【答案】223M Gt= 【解析】 【详解】两次平抛运动,竖直方向212h gt =,水平方向0x v t =,根据勾股定理可得:2220()L h v t -=,抛出速度变为2倍:2220)(2)h v t -=,联立解得:h =,g =,在星球表面:2Mm G mg R =,解得:2M =3.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)23024r M GT π=;22GM R c '=【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r T π⎛⎫= ⎪⎝⎭解得23024r M GT π=b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c '=4.假设在月球上的“玉兔号”探测器,以初速度v 0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R ,引力常数为G . (1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大? 【答案】(1)032v GRt π (2)02Rv t【解析】 【详解】(1)由匀变速直线运动规律:02gtv = 所以月球表面的重力加速度02v g t=由月球表面,万有引力等于重力得2GMmmg R= GgR M 2= 月球的密度03=2v M V GRtρπ= (2)由月球表面,万有引力等于重力提供向心力:2v mg m R=可得:02Rv v t=5.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R 和R 1,地球半径为r ,月球半径为r 1,地球表面重力加速度为g ,月球表面重力加速度为.求: (1)卫星在停泊轨道上运行的线速度大小;(2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得;(2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.6.我国预计于2022年建成自己的空间站。
高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)及解析
高考物理万有引力与航天解题技巧及经典题型及练习题( 含答案 ) 及分析一、高中物理精讲专题测试万有引力与航天1.“天宫一号”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞翔器运转周期T,地球半径为R,地球表面的重力加快度为g,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g(2)v gR (3)h3gT2 R2R 4 GR42【分析】(1)在地球表面重力与万有引力相等:Mmmg ,GR2M M地球密度:V 4 R33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mg m v2R v gR(3)天宫一号的轨道半径 r R h,Mm h 42据万有引力供给圆周运动向心力有:G2 m R2,R h T解得:h3gT 2 R2R242.从在某星球表面一倾角为的山坡上以初速度v0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R,全部阻力不计,引力常量为G,求:(1)该星球表面的重力加快度的大小g(2)该星球的质量 M.2v0 tan2v0 R2 tan【答案】 (1)(2)t Gt【分析】【剖析】(1)物体做平抛运动,应用平抛运动规律能够求出重力加快度.( 2)物体在小球的表面遇到的万有引力等于物体的重力,由此即可求出.【详解】(1)物体做平抛运动,水平方向:x v 0t ,竖直方向: y1 gt 22由几何关系可知:y gttan2v 0x解得: g2vtant(2)星球表面的物体遇到的重力等于万有引力,即:GMmmgR 2可得: MgR 2 2v 0R 2tanGGt【点睛】此题是一道万有引力定律应用与运动学相联合的综合题,考察了求重力加快度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律能够解题;解题时要注意“黄金代换”的应用.3.“嫦娥一号 ”在西昌卫星发射中心发射升空,正确进入预约轨道.随后, “嫦娥一号 ”经过变轨和制动成功进入环月轨道.以下图,暗影部分表示月球,假想飞船在圆形轨道 Ⅰ 上作匀速圆周运动,在圆轨道Ⅰ 上飞翔 n 圈所用时间为 t ,抵达 A 点时经过暂短的点火变速,进入椭圆轨道 Ⅱ,在抵达轨道 Ⅱ 近月点 B 点时再次点火变速,进入近月圆形轨道 Ⅲ,尔后飞船在轨道 Ⅲ 上绕月球作匀速圆周运动,在圆轨道 Ⅲ 上飞翔 n 圈所用时间为 .不考虑其余星体对飞船的影响,求:( 1)月球的均匀密度是多少?( 2)假如在 Ⅰ 、 Ⅲ 轨道上有两只飞船,它们绕月球飞翔方向同样,某时辰两飞船相距近来(两飞船在月球球心的同侧,且两飞船与月球球心在同向来线上),则经过多长时间,他们又会相距近来?【答案】( 1)192n 2mt1,2,3;( 2) t)( mGt 27n【分析】试题剖析:( 1)在圆轨道 Ⅲ 上的周期: T 3t,由万有引力供给向心力有:8nMm22G R 2mT R又:433192 n2 M3R ,联立得:GT32Gt2.(2)设飞船在轨道 I 上的角速度为1、在轨道 III 上的角速度为 3 ,有:2 1T1因此32设飞飞船再经过t 时间相距近来,有:3t﹣1t2m 因此有:T3mt,,).t(m 1 2 37n考点:人造卫星的加快度、周期和轨道的关系【名师点睛】此题主要考察万有引力定律的应用,开普勒定律的应用.同时依据万有引力供给向心力列式计算.4.奇特的黑洞是近代引力理论所预知的一种特别天体,探访黑洞的方案之一是观察双星系统的运动规律.天文学家观察河外星系大麦哲伦云时,发现了LMCX﹣3 双星系统,它由可见星 A 和不行见的暗星 B 构成.将两星视为质点,不考虑其余天体的影响,A、 B 环绕二者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G,由观察能够获得可见星 A 的速率 v 和运转周期T.(1)可见星 A 所受暗星 B 的引力 FA 可等效为位于 O 点处质量为 m′的星体(视为质点)对它的引力,设 A 和 B 的质量分别为 m1、 m2,试求 m′(用 m1、 m2 表示);(2)求暗星 B 的质量 m2 与可见星 A 的速率 v、运转周期T 和质量 m1 之间的关系式;(3)恒星演化到末期,假如其质量大于太阳质量ms 的 2 倍,它将有可能成为黑洞.若可54见星 A 的速率 v=2.7× 10 m/s ,运转周期T=4.7 π× 10 s,质量 m1= 6ms,试经过估量来判断暗星 B 有可能是黑洞吗?(G= 6.67× 10﹣11N?m2/kg2 , ms= 2.0× 103 kg)【答案】( 1m23m23v3T) m '2m1 m22 2 G (3)有可能是黑洞m1 m2【分析】试题剖析:(1)设 A、B 圆轨道的半径分别为r1、 r2,由题意知,A、B的角速度相等,为0,有: F A m102r1, F B m2 02 r2,又 F A F B 设 A、 B 之间的距离为r,又r r1r2由以上各式得,r m1m2r1①m2由万有引力定律得F A G m1 m2r 2将① 代入得 F A Gm1m23 m1m2 r12令 F A G m1 m 'm232 ②r12,比较可得m 'm1 m2(2)由牛顿第二定律有:G m1m'm1v2③r12r1又可见星的轨道半径r1vT④2由②③④得m232v3T m1m2 2 G(3)将m1 6m s代入m23v3T得m23v3T2 2 G22 G⑤m1m26m s m2代入数据得m232 3.5m s⑥6m s m2m23nm s 3.5m s设 m2nm s,(n>0)将其代入⑥式得,22m1m2 6 1⑦n可见,m232的值随 n 的增大而增大,令n=2 时得6m s m2nm s0.125m s 3.5m s612⑧n要使⑦式建立,则n 一定大于2,即暗星 B 的质量m2一定大于2m1,由此得出结论,暗星 B 有可能是黑洞.考点:考察了万有引力定律的应用【名师点睛】此题计算量较大,重点抓住双子星所受的万有引力相等,转动的角速度相等,依据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量特别多,在做题的时候,第一明确过程中的向心力,而后弄清楚各个物理量表示的含义,最后选择适合的公式剖析解题,此外这一块的计算量一是特别大的,因此需要仔细计算5. 利用万有引力定律能够丈量天体的质量.( 1)测地球的质量英国物理学家卡文迪许,在实验室里奇妙地利用扭秤装置,比较精准地丈量出了引力常量的数值,他把自己的实验说成是 “称量地球的质量 ”.已知地球表面重力加快度为 g ,地球半径为 R ,引力常量为 G .若忽视地球自转的影响,求地球的质量.( 2)测 “双星系统 ”的总质量所谓 “双星系统 ”,是指在互相间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球 A 和B ,以下图.已知A 、B 间距离为L ,A 、B 绕O 点运动的周期均为 T ,引力常量为G ,求A 、B 的总质量.(3)测月球的质量若忽视其余星球的影响,能够将月球和地球当作 “双星系统 ”.已知月球的公转周期为 T 1,月球、地球球心间的距离为 L 1.你还能够利用( 1)、( 2)中供给的信息,求月球的质量.【答案】( 1)gR 24 2 L 3 4 2L 13 gR 2 G ;( 2);( 3)GT 12.GT 2G【分析】 【详解】(1)设地球的质量为 M ,地球表面某物体质量为 m ,忽视地球自转的影响,则有Mm mg 解得: M =gR2 ;GR 2G( 2)设 A 的质量为 M 1,A 到 O 的距离为 r 1,设 B 的质量为 M 2 ,B 到 O 的距离为 r 2,依据万有引力供给向心力公式得:G M 1M 2M 1 ( 2)2 r 1 ,L 2TM 1M 2 22GL2M 2(T )r 2 ,又因为 L=r 1+r 2解得:M 142L 3M 2;GT 2(3)设月球质量为M3,由( 2)可知,M3M 4 2L132 GT1由( 1)可知, M = gR2 G解得: M34 2L13gR2 GT12G6.2019 年 4 月 20 日 22 时 41 分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为r 的匀速圆周运动。
高中物理万有引力与航天常见题型及答题技巧及练习题(含答案)
高中物理万有引力与航天常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)212v R v h= 【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R =,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为212v Rv h=3.地球同步卫星,在通讯、导航等方面起到重要作用。
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h 。
土星视为球体,已知土星质量为M ,半径为R ,万有引力常量为.G 求:()1土星表面的重力加速度g ; ()2朱诺号的运行速度v ; ()3朱诺号的运行周期T 。
【答案】()())(21?23?2GM R h R π+【解析】 【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。
【详解】(1)土星表面的重力等于万有引力:2MmG mg R = 可得2GMg R =(2)由万有引力提供向心力:22()Mm mv G R h R h=++可得:v =(3)由万有引力提供向心力:()222()()GMm m R h R h Tπ=++可得:(2T R h π=+3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) v 【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度02R v g R v h=='4.某双星系统中两个星体 A 、B 的质量都是 m ,且 A 、B 相距 L ,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期 T 要小于按照力学理论计算出的周期理论值 T 0,且= k () ,于是有人猜测这可能是受到了一颗未发现的星体 C 的影响,并认为 C 位于双星 A 、B 的连线中点.求: (1)两个星体 A 、B 组成的双星系统周期理论值; (2)星体C 的质量.【答案】(1);(2)【解析】 【详解】(1)两星的角速度相同,根据万有引力充当向心力知:可得:两星绕连线的中点转动,则解得:(2)因为C 的存在,双星的向心力由两个力的合力提供,则再结合:= k可解得:故本题答案是:(1);(2)【点睛】本题是双星问题,要抓住双星系统的条件:角速度与周期相同,再由万有引力充当向心力进行列式计算即可.5.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力与航天题型总结题型一、求天体的质量(或密度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由mg=G 2RMm 得 G g R M 2=.式中M 、g 、R 分别表示天体的质量、天体表面的重力加速度和天体的半径.已知一名宇航员到达一个星球,在该星 球的赤道上用弹簧秤测量一物体的重力为G 1,在 两极用弹簧秤测量该物体的重力为G 2,经测量该星球的半径为R,物体的质量为m.求:该星球的质量.设星球的质量为M,物体在两极的重力等于万有引力,即 解得2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量 卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得222224Tmr mr r v m r Mm G πω===.若已知卫星的轨道半径r 和卫星的运行周期T 、角速度ω或线速度v ,可求得中心天体的质量为G r GTr G rv M 3223224ωπ===例1、下列几组数据中能算出地球质量的是(万有引力常量G 是已知的)( CD )A.地球绕太阳运行的周期T 和地球中心离太阳中心的距离rB.月球绕地球运行的周期T 和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T 和轨道半径r[解析]要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A 项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由22ωmr rMm G=可以求出中心天体地球的质量,所以C 项正确.由2224T mr r Mm G π=求得地球质量为2324GT r M π=,所以D 项正确. 例2. 天文学家新发现了太阳系外的一颗行星。
这颗行星的体积是地球的4.7倍,是地球的25倍。
已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N ·m 2/kg 2,,由此估算该行星的平均密度为( D )A.1.8×103kg/m 3B. 5.6×103kg/m 3C. 1.1×104kg/m 3D.2.9×104kg/m 3 解析:本题考查天体运动的知识.首先根据近地卫星饶地球运动的向心力由万有引力提供2224TR m R Mm G π=,可求出地球的质量.然后根据343R M πρ=,可得该行星的密度约为2.9×104kg/m 3。
例3. 14年9月1日,美国“火星大气与挥发演化”探测器进入火星表面的轨道,周期为4.5天,试求出火星密度。
3.答案:理论值为0.49g/cm 3. ,2G r Mm G =.22Gm R G M =题型二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系ma Tmr mr r v m r Mm G ====222224πω 可得2323,4,,r GM a GM r T r GM r GM v ====πω 由此可得线速度v 与轨道半径的平方根成反比;角速度ω与轨道半径的立方的平方根成反比,周期T 与轨道半径的立方的平方根成正比;加速度a 与轨道半径的平方成反比.例1、两颗人造卫星A 、B 绕地球做圆周运动,周期之比为8:1:=B A T T ,则轨道半径之比和运动速率之比分别为( )A. 2:1:,1:4:==B A B A v v R RB. 1:2:,1:4:==B A B A v v R RC. 1:2:,4:1:==B A B A v v R RD. 2:1:,4:1:==B A B A v v R R[解析]由GMr T 324π=可得卫星的运动周期与轨道半径的立方的平方根成正比,由8:1:=B A T T 可得轨道半径4:1:=B A R R ,然后再由rGM v =得线速度1:2:=B A v v 。
所以正确答案为C 项.例2、如图1所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面的高度分别是R 和2R(R 为地球半 径).下列说法中正确的是( B )A.a 、b 的线速度大小之比是∶1 B.a 、b 的周期之比是1∶2 C.a 、b 的角速度大小之比是3 ∶4 D.a 、b 的向心加速度大小之比是9∶4例3.在美国东部时间2009年2月10日上午11时55分(北京时间11日0时55分),美国一颗质量约为560 kg 的商用通信卫星“铱33”与俄罗斯一颗已经报废的质量约为900 kg 军用通信卫星“宇宙2251”相撞,碰撞发生的地点在俄罗斯西伯利亚上空,同时位于国际空间站轨道上方434千米的轨道上,如图4-4-8所示.如果将卫星和空间站的轨道都近似看做圆形,则在相撞前一瞬间下列说法正确的是( D )A .“铱33”卫星比“宇宙2251”卫星的周期大B .“铱33”卫星比国际空间站的运行速度大C .“铱33”卫星的运行速度大于第一宇宙速度D .“宇宙2251”卫星比国际空间站的角速度小答案:D例4、发射人造卫星是将卫星以一定的速度送入预定轨道。
发射场一般选择在尽可能靠近赤道的地方,这样选址的优点是,在赤道附近 ( B )A .地球的引力较大B .地球自转线速度较大C .重力加速度较大D .地球自转角速度较大226解析:由于发射卫星需要将卫星以一定的速度送入运动轨道,在靠进赤道处的地面上 的物体的线速度最大,发射时较节能,因此B 正确。
题型三、地球同步卫星问题卫星在轨道上绕地球运行时,其运行周期(绕地球一圈的时间)与地球的自转周期相同,这种卫星轨道叫地球同步轨道,其卫星轨道严格处于地球赤道平面内,运行方向自西向东,运动周期为23小时56分(一般近似认为周期为24小时),由2224Tmr r Mm G π=得人造地球同步卫星的轨道半径km r 41024.4⨯=,所以人造同步卫星离地面的高度为km 4106.3⨯,利用r v m rMm G 22=可得它运行的线速度为3.07 km/s.总之,不同的人造地球同步卫星的轨道、线速度、角速度、周期和加速度等均是相同的.不一定相同的是卫星的质量和卫星所受的万有引力.人造地球同步卫星相对地面来说是静止的,总是位于赤道的正上空,其轨道叫地球静止轨道.例1、关于“亚洲一号”地球同步通讯卫星,下述说法正确的是(D )A.已知它的质量是1.24 t ,若将它的质量增为2.84 t ,其同步轨道半径变为原来的2倍B.它的运行速度为7.9 km/sC.它可以绕过北京的正上方,所以我国能利用其进行电视转播D.它距地面的高度约为地球半径的5倍,所以卫星的向心加速度约为其下方地面上物体的重力加速度的361 [解析]同步卫星的轨道半径是一定的,与其质量的大小无关.所以A 项错误.因为在地面附近绕地球做匀速圆周运动的卫星的速度近似等于7.9 km/ s ,而卫星的线速度随轨道半径的增大而减小,所以同步卫星的线速度一定小于7.9 km/s,实际计算表明它的线速度只有3.07 km/s 。
所以B 项错误.因同步卫星的轨道在赤道的正上方,北京在赤道以北,所以同步轨道不可能过北京的正上方.所以C 项错误.同步卫星的向心加速度2r GM a =,物体在地面上的重力加速度2R GM g =,依题意R r 6=,所g a 361=。
例2. [2014·天津卷] 研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( A )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大题型四、求天体的第一宇宙速度问题 在其他的星体上发射人造卫星时,第一宇宙速度也可以用类似的方法计算,即Rg rGM v ==,式中的M 、R 、g 分别表示某星体的质量、半径、星球表面的重力加速度. 例1、若取地球的第一宇宙速度为8 km/s ,某行星的质量是地球质量的6倍,半径是地球的1.5倍,这顺行星的第一宇宙速度约为( )A. 2 km/sB. 4 km/sC. 16 km/sD. 32 km/s[解析]由R v m RMm G 22=得==R GM v 8 m/s ,某行星的第一宇宙速度为 ≈=''='RGM R M G v 5.1616 m/s1.[2014·江苏卷] 已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( A )A .3.5 km/sB .5.0 km/sC .17.7 km/sD .35.2 km/s例2、如图是“嫦娥一号”奔月示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测.下列说法正确的是( C )A.发射“嫦娥一号”的速度必须达到第三宇宙速度B.在绕月圆轨道上,卫星周期与卫星质量有关C.卫星受月球的引力与它到月球中心距离的平方成反比D.在绕月圆轨道上,卫星受地球的引力大于受月球的引力解析 “嫦娥一号”要想脱离地球的束缚而成为月球的卫星,其发射速度必须达到第二宇宙速度,若发射速度达到第三宇宙速度,“嫦娥一号”将脱离太阳系的束缚,故选项A 错误;在绕月球运动时,月球对卫星的万有引力完全提供向心力,则,π2,π43222GM r T Tr m r Mm G ==即卫星周期与卫星的质量无关,故选项B 错误;卫星所受月球的引力2rMm G F =,故选项C 正确;在绕月圆轨道上,卫星受地球的引力小于受月球的引力,故选项D 错误.3.(2009·福建,14)“嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r ,运行速率为v ,当探测器在飞越月球上一些环形山中的质量密集区上空时( )A .r 、v 都将略为减小B .r 、v 都将保持不变C .r 将略为减小,v 将略为增大D .r 将略为增大,v 将略为减小解析:当探测器飞越月球上一些环形山中的质量密集区的上空时,相当于探测器和月球重心间的距离变小了,由万有引力定律F =Gm 1m 2r 2可知,探测器所受月球的引力将增大,这时的引力略大于探测器以原来轨道半径运行所需要的向心力,探测器将做靠近圆心的运动,使轨道半径略为减小,而且月球的引力对探测器做正功,使探测器的速度略微增加,故A 、B 、D 选项错误,C 选项正确.答案:C题型五、人造卫星的变轨问题发射人造卫星要克服地球的引力做功,发射的越高,克服地球的引力做功越多,发射越困难.所以在发射同步卫星时先让它进入一个较低的近地轨道(停泊轨道)A ,然后通过点火加速,使之做离心运动,进入一个椭圆轨道(转移轨道)B ,当卫星到达椭圆轨道的远地点时,再次通过点火加速使其做离心运动,进人同步轨道C 。