分式(基础)知识讲解
分式概念及意义知识讲解
分式的意义和性质一、分式的概念1、用A、B表示两个整式,A÷B可以表示成的形式,其中A叫做分式的分子,B叫做分式的分母,如果除式B中含有字母,式子就叫做分式。
这就是分式的概念。
研究分式就从这里展开。
2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。
分式的分子A可取任意数值,但分母B不能为零,因为用零做除数没有意义。
一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。
3.(1)分式:,当B=0时,分式无意义。
(2)分式:,当B≠0时,分式有意义。
(3)分式:,当时,分式的值为零。
(4)分式:,当时,分式的值为1。
(5)分式:,当时,即或时,为正数。
(6)分式:,当时,即或时,为负数。
(7)分式:,当时或时,为非负数。
三、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。
不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。
2、这个性质可用式子表示为:(M为不等于零的整式)3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。
4、分式变号法则的依据是分式的基本性质。
5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。
四、约分:1、约分是约去分子、分母中的公因式。
就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。
2、约分的理论依据是分式的基本性质。
3、约分的方法:(1)如果分式的分子和分母都是几个因式乘积的形式,就约去分子和分母中相同因式的最低次幂,当分子和分母的系数是整数时,还要约去它们的最大公约数。
例1,请说出下列各式中哪些是整式,那些是分式?(1)(2)(3)(4)(5)a2-a(6)。
分式(基础)知识讲解
分式的概念和性质(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件。
2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算。
【要点梳理】要点一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的。
分数是整式,不是分式,分式是两个整式相除的商式。
分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如a π是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy有区别,xy是整式,即只看形式,不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1。
分式有意义的条件:分母不等于零。
2.分式无意义的条件:分母等于零。
3.分式的值为零的条件:分子等于零且分母不等于零。
要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零。
(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零。
(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).要点诠释:(1)基本性质中的A、B、M表示的是整式.其中B≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0这个前提条件。
分式的知识点总结
分式的知识点总结一、分式的基本概念1. 分式的定义:分式是由一个整数(分子)与另一个非零整数(分母)用分数线(也称为分子线)相连所构成的数,通常表示为 a/b(a为分子,b为分母)。
2. 分式的分类:根据分母的情况,分式可以分为真分式、假分式和带分数。
真分式的分子比分母小,假分式的分子比分母大,带分数由整数部分和真分数部分组成。
3. 分式的性质:分式的分子和分母都可以乘以(或除以)同一非零数,而不改变其值;分式的分子和分母互换位置,得到的新分式称为倒数;两个分式相乘,分子相乘,分母相乘;两个分式相除,分子相除,分母相除。
这些性质都是分式运算中的基本规律,对于分式的计算和化简有着重要的作用。
二、分式的运算1. 分式的加减法:要进行分式的加减法,首先需要找到它们的公分母,然后分别对分子进行相应的加减操作,最后将结果化简为最简分式。
如果分式的分母不同,可以通过通分的方式将它们转化为相同分母后进行计算。
2. 分式的乘法:分式的乘法是将分式的分子相乘,分母相乘,然后将结果化简为最简分式。
如果有字数相同的多个分式相乘,也可以先将它们的分子和分母分别相乘,最后将所有结果相乘得到最终结果。
3. 分式的除法:分式的除法是将两个分式相除,即将第一个分式乘以第二个分式的倒数,然后化简为最简分式。
三、分式的应用1. 代数中的分式:在代数中,分式可以用来表示多项式中的系数和字母之间的比值关系,例如多项式的根、系数、因式分解等都涉及到分式的计算和化简。
2. 几何中的分式:在几何中,分式可以用来表示两个线段或面积的比值,例如在相似三角形或相似图形中,就可以利用分式来表示相似比例。
3. 概率中的分式:在概率中,分式可以用来表示事件的发生概率,例如事件发生的次数与总次数之间的比值就可以用分式表示。
综上所述,分式是数学中重要的概念之一,它不仅具有基本的定义和运算规律,还在各个数学领域中有着广泛的应用。
熟练掌握分式的相关知识和运算方法,对于学习代数、几何和概率等数学课程都具有重要的意义。
分式知识点六年级
分式知识点六年级分式,是数学中重要的一个概念,也是六年级的知识点之一。
在学习分式的过程中,同学们需要掌握其定义、基本性质和简单的运算规则。
下面就让我们一起来了解一下六年级学生需要掌握的分式知识点。
1. 分式的定义分式是由分子和分母组成的数学表达式,通常写作a/b的形式,其中a为分子,b为非零分母。
分子表示被分割的份数,分母表示整体被分成的份数。
2. 分式的基本性质(1)分式的值大小可以用分子除以分母的结果来表示。
当分子大于分母时,分式的值大于1;当分子等于分母时,分式的值等于1;当分子小于分母时,分式的值小于1。
(2)分式的分子和分母可以同时乘以一个非零数,而不改变分式的值。
(3)分式的分子和分母可以约分,即同时除以它们的最大公约数,得到一个与原分式值相等、但分子和分母互质的新分式。
3. 分式的运算(1)分式的加减运算:当分母相等时,我们只需要对分子进行加减运算,并保持分母不变;当分母不等时,我们需要先通分,将分数转化为同分母的分数,然后进行相应的运算。
(2)分式的乘除运算:两个分式的乘积等于它们的分子相乘得到新分子,分母相乘得到新分母;两个分式的除法等于第一个分式的分子乘以第二个分式的倒数得到新分子,分母乘以第一个分式的倒数得到新分母。
4. 分式的应用(1)分式的应用在生活中非常广泛,例如在比例问题中常常会遇到,比如“A和B的比例为3:5,其中A的数量为4个,求B的数量”等等。
(2)分式还可以用来解决部分面积、体积和长度的问题,比如“已知一个木桶的直径为4米,高为6米,求木桶的表面积”等等。
总结:分式作为数学中的一个重要概念,在六年级的学习中起着至关重要的作用。
通过掌握分式的定义、基本性质和简单的运算规则,同学们可以更好地解决各种实际问题,并提高数学解题的能力。
希望同学们在学习分式的过程中能够加强练习,不断巩固和拓展相关知识,为接下来高年级的学习奠定坚实的基础。
分式必考知识点
分式是数学中的一个重要知识点,也是许多学生在学习数学过程中较为困惑的部分。
本文将从基础概念、分式的基本运算、简化分式以及分式方程等方面,逐步介绍分式的必考知识点。
一、基础概念1.分式的定义:分式是指一个整体被分为若干等份,每份的大小用分母表示,总份数用分子表示。
分子在上,分母在下,二者之间用一条水平线隔开,如:1/2。
2.分子和分母:在分式中,分子表示被分割的整体中的一份,分母表示整体被分割成的份数。
3.分式的值:分式的值等于分子除以分母的结果。
例如,1/2表示整体被分为2份,其中的1份。
二、基本运算1.分式的加减法:分式的加减法要求分母相同,通过找到分式的最小公倍数,将分式的分母转换为相同的数,然后对分子进行加减。
例如,1/3 +1/4 = 4/12 + 3/12 = 7/12。
2.分式的乘法:分式的乘法要求将分子与分母分别相乘。
例如,1/2 ×2/3 = (1 × 2)/(2 × 3) = 2/6 = 1/3。
3.分式的除法:分式的除法可以转化为乘法的倒数运算。
将除法转换为乘法,并将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘。
例如,1/2 ÷ 2/3 = 1/2 × 3/2 = 3/4。
三、简化分式1.约分:将分式的分子与分母同时除以它们的最大公约数,得到一个等价的最简分式。
例如,4/8可以约分为1/2,因为4和8的最大公约数是4。
2.整数部分化为分数:将整数转化为分数形式,分子为整数,分母为1。
例如,2可以表示为2/1。
四、分式方程1.分式方程的定义:分式方程是含有分式的等式。
分式方程的求解过程与一元一次方程类似。
2.分式方程的求解步骤:–对分式方程的两边进行通分,将分式方程转化为整式方程。
–将方程两边的分式化为最简分式。
–化简方程两边的整式,并合并同类项。
–通过移项和合并同类项,将方程化为一元一次方程。
–求解方程,得到未知数的值。
分式基本类型 知识点
通分的难点是确定各分式的最简公分母,课本以分析的方式化解难点,帮助学生弄清最简公分母的构成和最简公分母的确定过程,教学时应给予足够的重视.一、分式的概念:(一)、分式的概念及特征:(二)、分式有意义的条件(三)、分式值为0①都具有分数的形式;②分母中都含有字母;③分母中字母的取值要使分母不为0二、分式的基本性质:通分约分:分式的通分也是对分式进行恒等变形,它的依据是分式的基本性质.通分时应注意两点:首先,通分必须依据分式的基本性质进行,不能改变原分式的值;其次,通常公分母应是最简的,否则会增大计算量,带来一些不必要的麻烦.通分时,若分母是单项式,则取各分母系数的最小公倍数与各字母因式的最高次幂的乘积,作为公分母,这样的公分母就是最简公分母;若分母是多项式,则先将各分母分解因式,然后确定最简公分母.2、(数学与生活)已知A、B两地相距s千米,王刚从A地往B地需要m小时,•赵军从B 地往A地,需要n小时,他们同时出发相向而行,需要几时相遇?混合运算:化简求值分式方程:分母中含有未知数的方程叫做分式方程。
在给出增根的定义后,再用问题(3)进一步引导学生探索产生增根的原因,感受解分式方程时验根的必要性.你认为在解分式方程的过程中,那一步变形可能引起增根1、解分式方程的一般步骤(1)去分母(2)去括号(3)移项,合并同类项(4)系数化为1(5)检验一、 分式何时有意义、值为01. 判断x 1,x 1-1,3b a +-,π2x ,12222,51,,-+++--x x mb a b a x x 中分式的有 函数11-=x y 中自变量x 的取值范围是函数xx y 11++=中自变量x 的取值范围是2. x 取什么值时,分式912--x x(1)无意义; (2)有意义; (3)值为0。
当x 时,分式31-+x x 有意义,当x 时,分式32-x x 无意义。
3、当x 取什么值时,下列分式有意义? (1)212x x - (2)7612-+x x (3)42132--x x4. 如果,0242=+--x x 则x=当x= 时,分式242+-x x 的值是0若分式112+-x x 的值为0,则x 的取值为( )A 、1=xB 、1-=xC 、1±=xD 、无法确定当m = 时,分式23)3)(1(2+---m m m m 的值为零当a=2时,是否存在x= ,22xa -+x a 的值为05. 当a _________________时,分式132+-a a 的值是正数 x = 时,分式232-+x x 的值为正数二、分式的基本性质:1. 通分:222123,61,862x x xx x x x -+--++-2. 若11132-++=--x Bx A x x ,求A 、B 2、对于分式11x + 的变形永远成立的是( )A.1212x x =++; B.21111x x x -=+-; C.2111(1)x x x +=++; D.1111x x -=+- 3、下列各式正确的是( )A 、11++=++b a x b x aB 、22x y x y = C 、()0,≠=a ma na m n D 、am a n m n --= 4、将分式12x-y x 5 +y 3 的分子和分母中的各项系数都化为整数,应为(1)()aba b =(2)b a b a b a 22)(5.0+----=++ (3)())0(,10 53≠=a axy xy a (4) ()1422=-+a a 如果把分式yx x+2中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、缩小3倍 C 、缩小6倍 D 、不变如果把分式yx x +22中的x 和y 都扩大3倍,那么分式的值( )A 、扩大3倍B 、缩小3倍C 、缩小6倍D 、不变 、在分式2223x yx y ++中,x ,y 的值都扩大100倍,则分式的值 。
分式主要知识点总结
分式主要知识点总结一、分式的定义分式是指一个整体被分成若干个相等的部分,其中的一部分就是分式。
分式通常写成a/b的形式,其中a为分子,b 为分母,b≠0,a和b都是整数。
例如,1/2 就是一个分式,表示整体被分成两个相等的部分,其中一个部分为1。
分式中的a和b都是有一定的含义,a表示被分的份数,b表示整体被分成的份数。
二、分式的化简对于分式a/b,如果a和b有公因数,那么可以对分式进行约分。
化简分式的目的是为了使得分式变得更简单,更易于处理。
例如,对于分式6/8,可以约分得到3/4。
当然,有时候还需要对分式进行扩分。
化简分式的过程就是一个约分和扩分的过程。
三、分式的加减乘除1. 分式的加减:对于分式a/b和c/d,要将它们相加或相减,需要找到它们的公共分母,并且将它们的分子进行操作。
具体来说,如果a/b和c/d的分母不同,就需要找到它们的最小公倍数,然后将分子分别乘以对方的分母,再进行操作。
例如,对于分式1/2 + 1/3,找到它们的最小公倍数为6,然后乘上对方的分母,得到3/6 + 2/6 = 5/6。
2. 分式的乘法:对于分式a/b和c/d,它们的乘积可以直接相乘得到ac/bd。
3. 分式的除法:对于分式a/b和c/d,它们的除法可以变成乘法,即a/b ÷ c/d = a/b × d/c。
四、分式方程的求解分式方程是指方程中含有分式的方程。
它的解法与一般方程类似,但是需要更多的化简和约分操作。
对于一些特殊的分式方程,有时候需要进行分式更相等的变形,或者加减乘除操作。
例如,对于分式方程1/(x+1) = 1/(x-1),可以将等式两边同时乘以(x+1)(x-1),并观察出一元二次方程的形式,再进行解方程的操作。
五、分式在实际问题中的应用分式在实际问题中有着广泛的应用。
它可以用来表示比率关系、部分到整体的比例关系,例如表示打折时的折扣率、比赛中的获胜概率等。
分式也可以用来表示关系式、方程式,例如用来表示质量分数、比热容、密度等。
分式知识归纳
第十六章分式【知识点1】分式1.分式的概念:形如(A、B是整式,且B中含有字母,B≠0)的式子叫做分式.其中,A叫分式的分子,B叫分式的分母.2.分式有意义的条件:因为两式相除的除式不能为零,即分式的分母不能为零,所以,分式有意义的条件是:分式的分母必须不等于零,即B≠0,分式有意义.3.分式的值为零的条件:分子等于0,分母不等于0,二者缺一不可.【知识点2】有理式有理式的分类:有理式【知识点3】分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为:(其中M≠0)【知识点4】约分和通分1.分式的约分:把一个分式的分子与分母中的公因式约去叫约分.2.分式的通分:把几个异分母的分式化成与原来的分式相等的同分母的分式叫通分.【知识点5】最简分式与最简公分母:约分后,分式的分子与分母不再有公因式,我们称这样的分式为最简分式.取各分母所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母.●知识链接:1分数的意义2.分数的基本性质3.分数基本性质的作用●中考考点本节的常考知识点有:1. 分式的有关概念,分式的意义,分式的值等于零.2. 分式的约分,分式的分子、分母的系数化整化正.3. 求分式的值以及分式与其它题的综合分式方程●学习目标1. 理解分式方程的定义,会解可化为一元一次方程的分式方程,了解产生增根的原因,并会验根.2. 列出分式方程,解简单的应用题.●重点难点重点:把分式方程转化为整式方程求解的化归思想及具体的解题方法.难点:(1)了解产生增根的原因,并有针对性地验根;(2)应用题分析题意列方程.●知识概要1. 分式方程的概念2. 解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;②解这个整式方程;③验根:把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 列分式方程解应用题的一般步骤:(1)审:审清题意;(2)设:设未知数;(3)找:找出等量关系;(4)列:列出分式方程;(5)解:解这个分式方程;(6)验:既要验证根是否为原分式方程的根,又要检验根是否符合题意;(7)答:写出答案.●知识链接解分式方程主要是将其转化成整式方程来解.解完方程要注意验根即是否使最简公分母为零.●中考视点: 本节内容在中考中经常出现,通常是以计算题或应用题的形式出现,并且多与其它章节如函数、方程等知识结合,因此,一定要注意含有字母系数的方程的解法以及可化为一元一次方程的分式方程的解法和应用,切记一定要验根.第二节、教材解读一、约分的根据、实质与关键约分的根据是分式的基本性质;约分的实质是将一个分式化成最简分式——分子与分母没有公因式的分式;约分的关键是确定一个分式的分子与分母的公因式.二、确定分子、分母公因式的方法分子与分母的公因式是:分子、分母的系数的最大公约数与相同因式的最低次幂的积.三、约分时应防止的三类错误1.有关分式的概念辨析,字母或分式的取值等问题,一般不用约分,否则会造成错误.2.约分时,分子的整体与分母的整体都要除以同一个(公)因式,当分子或分母是多项式时,要用分子、分母的公因式去除整个多项式,不能只除某一项,更不能减去某一项.等都是错误的.其中(1)中的分式已是最简分式,不需再约分;(2)的正确答案是.为此,必须牢记,只有当分子、分母都是乘积形式时才能约分.3.分式的分子与分母是同底数的幂做因式时,应约去最低次幂,切不可对指数进行约分.就犯了用指数6与2约分的错误,正确的结果是四、掌握解分式方程的步骤解分式方程的一般步骤是:一是方程两边同乘最简公分母,化分式方程为整式方程;二是解这个整式方程;三是检验.如:解方程: .第一步:方程两边都乘以x(x+6),得90x+540=60x;第二步:解这个整式方程,得x=-18;第三步:检验:把x=-18代入原方程的左、右两边有左边=右边,即-18是原分式方程的解.五、列分式方程解简单的实际应用问题列分式方程解简单的实际应用题的步骤简单地可分为:审、设、找、列、解、检、答七个步骤.其中关键是“列”,难点是“找”.如:如图,小明家到王老师家的路程为3km,王老师家到学校的路程为0.5km,为了使他能按时到校,王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20min,问王老师的步行速度及骑自行车的速度各是多少?解:第一步:审清题意;第二步:设王老师的步行速度为xkm/h,则骑自行车的速度为3xkm/h;第三步:王老师现在骑车所用的时间-原来步行所用时间=20min;第四步:根据题意,得;第五步:解这个方程:去分母,得3+3+0.5-1.5=x,即x=5;第六步:经检验x=5是原方程的解,所以3x=15;第七步:答:王老师的步行速度及骑自行车的速度分别为5km/h和15km/h.列分式方程解应用题一定要验根,还要保证其结果符合实际意义.第三节、错题剖析分式概念是本章学习的基础,由于学生的认知水平和经验的不足,特别容易出现一些常见的通病.下面将通过举例讲解,让同学们少走弯路,更快地学好分式的基础知识.同学们在学习过程中可能会犯以下错误.一、分式概念理解偏差【例1】下列各式是分式的是()错解1:显然B 式分母中含有字母,又是的形式,所以选B.错解2:显然A 、D 都是整式,经过同底数的幂相除化为3a也是整式,故选B.错解分析:前者误认为π是字母.其实π是常数;后者先约分再判断是不行的.正解:选C.反思:(1)把握判断分式的唯一标准是看分母中是否含有字母.分母中不含字母的是整式,分母中含有字母的是分式.(2)分式的判断是看形式,数的判断是看结果.如数的结果是3,所以是有理数不是无理数.二、分式的值为零的条件混乱【例2】当x 取何值时,的值为0?错解1:因为x无论等于2还是-2,分式的值为0,均无意义,故x没有值可取;错解2:x=±2错解分析:前者误认为分式的值为0属于无意义,后者却忽视分式的值为0的前提条件是分式有意义.正解:x=2.反思:弄清分式的值为零的条件有两个:(1)分子的值为零;(2)分母的值不为零.这两个条件必须同时具备才可.三、分式无意义的条件不清【例3】当x _____ 时,分式无意义.错解:因为当x=1时,分母的值为0,故x=1.错解分析:这个答案只考虑了分母为零时x=1,忽视了-1=0时x=±1都使分母为零.属于思维习惯上的问题.正解:x=±1.四、分式基本性质理解错误【例4】不改变分式的值,把分式的分子、分母中的各项系数都化为整数错解:错解分析:错解的分子、分母所乘的不是同一个数,而是两个不同的数,虽然把各项系数化成了整数,但分式的值改变了,违背了分式的基本性质.五、去分母时常数漏乘公分母【例5】解方程错解:方程两边都乘以(x-3),得2-x=-1-2,解这个方程,得x=5.错解分析:解分式方程需要去分母,根据等式的性质,在方程两边同乘以(x-3)时,应注意乘以方程的每一项.错解在去分母时,-2这一项没有乘以(x-3),另外,求到x=5没有代入原方程中检验.正解:方程两边都乘以(x-3),得2-x=-1-2(x-3),解得x=3检验:将x=3代入原方程,可知原方程的分母等于0,所以x=3是原方程的增根,所以原方程无解.六、去分母时,分子是多项式不加括号【例6】解方程错解:方程化为,方程两边同乘以(x+1)(x-1),得3-x-1=0,解得x=2.所以方程的解为x=2.错解分析:当分式的分子是一个多项式,去掉分母时,应将多项式用括号括起来.错解在没有用括号将(x -1)括起来,出现符号上的错误,而且最后没有检验.正解:方程两边都乘以(x+1)(x-1),得3-(x-1)=0,解这个方程,得x=4.检验:当x=4时,原方程的分母不等于0,所以x=4是原方程的根.七、方程两边同除可能为零的整式【例7】解方程 .错解:方程两边都除以3x-2,得,所以x+3=x-4,所以3=-4,即方程无解.错解分析:错解的原因是在没有强调(3x-2)是否等于0的条件下,方程两边同除以(3x-2),结果导致方程无解.正解:方程两边都乘以(x-4)(x+3),得(3x-2)(x+3)=(3x-2)(x-4),所以(3x-2)(x+3)-(3x-2)(x-4)=0.即(3x-2)(x+3-x+4)=0.所以7(3x-2)=0.解得x=.检验:当x=时,原方程的左边=右边=0,所以x=是原方程的解.第四节、思维点拨【例1】已知且a、b都不等于0,求的值【思考与分析】从题目的条件可以得出a、b的值代入要求的分式使得分式有意义即可求出分式值.得(a-b)·(a-2b)=0.所以a-b=0或a-2b=0;当a-b=0时,得a=b≠0,当a-2b=0时,得a=2b≠0,所以综上可得,【反思】本题是求含字母的分式,利用因式分解,两个因式的积为零,则可转化为两个因式中至少有一个为零,代入分式来求解,注意前提仍然是分式必须有意义.【思考与分析】可以灵活运用这个条件.①要求的分式也可以化成含的形式,整体代入即可;【反思】本题在求值过程中利用了分式的基本性质,并且采用多种方法来利用已知条件使问题简化.【例3】供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果同时到达.已知抢修车的速度是摩托车的速度的1.5倍,求这两种车的速度.解题思路一:寻求时间上的相等关系建立方程【解法1】:设摩托车的速度为x千米/时,则抢修车的速度为1.5x千米/时.根据题意得:解得x=40,经检验,x=40是原方程的根.所以1.5x=1.5×40=60答:摩托车的速度为40千米/时,抢修车的速度为60千米/时.解题思路二:寻求速度之间的相等关系建立方程【解法2】设摩托车行30千米所用的时间为x小时,则抢修车所用的时间为(x -)小时,根据“抢修车的速度是摩托车速度的1.5倍”得:解题思路三:寻求路程之间的相等关系建立方程【解法3】设摩托车行30千米所用的时间为x 小时,则抢修车行驶30千米所用的时间为(x-)小时,摩托车的速度为千米/时,抢修车的速度为×1.5千米/时,根据“抢修车的速度×抢修车所用的时间=总路程30千米”得:(×1.5)(x-)=30解题思路四:列方程组解答【解法4】设摩托车与抢修车每小时分别行驶x千米、y千米,根据题意得方程组:(2、3、4解答过程略)【小结】题中含有多种关系时,列方程组可降低思维难度.前面的各种解法中,若把所推出的代数式用新的未知数替换,则都能写成方程的形式.【例5】读下列一段文字,然后解答问题.已知:方程的解是;方程的解是;方程的解是;方程的解是.【探究一】观察上述方程及其解,再猜想方程的解,并写出检验过程.解:猜想方程的解是.检验:当x=11时,左边=,右边=,所以左边=右边;当x =时,左边=右边=.∴x1=11,x2=是方程的解.【探究二】你能猜想方程(n为正整数)的解吗?若能请你验证你的猜想是否合理?解:猜想方程(n 为正整数)的解是x1=n+1,x2=-.检验:当x=n+1时,左边=n+1-=,右边=,所以左边=右边;当x=-时,左边=右边=.∴x1=n+1,x2=-是方程x -=(n为正整数)的解.【例6】解方程【思考与分析】因为方程中有分母,所以首先应该去掉分母,只是注意,原来整式方程中分母全是数,而分式方程中则是代数式,因而去分母时应该两边同乘一个代数式,这里应该同乘x(x-1).解:去分母,两边同乘以x(x-1)得:x(x-1)-x(x-1)·=·x(x-1)化简得:x2-x-(x2-1)=2x去掉括号,得:3x=1,∴ x=检验:把x=代入原方程的各个分母,都不为0.∴x=是原方程的解.【反思】(1)在解分式方程时,因乘的是同一个代数式,最后求得的根可能使同乘的这个代数式的值为0,这样的根叫做增根,但不是每个方程都有增根.因此,在解完方程之后,一定要检验方程的根,如果是增根,就标出来并且舍去.(2)在去分母时,同乘的是一个代数式,在题目中,可能有的项没有分母,这种项也同样要乘以这个代数式.第五节、竞赛数学当题目中的未知数具有对称关系时,应用基本对称式:x+y=a,xy=b,进行替换,可使解题过程简化.现以部分竞赛题为例,介绍这种解题技巧在求分式值中的妙用.【思考与分析】首先看题目给的条件似乎没有必然的联系,但是经过化简含有可以利用建立联系解答.【例2】如果a2-3a+1=0,那么,的值是 ______ .【思考与分析】这题看起来没有对称关系,但是不要急,我们先从题目中所给的已知条件入手,可解出一个关于a 的新的关系式再将分别换元为x、y,所求的分式经过化简也可以用含有x、y的分式来求.【思考与分析】题目看起来很麻烦,无从下手,大家仔细观察已知分式与要求分式的对应项系数的关系,就可以知道将已知的等式取倒数就可以找到相应的关系了.【例4】若a、b 都是正实数,且求的值【思考与分析】由已知条件入手,可以得出这样就与要求的分式建立联系了,设可求出x与y的关系,代入要求的分式来解即可.【例5】证明恒等式【思考与分析】本题两边如果通分,可见其分母相同,若等式成立,则分子也必定相等,但这样运算量太大;如果把左边的分子灵活变形如b-c=(a-c)-(a-b)则可简化运算.证明: 原式左边=故原等式成立.【例6】使实数a、b、c 满足,求证:.【思考与分析】这里999是奇数,从题目的格式看,应该是对一般的奇数都成立,因而可以考虑由一般到特殊的证明方法.证明: ∵,故(bc+ca+ab)·(a+b+c)=abc.整理可得: (a+b)(b+c)(c+a)=0,故a=-b或b=-c或c=-a.不妨设a=-b,则a2n-1=-b2n-1,令n=500代入上式可得.小结:分式证明题形式多种多样,一般的证明途径有:(1)由繁到简,即从等式较复杂的一边入手,经过配方因式分解换元降次等多种变形,逐步推到另一边;(2)将等式两边同时变形为同一个代数式,从而推出相等的结果.第六节、本章训练基础训练题分式一、细心填一填(共7题,每题4分,共28分)1.x=3 分式的根(填“是”或“不是”).2.当x= 时,分式与的值相等.3.试写出一个解为x=2的分式方程 .4.分式方程的根是 .5.已知分式的值是零,那么x的值是 .6.若有增根,则增根为 .7. 在实数范围内定义一种运算“*”,其规则为,根据这个规则,方程5*(x-1)=3的解为 .二、精心选一选(共9题,每小题5分,共45分)8.下列方程中是分式方程的是()A. B. C.y+2=3 D.9.把分式方程的两边同时乘以(x-2),约去分母,得()A.1+(1-x)=x-2B.1+(1-x)=1C.1-(1-x)=x-2D.1-(1-x)=110.要把分式方程化为整式方程,方程两边需要同时乘以()A.2x-4B.xC.2(x-2)D.2x(x-2)11.方程的解是()A.1B.-1C.±1D.212.已知,用含x的代数式表示y,得()A.y=2x+8B.y=2x+10C.y=2x-10D.y=2x-813.关于x 的方程的解为x=1,则a等于()A.1B. -3C.-1D. 314.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A. B.C. D.15.用换元法解分式方程,如果设,则原方程可变形为()A. B. C.D.16.下列关于x的方程,其中不是分式方程的是()A. B. C.D.三、耐心做一做(第17题12分,第18题15分)17.解方程:18.八年级(2)班的学生周末乘汽车到游览区游览,游览区距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是慢车速度的1.5倍,求慢车的速度.分式方程一、精心填一填(共8题,每小题4分,共32分)二、细心选一选(共8题,每小题5分,共40分)14.若代数式在实数范围内有意义,则x的取值范围为().A.x>0B.x≥0C.x≠0D.x≥0且x≠116.已知两个分式其中x≠±2,则A与B的关系是().A. 相等B. 互为倒数C. 互为相反数D. A大于B三.解答题(第17题12分,第18题16分)17.化简求值:其中x=-3.18.请将下面的代数式尽可能化简,再选择一个你喜欢的数(要合适哦!)代入求值:提高训练题4.解方程5.解方程:6.甲、乙两班参加绿化校园活动.已知乙班每小时比甲班多种2棵树,甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两班每小时各种多少棵树?7.已知x2-5x-2000=0,则代数式的值是().A.2001B.2002C.2003D.20048.化简(=.9.已知,则的值为.10.解关于x的方程:ax-b=2x-3.强化训练题一、精心选一选1.下列代数式中:是分式的有()A. 1个B. 2个C. 3个D. 4个2.下列判断中,正确的是()A.分式的分子中一定含有字母B.当B=0时,分式的值为0C.当A=0,B≠0时,分式的值为0(A、B为整式)D.分数一定是分式3.分式中,当x=-a时,下列结论正确的是()A.分式的值为零B.分式无意义C.若a≠-时,分式的值为零D.若a≠时,分式的值为零4.分式中的字母x、y都扩大为原来的4倍,则分式的值()A.不变B.扩大为原来的4倍C.扩大为原来的8倍D.缩小为原来的5.不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以()A.10B.9C.45D.906.下列各分式中,最简分式是()二、细心填一填8.当x 时,分式有意义.9.当x 时,分式的值为零.10.当a=时,分式无意义.11.约分:=.三、耐心做一做12.当x 为何值时,分式的值为负?13.把化为整数系数.14.不改变分式的值,把下式分子、分母中最高次项的系数变为“+”号:.四、应用题15.2008年夏季奥运会将在北京举行.为了支持北京申奥成功,红、绿两支宣传北京申奥万里行的车队在距北京3000千米处会合,并同时向北京进发.绿队走完2000千米时,红队走完1800千米,随后,红队的速度提高20%,两车队继续同时向北京进发.(1)求红队提速前红、绿两支车队的速度比.(2)红、绿两支车队能否同时到达北京?说明理由.(3)若红、绿两支车队不能同时到达北京,那么哪支车队先到达北京?并求出第一支车队到达北京时,两车队间的距离.综合训练题一、选择题(每题5分,共30分)1.下列分式中,一定有意义的是()2.如果分式中,x,y的值都变为原来的一半,则分式的值()A.不变B.扩大2倍C.缩小2倍D.以上都不对3.下列变形正确的是()4.下列运算正确的是()5.将分式的分子、分母各项系数都化为整数,正确的结果是()6.如果从一捆粗细均匀的电线上截取1米长的电线,称得它的质量为a,再称得剩余电线的质量为b,那么原来这捆电线的总长度是()二、填空题(每题5分,共30分)7.当x= 时,分式的值为零.8.分式约分的结果是 .9.计算:= .10.一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要小时.11.代数式中x的取值范围是 .12.方程=1的解是 .三、解答题(共40分)13.(11分)计算:-x14.(13分)计算,并把负指数化为正:(2mn-2)-3(-m-2n-1)-215.(16分)甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城,已知A、C两城的距离为450km,B、C两城的距离为400km,甲车比乙车的速度快10km/h,结果两辆车同时到达C城,求两车的速度.。
分式知识点大全
分式最简分式:分子与分母没有没有公因式的分式。
分式。
同分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母)。
二、分式的运算:1、分式乘分式,用分子的积作为积的分子,分母的积作为分母。
如果得到的不是最简分式,应该通过约分化简。
2、分式除以分式,把除式的分子、分母颠倒位置后。
与被除式相乘。
3、分式的乘方,就是把分子、分母分别进行乘方。
4、同分母的分式相加减,分母不变,把分子相加减。
5、异分母的分式相加减,先通分,变为同分母的分式,然后再加减。
三、可化为一元一次方程的分式方程:1、分式方程:分母中含有未知数的方程叫做分式方程。
2、解分式方程:(1)解分式方程的最基本思想是将分式方程化为整式方程,具体做法就是去分母,即方程俩边同乘以最简公分母。
(2)解分式方程的步骤:A 找最简公分母:当分母是多项式时,先分解因式,找出最简公分母B 去分母:方程两边同乘以最简公分母,约去分母,化成整式方程。
C 解整式方程D 验根:把所求得的整式方程的解代入最简公分母,若最简公分母的值不为零,则整式方程的解是原分式方程的解;否则这个解不是原分式方程的解(是原分式方程的增根)。
3、列分式方程解应用题的一般步骤1 审题2 设未知数3 列方程 4解方程 5检验 6 作答四、零整数幂与负正指数幂:1、零指数幂任何不等于零的数的零次幂都等于一。
即2a =1(0≠a) 对他的理解注意两点:(1)在计算n m a a ÷时,按同底数幂的除法,原式=n m a ⌝=0a ,而被除数和除数相等,所以原式=1,所以规定0a =1(2)因为除数m a ≠0,所以0≠a2、负整指数幂任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数,即n a ⌝=n a 1(0≠a )3、用科学计数法表示绝对值小于1的数利用10的负整指数幂把一个绝对值较小的数表示成⨯a n ⌝10的形式,其中1≤|a |<10,n 是正整数;n 等于这个数的第一个有效数字前面零的个数(包括小数点前面的零)4、有效数字从左边第一个不为零的数字算起的所有数字。
第三章 《分式》基础知识小结—填空
第三章《分式》基础知识小结——填 空一、分式的有关概念:1、定义:整式A 除以整式B ,可以表示成BA 的形式,如果除式B 中含有 ,那么称BA 为分式。
2、分式有意义的条件:字母的取值必须使分母 ,例如:分式124x x +-,当 时,分式有意义。
分式无意义的条件:字母的取值必须使分母 ,例如:分式124x x +-,当 时,分式无意义。
3、分式值为0的条件:分式B A=0,必须 例如:分式211x x -+,当 时,分式值为0。
4、分式值为正数的条件:必须分子、分母同号,即 或 然后解不等式组。
分式值为负数的条件:必须分子、分母异号,即 或 然后解不等式组。
二、分式的基本性质:(重点)1、分式的基本性质: ,分式的值不变。
字母表示:A B= (M ≠0的整式)2、约分:把一个分式的分子和分母的 约去,这种变形我们称为分式的约分3、最简分式:分子与分母 的分式称为最简分式。
注意:⑴分式化简的要求,通常要使结果成为 或 。
⑵如果分式的分子或分母是多项式,应先将分子、分母分别 ,再约去公因式。
4、分式的符号法则: ⑴x y-=x y-=x y-; ⑵x y--=x y;注意:负号必须是整个分子和整个分母的负号!三、分式的运算:(重点) (一)、分式的乘除法:1、语言叙述:两个分式相乘, ;两个分式相除, 。
1、 字母表示:b d a c⨯= ;b d a c÷=注意:⑴分式的除法运算要转化为乘法运算;⑵式子中的a 、b 、c 、d 可以是单项式,也可以是多项式;若是多项式应先分解因式。
⑶分式乘法运算的结果能约分的一定要进行约分,把分式化为最简分式或整式。
分子A =0 分母B ≠0A >0B >0 A <0B <0A >0B <0 A <0B >0(二)、分式的加减法:1、同分母分式的加减法:同分母的分式相加减, ;字母表示:a b c c±= ;2、异分母分式的加减法:先 ,化成 的分式,然后再按同分母分式的加减法法则进行计算 字母表示:a cb d±= ;3、分式的通分:把 的分式化为 的分式,这一过程称为分式的通分。
分式的知识点
公因式 如32262464=÷÷=(公因式是2) b a b b b ab b ab 33322=÷÷=(公因式是b )y x y x y x y x y x y x y x y x +-=++-+=+-))(())(()(222最小公倍数=两数的乘积/最大公约(因)数, 解题时要避免和最大公约(因)数问题混淆例子6,9的最小公倍数是6×9÷3=18;4,6的最小公倍数是4×6÷2=12;3,4的最小公倍数是3×4=12 如23,32 通分得693233=⨯⨯,642322=⨯⨯(最小公分母是2×3=6)最小公分母,即分母的最小公倍数 a 3,b 2通分得ab b b a b 33=⨯⨯,aba ab a 22=⨯⨯(最小公分母是a ×b=ab ) d b a 23,mbc 2通分得dm b am md b m a 2233=⨯⨯,dm b cbd bd mb bd c 222=⨯⨯(d mb mb d b 32=⨯,不是最小公分母,d mb 2才是) 22y x x -,2)(y x y -, 注意))((22y x y x y x +-=- ,))(()(2y x y x y x --=-由此可得两式的最小分母是 ))()((y x y x y x +--,即通分得))()(())()(()(2y x y x y x xy x y x y x y x y x x +---=+--- ))()(())()(()(2y x y x y x y xy y x y x y x y x y +--+=+--+ 四、分式的运算1)分式的乘除用到的知识是约分,分式的加减用到的知识是通分 2)分式的加减要通分令分母相同,分子再进行相加减,得出结果后,看能否约分,假如能约分,则需约分,假如不能约分,则不需约分。
分式知识点
分式知识点一、分式定义形如AB,A、B是整式,B中含有未知数且B不等于0的式子叫做分式。
其中A叫做分式的分子,B叫做分式的分母。
二、分式的基本性质(1)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
(2)分式中的符号法则:分子、分母、分式本身同时改变两处的符号,分式的值不变。
三、最简分式一个分式的分子与分母没有公因式时,叫最简分式。
和分数不能化简一样,叫最简分数。
四、最简公分母(1)最简公分母的定义通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
(2)一般方法①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里。
②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂。
五、分式有、无意义的条件1、分式有意义的条件(1)分式有意义的条件是分母不等于零。
(2)分式无意义的条件是分母等于零。
(3)分式的值为正数的条件是分子、分母同时大于零。
(4)分式的值为负数的条件是分子、分母异号。
2、分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零。
注意:“分母不为零”这个条件不能少3、分式无意义的条件分式有意义的条件是分母等于零六、分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值。
在化简的过程中要注意运算顺序和分式的化简。
化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式。
最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式。
分数不能化简一样,叫最简分数。
七、分式的通分与约分通分(1)通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分。
(2)通分的关键是确定最简公分母。
①最简公分母的系数取各分母系数的最小公倍数。
分式的知识点总结
分式的知识点总结分式是数学中的一个重要概念,广泛应用于各个领域。
掌握分式的知识对于数学学习以及实际生活中的应用都具有重要意义。
本文将总结分式的相关概念、性质以及常见的运算方法,以帮助读者更好地理解和应用分式。
一、分式的基本概念分式由分子和分母两部分组成,用分数线隔开,分母不能为零。
分式可以表示一个有理数或未知数的比例关系。
通常表示为:a/b,其中a称为分子,b称为分母。
二、分式的类型1. 真分式:分式的分子小于分母的分式,例如:2/3。
2. 假分式:分式的分子大于等于分母的分式,例如:5/4。
3. 带分数:由整数和真分式组成的分数,例如:1 3/5。
三、分式的化简与约分化简分式是将分子和分母中的公因式约去,使得分子和分母没有其他公因式的过程。
约分是将分子和分母中的公因式约去,使得分子和分母互质的过程。
四、分式的运算1. 分式的加法和减法:分式的加法和减法的运算方法相同:①将分式化为通分分式;②对分子进行加、减运算,分母保持不变;③化简结果(如果需要)。
2. 分式的乘法:两个分式相乘时,将分子乘以分子,分母乘以分母,然后化简结果(如果需要)。
3. 分式的除法:两个分式相除时,将第一个分式的分子乘以第二个分式的分母,第一个分式的分母乘以第二个分式的分子,然后化简结果(如果需要)。
五、分式方程的解法1. 清除分母法:将方程两边的分式的分母去掉,得到一个整式方程;解这个整式方程,找到方程的解;检验这些解是否满足原方程。
2. 相乘法:将方程中的分式两边同时乘以一个适当的整式,消去分式得到一个整式方程;解这个整式方程,找到方程的解;检验这些解是否满足原方程。
六、分式在实际生活中的应用1. 财务计算:分式用于计算各种财务比例,如股息率、盈利能力等;2. 比例问题:分式用于解决比例关系的各种问题,如物件的分配、速度比较等;3. 科学计算:分式用于科学实验和研究中的测量、计算等;4. 经济学:分式用于解决经济学中的各种问题,如经济增长率、通货膨胀率等。
分式的知识要点
《分式》知识结构图《分式》知识要点1.分式(1)分式的概念 :如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。
(2)分式有意义的条件:分母不等于0(3)分式值为零的条件:分子等于0,且分母不等于0。
2.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式的值不变。
C B C A B A ⨯⨯=CB CA B A ÷÷= (其中A 、B 、C 都是整式,0≠C ) 约分—— 最简分式:如果分式的分子与分母没有公因式,那么这个分式叫做最简分式 通分------- 确定最简公分母: ⑴ 将所有的分母进行分解因式 ⑵ 各分式分母的系数的最小公倍数 ⑶ 所有字母(或因式)的最高次幂的积 3.分式的运算 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积做为积的分母。
字母表示为: bdacd c b a =⨯ 分式除法法则:分式除分式,把除式的分子、分母颠倒位置后,与被除式相乘。
字母表示为:bcadc d b a d c b a =⋅=÷ (运算的结果要化为最简形式) 分子、分母是多项式时,先分解因式便于约分。
分式的乘方:分式的乘方要把分子、分母分别乘方字母表示为: n nn ba b a =)( (0≠b )分式的加减:同分母分式相加减,分母不变,把分子相加减cb ac b c a ±=± 异分母分式相加减,先通分,变为同分母的分式,再加减。
bdbcad bd bc bd ad d c b a ±=±=±3.分式方程——分母中含未知数的方程 分式方程的解法步骤⑴ 去分母,把方程两边同乘以各分母的最简公分母。
(产生增根的过程) ⑵ 去括号,应用去括号法则和乘法分配率 ⑶ 移项 ⑷ 合并同类项 ⑸ 系数化为1⑹ 检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
分式知识点总结
分式知识点总结分式是数学中的一个重要概念,它在实际应用中十分常见。
本文将对分式的定义、基本性质以及常见的操作进行总结和讲解。
一、分式的定义分式由分子和分母组成,通常形式为a/b,其中a和b为整数,b不等于0。
分子表示了被分割的数量,分母表示了每份的份数。
二、分式的基本性质1. 分式的值是一个有理数,可以是正数、负数或零。
2. 分式的值可以是一个整数、真分数或带分数。
3. 分式可以化简,即将分子和分母同时除以一个公因数,得到一个等价的分式。
4. 分式可以相互比较大小,分子相乘,分母相乘,得到的积的大小关系不变。
三、分式的运算1. 分式的加法和减法:- 分式加法:将两个分式的分母找到一个公倍数,分别乘以这个公倍数后得到新的分数,然后将它们的分子相加,分母保持不变。
- 分式减法:与分式加法类似,将两个分式的分母找到一个公倍数,分别乘以这个公倍数后得到新的分数,然后将它们的分子相减,分母保持不变。
2. 分式的乘法和除法:- 分式乘法:将两个分式的分子相乘,分母相乘,得到的分子作为新分数的分子,得到的分母作为新分数的分母。
- 分式除法:将第一个分式的分子与第二个分式的分母相乘,作为新分数的分子;将第一个分式的分母与第二个分式的分子相乘,作为新分数的分母。
3. 分式的化简:- 将分式的分子和分母同时除以一个公因数,直到分子和分母没有公因数为止,得到一个等价的分式。
四、分式的应用场景1. 比例和比例分配问题:比例可以用分式来表示,通过求解分式可以解决比例分配问题。
2. 股票涨跌问题:利用分式可以计算股票的涨跌幅度。
3. 质量问题:分式可以用来表示物体的质量与体积之间的关系,解决质量问题。
通过以上对分式的定义、基本性质以及常见的操作进行总结和讲解,相信读者对分式的概念及其应用有了更深入的理解。
在实际问题中,对分式的灵活运用可以帮助我们更好地解决各种计算和应用问题。
分式知识点总结简易
分式知识点总结简易一、分式的概念分式是一个数与数的比值,由分子和分母组成。
例如:1/2,3/4等都是分式。
二、分式的基本概念1. 分子:分式中上面的数叫做分子,表示被分成的分数部分。
2. 分母:分式中下面的数叫做分母,表示分成的份数。
3. 分子小于分母的分式叫做真分数,分子大于等于分母的分式叫做假分数。
4. 分数的分子为0,这个分数就是0;分数的分母为1,这个分数就是整数。
三、分式的化简1. 分式的约分:将分子和分母的公约数全部约去,得到最简分数。
例如:4/6,2/3是可约分数,每个约为1/2。
2. 分式的乘除:分数的乘法:分子乘以分子,分母乘以分母。
分数的除法:把除数分子和分母互换位置,再进行乘法。
例如:3/4 × 2/5 = 6/20,6/20 = 3/10。
3/4 ÷ 2/5 = 15/8,15/8是3 7/8。
3. 分式的加减:分式的加减与分数的加减相同,都需要找到通分后的相加与相减。
例如:1/3 + 1/6 = 2/6 + 1/6 = 3/6 = 1/2。
1/2 - 1/3 = 3/6 - 2/6 = 1/6。
四、分式的应用1.分数的比较:分式的比较需要统一分母后进行比较大小。
例如:1/3 与 2/5比较大小,需要将它们的分母扩大为15,然后比较。
2.分式的运用在生活中,我们会经常用到分式。
比如:做菜时需要按比例调配食材,在商场购物时打折信息等等。
总之,分式是数学中重要的概念,它涉及到了分数、比例等概念,是数学中基础且重要的概念。
掌握分式的知识,对学生的数学学习十分重要。
八年级数学《分式》知识点
八年级数学《分式》知识点一、分式的概念形如 A/B(A、B 是整式,B 中含有字母且 B 不等于 0)的式子叫做分式。
其中 A 叫做分子,B 叫做分母。
理解分式的概念时,需要注意以下几点:1、分式的分母中必须含有字母。
例如:5/x 是分式,而 5/3 就不是分式,因为它的分母 3 是常数。
2、分母的值不能为 0。
如果分母 B 的值为 0,那么分式就没有意义。
3、分式是两个整式相除的商,其中分子是被除式,分母是除式。
4、整式和分式统称为有理式。
二、分式有意义的条件分式有意义的条件是分母不等于 0。
即:对于分式 A/B,当B≠0 时,分式有意义。
例如:对于分式 2/(x 1),要使其有意义,则x 1≠0,即x≠1。
三、分式的值为 0 的条件分式的值为 0 时,需要同时满足两个条件:1、分子等于 0,即 A = 0。
2、分母不等于 0,即B≠0。
例如:对于分式(x 2)/(x + 1),当 x 2 = 0 且 x +1≠0 时,分式的值为 0。
由 x 2 = 0 得 x = 2,又因为 x +1≠0,即x≠ 1,所以当 x = 2 时,该分式的值为 0。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不等于 0 的整式,分式的值不变。
即:A/B = A×M/B×M,A/B = A÷M/B÷M(M 为不等于 0 的整式)例如:将分式 2x/(3y)的分子分母同时乘以 2,得到 4x/(6y),分式的值不变。
利用分式的基本性质,可以进行分式的约分和通分。
五、约分把一个分式的分子和分母的公因式约去,叫做约分。
约分的关键是确定分子和分母的公因式。
确定公因式的方法:1、系数:取分子和分母系数的最大公约数。
例如:在分式 8x/12 中,8 和 12 的最大公约数是 4,所以分子分母同时除以 4 进行约分。
2、字母:取分子和分母相同字母的最低次幂。
例如:在分式 x²y/xy²中,相同字母是 x 和 y,x 的最低次幂是 1,y 的最低次幂是 1,所以公因式是 xy,约分后为 x/y。
分式基础知识讲解
分式基础知识讲解分式,也称为有理数,是指一个整数除以另一个非零整数所得的数。
在数学中,分式是一个重要的概念,它在各种数学问题中都有广泛的应用。
本文将对分式的基础知识进行讲解。
一、分式的定义和表示方式分式可以看作是两个整数的比值,其中一个整数作为分子,另一个整数作为分母。
分式的一般表示方式为“a/b”,其中a为分子,b为分母。
例如,2/3、5/8都是分式。
分式可以用于表示一个数量相对于另一个数量的比值,比如“5个苹果中有3个是红色的”,可以表示为分式5/3。
二、分式的性质和运算法则1. 分式的相等性质对于任意两个分式a/b和c/d,如果ad=bc,则a/b=c/d,即分式相等性质。
2. 分式的相反数和倒数对于任意一个分式a/b,它的相反数是- a/b,它的倒数是b/a。
3. 分式的加减法当两个分式的分母相同时,可以直接对分子进行加减运算,并保持分母不变。
例如,对于分式a/b和c/b,它们的和为(a+c)/b,差为(a-c)/b。
当两个分式的分母不同时,可以通过求公共分母的方法将它们进行相加或相减。
具体方法可以参考通分的原理。
4. 分式的乘除法两个分式相乘时,只需将它们分子相乘得到新的分子,分母相乘得到新的分母。
例如,分式a/b和c/d的乘积为ac/bd。
两个分式相除时,可以将第二个分式的倒数乘以第一个分式。
即,分式a/b和c/d的商为(a/b) * (d/c) = (ad)/(bc)。
三、分式的简化和约分当一个分式的分子和分母有公约数时,可以进行约分,即将分子和分母同时除以它们的最大公约数。
约分后的分式与原分式表示相同的数。
四、分式的应用1. 倒数的表示当需要表示一个数的倒数时,可以使用分式。
例如,数x的倒数可以表示为1/x。
倒数在分数的求解和比较中起到重要作用。
2. 比例问题在比例问题中,分式被广泛使用。
比如“苹果的单价是2元/个,芒果的单价是3元/个,求苹果和芒果价格的比值”,可以表示为2/3这个分式。
分式 知识点及典型例题
分式知识点及典型例题正文:分式,又称有理数,是数学中的一个重要概念,它由分子和分母组成,表示两个数的比值关系。
在分式的运算中,我们需要了解一些基本知识点,并且通过典型的例题来加深理解。
一、分式的定义和基本性质分式可以用“a/b”的形式表示,其中a为分子,b为分母。
分子和分母都可以是整数、小数或者其他分式。
分式也可以是正数、负数或者零。
分式的基本性质有:1. 当分子为0时,分式的值为0,即0/b=0。
2. 当分母为1时,分式的值等于分子本身,即a/1=a。
3. 当分子和分母互为相反数时,分式的值为-1,即(-a)/a=-1。
二、分式的运算1. 分式的加减运算分式的加减运算遵循相同分母则分子相加减的原则。
具体步骤如下:(1)将两个分式的分母化为相同的分母;(2)将两个分式的分子按照相同分母相加减;(3)将结果化简为最简形式。
例如:计算1/3 + 1/4 - 1/6。
解:首先将三个分式的分母化为12,得到4/12 + 3/12 - 2/12,再将分子相加减,得到5/12。
2. 分式的乘除运算分式的乘除运算遵循分子相乘除,分母相乘除的原则。
具体步骤如下:(1)将两个分式的分子相乘或相除;(2)将两个分式的分母相乘或相除;(3)将结果化简为最简形式。
例如:计算2/3 × 5/8 ÷ 4/5。
解:根据乘除法的原则,分子相乘得到10,分母相乘得到24,再将结果化简为最简形式,得到5/12。
三、分式的简化分式的简化是将分子和分母的公因式约去,使其达到最简形式。
具体步骤如下:(1)求分子和分母的最大公因数;(2)将分子和分母分别除以最大公因数。
例如:将12/18简化为最简分式。
解:求12和18的最大公因数为6,将分子和分母都除以6,得到最简分式2/3。
四、分式的应用举例1. 问题:小明爸爸买了一块布长3米,要均分给他和他妹妹,他分到几分之几的布?解:设小明分到的布的长度为x米,他妹妹分到的布的长度为y米,则由题意可得分式x/y=3/2。
分式章节知识点总结
分式章节知识点总结一、分式的定义分式是指两个整数或者多项式,中间用横线隔开的表达形式,例如a/b(a、b为整数,b不等于0),a称为分子,b称为分母。
二、分式的类型1. 简单分式:分子、分母都是整数的分式。
例如3/4、5/6等。
2. 复合分式:分子或分母中包含有代数式的分式。
例如2/(x+1)、(x-1)/(x+2)等。
3. 多项式分式:分子或分母中包含有多项式的分式。
例如(x^2+3)/(x-4)、2x/(x^2+1)等。
三、分式的性质1. 分式的值:分式的值是指分子除以分母的结果,也可以看作带有未知数的一种式子。
2. 分式的约分:分式可以进行约分,即将分子和分母同时除以一个数,得到一个新的分式,值不变。
3. 分式的通分:分式可以进行通分,即寻找一个公共分母,使得分式的分母相同,然后进行运算。
四、分式的运算1. 分式的加减法:分式的加减法是将分式化成相同分母的形式,然后分别对分子进行加减运算,最后将结果化简。
2. 分式的乘法:分式的乘法是将分子分别相乘,分母分别相乘,然后化简得到最简分式。
3. 分式的除法:分式的除法是将除数的分子、分母对调位置,再乘上被除数的倒数,然后化简得到最简分式。
五、分式的应用1. 分式在方程中的应用:分式通常出现在方程的解中,需要对分式进行加减和乘除等运算,找到未知数的值。
2. 分式在不等式中的应用:分式在不等式的求解中应用广泛,通过对分式进行化简和变形,找到不等式的解集。
3. 分式在函数中的应用:分式常常用来表示函数的定义域、值域和零点等性质,在函数的运算和变形中起着重要作用。
分式作为代数中重要的一部分,需要掌握其定义、类型、性质和运算方法,灵活运用于方程、不等式和函数等各种问题的求解中。
同时,分式的深入研究还可以延伸到多项式、变量和函数的理论及实际应用中,是代数学习中的重要内容之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的概念和性质(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算. 【要点梳理】要点一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如a π是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x yx是分式,与xy有区别,xy是整式,即只看形式,不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).要点诠释:(1)基本性质中的A、B、M表示的是整式.其中B≠0是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有b ba a-=-,b ba a-=-.根据有理数除法的符号法则有b b ba a a-==--.分式ab与ab-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分.【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.【要点梳理】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd ⋅=,其中a b c d 、、、是整式,0bd ≠.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分. (4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b---⎛⎫=≠ ⎪⎝⎭.【学习目标】1.能利用分式的基本性质通分.2.会进行同分母分式的加减法.3.会进行异分母分式的加减法.【要点梳理】要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:a b a b c c c±±=. 要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.要点二、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点三、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则可用式子表为:a c ad bc ad bcb d bd bd bd±±=±=. 要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.要点四、分式的混合运算与分数的加、减乘、除混合运算一样,分式的加、减乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算. 分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式.要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是正确进行分式运算的基础,要牢牢掌握..(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度.分式方程的解法及应用(基础)【学习目标】1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.2. 会列出分式方程解简单的应用问题.【要点梳理】要点一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.要点二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、解分式方程产生增根的原因方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.要点四、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.分式全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分. 3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.。