矩形、菱形与正方形-专题训练
中考数学二轮专题复习-矩形、菱形及正方形及答案详解
中考数学二轮专题复习-矩形、菱形及正方形一、单选题1.下列四边形中,对角线互相垂直平分的是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形2.下列测量方案中,能确定四边形门框为矩形的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量对角线是否相等D.测量对角线交点到四个顶点的距离是否都相等3.如图,菱形的对角线、相交于点,过点作于点,连接,若,,则菱形的面积为()A.B.C.D.4.如图,有甲、乙、丙三个矩形,其中相似的是()A.甲与丙B.甲与乙C.乙与丙D.三个矩形都不相似5.如图,在菱形ABCD中,DE⊥AB,cosA=,AE=3,则tan∠DBE的值是()A.B.2C.D.6.如图,在菱形ABCD中,对角线AC与BD交于点O,E是边AB的中点,连结OE.若菱形ABCD的面积为24,AC=8,则OE的长为()A.B.3C.D.57.如图,在正方形ABCD中,E是边BC上一点,且BE:CE=1:3,DE交AC于点F,若DE=10,则CF等于()A.B.C.D.8.如图,矩形中,对角线交于点O,,则矩形的面积是()A.2B.C.D.89.如图,将长、宽分别为6cm,cm的长方形纸片分别沿AB,AC折叠,点M,N恰好重合于点P.若∠α=60°,则折叠后的图案(阴影部分)面积为()A.cm2 B.(36)cm2C.cm2D.cm210.如图所示,反比例函数的图象经过矩形OABC的边AB的中点,则矩形OABC的面积为()A.2B.4C.5D.811.如图,在菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD ,垂足分别为点E,F,连结EF,则△AEF 的面积是()A.B.C.D.12.如图,四边形ABCD是正方形,BE⊥EF,DF⊥EF,BE=2.5dm,DF=4dm,那么EF的长为()A.6.5dm B.6dm C.5.5dm D.4dm13.将一矩形纸片ABCD沿CE折叠,B点恰好落在AD边上的F处,若,则的值为()A.B.C.D.14.正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN+MN的最小值为()A.6B.8C.10D.915.如图,在矩形ABCD中,对角线、BD交于C,,垂足为E,,那么的面积是()A.B.C.D.16.如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CI⊥HJ于点I,交AB于K,在图形的外部作矩形MNPQ,使点D,E,G和H,J都落在矩形的边上.已知矩形BJIK的面积为1,正方形ACDE的面积为4,则为()A.B.C.D.17.如图,正方形的边长为a,点E在边上运动(不与点A,B重合),,点F在射线上,且与相交于点G,连接.则下列结论:①,② 的周长为 ,③;④当 时,G 是线段 的中点,其中正确的结论是( )A .①②③B .①④C .①③④D .①②③④ 18.如图,菱形ABCD 的边长为4,E 、F 分别是AB 、AD 上的点,AC 与EF 相交于点G ,若, ,则FG 的长为( )A .B .2C .3D .419.如图,在△ABC 中,∠ACB =90°,以△ABC 的各边为边分别作正方形BAHI ,正方形BCFG 与正方形CADE ,延长BG ,FG 分别交AD ,DE 于点K ,J ,连结DH ,IJ.图中两块阴影部分面积分别记为S 1,S 2.若S 1:S 2=1:4,S 四边形边BAHE =18,则四边形MBNJ 的面积为( )A.5B.6C.8D.920.如图,在Rt△ABC中,∠CBA=60°,斜边AB=10,分别以△ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,则S1+S2+S3+S4+S5=()A.50B.50C.100D.100二、填空题21.在四边形ABCD中,对角线AC,BD交于点O,OA=OC=OB=OD,添加一个条件使四边形ABCD是正方形,那么所添加的条件可以是(写出一个即可)22.如图,分别以Rt△ABC三边构造三个正方形,面积分别为S1,S2,S3,若S1=15,S3=39,则S2=.23.如图,在平面直角坐标系中,点A1(1,0)、A2(3,0)、A3(6,0)、A4(10,0)、……,以A1A2为对角线作第一个正方形A1C1A2B1,以A2A3为对角线作第二个正方形A2C2A3B2,以A3A4,为对角线作第三个正方形A3C3A4B3,……,顶点B1,B2,B3……都在第一象限,按照此规律依次下去,则点Bn的坐标为.24.如图,菱形ABCD的对角线,BD相交于点,,,以AB为直径作一个半圆,则图中阴影部分的面积为.25.如图,在矩形ABCD中,AB=8,AD=10,AD,AB,BC分别与⊙O相切于E,F,G三点,过D作⊙O的切线交BC于点M,切点为N,则DM的长为.26.建党100周年主题活动中,702班浔浔设计了如图1的“红色徽章”其设计原理是:如图2,在边长为的正方形四周分别放置四个边长为的小正方形,构造了一个大正方形,并画出阴影部分图形,形成了“红色徽章”的图标.现将阴影部分图形面积记作,每一个边长为的小正方形面积记作,若,则的值是.27.如图,正方形ABCD的边长为4,P是边CD上的一动点,EF⊥BP交BP于G,且EF平分正方形ABCD的面积,则线段GC的最小值是.28.正方形ABCD的边长为4,点E是BC边上的一动点,连结AE,过点B作BF⊥AE于点F,以BF为边作正方形FBHG,当点E从B运动到C时,求CF的最短距离为;线段HG扫过的面积为29.如图,在矩形ABCD中,AB=4,BC=3,将△BCD沿射线BD平移长度a(a>0)得到△B'C'D',连接AB',AD',则当△AB'D'是直角三角形时,a的长为.30.如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD边上的动点,PQ=16,以PQ 为直径的⊙O与BD交于点M,N,则MN的最大值为.三、计算题31.如图,在中,,D为的中点,,,连接交于点O.(1)证明:四边形为菱形;(2)若,,求菱形的高.32.如图,已知在矩形ABCD中,AB=6,BC=2,点E,F分别在边CD,AB上,且DE=BF.(1)求证:四边形AFCE是平行四边形;(2)若□AFCE是菱形,求菱形AFCE的边长.四、解答题33.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,AD=BC,求证:四边形EFGH是菱形.34.如图,矩形ABCD中,BC=4,将矩形ABCD绕点C顺时针旋转得到矩形A′B′C′D′,此时点B′恰好落在边AD上.连接B′B,若∠AB′B=75°,求旋转角及AB长.35.如图,△ABC中,点D是边AC的中点,过D作直线PQ∥BC,∠BCA的平分线交直线PQ于点E,点G是△ABC的边BC延长线上的点,∠ACG的平分线交直线PQ于点F.求证:四边形AECF是矩形.36.在几何探究问题中,经常需要通过作辅助线(如,连接两点,过某点作垂线,作延长线,作平行线等等)把分散的条件相对集中,以达到解决问题的目的.(1)(探究发现)如图1,点E,F分别在正方形ABCD的边BC,CD上,,连接EF.通过探究,可发现BE,EF,DF之间的数量关系为(直接写出结果).(2)(验证猜想)同学们讨论得出下列三种证明思路(如图1):思路一:过点A作,交CD的延长线于点G.思路二:过点A作,并截取,连接DG.思路三:延长CD至点G,使,连接AG.请选择你喜欢的一种思路证明(探究发现)中的结论.(3)(迁移应用)如图2,点E,F分别在正方形ABCD的边BC,CD上,且,,设,试用含的代数式表示DF的长.37.在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5 时,求t的取值范围(直接写出结果即可).38.阅读下面的例题及点拨,并解决问题:例题:如图①,在等边中,是边上一点(不含端点),是的外角的平分线上一点,且.求证:.点拨:如图②,作,与的延长线相交于点,得等边,连接.易证:,可得;又,则,可得;由,进一步可得又因为,所以,即:.问题:如图③,在正方形中,是边上一点(不含端点),是正方形的外角的平分线上一点,且.求证:.五、综合题39.将绕点A按逆时针方向旋转度,并使各边长变为原来的n倍,得,如图①,我们将这种变换记为.(1)如图①,对作变换得,则;直线与直线所夹的锐角为度;(2)如图②,中,,对作变换得,使点B、C、在同一直线上,且四边形为矩形,求和n的值;(3)如图③,中,,对作变换得,使点B、C、在同一直线上,且四边形为平行四边形,求和n的值. 40.如图(1)如图1,正方形ABCD与调研直角△AEF有公共顶点A,∠EAF=90°,连接BE、DF,将△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的角为β,则=;β=;(2)如图2,矩形ABCD与Rt△AEF有公共顶点A,∠EAF=90°,且AD=2AB,AF=2AE,连接BE、DF,将Rt△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的角为β,请求出的值及β的度数,并结合图2进行说明;(3)若平行四边形ABCD与△AEF有公共项点A,且∠BAD=∠EAF=α(0°<α<180°),AD=kAB,AF=kAE(k≠0),将△AEF绕点A旋转,在旋转过程中,直线BE、DF相交所成的锐角的度数为β,则:①=;②请直接写出α和β之间的关系式.答案解析部分【解析】【解答】解:∵平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线互相平分且相等,正方形对角线互相垂直平分且相等,∴A、B、C不符合题意,D符合题意.故答案为:D.【分析】根据平行四边形对角线互相平分,菱形对角线互相垂直平分,矩形对角线互相平分且相等,正方形对角线互相垂直平分且相等,即可得出答案.【解析】【解答】解:A、∵对角线互相平分的四边形是平行四边形,而对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C不符合题意;D、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D符合题意.故答案为:D.【分析】利用对角线互相平分且相等的四边形是矩形,可作出判断.【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=2,∴BD=4,∵OA=3,∴AC=6,∴菱形ABCD的面积.故答案为:A.【分析】根据菱形的性质和直角三角形斜边上的中线定理求出对角线的长即可求出菱形的面积。
初中数学 矩形、菱形与正方形测试题含答案
矩形、菱形与正方形测试题一、选择题1.能判定四边形ABCD为平行四边形的题设是().(A)AB∥CD,AD=BC; (B)∠A=∠B,∠C=∠D;(C)AB=CD,AD=BC; (D)AB=AD,CB=CD2.在给定的条件中,能画出平行四边形的是().(A)以60cm为一条对角线,20cm、34cm为两条邻边;(B)以6cm、10cm为对角线,8cm为一边;(C)以20cm、36cm为对角线,22cm为一边;(D)以6cm为一条对角线,3cm、10cm为两条邻边3.正方形具有而菱形不一定具有的性质是()(A)对角线互相平分; (B)对角线相等;(C)对角线平分一组对角; (D)对角线互相垂直4.在下列说法中不正确的是()(A)两条对角线互相垂直的矩形是正方形;(B)两条对角线相等的菱形是正方形;(C)两条对角线垂直且相等的平行四边形是正方形;(D)两条对角线垂直且相等的四边形是正方形5.下列说法不正确的是()(A)对角线相等且互相平分的四边形是矩形;(B)对角线互相垂直平分的四边形是菱形;(C)一组对边平行且不等的四边形是梯形;(D)一边上的两角相等的梯形是等腰梯形6.不能判定四边形ABCD为平行四边形的题设是()(A)AB=CD,AD=BC (B)AB//CD(C)AB=CD,AD∥BC (D)AB∥CD,AD∥BC7.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的题设是()(A)AO=CO,BO=DO; (B)AO=CO=BO=DO;(C)AO=CO,BO=DO,AC⊥BD; (D)AO=BO=CO=DO,AC⊥BD8.下列说法不正确的是()(A)只有一组对边平行的四边形是梯形;(B)只有一组对边相等的梯形是等腰梯形;(C)等腰梯形的对角线相等且互相平分;(D)在直角梯形中有且只有两个角是直角9.如图1,在□ABCD中,MN分别是AB、CD的中点,BD分别交AN、CM于点P、Q,在结论:①DP=PQ=QB ②AP=CQ ③CQ=2MQ ④S △ADP=14S ABCD中,正确的个数为().(A)1 (B)2 (C)3 (D)4(1) (2) (3)10.如图2,在梯形ABCD中,AD∥CB,AD=2,BC=8,AC=6,BD=8,则梯形ABCD的面积为().(A)24 (B)20 (C)16 (D)12二、填空题11.在□ABCD中,AC与BD交于O,则其中共有_____对全等的三角形.12.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为_______,矩形的面积为________.13.一个菱形的两条对角线长分别为6cm,8cm,这个菱形的边长为_______,•面积S=______.14.如果一个四边形的四个角的比是3:5:5:7,则这个四边形是_____形.15.如图3,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.16.如图4,在正方形ABCD的外侧,作等边△ADE,则∠AEB=_______.(4) (5) (6)17.在长为1.6m,宽为1.2m的矩形铅板上,剪切如图5所示的直角梯形零件(•尺寸单位为mm),则这块铅板最多能剪出______个这样的零件.18.如图6,ABCD中,过对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,则四边形CDFE周长为________.19.已知等腰梯形的一个锐角等于60•°,•它两底分别为15cm,•49cm,•则腰长为_______.20.已知等腰梯形ABCD中AD∥BC,BD平分∠ABC,BD•⊥DC,•且梯形ABCD•的周长为30cm,则AD=_____.三、计算题21.如图,已知等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,AD=3cm,BC=7cm,•DE•⊥BC 于E,试求DE的长.四、证明题22.如图,已知四边形ABCD中,AC=BD,E、F、G、H分别是AB、BC、CD、DA边上的中点,求证:四边形EFGH是菱形.23.已知如图,梯形ABCD中,AD∥BC,AM=MB,DN=NC.求证:MN∥BC,MN=12(BC+AD).答案:1.(C) 2.(C) 3.(B) 4.(D) 5.(D)6.(C) 7.(D) 8.(C) 9.(C) 10.(A)11.4 12.40cm 4003cm213.5cm 24cm2 14.直角梯形15.15 16.15° •17.12 18.8.6cm 19.34cm20.如图,作AE⊥BC于E,DF⊥BC于F,∴AD=EF,设BE=x.则AB=2x,DC=2x,FC=x,∴BD平分∠ABC,∴∠DBC=30°.∴DC=12BC,∴BC=4x.∴EF=2x=AD.又∵AB+BC+CD+AD=30,∴4x+6x=30,x=3,∴AD=6(cm).21.过D点作DF∥AC,交BC的延长线于点F,则四边形ACFD为平行四边形,•所以AC=DF,AD=CF.因为四边形ABCD为等腰梯形,所以AC=BD,所以BD=DF,又已知AC⊥BD,DF∥AC,•所以BD⊥DF,则△BDF为等腰直角三角形.又因为DF⊥BC,所以DE=12BF=12(BC+CF)=12(BC+AD)=12(7+3)=5(cm).22.证明:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF=12AC,HG=12AC,FG=12BD,EH=12BD.∴EF=HG=12AC,FG=EH=12BD.又∵AC=BD,∴EF=HG=FG=EH.∴四边形EFGH是菱形.23.证明:如图,连接AN并延长,交BC的延长线于点E.∵DN=NC,∠1=∠2,∠D=∠3,∴△ADN≌△ECN,∴AN=EN,AD=EC.又AM=MB,∴MN是△ABE的中位线.∴MN∥BC,MN=12BE(三角形中位线定理)∵BE=BC+CE=BC+AD,∴MN=12(BC+AD).。
矩形、菱形和正方形 专题复习——特殊四边形中的最值问题 2021--2022学年八年级数学
专题特殊四边形中的最值问题1、如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B,C重合),PE⊥AB与E,PF⊥AC于F,则EF的最小值为()A. 4B. 4.8C. 5.2D. 62、如图,在周长为12的菱形ABCD中,AE=1,AF=2. 若P为对角线BD上一动点,则 EP+FP的最小值为()A.1B. 2C. 3D. 43、如图,在菱形ABCD中,AB=6,∠BAD=60︒,点E为AB的中点,点P是对角线AC上的一个动点,则PE+PB的最小值为()A.3 B.6 C.33D.634、如图,正方形ABCD的周长为24,P为对角线AC上的一个动点,+的最小值为()E是CD的中点,则PE PDA.35B.32C.6D.55、如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为()A.3 B.4 C.5 D.66、如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以AP,PC为边作平行四边形PAQC,则对角线PQ的最小值为 .7、如图,折叠矩形纸片ABCD,使点B的对应点E落在CD边上,GH为折痕,已知AB=6,BC=10.当折痕GH最长时,线段BH的长为_________.【例题讲解】3.如图,菱形ABCD中,对角线AC=6,BD=8,M、N 分别是BC、CD上的动点,P是线段BD上的一个动点,则PM+PN的最小值是()A.95B.125C.165D.2455.如图,在平行四边形ABCD中,BC=AC,E、F分别是AB、CD的中点,连接CE、AF.(1)求证:四边形AECF是矩形;(2)当平行四边形ABCD的边或角满足什么关系时,四边形AECF是正方形?请说明理由.(3)在(2)的条件下,若AE=4,点M为EC中点,当点P在线段AC上运动时,求PE+PM的最小值.【巩固练习】1、如图,MN是正方形ABCD的一条对称轴,点P直线MN上的一个动点,当PC+PD最小时,∠PCD的度数为()A.60°B. 90°C. 45°D. 75°2、如图,点P是矩形ABCD对角线BD上的一个动点,AB=6 ,AD=8 ,则PA+PC的最小值为.3、如图,菱形ABCD中,2AB=,120∠=︒,N是AB的中点,M是对角线B+的最小值是()AC上的一个动点,则MN MBA.2B3C5D.44、如图,四边形ABCD是菱形,AC=8,DB=6,P,Q分别是AC,AD上的动点,连接DP,PQ,则DP+PQ的最小值为.5、如图所示,菱形ABCD中,∠B=60°,AB=2,点E,F分别是AB,AD上的动点,且满足BE=AF,连结EF,EC,CF.(1)求证△EFC是等边三角形.试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.。
2019届中考数学复习《矩形、菱形、正方形》专项训练题含答案
2019届初三数学中考复习矩形、菱形、正方形专项复习练习1.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A.∠BAC=∠DCA B.∠BAC=∠DACC.∠BAC=∠ABD D.∠BAC=∠ADB2. 如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=( )A.5 B.4 C.3.5 D.33. 如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为( )A.2 B.3 C. 3 D.2 34. 如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC5. 下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有( )A.4个 B.3个 C.2个 D.1个6. 如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD的面积为( )A.2 2 B. 2 C.6 2 D.8 27. 如图,矩形ABCD的对角线AC与BD相交于点O,C E∥BD,DE∥AC,AD=23,DE=2,则四边形OCED 的面积( )A.2 3 B.4 C.4 3 D.88. 如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC =23,∠AEO=120°,则FC的长度为( )A.1 B.2 C. 2 D. 39. 如图,矩形纸片ABCD中,AD=4 cm,把纸片沿直线AC折叠,点B落在点E处,AE交DC于点O,若AO=5 cm,则AB的长为( )A.6 cm B.7 cm C.8 cm D.9 cm10. 如图,在△ABC中,点D是边BC上的点,(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形11. 如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折至△AFE,延长EF 交边BC于G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC =3.6.其中正确结论的个数是( )A.2个B.3个C.4个D.5个12. 在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为_______________________.13. 在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是___________.14. 如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为_______.15. 如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是____.16. 如图,在△ABC中,∠ACB=90°,点D,E分别是BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE,AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.参考答案:1---11 CBDCC AAACD D12. 45°或105°13. ①③④14. 3015.2 216. 解:(1)在△ABC中,点D,E分别是边BC,AB上的中点,∴DE是△ABC的中位线,∴DE∥AC,DE=12 AC,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE(2)当∠B=30°时,四边形ACEF为菱形.理由:在△ABC中,∠B=30°,∠ACB=90°,∴∠BAC=60°,AC=12AB=AE,∴△AEC为等边三角形,∴AC=CE,又∵四边形ACEF为平行四边形.∴四边形ACEF为菱形2019-2020学年数学中考模拟试卷一、选择题1.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=2.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B. C. D.3.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①③④B.②④C.①②③D.①②③④4.下列所述图形中,是中心对称图形,但不是轴对称图形的是A.正三角形B.平行四边形C.正五边形D.圆5.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多;C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点.6.下列运算正确的是()A. B. C. D.7.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( )A.75 B.90 C.105 D.1208.估计的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间9.下列形状的地砖中,不能把地面作既无缝隙又不重叠覆盖的地砖是()A.正三角形B.正方形C.正五边形D.长方形10.下列说法正确的个数是()①一组数据的众数只有一个②样本的方差越小,波动性越小,说明样本稳定性越好③一组数据的中位数一定是这组数据中的某一数据④数据:1,1,3,1,1,2的众数为4 ⑤一组数据的方差一定是正数.A.0个B.1个C.2个D.4个11.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD中,点E、F分别在边BC、AD上,____,求证:四边形AECF是平行四边形. 你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE=DF;②∠B=∠D;③BAE=∠DCF;④四边形ABCD是平行四边形.其中A、B、C、D四位同学所填条件符合题目要求的是()A.①②③④B.①②③C.①④D.④12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A .43π-B .83π-C .83π-D .843π- 二、填空题13.在实数范围内分解因式:24x -=______________________.14.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.15.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是__________.16.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____. 17.如图,已知第一象限内的点A 在反比例函数上,第二象限的点B 在反比例函数上,且OA ⊥OB ,,则k 的值为________________ .18.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是________ 三、解答题19.某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y (立方米)与x (时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x之间的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.20.某小区应政府号召,开展节约用水活动,效果显著.为了了解该小区节水情况,随机对小区的100户居民节水情况进行抽样调查,其中3月份较2月份的节水情况如图所示.(1)补全统计图;(2)计算这100户居民3月份较2月份的平均节水量;(3)已知该小区共有5000户居民,根据上面的计算结果,估计该小区居民3月份较2月份共节水多少吨?21.如图,在Rt△ABC中,∠C=90°,D是AC边上一点,tan∠DBC=43,且BC=6,AD=4.求cosA的值.22.已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.23.定义:若一个三角形一条边上的高长为这条边长的一半,则称该三角形为这条边上的“半高”三角形,这条高称为这条边上的“半高”,如图,△ABC是BC边上的“半高”三角形.点P在边AB上,PQ∥BC交AC于点Q,PM⊥BC于点M,QN⊥BC于点N,连接MQ.(1)请证明△APQ为PQ边上的“半高”三角形.(2)请探究BM,PM,CN之间的等量关系,并说明理由;(3)若△ABC的面积等于16,求MQ的最小值24.“全民阅读”活动,是中央宣传部、中央文明办和新闻出版总署贯彻落实关于建设学习型社会要求的一项重要举措.读书必须要讲究方法,只有按照一定的方法去阅读,才能取得事半功倍的效果.常用的阅读方法有:A.圈点批注法;B.摘记法;C.反思法:D.撰写读后感法;E.其他方法.某县某中学张老师为了解本校学生使用不同阅读方法读书的情况,随机抽取部分本校中学生进行了调查,通过数据的收集、整理绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:中学生阅读方法情况统计表(1)请你补全图表中的a,b,c数据:a=,b=,c=;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有人;(3)小明从以上抽样调查所得结果估计全县6000名中学生中有1200人采用“撰写读后感法”读书,你同意小明的观点吗?请说明你的理由.(4)该校决定从本次抽取的“其他方法”4名学生(记为甲,乙,丙,丁)中,随机选择2名成为学校阅读宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.25.(某中学九年级学生共600人,其中男生320人,女生280人.该校对九年级所有学生进行了一次体育模拟测试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成如下的统计表:(1)a=; b=;(2)若将该表绘制成扇形统计图,那么Ⅲ类所对应的圆心角是°;(3)若随机抽取的学生中有64名男生和56名女生,请解释“随机抽取64名男生和56名女生”的合理性;(4)估计该校九年级学生体育测试成绩是40分的人数.【参考答案】*** 一、选择题二、填空题 13.()()22x x +- 14.85° 15.47° 16.3517. 18.14三、解答题19.(1)每小时的进水量为5立方米;(2)当8≤x≤12时,y =3x+1;(3)3792x 剟. 【解析】 【分析】(1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;(2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;(3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻 【详解】解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米 ∴(25﹣5)÷(8﹣4)=5(立方米/时) ∴每小时的进水量为5立方米.(2)设函数y =kx+b 经过点(8,25),(12,37)8251237k b k b +=⎧⎨+=⎩解得:31k b =⎧⎨=⎩∴当8≤x≤12时,y =3x+1 (3)∵8点到12点既进水又出水时,每小时水量上升3立方米 ∴每小时出水量为:5﹣3=2(立方米) 当8≤x≤12时,3x+1≥28,解得:x≥9 当x >14时,37﹣2(x ﹣14)≥28,解得:x≤372∴当水塔中的贮水量不小于28立方米时,x 的取值范围是9≤x≤372【点睛】本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.20.(1)见解析;(2)这100户居民3月份较2月份的平均节水量为1.48 t ;(3)估计该小区5000户居民3月份较2月份共节水7400 t.【解析】【分析】(1)从图中可获得节水量在0.4-0.8t 的有5户,0.8-1.2t 的有20户,1.6-2.0t 的有30户,2.0-2.4t 的有10户,样本共100户,可求得节水1.2-1.6t 的有35户,补全图形即可;(2)运用加权平均数公式把组中值当作每组数据,户数看成权,可求得平均节水量;(3)利用样本估计总体可得结果.【详解】解:(1)100-5-20-30-10=35(户).∴节水1.2~1.6吨的有35户.补全统计图如下.(2)由统计图得每小组中的组中值分别为0.40.82+=0.6,0.8 1.22+=1.0,1.2 1.62+=1.4,1.6 2.02+=1.8,2.0 2.42+=2.2, 所以这100户居民3月份较2月份的平均节水量 =0.65 1.020 1.435 1.830 2.210100⨯+⨯+⨯+⨯+⨯=1.48(t). 答:这100户居民3月份较2月份的平均节水量为1.48 t;(3)由题意可得1.48×5000=7400(t).答:估计该小区5000户居民3月份较2月份共节水7400 t.【点睛】本题考查从统计图表中获取信息的能力,加权平均数的应用和统计中用样本估计总体的思想.21 【解析】【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值.【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8,∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =5. 【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.22.(1)见解析;(2【解析】【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【详解】(1)∵△=[﹣(m+2)]2﹣4×2m=(m ﹣2)2≥0,∴不论m 为何值,该方程总有两个实数根;(2)∵AB 、AC 的长是该方程的两个实数根,∴AB+AC =m+2,AB•AC=2m ,∵△ABC 是直角三角形,∴AB 2+AC 2=BC 2,∴(AB+AC )2﹣2AB•AC=BC 2,即(m+2)2﹣2×2m=32,解得:m ,∴m又∵AB•AC=2m ,m 为正数,∴m【点睛】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.23.(1)见解析;(2)2PM =BM+CN ,理由见解析;(3)5. 【解析】【分析】(1)根据平行相似,证明△APQ ∽△ABC ,利用相似三角形对应边的比等于对应高的比:PQ AK BC AR =,由“半高”三角形的定义可结论;(2)证明四边形PMNQ 是矩形,得PQ =MN ,PM =KR ,代入AR =12BC ,可得结论;(3)先根据△ABC 的面积等于16,计算BC 和AR 的长,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),根据勾股定理表示MQ ,配方可得最小值.【详解】(1)证明:如图,过A 作AR ⊥BC 于R ,交PQ 于K ,∵△ABC 是BC 边上的“半高”三角形,∴AR =12BC , ∵PQ ∥BC ,∴△APQ ∽△ABC , ∴PQ AK BC AR=, ∴AK AR 1PQ BC 2==, ∴AK =12PQ , ∴△APQ 为PQ 边上的“半高”三角形.(2)解:2PM =BM+CN ,理由是:∵PM ⊥BC ,QN ⊥BC ,∴∠PMN =∠MNQ =∠MPQ =90°,∴四边形PMNQ 是矩形,∴PQ =MN ,PM =KR ,∵AK =12PQ ,AR =12BC , ∴AK+RK =12(BM+MN+CN ), 12PQ+PM =12BM+12MN+12CN , ∴2PM =BM+CN ;(3)解:∵△ABC 的面积等于16, ∴12BC AR ⋅=16, ∵AR =12BC , 1122BC BC ⋅⋅=16, BC =8,AR =4,设MN =x ,则BM+CN =8﹣x ,PM =QN =12(8﹣x ),∵MQ ==∴当x =85时,MQ 有最小值是5.【点睛】本题是三角形的综合题,考查的是新定义:“半高”三角形,涉及到相似三角形的性质和判定、三角形面积、勾股定理及新定义的理解和运用等知识,解决问题的关键是作辅助线解决问题.24.(1)32,8,10%;(2)96;(3)1200人;(4)16. 【解析】【分析】(1)先根据“摘记法”的频数及其频率求得总人数,再根据频数、频率与总数间的关系可得a 、b 、c 的值;(2)总人数乘以样本中“反思法”学生所占比例可得;(3)利用总人数乘以撰写读后感法的百分比即可解答(4)用树状图表示出四人中随机抽取两人有12种可能,即可解答【详解】解:(1)本次调查的学生有:20÷25%=80,a =80×40%=32,b =80×(100﹣40﹣25﹣20﹣5)%=80×10%=8,c =(100﹣40﹣25﹣20﹣5)%=10%,故答案为:32,8,10%;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有:960×10%=96人,故答案为:96;(3)同意小明的观点;理由如下:全县6000名中学生中采用“撰写读后感法”读书的有:6000×20%=1200人;(4)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能, ∴抽取两人恰好是甲和乙的概率是21=126.【点睛】此题考查树状图法,扇形统计图,解题关键在于看懂图中数据25.(1)a =54;b =0.45; (2)72°;(3)“随机抽取64名男生和56名女生”比较合理;(4)该校九年级学生体育测试成绩是40分的人数约为180人.【解析】【分析】(1)先利用一类的频数除以频率计算出总频数c,再用总频数减去其余三类,即可得到a,再用a的频数除以总频数即可得到b(2)圆周角为360°,第三类占总数的0.2,所以第三类的圆心角=360°×0.2(3)根据九年级学生共600人,其中男生320人,女生280人进行反推即可解答(4)利用总人数乘频率即可解答【详解】(1)总频数=36÷0.3=120,a的频数=总频数-36-24-6=54,b频率=54÷120=0.45,a=54;b=0.45;(2)0.2×360°=72°;(3)∵6432056280== 120600120600,,∴“随机抽取64名男生和56名女生”比较合理;(4)0.3×600=180(人)答:该校九年级学生体育测试成绩是40分的人数约为180人.【点睛】此题考查了频数分布表,圆周角,用样本估计总体,熟练掌握运算法则是解题关键2019-2020学年数学中考模拟试卷一、选择题1.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m2.下列等式一定成立的是()A.2a﹣a=1 B.a2•a3=a5C.(2ab2)3=2a3b6D.x2﹣2x+4=(x﹣2)23.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元4.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣45.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为()A.8B.9.5C.10D.11.56.关于的一元二次方程有两个相等的实数根,那么的值是()A. B. C. D.7.如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=( )A.20°B.25°C.35°D.40°8.如图1,等边△ABD与等边△CBD的边长均为2,将△ABD沿AC方向向右平移k个单位到△A′B′D′的位置,得到图2,则下列说法:①阴影部分的周长为4;②当k=当k;正确的是( )A.①B.①②C.①③D.①②③9.若x是不等于1的实数,我们把11x-称为x的差倒数,如2的差倒数是11x-=﹣1,﹣1的差倒数为11(1) --=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2019的值为()A.﹣13B.﹣2 C.3 D.410.如图,已知直线y=34x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是()A.26 B.24 C.22 D.2011.华为手机Mate X在5G网络下能达的理论下载速度为603 000 000B/s,3秒钟内就能下载好1GB的电影,将603 000 000用科学计数法表示为()A.603×610B.6.03×810C.60.3×710D.0.603×91012.如图,在△ABC中,AC=BC,∠C=90°,折叠△ABC使得点C落在AB边上的E处,连接DE、CE,下列结论:①△DEB是等腰直角三角形;②AB=AC+CD;③BE BDAC AB;④S△CDE=S△BDE.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题13.定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线被称为:“直角抛物线”.如图,直线l:y=15x+b经过点M(0,14),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n) (n为正整数),依次是直线l上的点,第一个抛物线与x轴正半轴的交点A1(x1,0)和A2(x2,0),第二个抛物线与x轴交点A2(x2,0)和A3(x3,0),以此类推,若x1=d(0<d<1),当d为_____时,这组抛物线中存在直角抛物线.14.如图,点为等边内一点,若,,,则的度数是__________.15.如图,正三角形ABC的边长为2,点A,B的圆上,点C在圆内,将正三角形ABC绕点A 逆时针旋转,当边AC第一次与圆相切时,旋转角为_____.16.抛物线 221y x =-的顶点坐标是________.17.命题“若a =b ,则a 3=b 3.”是真命题.它的逆命题“若a 3=b 3,则a =b”是_____(填真或假)命题.18.如图,直线y 1=mx 经过P(2,1)和Q(-4,-2)两点,且与直线y 2=kx +b 交于点P ,则不等式kx +b >mx >-2的解集为_________________.三、解答题19.关于x 的一次函数y =ax+b 与反比例函数y =k x(x >0)的图象交于点A (m ,4)和点B (4,1). (1)求m 的值和反比例函数的解析式;(2)求一次函数的解析式.20.如图1,在平面直角坐标系xOy 中,A (0,4),B (8,0),C (8,4).(1)试说明四边形AOBC 是矩形.(2)在x 轴上取一点D ,将△DCB 绕点C 顺时针旋转90°得到△D'CB'(点D'与点D 对应).①若OD =3,求点D'的坐标.②连接AD'、OD',则AD'+OD'是否存在最小值,若存在,请直接写出最小值及此时点D'的坐标;若不存在,请说明理由.21.抛物线L :y =a (x ﹣x 1)(x ﹣x 2)(常数a≠0)与x 轴交于点A (x 1,0),B (x 2,0),与y 轴交于点C ,且x 1•x 2<0,AB =4,当直线l :y =﹣3x+t+2(常数t >0)同时经过点A ,C 时,t =1.(1)点C 的坐标是 ;(2)求点A ,B 的坐标及L 的顶点坐标;(3)在如图2 所示的平面直角坐标系中,画出L 的大致图象;(4)将L 向右平移t 个单位长度,平移后y 随x 的增大而增大部分的图象记为G ,若直线l 与G 有公共点,直接写出t 的取值范围.22.从沈阳到大连的火车原来的平均速度是180千米/时,经过两次提速后平均速度为217.8干米/时,这两次提速的百分率相同.(1)求该火车每次提速的百分率;(2)填空:若沈阳到大连的铁路长396千米,则第一次提速后从甲地到乙地所用的时间比提速前少用了小时.23.立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.(1)当10≤x<60时,求y关于x的函数表达式;(2)九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?24.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规作∠ABC的平分线,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在(1)作出的图形中,若∠A=30°,BC,则点D到AB的距离等于.25.设a ,b 是任意两个不等实数,我们规定满足不等式a≤x≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b].对于一个函数,如果它的自变量x 与函数值y 满足:当m≤x≤n 时,有m≤y≤n,我们就称此函数闭区间[m ,n]上的“闭函数”.如函数y =﹣x+4.当x =1时,y =3;当x =3时,y =1,即当1≤x≤3时,有1≤y≤3,所以说函数y =﹣x+4是闭区间[1,3]上的“闭函数”(1)反比例函数2019y x是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由. (2)若二次函数y =x 2﹣2x ﹣k 是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx+b (k≠0)是闭区间[m ,n]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示).【参考答案】***一、选择题二、填空题13.1120、1320、32014.150°15.75°16.(0,-1)17.真18.-4<x <2三、解答题19.(1)m =1,y =4x ;(2)y =﹣x+5; 【解析】【分析】(1)把B 点坐标代入反比例函数解析式,即可求出m 的值,从而求出反比例函数的解析式和m 的值;(2)求得A 点坐标,进而把A 、B 点的坐标代入一次函数y =kx+b 的解析式,就可求出a 、b 的值,从而求得一次函数的解析式.【详解】(1)∵点B (4,1)在反比例函数y =k x (x >0)的图象上, ∴1=4k , ∴k =4. ∴反比例函数的解析式为y =4x∵点A(m,4)在反比例函数y=4x的图象上,∴4=4m,∴m=1.(2)点A(1,4)和点B(4,1)在一次函数y=ax+b的图象上,∴4 41 a ba b+=⎧⎨+=⎩解得15 ab=-⎧⎨=⎩∴一次函数的解析式为y=﹣x+5.【点睛】本题考查了反比例函数和一次函数的交点问题,能够熟练运用待定系数法求得函数的解析式是解题的关键.20.(1)见解析;(2)①D'的坐标为(4,9),②AD'+OD',点D'的坐标是(4,2).【解析】【分析】(1)根据矩形的判定证明即可;(2)①当点D在原点右侧时,根据旋转的性质和矩形的性质解答即可;②当点D在原点左侧时,根据旋转的性质和矩形的性质解答即可.【详解】(1)∵A(0,4),B(8,0),C(8,4).∴OA=4,BC=4,OB=8,AC=8,∴OA=BC,AC=OB,∴四边形AOBC是平行四边形,∵∠AOB=90°,∴▱AOBC是矩形;(2)∵▱AOBC是矩形,∴∠ACB=90°,∠OBC=90°,∵△D'CB'将△DCB绕点C顺时针旋转90°得到(点D'与点D对应),∴∠D'B'C=∠DBC=90°,B'C=BC=4,D'B'=DB,∠BCB'=90°,即点B'在AC边上,∴D'B'⊥AC,①如图1,当点D在原点右侧时:D'B'=DB=8﹣3=5,∴点D'的坐标为(4,9);②如图2,当点D在原点左侧时:D'B'=DB=8+3=11,∴点D'的坐标为(4,15),综上所述:点D'的坐标为(4,9)或(4,15).AD'+OD',点D'的坐标是(4,2).【点睛】此题考查四边形的综合题,关键是根据旋转的性质和矩形的性质解答.21.(1) 点C的坐标是(0,3); (2)A(1,0),B(﹣3,0),L的顶点坐标为(﹣1,4);(3)见解析;(4)t≥1 2【解析】【分析】(1)把t=1代入y=﹣3x+t+2,令x=0,求得相应的y值,即可得到点C的坐标;(2)根据待定系数法,可得函数解析式;(3)根据描点法,可得函数图象;(3)根据平移规律,可得G的解析式,根据函数与不等式的关系,可得答案.【详解】(1)直线的解析式为y=﹣3x+3,当x=0时,y=3,即C点坐标为(0,3),故答案为:(0,3);(2)当y=0时,﹣3x+3=0,解得x1=1,即A(1,0),由点A(x1,0),B(x2,0),且x1•x2<0,AB=4,得1﹣x2=4,解得x2=﹣3,即B(﹣3,0);L:y=a(x﹣1)(x+3),将C(0,3)坐标代入L,得a=﹣1,∴L的解析式为y=﹣(x﹣1)(x+3),即y=﹣(x+1)2+4,∴L的顶点坐标为(﹣1,4);(3)函数图象如图所示:;(4)L向右平移t个单位的解析式为y=﹣(x+1﹣t)2+4,a=﹣1<0,当x≤t﹣1时,y随x的增大而增大.若直线l与G有公共点时,则有当x=﹣1+t时,G在直线l的上方,即﹣(t﹣1+1﹣t)2+4≥﹣3(t﹣1)+t+2,解得t≥12.【点睛】本题考查了二次函数综合题,解(1)的关键是利用自变量与函数值的对应关系;解(2)的关键是待定系数法;解(3)的关键是描点法,解(4)的关键是利用函数值的大小得出不等式,还利用了函数图象平移的规律.22.(1)该火车每次提速的百分率为10%.(2)0.2.【解析】【分析】(1)设该火车每次提速的百分率为x,根据提速前的速度及经两次提速后的速度,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用第一次提速后的速度=提速前的速度×(1+提速的百分率)可求出第一次提速后的速度,再利用少用的时间=两地间铁路长÷提速前的速度﹣两地间铁路长÷第一次提速后的速度,即可求出结论.【详解】(1)设该火车每次提速的百分率为x,依题意,得:180(1+x)2=217.8,解得:x1=0.1=10%,x2=﹣2.1(舍去),答:该火车每次提速的百分率为10%;(2)第一次提速后的速度为180×(1+10%)=198(千米/时),第一次提速后从甲地到乙地所用的时间比提速前少用的时间为396396180198-=0.2(小时),故答案为:0.2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<60),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则60≤100﹣x<75;当40<x<60时,则40<100﹣x<60.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<60)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则60≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<60时,则40<100﹣x<60,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<60,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<60时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.(1)作图见解析;(2)1.【解析】【分析】(1)根据角平分线的尺规作图可得;(2)作DE⊥AB于E,设DE=DC=x,由∠A=30°,BC AD=2DE=2x,AB=2BC=由BC2+AC2=AB2得到关于x的方程,解之可得.【详解】(1)如图所示,BD即为所求;。
中考数学专项训练: 矩形、菱形与正方形(含解析)
一、选择题9.(2019·苏州)如图,菱形ABCD 的对角线AC 、BD 交于点O ,AC =4,BD =16将△ABO 沿点A 到点C 的方向平移,得到△A 'B 'O '.当点A '与点C 重合时,点A 与点B '之问的距离为 ( ) A .6 B .8 C .10 D .12(第9题)【答案】C【解析】∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =OC 12=AC =2,OB =OD 12=BD =8,∵△ABO 沿点A 到点C 的方向平移,得到△A 'B 'O ',点A '与点C 重合,∴O 'C =OA =2,O 'B '=OB =8,∠CO 'B '=90°, ∴AO '=AC +O 'C =6,∴AB'===10,故选C .10.(2019·温州)如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM=BC ,作MN ∥BG 交CD 于点L ,交FG 于点N .欧几里得在《几何原本》中利用该图解释了(a+b)(a-b)=a 2-b 2.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则12S S 的值为 ( )A.2 B.3 C.4 D.6【答案】C【解析】如图,连接ALGL ,PF .由题意:S 矩形AMLD =S 阴=a 2﹣b 2,PH=22-a b ,∵点A ,L ,G 在同一直线上,AM ∥GN ,∴△AML ∽△GNL ,∴=,∴=,整理得a =3b ,∴===,故选C .9.(2019·绍兴)正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积 ( )A.先变大后变小B.先变小后变大C.一直变大D.保持不变10. (2019·烟台)如图,面积为24的ABCD 中,对角线BD 平分,过点D 作交BC 的延长线于点E ,6DE =,则sin DCE ∠的值为( ).A .2425B .45C .34D .1225【答案】A【解析】连接AC ,交BD 于点F ,过点D 作DM CE ⊥,垂足为M因为四边形ABCD 是平行四边形, 所以F 是BD 的中点,AD//BC , 所以DBC ADB ∠=∠,因为BD 是 ABC ∠的平分线, 所以ABD DBC ∠=∠, 所以ABD ADB ∠=∠, 所以AB AD =,所以□ABCD 是菱形, 所以AC BD ⊥, 又因为DE BD ⊥, 所以AC//DE ,因为AC//DE ,F 是BD 的中点, 所以C 是BE 的中点,所以132CF DE ==, 因为四边形ABCD 是菱形, 所以26AC FC ==,2ABCD AC BDS ⨯=菱形, FADB所以222486ABCDS BD AC⨯===菱形, 所以142BF BD ==, 在Rt △BFD 中,由勾股定理得5BC ==,因为四边形ABCD 是菱形, 所以5DC BC ==,因为ABCD S BC DM =⨯菱形 所以245ABCDS DM BC==菱形, 在Rt △DCM 中,24sin 25DM DCE DC ∠==. 6.(2019·江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有( )A.3种B.4种C.5种D.6种【答案】B【解题过程】具体拼法有4种,如图所示:4.(2019·株洲)对于任意的矩形,下列说法一定正确的是() A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 【答案】C 【解析】根据矩形的性质可知,矩形的对角线相等但不一定垂直,所以选项A 是错误的;矩形相邻的边互相垂直,对边互相平行,所以选项B 是错误的;矩形的四个角都是直角,所以四个角都相等是正确的;矩形既是轴对称图形,又是中心对称图形,所以选项D 是错误的;故选C.3. (2019·娄底)顺次连接菱形四边中点得到的四边形是( )A 平行四边形B . 菱形C . 矩形D . 正方形 【答案】C【解析】如图:菱形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH ∥FG ∥BD ,EH =FG = 12 BD ;EF ∥HG ∥AC ,EF =HG =12 AC , 故四边形EFGH 是平行四边形, 又∵AC ⊥BD ,∴EH ⊥EF ,∠HEF =90° ∴四边形EFGH 是矩形. 故选C .10.(2019·安徽)如图,在正方形ABCD 中,点E 、F 将对角线AC 三等分,且AC=12.点P 在正方形的边上,则满足PE+PF=9的点P 的个数是A. 0B. 4C. 6D. 8【答案】D【解题过程】如图,作点F 关于CD 的对称点F /,连接PF /、PF ,则PE +PF =EF /,根据两点之间线段最知可知此时PE +PF 的值最小.过点E 作EH ⊥FF /,垂足为点H ,FF’交CD 于点G ,易知△EHF 、△CFG 是等腰直角三角形,∴EH =FH =FG =F’G=2EF =,∴EF’=9.根据正方形的对称性可知正方形ABCD 的每条边上都有一点P 使得PE +PF 最小值.连接DE 、DF ,易求得DE +DF =>9,CE +CF =12>0,故点P 位于点B 、D 时,PE +PF >9,点P 位于点A 、C 时,PE +PF >9,∴该正方形每条边上都有2处点使得PE +PF =9,共计点P 有8处.1.(2019·无锡)下列结论中,矩形具有而菱形不一定具有的性质是() A.内角和为360° B.对角线互相平分 C.对角线相等 D.对角线互相垂直 【答案】C【解析】本题考查了矩形的性质、菱形的性质,矩形的对角线相等且平分,菱形的对角线垂直且平分,所以矩形具有而菱形不具有的为对角线相等,故选C .2. (2019·泰安)如图,矩形ABCD 中,AB =4,AD =2,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB,则PBB的最小值是A.2B.4C.2D.22【答案】D【解析】∵F为EC上一动点,P为DF中点,∴点P的运动轨迹为△DEC的中位线MN,∴MN∥EC,连接ME,则四边形EBCM为正方形,连接BM,则BM⊥CE,易证BM⊥MN,故此时点P与点M重合,点F与点C重合,BP取到最小值,在Rt△BCP中,BP=22BC CP=22.3.(2019·眉山)如图,在矩形ABCD中AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是A.1 B.74C.2 D.125【答案】B【解析】连接CE,∵四边形ABCD是矩形,∴∠ADC=90°,OC=OA,AD=BC=8,DC=AB=6,∵EF⊥AC,OA=OC,∴AE=CE,在Rt△DEC中,DE2+DC2=CE2,即DE2+36=(8-DE)2,解得:x=74,故选B.4.(2019·攀枝花)下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形、又是中心对称图形【答案】B【解析】对角线相等的四边形不一定是矩形,如等腰梯形.故选B.5.(2019·攀枝花)如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE折叠到AF ,延长EF 交DC 于G 。
矩形菱形正方形练习题和答案
一、性质1、下列性中.矩形具有而质平行四边形不一定具有的是()A 、对边相等B 、对角相等C 、对角线相等D 、对边平行2 .在矩形ABCD 中.NAOD=130°.则NACB=__3 .已知矩形的一条对角线长是8cm.两条对角线的一个交角为60°.则矩形的周长为4 .矩形ABCD 被两条对角线分成四个小三角形.如果四个小三角形的周长的和是86cm.对角线是13cm.那么矩形的周长是5 .如图所示.矩形ABCD 中.AE ,BD 于E.Nk BAE=30°.BE=1cm.那么DE 的长为 6、直角三角形斜边上的高与中线分别是5cm 和6cm.则它的面积为7、已知.在Rt△ABC 中出口为斜边AC 上的中线.若NA=35°.那么NDBC 二。
8、如图.矩形ABCD 中.AC 与8口交于。
点.BELAC 于E.CFLBD 于F.求证:BE=CF. 9 .如口图.△ABC 中.NACB=90度.点D 、E 分别为AC 、AB 矩形的习题精选AB的中点.点F在BC延长线上.且/CDF=NA.求证:四边形DECF是平行四边形;10.已知:如图.在aABC中.NBACW90°NABC=2NC.AD±AC.交BC或CB的延长线D。
试说明:DC=2AB.11、在4ABC中.NC=90O.AC=BC.AD=BD.PE^AC于点E.PFLBC于点F。
求证:DE=DF二、判定1、下列检查一个门框是否为矩形的方法中正确的是(C)A.测量两条对角线.是否相等B.测量两条对角线.是否互相平分他用曲尺测量门框的三个角.是否都是直角口.用曲尺测量对角线.是否互相垂直2、平行四边形ABCD.E是CD的中点.4人8£是等边三角形.求证:四边形ABCD是矩形3、在平行四边形ABCD中.对角线AC、BD相交于O.EF过点O.且AF,BC. 求证:四边形AFCE是矩形4、平行四边形ABCD中.对角线AC、8口相交于点。
矩形菱形正方形练习题
矩形菱形正方形练习题一、填空题1、在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为.2、在矩形中,如果AB=2,BC=1.,那么AC= .3、如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,那么四边形BCFE的面积等于.4、如图,甲,乙,丙,丁四个长方形拼成正方形EFGH,中间阴影为正方形,已知,甲、乙、丙、丁四个长方形面积的和是32cm²,四边形ABCD的面积是20cm².问甲、乙、丙、丁四个长方形周长的总和是______.5、如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是.6、如图,在矩形ABCD中,点F为边CD上一点,沿AF折叠,点D恰好落在BC边上的E点处,若AB=3,BC=5,则的值为.7、如图4,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB、CD上滑动,当CM=时,△AED与以M、N、C为顶点的三角形相似。
8、矩形中,,,边绕旋转使得点落在射线上处,那么的度数为.9、已知正方形ABCD中,点E在边DC上,DE=2,EC=1 (如图所示),把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为.10、如图4,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上时,弧BC 的长度等于(结果保留).11、在矩形中,如果AB=2,BC=1,BE⊥AC,AE= .12、如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为正方形,应添加的条件是.13、如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB= .14、如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_______.15、如图,以O为顶点的两条抛物线分别经过正方形的四个顶点A、B、C、D,则阴影部分的面积为______二、选择题16、对角线互相平分且相等的四边形是().菱形;.矩形;.正方形;.等腰梯形.17、若一个菱形的一条边长为4cm,则这个菱形的周长为()(A)20cm (B)18cm (C)16cm (D)12cm18、如图,将边长为12cm的正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN.若CE的长为8cm,则MN的长为A.12cm B.12.5cm C. cm D.13.5cm19、若一个菱形的一条边长为4cm,则这个菱形的周长为()(A)20cm (B)18cm (C)16cm (D)12cm20、如图,顺次连结四边形ABCD各中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DC B.AB=DC C.AC⊥BD D.AC=BD21、已知四边形ABCD是平行四边形,下列结论中不正确的有()①当AB=BC时,它是菱形②当AC⊥BD时,它是菱形③当∠ABC=90时,它是矩形④当AC=BD 时,它是正方形 A.1组 B.2组 C.3组 D.4组22、下列命题中,真命题是()A.矩形的对角线相互垂直B.顺次连结四边形各边中点所得到的四边形是矩形 C.等边三角形既是轴对称图形又是中心对称图形 D.对角线互相垂直平分的四边形是菱形23、如图,矩形ABCD中,AB=3,BC=5,过对角线交点O作OE⊥AC交AD于E,则AE的长是().A.1.6 B.2.5 C.3 D.3.424、如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是().25、如图,在正方形纸片ABCD中,E,F分别是AD、BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有().A.1个B.2个C.3个D.4个26、已知四边形中,,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是().(A);(B);(C);(D).27、菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为( )A.2 B.2C.4 D.428、已知四边形中,,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是().(A);(B);(C);(D).29、在下列命题中,真命题是()(A)两条对角线相等的四边形是矩形(B)两条对角线互相垂直的四边形是菱形(C)两条对角线互相平分的四边形是平行四边形(D)两条对角线互相垂直且相等的四边形是正方形30、如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为( ) A.2 B.2C.4 D.431、如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是(). A.2+ B.2+2C.12 D.1832、在下列命题中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形 C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形33、如图,在菱形ABCD中,点E、 F分别是AB、AC的中点,如果EF=3,那么菱形ABCD的周长是()A. 24B. 18C. 12D. 634、正方形、正方形和正方形的位置如图所示,点在线段上,正方形的边长为4,则的面积为()A.10B.12C.14D.1635、如图,四边形的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )A. B. C. D.36、下列四边形:①正方形、②矩形、③菱形,对角线一定相等的是A.①②③ B.①② C.①③ D.②③37、如图,在菱形ABCD中,DE⊥AB,,AE=3,则tan∠DBE的值是()A.B.2 C.D.38、一个正方形的面积等于10,则它的边长a满足A. 3<a<4B. 5<a<6C.7<a<8D. 9<a<1039、如图,矩形ABCD的对角线AC⊥OF,边CD在OE上,∠BAC=70°,则∠EOF等于()A. 10°B. 20°C. 30°D. 70°40、如图,在正方形ABCD中,AB=3㎝.动点M自A点出发沿AB方向以每秒1㎝的速度运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3㎝的速度运动,到达B点时运动同时停止.设△AMN的面积为y(㎝2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是41、如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形三、简答题42、如图,在正方形中,为对角线上一点,联结、,延长交于点.(1)求证:;(2)当时,求证:.43、已知,正方形ABCD中,∠MAN=45°, ∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由.如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)44、矩形纸片中,,现将这张纸片按下列图示方式折叠,是折痕.(1)如图1,P,Q 分别为,的中点,点的对应点在上,求和的长;(2)如图2,,点的对应点在上,求的长;(3)如图3,,点的对应点在上.①直接写出的长(用含的代数式表示);②当越来越大时,的长越来越接近于▲.45、已知:如图,菱形中,分别是上的点,且CE=CF.求证:.46、如图,⊙O 的直径AB =8,C 为圆周上一点,AC =4,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点 E . (1) 求∠AEC 的度数; (2)求证:四边形OBEC 是菱形.47、在正方形ABCD 中,O 是AD 的中点,点P 从A 点出发沿A →B →C →D 的路线匀速运动,移动到点D 时停止。
16.2 矩形-菱形与正方形的性质同步练习
16.2矩形、菱形与正方形的性质一、课内训练:1.如图,矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,求对角线AC的长.(1) (2)4.如图,以正方形ABCD的边CD为一边在正方形外作等边△CDE,连接BE,交正方形的对角线AC于点F,连接DF,求∠AFD的度数.5.(1)如图,把一矩形ABCD的纸片,沿EF折叠后,点D、C分别落在D′、C′的位置上,ED′与BC的交点为G,若∠EFG=55°,求∠1、∠2的度数.(2)如图,把一矩形纸片ABCD,沿EF折叠后,点D和点B重合,点C落在C•′位置,若AB=4cm,AD=12cm,求BE的长度.6.已知△ABC,∠A:∠B:∠C=1:2:3,AB=6cm,D为AB边上的中点,求CD的长.7.•已知菱形的边长为10cm,•则菱形对角线的交点到四条边中点的距离之和为_____cm.8.如图所示,在矩形ABCD中,对角线AC分∠BAD为∠1,∠2,且∠1:∠2=1:2,AB=3cm,求AC的长.9.菱形ABCD的两条对角线分别为5cm,12cm,则菱形ABCD的面积为多少?10.对于左栏的案例4,采用“补短法”还可以怎样作辅助线,证明出BE=BG+FC?11.如图,E、F分别在正方形ABCD的边AD、CD上,且∠FBC=∠EBF,• 求证:BE=AE+CF.二、课外演练1.正方形具有而菱形不一定具有的特征是()A.四条边都相等 B.对角线互相垂直平分C.对角线平分一组对角 D.对角线相等2.一个菱形的两条对角线长分别为7cm和8cm,则这个菱形的面积为()A.56cm2 B.28cm2 C.14cm2 D.36cm23.如图,EF为矩形ABCD对角线的交点O,•且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的()A.15B.14C.13D.310(第3题)(第6题)(第8题)4.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是()A.20° B.40° C.80° D.100°5.菱形的一条对角线与一条边长相等,则这菱形锐角的度数为_______.6.如图,已知矩形ABCD的对角线相交于点O,△AOD的周长比△AOB的周长大8cm,矩形周长是80cm,求矩形ABCD的面积.7.如果矩形的两条对角线所成的角中有一个角为60°,那么()A.它的对角线长是长边长度的2倍 B.它的对角线长是短边长度的2倍C.它的长边是短边长度的2倍 D.上述关系无法确定8.如图,矩形ABCD中,AD=30,AB=20,E、F三等分对角线AC,则S△ABE=()A.60 B.100 C.150 D.2009.能够在图形内找到一点,使该点到四边形的各边距离都相等,则该四边形一定是() A.平行四边形、菱形; B.矩形、正方形; C.矩形、菱形; D.菱形、正方形10.如图16-2-21,在矩形ABCD中,AE⊥BD于E,∠DAE=3∠BAE,则∠EAC为()A.30° B.45° C.60° D.75°(第10题)(第14题)(第15题)11.矩形的一个角的平分线把矩形的一边分成5cm或8cm,此矩形周长为_____cm.12.菱形的面积为24cm2,一条对角线的长为8cm,则另一条对角线的长是_____cm.13.菱形的周长是20cm,那么一边上的中点到两条对角线交点的距离为______cm.14.如图,若点P是正方形ABCD内任意一点,且正方形的边长为1,若S△ABP=0.4,则S△DCP =______.15.如图,正方形ABCD的对角线相交于O点,点O是正方形A′B′C′O的一个顶点,如19.在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积和是多少?20.阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,•则称这样的矩形为三角形的“友好矩形”,如图①所示,矩形ABEF即为△ABC的“友好矩形”.显然,当△ABC•是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”.(2)如图②,若△ABC为直角三角形,且∠C=90°,在图16-2-28•②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小.(3)若△ABC是锐角三角形,且BC>AC>AB.在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.答案:一、课内训练:1.解:∵四边形ABCD是矩形,∴AC=BD,AO=CO=12AC,OB=OD=12BD(矩形对角线相等且互相平分).∴AO=CO=OB=OD.又∵∠AOD=120°,∴∠AOB=60°.∴△AOB是等边三角形.即AO=BO=AB=4(cm).∴AC=2×4=8(cm).点拨:根据矩形的对角线相等且互相平分的特征,矩形的两条对角线把矩形分成了四个等腰三角形,若矩形的两条对角线的夹角中,如果有60°或120°的角,则必有等边三角形.2.解:∵四边形ABCD为菱形,∴AB=AD.又∵∠A=60°,∴△ABD为等边三角形.∴AB=AD=BD=5.∴菱形的周长为4AB=5×4=20.点拨:根据菱形的特征,四条边都相等,所以AB=AD,结合∠A=60°,可得△ABD•为等边三角形,从而求得菱形的边长,进而求得菱形的周长.3.解:(1)因为四边形ABCD是正方形.所以∠BOE=∠AOF=90°,OA=OB.又因为AM⊥EB,所以∠MAE+∠MEA=90°=∠OBE+∠MEA.所以∠MAE=∠OBE.所以△AOF绕O点逆时针方向旋转90°可与△BOE重合.所以OE=OF.(2)OE=OF仍成立,说明如下:因为四边形ABCD是正方形,所以∠BOE=∠AOF=90°,BO=AO.因为AM⊥EB,所以∠OEB+∠OAM=90°=∠OFA+∠OAM.所以∠OEB=∠OFA.所以△AOF绕O点逆时针旋转90°后可与△BOE重合.所以OE=OF.点拨:要使OE=OF,只需证明△AOF和△BOE重合,根据已知条件和正方形的特征易得到,“问题”的基本思路是先假设结论成立,然后用分析法探求其成立条件,•若题设所给条件满足要求,则成立,反之则不成立.4.解:∵四边形ABCD是正方形.∴AB=AD,∠BAF=∠DAF.∴△ABF与△ADF全等.∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFD=60°.点拨:易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.由∠AFB=∠ACB+∠EBC,∠ACB=45°,转化为求∠EBC的度数,在等腰△BCE中可求得.5.(1)解:在矩形ABCD中,AD∥BC,∴∠DEF=∠EFB,∠1+∠2=180°.又∵∠EFG=55°,由对称性可知∠GEF=∠DEF=55°.∴∠1=180°-∠GEF-∠DEF=70°.∴∠2=180°-∠1=110°.10.如图,过点G作BC的平行线交DC的延长线于点H,则得矩形BGHC.∴GH=BC=AB,BG=CH,∵∠HGF+∠AGE=90°,∠BAE+∠AGE=90°,∴∠BAE=∠HGF.解①②得 AD=24,AB=16.∴S矩形ABCD=24×16=384(cm2).点拨:利用矩形的对角线相等且互相平分.7.B 点拨:当矩形两条对角线夹角中有一个为60°时,一定有等边三角形.8.B 点拨:S矩形=20×30=600,S△ABC =12×600=300.9.D 点拨:由于菱形和正方形的对角线平分每一组内角,•而角平分线上的点到角两边的距离相等,因此菱形和正方形对角线的交点即为满足题意的点.10.B 点拨:由∠DAE=3∠BAE,得∠BAE=22.5°,18.如图19.解:由勾股定理得S A+S B+S C+S D=S最大正方形=49.20.解:(1)如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边(2)题 (3)题)此时共有3个友好矩形,如图的及ABHK,其中的矩形ABHK证明如下:易知,这三个矩形的面积相等,令其为.∴L1-L2>0,即L1>L2,同理可得L2>L3.∴L3最小,即矩形ABHK的周长最小.点拨:根据矩形的特征、三角形面积的有关知识解决.。
矩形、菱形、正方形(解答题)专练(详细答案)
9.4 矩形、菱形、正方形(解答题)1.如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.2.如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD 的延长线于点F,求证:DF=BE.3.如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.4.已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.5.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.6.如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.7.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE 的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.8.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.9.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.10.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.11.如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E 关于AC所在直线的对称点.(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长.12.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ABC=°.(直接填写结果)13.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)14.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.15.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.16.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.17.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.18.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.19.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.20.如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.21.如图,将平行四边形ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.22.阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.23.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.24.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.25.如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;=2S△ECF,求BE.(2)若AB=2,S△ABE26.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.27.在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由28.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知EO=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.29.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:AE=EF.30.如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.答案与解析1.(2016•安顺)如图,在平行四边形ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,▱ABCD的BC边上的高为2×sin60°=,∴菱形AECF的面积为2.【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.2.(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【分析】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【解答】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【点评】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.3.(2016•荆州)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C′∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.4.(2016•淮安)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.【分析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明△ADE ≌△CDF即可.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,∵点E、F分别为边CD、AD的中点,∴AD=2DF,CD=2DE,∴DE=DF,在△ADE和△CDF中,,∴△ADE≌△CDF(SAS).【点评】此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.5.(2016•苏州)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D 作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.6.(2016•枣庄)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6,∠BAD=60°,且AB>6.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【分析】(1)根据锐角三角函数求出∠FPG,最后求出∠EPF.(2)先判断出Rt△PME≌Rt△PNF,再根据锐角三角函数求解即可,(3)根据运动情况及菱形的性质判断求出AP最大和最小值.【解答】解:(1)过点P作PG⊥EF于点G,如图1所示.∵PE=PF=6,EF=6,∴FG=EG=3,∠FPG=∠EPG=∠EPF.在Rt△FPG中,sin∠FPG===,∴∠FPG=60°,∴∠EPF=120°.(2)过点P作PM⊥AB于点M,作PN⊥AD于点N,如图2所示.∵AC为菱形ABCD的对角线,∴∠DAC=∠BAC,AM=AN,PM=PN.在Rt△PME和Rt△PNF中,PM=PN,PE=PF,∴Rt△PME≌Rt△PNF,∴ME=NF.又AP=10,∠PAM=∠DAB=30°,∴AM=AN=APcos30°=10×=5,∴AE+AF=(AM+ME)+(AN﹣NF)=AM+AN=10.(3)如图,当△EFP的三个顶点分别在AB,AD,AC上运动,点P在P′,P之间运动,∴P′O=PO=3,AO=9,∴AP的最大值为12,AP的最小值为6,【点评】此题是菱形的性质题,主要考查了菱形的性质,锐角三角函数,特殊角的三角函数,解本题的关键是作出辅助线.7.(2016•三明)如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.【分析】(1)利用平行四边形的判定证明即可;(2)利用菱形的判定证明即可.【解答】证明:(1)∵D,E分别为边AC,AB的中点,∴DE∥BC,即EF∥BC.又∵BF∥CE,∴四边形ECBF是平行四边形.(2)∵∠ACB=90°,∠A=30°,E为AB的中点,∴CB=AB,CE=AB.∴CB=CE.又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形.【点评】此题主要考查了平行四边形的判定以及菱形的判定与性质,利用平行四边形的判定以及菱形的判定是解题关键.8.(2016•抚顺)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.【分析】(1)首先根据角平分线的性质得到∠DAC=∠BAC,∠ABD=∠DBC,然后根据平行线的性质得到∠DAB+∠CBA=180°,从而得到∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,得到答案∠AOD=90°;(2)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案.【解答】解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.【点评】本题考查了等腰三角形的性质,平行四边形的判定,菱形的判定的应用,能得出四边形ABCD是平行四边形是解此题的关键.9.(2016•沈阳)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【分析】(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD,∠CBE=∠ABD即可.(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定.【解答】证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.【点评】本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.10.(2016•聊城)如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明△AED ≌△ABD,推出DF⊥AC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED.∵AF∥CD,∴四边形ADCF是平行四边形.由题意知,AE=AB,∠EAD=∠BAD,AD=AD,∴△AED≌△ABD.∴∠AED=∠B=90°,即DF⊥AC.∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.11.(2016•德阳)如图,在四边形ABCF中,∠ACB=90°,点E是AB边的中点,点F恰是点E关于AC所在直线的对称点.(1)证明:四边形CFAE为菱形;(2)连接EF交AC于点O,若BC=10,求线段OF的长.【分析】(1)根据直角三角形的性质得到CE=AB=EA,根据轴对称的性质得到AE=AF,CE=CF,得到CE=EA=AF=CF,根据菱形的判定定理证明结论;(2)根据菱形的性质得到OA=OC,OE=OF,根据三角形中位线定理求出OE,得到答案.【解答】(1)证明:∵∠ACB=90°,点E是AB边的中点,∴CE=AB=EA,∵点F是点E关于AC所在直线的对称点,∴AE=AF,CE=CF,∴CE=EA=AF=CF,∴四边形CFAE为菱形;(2)解:∵四边形CFAE为菱形;∴OA=OC,OE=OF,∴OE=BC=5,∴OF=5.【点评】本题考查的是菱形的判定和性质、轴对称的性质,掌握四条边相等的四边形是菱形、菱形的对角线垂直且互相平分是解题的关键.12.(2016•梅州)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是菱形;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为10,∠ABC=120°.(直接填写结果)【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明.(2)根据菱形的性质首先证明△AOB是含有30°的直角三角形,由此即可解决问题.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形∵AB=AF,∴四边形ABEF是菱形.故答案为菱形.(2)∵四边形ABEF是菱形,∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,∵AB=10,∴AB=2BO,∵∠AOB=90°∴∠BA0=30°,∠ABO=60°,∴AO=BO=5,∠ABC=2∠ABO=120°.故答案为,120.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,想到利用特殊三角形解决问题,属于中考常考题型.13.(2016•贺州)如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求四边形AECF的面积.(结果保留根号)【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2,∴四边形AECF是的面积为:EC•AB=2.【点评】此题考查了矩形的性质、菱形的判定与性质以及三角函数等知识.注意证得△AOF≌△COE是关键.14.(2016•衢州)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.【解答】解:(1)如图所示,EF为所求直线;(2)四边形BEDF为菱形,理由为:证明:∵EF垂直平分BD,∴BE=DE,∠DEF=∠BEF,∵AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,∵BF=DF,∴BE=ED=DF=BF,∴四边形BEDF为菱形.【点评】此题考查了矩形的性质,菱形的判定,以及作图﹣基本作图,熟练掌握性质及判定是解本题的关键.15.(2016•扬州)如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.【分析】(1)首先由矩形的性质和折叠的性质证得AB=CD,AD∥BC,∠ANF=90°,∠CME=90°,易得AN=CM,可得△ANF≌△CME(ASA),由平行四边形的判定定理可得结论;(2)由AB=6,AC=10,可得BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt △CEM中,利用勾股定理可解得x,由平行四边形的面积公式可得结果.【解答】(1)证明:∵折叠,∴AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°,∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∴AM=CN,∴AM﹣MN=CN﹣MN,即AN=CM,在△ANF和△CME中,,∴△ANF≌△CME(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=10,∴BC=8,设CE=x,则EM=8﹣x,CM=10﹣6=4,在Rt△CEM中,(8﹣x)2+42=x2,解得:x=5,∴四边形AECF的面积的面积为:EC•AB=5×6=30.【点评】本题主要考查了折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.16.(2016•遵义)如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.【分析】(1)由矩形的性质得出∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,证出∠E=∠F,AE=CF,由ASA证明△CFP≌△AEQ,即可得出结论;(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=3,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD 的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.17.(2016•广州)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.18.(2016•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.19.(2016•福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,=S△NAQ=×AN•NQ=××3×4=;∴S△NAB(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.20.(2016•吉林)如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.【分析】根据菱形的性质得出AC⊥BD,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE是矩形.【解答】证明:∵四边形ABCD为菱形,∴AC⊥BD,∴∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形,∴四边形AODE是矩形.【点评】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.21.(2016•南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.22.(2016•兰州)阅读下面材料:在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?小敏在思考问题是,有如下思路:连接AC.结合小敏的思路作答(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决一下问题:(2)如图2,在(1)的条件下,若连接AC,BD.①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.【分析】(1)如图2,连接AC,根据三角形中位线的性质得到EF∥AC,EF=AC,然后根据平行四边形判定定理即可得到结论;(2)由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,于是得到当AC=BD时,FG=HG,即可得到结论;(3)根据平行线的性质得到GH⊥BD,GH⊥GF,于是得到∠HGF=90°,根据矩形的判定定理即可得到结论.【解答】解:(1)是平行四边形,证明:如图2,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形;(2)AC=BD.理由如下:由(1)知,四边形EFGH是平行四边形,且FG=BD,HG=AC,∴当AC=BD时,FG=HG,∴平行四边形EFGH是菱形,(3)当AC⊥BD时,四边形EFGH为矩形;理由如下:同(2)得:四边形EFGH是平行四边形,∵AC⊥BD,GH∥AC,∴GH⊥BD,∴GH⊥GF,∴∠HGF=90°,∴四边形EFGH为矩形.【点评】此题主要考查了中点四边形,关键是掌握三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.23.(2016•台州)如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【分析】(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH 和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.【解答】证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AD∥BC.∵PF∥AB,∴PF∥CD,∴∠CPF=∠PCH.。
专题19.1 矩形、菱形与正方形(基础篇)专项练习-2020-2021学年八年级数学下(华东师大版)
专题19.1 矩形、菱形与正方形(基础篇)专项练习一、单选题1.菱形具有而一般平行四边形不具有的性质是( )A .对边相等B .对角相等C .对角线互相平分D .对角线互相垂直 2.下列判断错误的是( )A .两组对边分别相等的四边形是平行四边形B .四个内角都相等的四边形是矩形C .四条边都相等的四边形是菱形D .两条对角线垂直且平分的四边形是正方形3.菱形的周长为8cm ,高为1cm ,则菱形两邻角度数比为( )A .4:1B .5:1C .6:1D .7:1 4.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .15B .14C .13D .3105.如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( )A .2.4cmB .4.8cmC .5cmD .9.6cm 6.如图,在平面直角坐标系中,四边形OABC 为菱形,()0,0O ,()4,0A ,60AOC ∠=,则对角线交点E 的坐标为( )A.(B.)2C.)D.(7.如图,矩形ABCD 的对角线AC 与BD 相交于点O,CE∥BD, DE∥AC , AD=, DE =2,则四边形OCED 的面积为()A.B.4C.D.88.如图,在正方形ABCD中,E为DC边上的点,连接BE,将∥BCE绕点C顺时针方向旋转90°得到∥DCF,连接EF,若∥BEC=60°,则∥EFD的度数为()A.10°B.15°C.20°D.25°9.如图,在∥ABC 中,点D 是边BC 上的点(与B、C 两点不重合),过点D作DE∥AC,DF∥AB,分别交AB、AC 于E、F 两点,下列说法正确的是()A.若AD 平分∥BAC,则四边形AEDF 是菱形B.若BD=CD,则四边形AEDF 是菱形C.若AD 垂直平分BC,则四边形AEDF 是矩形D .若 AD ∥BC ,则四边形 AEDF 是矩形10.如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE BC ⊥于点E .PF AB ⊥于点F .若菱形ABCD 的周长为20,面积为24,则PE PF +的值为( )A .4B .245C .6D .485二、填空题 11.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm . 12.如图,在∥ABC 中,AD 是高,E 是AB 的中点,EF∥AD ,交AC 于点F ,若AC=6,则DF 的长为______.13.如图,在长方形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD ,BC 于点E ,F ,连接CE ,则CE 的长为________.14.如图,菱形ABCD 的边长为2,∥DAB=60°,E 为BC 的中点,在对角线AC 上存在一点P ,使∥PBE 的周长最小,则∥PBE 的周长的最小值为________.15.如图:已知:AM MN ⊥,BN MN ⊥,垂足分别为M 、N ,点C 是MN 上使AC BC +的值最小的点.若3AM =,5BN =,15MN =,则AC BC +=________.16.如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∥EAF =45°,∥ECF 的周长为4,则正方形ABCD 的边长为_____.17.如图,在Rt∥ABC 中,∥ABC=90°,AC=10cm ,点D 为AC 的中点,则BD=_____cm .18.如图,在菱形ABCD 中,P 是对角线AC 上的一点,PE AB ⊥于点E ,若5PE =,则点P 到AD 的距离为________.19.如图,边长分别为4和8的两个正方形ABCD 和CEFG 并排放在一起,连结BD 并延长交EG 于点T ,交FG 于点P ,则GT 的长为_____.20.如图,在Rt∥BAC 和Rt∥BDC 中,∥BAC =∥BDC =90°,O 是BC 的中点,连接AO 、DO.若AO=3,则DO的长为_____.21.如图,在正方形ABCD,E是对角线BD上一点,AE的延长线交CD于点F,连接∠=︒,则CEFCE.若56BAE∠=______︒.22.如图,边长为1的菱形ABCD中,∥DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∥FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∥HAE=60°…按此规律所作的第n个菱形的边长是___.三、解答题23.如图,∥ABC中,AB=AC,AD是∥ABC的角平分线,点O为AB的中点,连接DO 并延长到点E,使OE=OD,连接AE,BE,(1)求证:四边形AEBD是矩形;(2)当∥ABC满足什么条件时,矩形AEBD是正方形,并说明理由.24.如图,在∥ABC 和∥DCB 中,AB=DC ,AC=DB ,AC 与DB 交于点M .(1)求证:∥ABC∥∥DCB(2)过点C 作CN∥BD ,过点B 作BN∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.25.如图,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA (不包括端点)上运动,且满足AE CG =,AH CF =.(1)求证:AEH CGF ∆≅∆;(2)试判断四边形EFGH 的形状,并说明理由.(3)请探究四边形EFGH 的周长一半与矩形ABCD 一条对角线长的大小关系,并说明理由.26.在∥ABC 中,M 是AC 边上的一点,连接BM.将∥ABC 沿AC 翻折,使点B 落在点D 处,当DM∥AB 时。
中考复习《矩形、菱形、正方形》测试题(含答案)
中考复习《矩形、菱形、正方形》测试题(含答案)一、选择题(每题4分,共24分)1.[2015·泸州]菱形具有而平行四边形不具有的性质是(D) A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直2.[2015·衢州]如图28-1,已知某菱形花坛ABCD的周长是24 m,∠BAD=120°,则花坛对角线AC的长是(B)A.6 3 m B.6 m图28-1 C.3 3 m D.3 m【解析】易知△ABC为等边三角形,所以AC=AB=6 m.3.[2015·益阳]如图28-2,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D) A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD图28-2 图28-34.[2014·福州]如图28-3,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为(C) A.45°B.55°C.60°D.75°【解析】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE 是等边三角形, ∴AE =AD =DE ,∠DAE =60°, ∴AB =AE ,∴∠ABE =∠AEB ,∠BAE =90°+60°=150°, ∴∠ABE =(180°-150°)÷2=15°, 又∵∠BAC =45°, ∴∠BFC =45°+15°=60°.5.[2015·临沂]如图28-4,四边形ABCD 为平行四边形,延长AD 到E ,使DE =AD ,连结EB ,EC ,DB .添加一个条件,不能使四边形DBCE 成为矩形的是 (B) A .AB =BEB .BE ⊥DCC .∠ADB =90°D .CE ⊥DE【解析】 因为四边形ABCD 为平行四边形,所以AD 綊BC ,因为DE =AD ,所以DE 綊BC所以四边形EDBC 为平行四边形,A .假若AB =BE ,因为AB =BE ,AD =DE ,BD =BD ,所以△ADB ≌△EDB ,所以∠BDE =90°,所以四边形EDBC 为矩形; B .假若BE ⊥DC ,可得四边形EDBC 为菱形;C .假若∠ADB =90°,所以∠EDB =90°,所以四边形EDBC 为矩形;D .假若CE ⊥DE ,所以∠DEC =90°,所以四边形EDBC 为矩形,故选B. 6.[2015·日照]小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 成为正方形(如图28-5)现有下列四种选法,你图28-4图28-5认为其中错误的是(B)A.①②B.②③C.①③D.②④【解析】此题考查正方形的判定,即在▱ABCD的基础上,需要再同时具备矩形和菱形的特征.①是菱形的特征;②是矩形的特征;③是矩形的特征,④是菱形的特征.而B中都是矩形的特征,故选B.二、填空题(每题4分,共20分)7.[2015·铜仁]已知一个菱形的两条对角线长分别为6 cm和8 cm,则这个菱形的面积为__24__cm2.8.[2014·衡阳]如图28-6,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为__10__.9.[2015·上海]已知E是正方形ABCD的对角线AC上一点,图28-6 AE=AD,过点E作AC的垂线,交边CD于点F,那么∠F AD=__22.5__度.10.[2014·淄博]已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形.你添加的条件是__AB=BC或AC⊥BD等__.11.[2014·资阳]如图28-7,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为__6__.图28-7【解析】如答图,连结BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE=5,∴△BEQ周长的最小值=DE+BE=5+1=6.三、解答题(共20分)12.(10分)[2015·安顺]如图28-8,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于图28-8F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.证明:(1)∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,理由如下:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD平分∠BAC,∴∠EAD=∠F AD,∵AE∥DF,∴∠EAD=ADF,∠DAF=∠FDA,∴AF=DF,∴平行四边形AEDF为菱形.13.(10分)[2015·青岛]已知:如图28-9,在△ABC中,AB =AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;图28-9(2)连结DE ,线段DE 与AB 之间有怎样的位置和数量关系?请证明你的结论. 解:(1)证明:∵AB =AC ,AD 是BC 边上的中线, ∴AD ⊥BC ,BD =CD . ∵AE ∥BC ,CE ⊥AE , ∴四边形ADCE 是矩形, ∴AD =CE .在Rt △ABD 与Rt △CAE 中, ⎩⎪⎨⎪⎧AD =CE ,AB =CA ,∴△ABD ≌△CAE (HL );(2)DE ∥AB ,DE =AB .证明如下: 如答图所示,∵四边形ADCE 是矩形, ∴AE =CD =BD ,AE ∥BD , ∴四边形ABDE 是平行四边形, ∴DE ∥AB ,DE =AB .14.(10分)[2014·扬州]如图28-10,已知Rt △ABC ,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°后至△DBE ,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H .(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连结CG ,求证:四边形CBEG 是正方形. 解:(1)DE ⊥FG ,理由如下:由题意得∠A =∠EDB =∠GFE ,∠ABC =∠DBE =90°,第13题答图图28-10∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°,∴∠FHE=90°,即DE⊥FG;(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE.∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°,∴四边形CBEG是矩形.∵BC=BE,∴四边形CBEG是正方形.15.(10分)[2015·南京]如图28-11,AB∥CD,点E,F分别在AB,CD上,连结EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD交于点P,Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形,请在下列框图中补全他的证明思路.小明的证明思路由AB∥CD,MN∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ.由已知条件__FG平分∠CFE__,MN∥EF,可证NG=NF,故只要证GM=FQ,即证△MEG≌△QFH,易证__GE=FH__,__∠GME =∠FQH__.故只要证∠MGE=∠QFH.易证∠MGE=∠GEF,∠QFH=∠EFH,__∠GEF=∠EFH__,即可得证.图28-11解:(1)证明:∵EH平分∠BEF.∴∠FEH=12∠BEF,∵FH平分∠DFE,∴∠EFH=12∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=12(∠BEF+∠DFE)=12×180°=90°,又∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°,同理可证,∠EGF=90°,∵EG平分∠AEF,∴∠FEG=12∠AEF,∵EH平分∠BEF,∴∠FEH=12∠BEF,∵点A,E,B在同一条直线上.∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=12(∠AEF+∠BEF)=12×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形;(2)本题答案不唯一,下列解法供参考.例如,FG平分∠CFE;GE=FH;∠GME =∠FQH;∠GEF=∠EFH.16.(6分)[2015·资阳]若顺次连结四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是(D) A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形17.(10分)如图28-12,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;…;按此规律继续下去,则四边形A2B2C2D2的周长是__20__;四边形A2 016B2 016C2 016D2 016的周长是__521 005__.图28-12。
矩形、菱形、正方形综合练习
矩形练习题1. 下面的图形中,既是轴对称图形,又是中心对称图形的是()A. 角B. 任意三角形C. 矩形D. 等腰三角形2.矩形具有而一般平行四边形不具有的性质是()A. 对角相等B. 对边相等C. 对角线相等D. 对角线互相平分3.四边形ABCD的对角线交于点O,在下列条件中,不能说明它是矩形的是(). A. AB=CD,AD=BC,∠BAD=90° B.∠BAD=∠ABC =90°∠BAD+∠ADC=180°. C∠BAD=∠BCD,∠ABC+∠ADC=180° D. AO=CO,BO=DO,AC=BD4. 如图,过矩形ABCD的对角线BD上一点R分别作矩形两边的平行线MN与PQ,那么图中矩形AMRP的面积S1,与矩形QCNR的面积S2的大小关系是()A. S1> S2B. S1= S2C. S1< S2D. 不能确定5.如图,矩形ABCD中,E是BC的中点,且∠AED=90°.当AD=10cm时,AB=__ __cm 6.如果一个矩形较短的边长为5cm.两条对角线所夹的角为60°,则这个矩形的面积是_ cm2. 7.矩形的两邻边之比为3:4名入矩形的周长为70cm ,则矩形的面积为cm2.。
8.在Rt△ABC中,两直角边分别为5,12,则这个直角三角形的斜边上的中线长为。
9.如图,在矩形ABCD中BF∥DE,若AD=12cm ,AB=7cm,且AE:BE=5:2,则S四边形EBFD= 。
2,BC=1,则AB边上的中线长等于。
10.在△ABC中,AB=3,AC= 211.在矩形ABCD中,对角线AC,BD相交于点O,BD=10, ∠ACB =30°,则CD= .12.如图, 矩形ABCD中,AB=2CD,E在CD上,且AB=BE,则∠AED=.13.已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F.若AE=BC,求证:CE=FE.14.如图,已知平行四边形ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm.(1)平行四边形ABCD是矩形吗?说明理由。
中考数学专项训练 矩形、菱形与正方形(含解析)
矩形、菱形与正方形一、选择题1.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等2.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形D.梯形3.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.4.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A. cm B. cm C. cm D. cm5.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个二、填空题6.若菱形的两条对角线分别为2和3,则此菱形的面积是.7.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .9.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是(把你认为正确的都填上).三、解答题(共40分)11.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.13.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.矩形、菱形与正方形参考答案与试题解析一、选择题1.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形 B.菱形 C.正方形D.梯形【考点】旋转的性质;矩形的判定.【分析】根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.【解答】解:∵△ADE绕点E旋转180°得△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵AC=BC,点D是边AB的中点,∴∠ADC=90°,∴四边形ADCF是矩形.故选:A.【点评】本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.3.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.【考点】勾股定理;菱形的性质;矩形的性质.【分析】首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM中三边的关系.【解答】解:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x,AM=y,则MB=2x﹣y,(x、y均为正数).在Rt△ABM中,AB2+AM2=BM2,即x2+y2=(2x﹣y)2,解得x=y,∴MD=MB=2x﹣y=y,∴==.故选:C.【点评】此题考查了菱形与矩形的性质,以及直角三角形中的勾股定理.解此题的关键是注意数形结合思想与方程思想的应用.4.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A. cm B. cm C. cm D. cm【考点】菱形的性质;勾股定理;解直角三角形.【分析】先求出菱形的边长,然后利用面积的两种表示方法求出DH,在Rt△DHB中求出BH,然后得出AH,利用tan∠HAG的值,可得出GH的值.【解答】解:∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm,在Rt△AOB中,AB==5cm,∵BD×AC=AB×DH,∴DH=cm,在Rt△DHB中,BH==cm,则AH=AB﹣BH=cm,∵tan∠HAG===,∴GH=AH=cm.故选:B.【点评】本题考查了菱形的性质、解直角三角形及三角函数值的知识,注意菱形的面积等于对角线乘积的一半,也等于底乘高.5.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个【考点】正方形的性质.【分析】根据四边形ABCD是正方形及CE=DF,可证出△ADE≌△BAF,则得到:①AE=BF,以及△ADE 和△BAF的面积相等,得到;④S△AOB=S四边形DEOF;可以证出∠ABO+∠BAO=90°,则②AE⊥BF一定成立.错误的结论是:③AO=OE.【解答】解:∵四边形ABCD是正方形,∴CD=AD∵CE=DF∴DE=AF∴△ADE≌△BAF∴AE=BF(故①正确),S△ADE=S△BAF,∠DEA=∠AFB,∠EAD=∠FBA∵S△AOB=S△BAF﹣S△AOF,S四边形DEOF=S△ADE﹣S△AOF,∴S△AOB=S四边形DEOF(故④正确),∵∠ABF+∠AFB=∠DAE+∠D EA=90°∴∠AFB+∠EAF=90°∴AE⊥BF一定成立(故②正确).假设AO=OE,∵AE⊥BF(已证),∴AB=BE(线段垂直平分线上的点到线段两端点的距离相等),∵在Rt△BCE中,BE>BC,∴AB>BC,这与正方形的边长AB=BC相矛盾,∴,假设不成立,AO≠OE(故③错误);故错误的只有一个.故选:A.【点评】本题考查了正方形的四条边都相等,每一个角都是直角的性质,全等三角形的判定与性质,综合题但难度不大,求出△ADE≌△BAF是解题的关键,也是本题的突破口.二、填空题6.若菱形的两条对角线分别为2和3,则此菱形的面积是 3 .【考点】菱形的性质.【分析】菱形的面积是对角线乘积的一半,由此可得出结果即可.【解答】解:由题意,知:S菱形=×2×3=3,故答案为:3.【点评】本题考查了菱形的面积两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积;具体用哪种方法要看已知条件来选择.7.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= 5 .【考点】含30度角的直角三角形;矩形的性质.【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形.∴AB=OA=AC=5,故答案是:5.【点评】本题考查了矩形的性质,正确理解△AOB是等边三角形是关键.8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= 20°.【考点】旋转的性质;矩形的性质.【分析】根据矩形的性质得∠B=∠D=∠BAD=90°,根据旋转的性质得∠D′=∠D=90°,∠4=α,利用对顶角相等得到∠1=∠2=110°,再根据四边形的内角和为360°可计算出∠3=70°,然后利用互余即可得到∠α的度数.【解答】解:如图,∵四边形ABCD为矩形,∴∠B=∠D=∠BAD=90°,∵矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′,∴∠D′=∠D=90°,∠4=α,∵∠1=∠2=110°,∴∠3=360°﹣90°﹣90°﹣110°=70°,∴∠4=90°﹣70°=20°,∴∠α=20°.故答案为:20°.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的性质.9.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是10 .【考点】轴对称﹣最短路线问题;正方形的性质.【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.10.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【专题】压轴题.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.【点评】本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.三、解答题(共40分)11.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.12.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【考点】菱形的判定与性质;三角形中位线定理.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.13.如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后与(1)相同.【解答】(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,∵AB∥CD,AD∥BC,∴四边形AMPF与四边形BNQE是平行四边形,∴AF=PM,BE=NQ,∵在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;∴MP=NQ.【点评】本题考查了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.【考点】正方形的性质;全等三角形的判定与性质;平行四边形的判定.【分析】(1)由正方形的性质可得:∠B=∠C=90°,由同角的余角相等,可证得:∠BAE=∠CEF,根据同角的正弦值相等即可解答;(2)在BA边上截取BK=BE,连接KE,根据角角之间的关系得到∠AKE=∠ECP,由AB=CB,BK=BE,得AK=EC,结合∠KAE=∠CEP,证明△AKE≌△ECP,于是结论得出;(3)作DM⊥AE于AB交于点M,连接ME、DP,易得出DM∥EP,由已知条件证明△ADM≌△BAE,进而证明MD=EP,四边形DMEP是平行四边形即可证出.【解答】(1)解:∵四边形ABCD是正方形,∴∠B=∠D,∵∠AEP=90°,∴∠BAE=∠FEC,在Rt△ABE中,AE==,∵sin∠BAE==sin∠FEC=,∴=,解法二:由上得∠BAE=∠FEC,∵∠BAE=∠FEC,∠B=∠DCB,∴△ABE∽△ECF,∴=,(2)证明:在BA边上截取BK=BE,连接KE,∵∠B=90°,BK=BE,∴∠BKE=45°,∴∠AKE=135°,∵CP平分外角,∴∠DCP=45°,∴∠ECP=135°,∴∠AKE=∠ECP,∵AB=CB,BK=BE,∴AB﹣BK=BC﹣BE,即:AK=EC,由第一问得∠KAE=∠CEP,∵在△AKE和△ECP中,,∴△AKE≌△ECP(ASA),∴AE=EP;(3)答:存在.证明:作DM⊥AE交AB于点M,则有:DM∥EP,连接ME、DP,∵在△ADM与△BAE中,,∴△ADM≌△BAE(ASA),∴MD=AE,∵AE=EP,∴MD=EP,∴MD EP,∴四边形DMEP为平行四边形.【点评】此题考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形的性质等知识.此题综合性很强,图形比较复杂,解题的关键是注意数形结合思想的应用与辅助线的准确选择.。
人教版九年级数学中考矩形、菱形、正方形专项练习及参考答案
人教版九年级数学中考矩形、菱形、正方形专项练习基础达标一、选择题1.(2018江苏淮安)如图,菱形ABCD 的对角线AC ,BD 的长分别为6和8,则这个菱形的周长是( )A.20B.24C.40D.48,AO=12AC=3,BO=12BD=4,且AO ⊥BO ,则AB=√AA 2+AA 2=5, 故这个菱形的周长L=4AB=20. 故选A.2.(2017四川广安)下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A.4 B.3C.2D.13.(2017四川眉山)如图,EF 过▱ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若▱ABCD 的周长为18,OE=1.5,则四边形EFCD 的周长为( ) A.14 B.13C.12D.104.(2018贵州遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB,PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18PM⊥AD于点M,交BC于点N.则四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,×2×8=8,∴S△DFP=S△PBE=12∴S阴影=8+8=16,故选C.5.(2017山东枣庄)如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=A(x<0)的图象经过顶点B,则k的值为()AA.-12B.-27C.-32D.-366.(2018江苏无锡)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G,H都在边AD上,若AB=3,BC=4,则tan ∠AFE的值()A.等于37B.等于√33C.等于34D.随点E位置的变化而变化EF∥AD,∴∠AFE=∠FAG,△AEH∽△ACD,∴AAAA =AAAA=34.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG=AA AA =3A3A+4A=37.故选A.二、填空题7.(2018湖南株洲)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P,Q分别为AO,AD的中点,则PQ的长度为..5四边形ABCD是矩形,∴AC=BD=10,BO=DO=12BD,∴OD=12BD=5,∵点P,Q分别是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.5.8.(2018广东广州)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是.-5,4)菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD=√AA2-AA2=√52-32=4,∴点C的坐标是(-5,4).9.(2018湖北武汉)以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是.150°1,图1∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED-∠AEB-∠CED=30°.如图2,图2∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC-∠ADE=90°-60°=30°,∴∠CED=∠ECD=1(180°-30°)=75°,同理∠BEA=∠ABE=75°,2∴∠BEC=360°-75°×2-60°=150°.三、解答题10.如图,在菱形ABCD 中,对角线AC 与BD 交于点O.过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E.(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,则ABCD 的面积是多少?四边形ABCD 是菱形,∴AC ⊥BD , ∴∠COD=90°. ∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,又∠COD=90°,∴平行四边形OCED 是矩形.(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD 是菱形, ∴AC=2OC=4,BD=2OD=2, ∴菱形ABCD 的面积为12AC ·BD=12×4×2=4. 能力提升一、选择题1.下列说法中,正确的个数为( )①对顶角相等;②两直线平行,同旁内角相等; ③对角线互相垂直的四边形为菱形;④对角线互相垂直平分且相等的四边形为正方形.A.1B.2C.3D.4对顶角相等,故①正确;②两直线平行,同旁内角互补,故②错误;③对角线互相垂直且平分的四边形为菱形,故③错误; ④对角线互相垂直平分且相等的四边形为正方形,故④正确,故选B .2.(2018山东枣庄)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A.√24B.14C.13D.√23四边形ABCD 是矩形,∴AD=BC ,AD ∥BC , ∵点E 是边BC 的中点, ∴BE=12BC=12AD , ∴△BEF ∽△DAF , ∴AA AA =AA AA =12, ∴EF=12AF , ∴EF=13AE ,∵点E 是边BC 的中点, ∴由矩形的对称性得:AE=DE , ∴EF=13DE ,设EF=x ,则DE=3x , ∴DF=√AA 2-AA 2=2√2x , ∴tan ∠BDE=AAAA =2√2A =√24.故选A.3.如图,在Rt △ABC 中,∠C=90°,AC=BC=6cm,点P 从点A 出发,沿AB 方向以每秒√2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P'.设Q 点运动的时间为t s,若四边形QPCP'为菱形,则t 的值为( )A.√2B.2C.2√2D.3PP',交BC于N点,过P作PM⊥AC,垂足为M.若运动t s时四边形QPCP'为菱形,则PQ=PC,PN⊥BC,四边形PMCN为矩形,BQ=t,AP=√2t,PM=NC=t,∴QC=2t,∴BC=BQ+QC=t+2t=3t=6cm,∴t=2,故选B.4.(2018河南)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1 cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()图1图2A.√5B.2D.2√5C.52D作DE⊥BC于点E由题图2可知,点F由点A到点D用时为a s,△FBC的面积为a cm2.∴AD=a.DE·AD=a.∴12∴DE=2.当点F从D到B时,用√5s,∴BD=√5.Rt△DBE中,BE=√AA2-AA2=√(√5)2-22=1,∵ABCD是菱形,∴EC=a-1,DC=a.Rt△DEC中,a2=22+(a-1)2,.解得a=52故选C.5.(2017广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题6.(2018山东潍坊)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x 轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C'D'的位置,B'C'与CD相交于点M,则点M的坐标为.)-1,√33,连接AM ,∵将边长为1的正方形ABCD 绕点A 逆时针旋转30°得到正方形AB'C'D', ∴AD=AB'=1,∠BAB'=30°, ∴∠B'AD=60°,在Rt △ADM 和Rt △AB'M 中,∵{AA =AA ',AA =AA ,∴Rt △ADM ≌Rt △AB'M (HL), ∴∠DAM=∠B'AM=12∠B'AD=30°, ∴DM=AD tan ∠DAM=1×√33=√33, ∴点M 的坐标为(-1,√33).三、解答题 7.如图所示,在△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE=OF ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.MN ∥BC ,∴∠OEC=∠BCE.又∠OCE=∠BCE ,∴∠OEC=∠OCE ,∴OE=OC.同理可证OF=OC ,∴OE=OF.O 运动到AC 中点时,四边形AECF 是矩形.证明:∵CE ,CF 分别是∠ACB 的内,外角平分线.∴∠OCE+∠OCF=12(∠ACB+∠ACD )=12×180°=90°,即∠ECF=90°,又∵OE=OF ,∴当O 点运动到AC 中点时,OA=OC ,四边形AECF 是矩形.8.(2018贵州遵义)如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON.,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=√22+42=2√5,由(1)知OM=ON,∴MN=√2OM=2√10.。
初中数学矩形、菱形与正方形单元测试题
ABCDO图19-3矩形、菱形与正方形单元测试题一、填空题1.如图19-1,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A (平方米)与拉开长度b (米)的关系式是: .2.用黑白两种颜色的正六边形地面砖按如图19-2所示的规律,拼成若干个图形: (1)第4个图形中有白色地面砖 块; (2)第n 个图形中有白色地面砖 块.3.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四名同学的答案都正确,则黑板上画的图形是___________________. 4.在正方形ABCD 所在的平面内,到正方形三边所在直线距离相等的点有__个.5.四边形ABCD 为菱形,∠A =60°, 对角线BD 长度为10c m , 则此菱形的周长 c m . 6.已知正方形的一条对角线长为8c m ,则其面积是__________c m 2.7.平行四边形ABCD 中,AB =6c m ,AC +BD =14c m ,则△AOC 的周长为_______. 8.在平行四边形ABCD 中,∠A =70°,∠D =_________, ∠B =__________.9.等腰梯形ABCD 中,AD ∥BC ,∠A =120°,两底分别是15c m 和49c m ,则等腰梯形的腰长为______. 10.用一块面积为450c m 2的等腰梯形彩纸做风筝,为了牢固起见,用竹条做梯形的对角线,对角线恰好互相垂直,那么至少需要竹条 c m .11.已知在平行四边形ABCE 中,AB =14cm ,BC =16cm ,则此平行四边形的周长为 cm .12.要说明一个四边形是菱形,可以先说明这个四边形是 形,再说明(只需填写一种方法)13.如图19-3,正方形ABCD 的对线AC 、BD 相交于点O .那么图中共有 个等腰直角三角形.14.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的 拼合而成; (2)菱形可以由两个能够完全重合的 拼合而成; (3)矩形可以由两个能够完全重合的 拼合而成. 15.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为 cm .16.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的图19-2图19-1度数分别为 和 .17.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为___________cm .18.如图19-4,根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .19.已知菱形的两条对角线长为12cm 和6cm ,那么这个菱形的面积为 2cm .20.如图19-5,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB BC ;(4)AO=OC .其中正确的结论是 . (把你认为正确的结论的序号都填上)二、选择题21.给出五种图形:①矩形; ②菱形; ③等腰三角形(腰与底边不相等); ④等边三角形; ⑤平行四边形(不含矩形、菱形).其中,能用完全重合的含有300角的两块三角板拼成的图形是( ) A .②③ B .②③④ C .①③④⑤ D .①②③④⑤22.如图19-6,设将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是( )23.四边形ABCD 中,∠A ︰∠B ︰∠C ︰∠D =2︰2︰1︰3,则这个四边形是( ) A .梯形 B .等腰梯形C .直角梯形D .任意四边形 24.要从一张长40c m ,宽20c m 的矩形纸片中剪出长为18c m ,宽为12c m 的矩形纸片则最多能剪出( )A .1张B .2张C .3张D .4张25.如图19-7,在平行四边形ABCD 中,CE 是∠DCB 的平分线,F 是AB 的中点,AB =6,BC =4,则AE ︰EF ︰FB 为( )A .1︰2︰3B . 2︰1︰3C . 3︰2︰1D . 3︰1︰2 26.下列说法中错误的是( )A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形.A B C D图19-6 A D B F E 图19-7 · 1m1m图19-4 A BCOl 图19-527.下列说法正确的是( )A .任何一个具有对称中心的四边形一定是正方形或矩形;B .角既是轴对称图形又是中心对称图形;C .线段、圆、矩形、菱形、正方形都是中心对称图形;D .正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条.28.点A 、B 、C 、D 在同一平面内,从①AB //CD ;②AB =CD ;③BC //AD ;④BC =AD 四个条件中任意选两个,能使四边形ABCD 是平行四边形的选法有( ) A .①② B .②③ C . ①③ D . ③④29.已知ABCD 是平行四边形,下列结论中不一定正确的是( )A .AB =CD B .AC =BD C .当AC ⊥BD 时,它是菱形 D .当∠ABC =90°时,它是矩形 30.平行四边形的两邻边分别为6和8,那么其对角线应( )A .大于2,B .小于14C .大于2且小于14D .大于2或小于1231.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有 ( ) A .4种 B .5种 C .7种 D .8种32.下列说法中,错误的是 ( ) A .平行四边形的对角线互相平分 B .对角线互相平分的四边形是平行四边形 C .菱形的对角线互相垂直 D .对角线互相垂直的四边形是菱形33.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( ) A .1个 B .2个 C .3个 D .4个34.如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( ) A .矩形 B .菱形 C .正方形 D .菱形、矩形或正方形35.如图19-8,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ∆的面积 ( ) A .变大 B .变小 C .不变 D .无法确定36.如图19-10,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果 60=∠BAF ,则DAE ∠ 等于 ( )A . 15B . 30C . 45D . 6037.如图19-11,在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,那么四边形AFDE 的周长是 ( ) A .5 B .10 C .15 D .2038.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∥CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形;A BC D E F a b图19-9 图19-10 图19-11(3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形其中正确的说法是 ( ) A .(1)(2) B .(1)(3)(4) C .(2)(3) D .(2)(3)(4) 三、解答题39.如图19-12,已知四边形ABCD 是等腰梯形, CD //BA ,四边形AEBC 是平行四边形.请说明:∠ABD =∠ABE .40.如图19-13,在△ABC 中,点O 是AC 边上的一动点, 过点O 作直线MN //BC , 设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)说明EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?说明你的结论.41.如图19-14,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于F . 试确定AD 与EF 的位置关系,并说明理由.D AEC图19-12A EBC F O N M D图19-13 A EB DC F1 图19-142 O42.如图19-15,在正方形ABCD 的边BC 上任取一点M ,过点C 作CN ⊥DM 交AB 于N ,设正方形对角线交点为O ,试确定OM 与ON 之间的关系,并说明理由.43.如图19-16,等腰梯形ABCD 中,E 为CD 的中点,EF ⊥AB 于F ,如果AB =6,EF =5,求梯形ABCD的面积.44.如图19-17,有一长方形餐厅,长10米,宽7米,现只摆放两套同样大小的圆桌和椅子,一套圆桌和椅子占据的地面部分可看成半径为1.5米的圆形(如左下图所示).在保证通道最狭窄处的宽度不小于0.5米的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请在摆放三套或四套的两种方案中选取一种,在右下方 14×20方格纸内画出设计示意图.(提示:①画出的圆应符合比例要求; ②为了保证示意图的清晰,请你在有把握后才将设计方案正式画在方格纸上.说明:正确地画出了符合要求的三个圆得5分,正确地画出了符合要求的四个圆得8分.)图19-15 A BN M C D O 图19-16A FB C ED图19-1745.如图19-18, 在正方形ABCD 中, M 为AB 的中点,MN ⊥MD ,BN 平分∠CBE 并交MN 于N .试说明:MD =MN .46.如图中,DB=CD , 70=∠C ,AE ⊥BD 于E .试求DAE ∠的度数.47.如图 中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG ,100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.48..工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图19-21①),使AB=CD,EF=GH ;(2)摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;D A B C ME N图19-18 AB CD E图19-19A B C D FE G图19-20(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:.(图①)(图②)(图③)(图④)图19-2149.如图19-22,已知平行四边形ABCD,AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,DC=6c m,AD=2c m,求DE、EF、FC的长.图19-2250.如图19-23,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,试求∠COE的度数。
四边形专题训练:平行四边形和特殊平行四边形(矩形、菱形和正方形)
特殊的平行四边形【知识精讲】1. 主要概念(1)平行四边形——有两组对边分别平行的四边形叫平行四边形. (2)矩形——有一个角是直角的平行四边形叫做矩形. (3)菱形——有一组邻边相等的平行四边形叫做菱形. (4)正方形——有一个角是直角的菱形叫做正方形 (5)梯形——只有一组对边平行的四边形叫做梯形. (6)等腰梯形——两腰相等的梯形叫做等腰梯形.(7)直角梯形——有一个角是直角的梯形叫做直角梯形.(8)三角形中位线——连接三角形两边中点的线段叫做三角形的中位线. 2. 几种特殊四边形的关系四边形平行四边形梯形矩形菱形正方形直角梯形等腰梯形3.附:矩形菱形正方形的性质和判定总表4. (1)有些四边形问题可以转化为三角形问题来解决.(2)有些梯形的问题可以转化为三角形、平行四边形问题来解决. (3)有时也可以运用平移、轴对称来构造图形,解决四边形问题.矩形是中心对称图形,对称中心是对角线的交点,矩形也是轴对称图形,对称轴是通过对边中点的直线,有两条对称轴; 矩形的性质:(具有平行四边形的一切特征) 矩形性质1: 矩形的四个角都是直角. 矩形性质2: 矩形的对角线相等且互相平分.如图,在矩形ABCD 中,AC 、BD 相交于点O ,由性质2有AO=BO=CO=DO=21AC=21BD .因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.矩形判定方法3:有一个角是直角的平行四边形是矩形.矩形判定方法4:对角线相等且互相平分的四边形是矩形.例1已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.例2已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.例3.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.例4、ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.【强调】 菱形(1)是平行四边形;(2)一组邻边相等. 菱形的性质性质1 菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角; 菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直. 菱形判定方法2:四边都相等的四边形是菱形.例1 已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E . 求证:∠AFD=∠CBE .FEDCBA例2已知:如图ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.例3、如图,在 平行四边形 ABCD 中,O 是对角线AC 的中点, 过点O 作AC 的垂线与边AD 、BC 分别交于E 、F ,求证:四边形AFCE 是菱形.例4、已知如图,菱形ABCD 中,E 是BC 上一点,AE 、BD 交于M ,若AB=AE,∠EAD=2∠BAE 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形、菱形与正方形专题训练(含答案)班级________姓名________成绩________一、选择题(每小题3分,共30分)1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.12 3 D.163第1题图第2题图第3题图第4题图2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )A.14 B.15 C.16 D.173.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( ) A.1 B.2 C.3 D.44.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( )A.矩形 B.菱形 C.正方形 D.梯形5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( )A.4 cm B.6 cm C.8 cm D.10 cm第6题图第9题图第10题图7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( )A.3∶1 B.4∶1 C.5∶1 D.6∶18.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是( )A.①④⑤ B.②⑤⑥ C.①②③ D.①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )A.16 B.17 C.18 D.1910.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为( )A.20 B.24 C.25 D.26二、填空题(每小题3分,共24分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP,则∠CPB=____度.第11题图第12题图第14题图第15题图12.如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1分别是四边形ABCD各边中点,如果AC=8,BD=10,则四边形A1B1C1D1的面积为___.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20 cm,则其对角线长为____________-_,矩形的面积为_______________.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD=8 cm,则这个菱形的面积是____cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为____________.,第16题图第17题第18题图16.如图,▱ABCD的对角线相交于点O,请你添加一个条件______________,使▱ABCD是矩形.17.如图,正方形ABCD中,对角线AC,BD交于点O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G,F,AC=10,则EG+EF=____.18.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为_______________________________.三、解答题(共66分)19.(6分)如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC且EF=EC,DE=4 cm,矩形ABCD的周长为32 cm,求AE的长.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连结BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.21.(8分)如图所示,矩形ABCD中,AE⊥BD于点E,∠DAE∶∠BAE=3∶1,求∠BAE和∠EAO的度数.22.(10分)如图,已知菱形ABCD中,AB=AC,E,F分别是BC,AD的中点,连结AE,CF.(1)证明:四边形AECF是矩形;(2)若AB=8,求菱形ABCD的面积.23.(12分)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF,求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.24.(10分)在四边形ABCD中,AB=CD,M,N,P,Q分别是AD,BC,BD,AC的中点,求证:MN与PQ互相垂直平分.参考答案一、选择题(每小题3分,共30分)1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( D )A.12 B.24 C.12 D.16第1题图第2题图第3题图第4题图2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( C )A.14 B.15 C.16 D.173.如图,将矩形ABCD沿对角线BD折叠,使点C与点C′重合.若AB=2,则C′D的长为( B ) A.1 B.2 C.3 D.44.如图,在△ABC中,AC=BC,点D,E分别是边AB,AC的中点.将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是( A )A.矩形 B.菱形 C.正方形 D.梯形5.由菱形的两条对角线的交点向各边引垂线,以各垂足为顶点的四边形是( B )A.平行四边形 B.矩形 C.菱形 D.正方形6.如图,▱ABCD的周长为16 cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为( C)A.4 cm B.6 cm C.8 cm D.10 cm第6题图第9题图第10题图7.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( C )A.3∶1 B.4∶1 C.5∶1 D.6∶18.用两块完全相同的直角三角形拼下列图形:①平行四边形,②矩形,③菱形,④正方形,⑤等腰三角形,⑥等边三角形,一定能拼成的图形是( D )A.①④⑤ B.②⑤⑥ C.①②③ D.①②⑤9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( B )A.16 B.17 C.18 D.1910.如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为( B )A.20 B.24 C.25 D.26二、填空题(每小题3分,共24分)11.如图所示,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为点E,连结CP ,则∠CPB =__72__度.第11题图 第12题图 第14题图 第15题图12.如图,四边形ABCD 的两条对角线AC ,BD 互相垂直,A 1,B 1,C 1,D 1分别是四边形ABCD 各边中点,如果AC =8,BD =10,则四边形A 1B 1C 1D 1的面积为__20__.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20 cm ,则其对角线长为__40_cm __,矩形的面积为__400_cm 2__.14.如图,四边形ABCD 是菱形,对角线AC 和BD 相交于点O ,AC =4 cm ,BD =8 cm ,则这个菱形的面积是__16__cm 2.15.如图,矩形ABCD 中,点E ,F 分别是AB ,CD 的中点,连结DE 和BF ,分别取DE ,BF 的中点M ,N ,连结AM ,CN ,MN ,若AB =2,BC =2,则图中阴影部分的面积为__2__.,第16题图 第17题 第18题图16.如图,▱ABCD 的对角线相交于点O ,请你添加一个条件__AO =BO (答案不唯一)__,使▱ABCD 是矩形.17.如图,正方形ABCD 中,对角线AC ,BD 交于点O ,E 点在BC 上,EG ⊥OB ,EF ⊥OC ,垂足分别为点G ,F ,AC =10,则EG +EF =__5__.18.如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为__(8,4),(3,4)或(2,4)__.三、解答题(共66分)19.(6分)如图,已知矩形ABCD 中,E 是AD 上一点,F 是AB 上一点,EF ⊥EC 且EF =EC ,DE =4 cm ,矩形ABCD 的周长为32 cm ,求AE 的长.解:∵∠AFE +∠AEF =∠AEF +∠CED =90°,∴∠AFE =∠DEC .又∵∠A =∠D =90°,EF =EC ,∴△AEF ≌△DCE ,∴AE =CD .设AE =x ,则CD =x ,∴AD +CD =21×32,即x +4+x =16,∴x =6.即AE =6 cm20.(8分)如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连结BM ,DN .(1)求证:四边形BMDN 是菱形;(2)若AB =4,AD =8,求MD 的长.解:(1)∵MN 是BD 的垂直平分线,∴BO =DO ,∠BON =∠DOM =90°.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠BNO =∠DMO ,∴△BON ≌△DOM (AAS ),∴OM =ON .∵OB =OD ,∴四边形BMDN 是平行四边形.∵MN ⊥BD ,∴▱BMDN 是菱形(2)设MD =x ,则MB =x ,MA =8-x ,在Rt △ABM 中,∵BM 2=AM 2+AB 2,∴x 2=(8-x )2+42,解得x =5.∴MD 的长为521.(8分)如图所示,矩形ABCD 中,AE ⊥BD 于点E ,∠DAE ∶∠BAE =3∶1,求∠BAE 和∠EAO 的度数.解:提示:由∠DAE ∶∠BAE =3∶1,求出∠BAE =°,而∠ABD =90°-∠BAE =90°-°=°,∵∠BAO =∠ABD =°,∴∠EAO =∠BAO -∠BAE =°-°=45°22.(10分)如图,已知菱形ABCD 中,AB =AC ,E ,F 分别是BC ,AD 的中点,连结AE ,CF .(1)证明:四边形AECF 是矩形;(2)若AB =8,求菱形ABCD 的面积.解:(1)∵四边形ABCD 是菱形,∴AB =BC ,又∵AB =AC ,∴△ABC 是等边三角形.∵E 是BC 的中点,∴AE ⊥BC (等边三角形三线合一),∠AEC =90°.同理,CF ⊥AD .∵E ,F 分别是BC ,AD 的中点,∴AF =21AD ,EC =21BC .∵四边形ABCD 是菱形,∴AD 綊BC ,∴AF 綊EC ,∴四边形AECF 是平行四边形(一组对边平行且相等的四边形是平行四边形).又∵∠AEC =90°,∴四边形AECF 是矩形(有一个角是直角的平行四边形是矩形)(2)在Rt △ABE 中,∵AE ==4,∴S 菱形ABCD =8×4=3223.(12分)如图,已知四边形ABCD 是平行四边形,DE ⊥AB ,DF ⊥BC ,垂足分别是点E ,F ,并且DE =DF ,求证:(1)△ADE ≌△CDF ;(2)四边形ABCD 是菱形.解:证明:(1)∵四边形ABCD 是平行四边形,∴∠A =∠C ,又∵DE =DF ,DE ⊥AB ,DF ⊥BC ,∴∠DEA =∠DFC =90°,∴△ADE ≌△CDF (AAS ) (2)由(1)知AD =DC ,又∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形24.(10分)在四边形ABCD 中,AB =CD ,M ,N ,P ,Q 分别是AD ,BC ,BD ,AC 的中点,求证:MN 与PQ 互相垂直平分.解:证明:连结MP ,NQ ,PN ,MQ ,∵PM 綊21AB ,同理NQ 綊21AB ,∴PM 綊NQ ,∴四边形MPNQ 为平行四边形,又∵PN 綊21CD ,而CD =AB ,∴PN =PM ,∴四边形MPNQ 为菱形,∴MN 与PQ 互相垂直平分。