高一立体几何大题练习

合集下载

高一数学立体几何大题(含答案)

高一数学立体几何大题(含答案)
VAi-B.cl?=Vc-AiBD=Va-AiBD=VD-AiBG=5ScsAiBCiG=f.G-2
4.in/w).6=4r3.
例 3:如图,PD ⏊ 平面 ABCD,AD ⏊ CD,AB ⎳ CD,PQ ⎳ CD,AD
= CD = DP = 2PQ = 2AB = 2, 点 M 为 BQ 的中点 .
为 的 P Q C -
M-
大小
0 .
Sepm E 却 二
忙=
以 <m (
,
蕊 令 1

5 = -
3
※ 琴 㱺 sina.me
㱺 Somc 二 士 心 的 ✗
=r
.
二号 器 Q到 平面 阰 的 距离 为 : d = 2 5
.io
shnoifst.no
,
㱺 VQ-pmc-f-Somc.dk/nEfsio=fs'm0.
PCHEF 进而 1211 平面 ,
在 阳 仲 , PA-E.AE/,PC=0=)PA4AcEpc2=sAc-1A.
所以 又由 题 干 知 : A 4 P B ,
A
C
1
-
平面阳
13
.
13) 易知 SEFG 二 ftp.c , 所以 /7AB=fSopAB-AC.=f-li2nE.iS'm45J-l
1 求二面角 Q - PM - C 的正弦值;
2 若 N 为线段 CQ 上的点,且直线 DN 与平面 PMQ 所成的角为
π 6
,
求线段
QN
的长
.
子 (2) 由 山 知 二面⻆ QPMC 的 大小 为 ,
劝 的平面 PMQ所 成的 ⻆ 为 至
所以 叽 与平面PMC 所 成的 ⻆

高一立体几何试题及答案详解.doc

高一立体几何试题及答案详解.doc
7、设a、b是两条不同的直线, 、 是两个不同的平面,则下列四个命题:
1若 , , ,则 ;②若 , ,则 ;
③若 , ,则 或 ;④若 , , ,则
其中正确命题的个数为A.0B.1C.2D.3( )
8.定点P不在△ABC所在平面内,过P作平面α,使△ABC的三个顶点到α的距离相等,这样的平面共有( )(A)1个(B)2个(C)3个(D)4个
由余弦定理得cosθ= =0,θ=900,
18.讲解:(1)在平面AD1内,作PP1∥AD与DD1交于点P1,在平面AC内,作
QQ1∥BC交CD于点Q1,连结P1Q1.
∵ ,∴PP1 QQ1.
由四边形PQQ1P1为平行四边形,知PQ∥P1Q1
而P1Q1 平面CDD1C1,所以PQ∥平面CDD1C1
(2) AD⊥平面D1DCC1,∴AD⊥P1Q1,
(2)解:如图,由(Ⅰ)知面AGC⊥面BGC,且交于GC,在平ቤተ መጻሕፍቲ ባይዱBGC内作BH⊥GC,垂足为H,则BH⊥平面AGC,∴∠BGH是GB与平面AGC所成的角
∴在Rt△CBG中 又BG= ,

21.(1)画出示意图如右,其中,SA=
(2)∵SC⊥平面AEFG,A又AE 平面AEFG,∴AE⊥SC,∵SA⊥平面BD,又BC 平面BD,∴SA⊥BC.又AB⊥BC,SA∩AB=A,∴BC⊥平面SBA,∴BC┻AE
15 16,AC=9.18
17.17,(1)连CE、DE,在等边△ABC中,EC=DE= a,
∴EF是等腰△ECD底边上的高,EF⊥CD,
EF= = a
(2)方法一:
取BC中点G,连AG、DG,易知BC⊥AG、BC⊥DG,
∴BC⊥面AGD,则BC⊥AD,∴BC,AD所成角为900,

高一数学立体几何练习题及部分答案大全

高一数学立体几何练习题及部分答案大全

立体几何试题一.选择题(每题4分,共40分)1.已知AB 0300300150空间,下列命题正确的个数为( )(1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形(3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等A 1B 2C 3D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( )A 平行B 相交C 在平面内D 平行或在平面内4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( )A 平行B 垂直相交C 异面D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( )A 0个B 1个C 无数个D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥⊂ B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=⊂ D ,//,//m n m n αβ⊥10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个二.填空题(每题4分,共16分)11.已知∆ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有_____________条13.一块西瓜切3刀最多能切_________块14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________三、 解答题15(10分)如图,已知E,F 分别是正方形1111ABCD A B C D -的棱1AA 和棱1CC 上的点,且1AE C F =。

高一数学立体几何练习题及部分答案大全.docx

高一数学立体几何练习题及部分答案大全.docx

立体几何试题一.选择题(每题 4 分,共 40 分)1. 已知 AB3003001500空间,下列命题正确的个数为()(1)有两组对边相等的四边形是平行四边形, (2)四边相等的四边形是菱形(4)有两边及其夹角对应相等的两个三角(3)平行于同一条直线的两条直线平行 ;形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()A平行B相交C在平面内D平行或在平面内4. 已知直线 m过平面外一点,作与平行的平面,则这样的平面可作()A 1 个或 2 个B 0个或1个C1个 D 0个6.如图 , 如果 MC 菱形 ABCD 所在平面 , 那么 MA与 BD的位置关系是 ( )A平行B垂直相交C异面D相交但不垂直7. 经过平面外一点和平面内一点与平面垂直的平面有()A 0 个B 1个C无数个 D 1个或无数个8.下列条件中 , 能判断两个平面平行的是 ( )B一个平面内的两条直线平行于另一个平面C一个平面内有无数条直线平行于另一个平面D一个平面内任何一条直线都平行于另一个平面9. 对于直线m ,n 和平面,, 使成立的一个条件是 ( )A m // n, n, mB m // n, n,mC m n,I m, nD m n, m //, n //)10 . 已知四棱锥 , 则中 , 直角三角形最多可以有 (A 1个B2个 C 3个D4个二.填空题(每题 4 分,共16 分)11. 已知ABC的两边 AC,BC分别交平面于点M,N,设直线AB与平面交于点O,则点 O与直线 MN的位置关系为 _________12.过直线外一点与该直线平行的平面有 ___________个,过平面外一点与该平面平行的直线有_____________条13. 一块西瓜切 3 刀最多能切 _________块14.将边长是 a 的正方形 ABCD沿对角线 AC 折起 , 使得折起后 BD得长为 a, 则三棱锥D-ABC的体积为 ___________三、解答题15(10 分)如图,已知 E,F 分别是正方形ABCD A1B1C1 D1的棱 AA1和棱 CC1上的点,且 AE C1 F 。

高一数学(必修二)立体几何练习题(含答案)

高一数学(必修二)立体几何练习题(含答案)

一.选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1、下列命题为真命题的是( )A. 平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C. 垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行。

2、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.3、右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( ) A. 300 B.450 C. 600 D. 900 4、右图的正方体ABCD- A ’B ’C ’D ’中,二面角D ’-AB-D 的大小是( )A. 300B.450C. 600D. 900 5.在空间中,下列命题正确的是A.若三条直线两两相交,则这三条直线确定一个平面B.若直线m 与平面α内的一条直线平行,则α//mC.若平面βα⊥,且l =βα ,则过α内一点P 与l 垂直的直线垂直于平面βD.若直线a 与直线b 平行,且直线a l ⊥,则b l ⊥6.设平面α∥平面β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =( )A .3B .9C .18D .10 7.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12πA B DA ’B ’D ’ C C ’ABD CE F8. 正方体的内切球和外接球的半径之比为( )A. 3:1B. 3:2C. 3:3D. 2:39.已知△ABC 是边长为a 2的正三角形,那么它的斜二侧所画直观图A B C 的面积为( )A.32a 2 B.34a 2 C.64a 2 D.6a 210.若正方体的棱长为2,则以该正方体各个面的中心为顶点的多面体的体积为( )A.26B.23C.33D.2311. 在空间四边形ABCD 中,AD=BC=2,E 、F 分别是AB 、CD 的中点,EF=2,求AD 与BC 所成角的大小.( )A. 30B. 45C.60οD. 90 12.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ) A92B 5C 6D 152二、填空题(共4小题,每小题5分,共20分,把答案填在题中的横线上)13. Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为.14.一个圆台的母线长为5 cm ,两底面面积分别为4πcm 2 和25π cm 2.则圆台的体积 ________. 15. 三棱锥S-ABC 中SA平面ABC ,AB 丄BC,SA= 2,AB =B C=1,则三棱锥S-ABC 的外接球的表面积等于______.16.如图,在直角梯形ABCD 中,,,BC DC AE DC ⊥⊥M 、N 分别是AD 、BE 的中点,将三角形ADE 沿AE 折起。

高一数学立体几何试题答案及解析

高一数学立体几何试题答案及解析

高一数学立体几何试题答案及解析1.设三棱柱的体积为,分别是侧棱上的点,且,则四棱锥的体积为()A.B.C.D.【答案】C【解析】假设重合,重合,则【考点】棱柱棱锥的体积2.如图,四棱锥中,,四边形是边长为的正方形,若分别是线段的中点.(1)求证:∥底面;(2)若点为线段的中点,求三角形的面积。

【答案】(1)见解析;(2)【解析】要想证明线面平行,只需证明出该线段与面内的任意一条线段平行即可,在本题中,需要连接辅助线进行解答,在解此问题时主要运用了三角形内中位线平行于底边的性质;首先需要掌握知识,三角形的中位线的长度为底边的一半,先求出所需边的长度,再运用余弦定理,求出角的度数,在运用三角形面积公式即可得到结果。

试题解析:(1)解:连接,由题意知,为中点,为的中位线,平面平面平面(2)连接由(1)知:,同理可得:,,【考点】空间几何的运算3.如图,在四棱台中,底面,四边形为正方形,,,平面.(1)证明:为的中点;(2)求点到平面的距离.【答案】(1)详见解析;(2)【解析】(1)根据线面平行的性质定理,线面平行则,线线平行,所以可证,可证四边形是平行四边形,即证明是中点;(2)根据等体积转化,可证是直角三角形,写出体积公式,求解距离.试题解析:解(1)连接AD1,则D1C1∥DC∥AB,∴A、E、C1、D1四点共面,∵C1E∥平面ADD1A1,则C1E∥AD1,∴AEC1D1为平行四边形,∴AE=D1C1=1,∴E为AB的中点.(6分)(2),∵AD⊥DC,AD⊥DD1,∴AD⊥平面DCC1D1,AD⊥DC1.设点E到平面ADC1的距离为h,则,解得.【考点】1.线面平行的性质定理;2.等体积转化.4.设长方体的长、宽、高分别为2,1, 1,其顶点都在同一个球面上,则该球的体积为_______.【答案】【解析】球直径为长方体的体对角线,故半径为【考点】球内接长方体的性质,球体积的计算5.(本小题12分)如图所示,三棱柱ABC-A1B1C1中,.(1)证明:;(2)若,求三棱柱ABC-A1B1C1的体积.【答案】(1)见解析;(2)3【解析】(1)取AB的中点O,连接OC,OA1,A1B,证得,,则根据线面垂直的判定定理可得,进而得出;(2)先证明,进而证出,再求出,最后利用柱体的体积公式求出体积;试题解析:(1)取AB 的中点O ,连接.因为,所以.由于,故△AA 1B 为等边三角形,所以.因为,所以.又,故.(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以. 又,则,故.因为所以,为三棱柱的高.又△ABC 的面积,故三棱柱的体积.【考点】1.线面垂直的判定定理;2.线线垂直的证明方法;3.柱体的体积公式;6. 如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误的是( ).A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1角为60°【答案】D【解析】因为易证∥,由线面平行的判定定理可证得∥面,所以A 选项结论正确; 由正方体可得面,可证得,由为正方体得,因为,所以面,从而可证得.同理可证明,根据线面垂直的判定定理可证得面,所以B ,C 选项结论都正确; 因为∥,所以为异面直线与所成的角,由正方体可得,所以D 选项的内容不正确. 故选D 。

高一数学立体几何题目

高一数学立体几何题目

1.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:AB⊥C1F;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.2.如图所示,矩形ABCD中,DA⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,AC和BD交于点G.(Ⅰ)求证:AE∥平面BFD;(Ⅱ)求三棱锥C﹣BFG的体积.3.如图,直三棱柱ABC﹣A1B1C1中,CA=CB,M,N,P分别为AB,A1C1,BC的中点.求证:(1)C1P∥平面MNC;(2)平面MNC⊥平面ABB1A1.4.如图,在正方体ABCD﹣A1B1C1D1中,E,F分别是棱BC,C1D1的中点,求证:EF∥平面BB1D1D.5.如图,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,点D是AB的中点.求证:(1)AC⊥BC1;(2)AC1∥平面B1CD.6.如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.(Ⅰ)求证:AC⊥PB;(Ⅱ)求证:PB∥平面AEC.7.如图所示,在正方体ABCD﹣A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、CD和SC 的中点.求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.8.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a.(1)求证:AB1⊥BC1;(2)求二面角B﹣AB1﹣C的正弦值.9.如图所示,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点,PA=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.10.如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2,N为线段PB的中点.(Ⅰ)证明:NE⊥PD;(Ⅱ)求三棱锥E﹣PBC的体积.-中,PD⊥平面ABCD,底面ABCD是平行四边形,11.如图,在四棱锥P ABCD,,,,O为AC与BD的交点,E为棱PB上∠====6023BAD AB PD AD BD一点.(1)证明:平面EAC ⊥平面PBD ;(2)若2PE EB =,求二面角E AC B --的大小.12.如图,已知AF ⊥面ABCD ,四边形ABEF 为矩形,四边形ABCD 为直角梯形,∠DAB=90°,AB ∥CD ,AD=AF=CD=1,AB=2(1)求证:AF ∥面BCE ;(2)求证:AC ⊥面BCE ;(3)求三棱锥E ﹣BCF 的体积.13.如图,四棱锥P ﹣ABCD 的底面是正方形,PD⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AEC⊥平面PDB ;(2)当PD=AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.试卷答案1.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行的判定.【分析】(1)由BB1⊥平面ABC得AB⊥BB1,又AB⊥BC,故AB⊥平面B1BCC1,所以AB⊥C1F;(2)取AB的中点G,连接EG,FG.则易得四边形EGFC1是平行四边形,故而C1F∥EG,于是C1F∥平面ABE;(3)由勾股定理求出AB,代入棱锥的体积公式计算即可.【解答】(1)证明:∵BB1⊥底面ABC,AB⊂平面ABC∴BB1⊥AB.又∵AB⊥BC,BC⊂平面B1BCC1,BB1⊂平面B1BCC1,BC∩BB1=B,∴AB⊥平面B1BCC1,又∵C1F⊂平面B1BCC1,∴AB⊥C1F.(2)证明:取AB的中点G,连接EG,FG.∵F,G分别是BC,AB的中点,∴FG∥AC,且FG=AC,∵AC A1C1,E是A1C1的中点,∴EC1=A1C1.∴FG∥EC1,且FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG.又∵EG⊂平面ABE,C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE.(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB==.∴三棱锥E﹣ABC的体积V=S△ABC•AA1=×××1×2=.2.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行的判定.【分析】(1)连结FG,证明FG∥AE,然后证明AE∥平面BFD.(2)利用V C﹣BGF=V G﹣BCF,求出S△CFB.证明FG⊥平面BCF,求出FG,即可求解几何体的体积.【解答】(1)证明:由题意可得G是AC的中点,连结FG,∵BF⊥平面ACE,∴CE⊥BF.而BC=BE,∴F是EC的中点,…(2分)在△AEC中,FG∥AE,∴AE∥平面BFD.…(2)解:∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF,又BC∩BF=B,∴AE⊥平面BCE.…(8分)∵AE∥FG.而AE⊥平面BCE,∴FG⊥平面BCF.∵G是AC中点,F是CE中点,∴FG∥AE且FG=AE=1.∴Rt△BCE中,BF=CE=CF=,…(10分)∴S△CFB=××=1.∴V C﹣BGF=V G﹣BCF=•S△CFB•FG=×1×1=.…(12分)【点评】本题考查直线与平面平行的判定定理的应用,三角锥的体积的求法,考查转化思想以及计算能力.3.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)连接MP,只需证明四边形MPC1N是平行四边形,即可得MN∥C1P∵C1P,即可证得C1P∥平面MNC;(2)只需证明CM⊥平面MNC,即可得平面MNC⊥平面ABB1A1.【解答】证明:(1)连接MP,因为M、P分别为AB,BC的中点∵MP∥AC,MP=,又因为在直三棱柱ABC﹣A1B1C1中,∴AC∥A1C1,AC=A1C1且N是A1C1的中点,∴MP∥C1N,MP=C1N∴四边形MPC1N是平行四边形,∴C1P∥MN∵C1P⊄面MNC,MN⊂面MNC,∴C1P∥平面MNC;(2)在△ABC中,CA=CB,M为AB的中点,∴CM⊥AB.在直三棱柱ABC﹣A1B1C1中,B1B⊥面ABC.∵CM⊂面ABC,∴BB1⊥CM由因为BB1∩AB=B,BB1,AB⊂平面面ABB1A1又CM⊂平面MNC,∴平面MNC⊥平面ABB1A1.4.【考点】LS:直线与平面平行的判定.【分析】先证明四边形OFEB为平行四边形,可得EF∥BO,利用线面平行的判定定理,即可证明EF∥平面BB1D1D.【解答】证明:取D1B1的中点O,连OF,OB,∵OF∥B1C1,OF=B1C1,∵BE∥B1C1,BE=B1C1,∴OF∥BE,OF=BE,∴四边形OFEB为平行四边形,∴EF∥BO,∵EF⊄平面BB1D1D,BO⊂平面BB1D1D,∴EF∥平面BB1D1D.5.【考点】LS:直线与平面平行的判定;LO:空间中直线与直线之间的位置关系.【分析】(1)利用线面垂直的判定定理先证明AC⊥平面BCC1B1,BC1⊂平面BCC1B1,即可证得AC⊥BC1;(2)取BC1与B1C的交点为O,连DO,则OD是三角形ABC1的中位线,OD∥AC1,而AC1⊂平面B1CD,利用线面平行的判定定理即可得证.【解答】证明:(1)在直三棱柱ABC﹣A1B1C1中,∵CC1⊥平面ABC,∴CC1⊥AC,又AC⊥BC,BC∩CC1=C,∴AC⊥平面BCC1B1∴AC⊥BC1.(2)设BC1与B1C的交点为O,连接OD,BCC1B1为平行四边形,则O为B1C中点,又D是AB的中点,∴OD是三角形ABC1的中位线,OD∥AC1,又∵AC1⊄平面B1CD,OD⊂平面B1CD,∴AC1∥平面B1CD.6.【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系;LS:直线与平面平行的判定.【分析】(Ⅰ)由已知得AC⊥AB,AC⊥PA,从而AC⊥平面PAB,由此能证明AC⊥PB.(Ⅱ)连接BD,与AC相交于O,连接EO,由已知得EO∥PB,由此能证明PB∥平面AEC.【解答】(Ⅰ)证明:∵在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,∴AC⊥AB,AC⊥PA,又AB∩PA=A,∴AC⊥平面PAB,∵PB⊂平面PAB,∴AC⊥PB.(Ⅱ)证明:连接BD,与AC相交于O,连接EO,∵ABCD是平行四边形,∴O是BD的中点,又E是PD的中点,∴EO∥PB,又PB不包含于平面AEC,EO⊂平面AEC,∴PB∥平面AEC.7.【考点】LS:直线与平面平行的判定;LU:平面与平面平行的判定.【分析】(1)连结SB,由已知得EG∥SB,由此能证明直线EG∥平面BDD1B1.(2)连结SD,由已知得FG∥SD,从而FG∥平面BDD1B1,又直线EG∥平面BDD1B1,由此能证明平面EFG∥平面BDD1B1.【解答】证明:(1)如图,连结SB,∵E、G分别是BC、SC的中点,∴EG∥SB,又SB⊂平面BDD1B1,EG不包含于平面BDD1B1,∴直线EG∥平面BDD1B1.(2)如图,连结SD,∵F,G分别是DC、SC的中点,∴FG∥SD,又SD⊂平面BDD1B1,FG不包含于平面BDD1B1,∴FG∥平面BDD1B1,又直线EG∥平面BDD1B1,且直线EG⊂平面EFG,直线FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.8.【考点】MT:二面角的平面角及求法.【分析】(1)由已知可得AC⊥平面B1BCC1,则AC⊥BC1,再由BC=CC1,得BC1⊥B1C,由线面垂直的判定可得BC1⊥平面AB1C,从而得到AB1⊥BC1;(2)设BC1∩B1C=O,作OP⊥AB1于点P,连结BP.由(1)知BO⊥AB1,进一步得到AB1⊥平面BOP,说明∠OPB是二面角B﹣AB1﹣C的平面角.然后求解直角三角形得答案.【解答】(1)证明:∵ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,则AC⊥CC1.又∵AC⊥BC,BC∩CC1=C,∴AC⊥平面B1BCC1,则AC⊥BC1,∵BC=CC1,∴四边形B1BCC1是正方形,∴BC1⊥B1C,又AC∩B1C=C,∴BC1⊥平面AB1C,则AB1⊥BC1;(2)解:设BC1∩B1C=O,作OP⊥AB1于点P,连结BP.由(1)知BO⊥AB1,而BO∩OP=O,∴AB1⊥平面BOP,则BP⊥AB1,∴∠OPB是二面角B﹣AB1﹣C的平面角.∵△OPB1~△ACB1,∴,∵BC=CC1=a,AC=2a,∴OP=,∴=.在Rt△POB中,sin∠OPB=,∴二面角B﹣AB1﹣C的正弦值为.9.【考点】LW:直线与平面垂直的判定.【分析】(1)由线面垂直得CD⊥PA,由矩形性质得CD⊥AD,由此能证明CD⊥PD.(2)取PD的中点G,连结AG,FG.由已知条件推导出四边形AEFG是平行四边形,所以AG∥EF.再由已知条件推导出EF⊥CD,由此能证明EF⊥平面PCD.【解答】(本题满分8分)证明:(1)∵PA⊥底面ABCD,∴CD⊥PA.又矩形ABCD中,CD⊥AD,且AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD.(2)取PD的中点G,连结AG,FG.又∵G、F分别是PD、PC的中点,∴GF平行且等于CD,∴GF平行且等于AE,∴四边形AEFG是平行四边形,∴AG∥EF.∵PA=AD,G是PD的中点,∴AG⊥PD,∴EF⊥PD,∵CD⊥平面PAD,AG⊂平面PAD.∴CD⊥AG.∴EF⊥CD.∵PD∩CD=D,∴EF⊥平面PCD.10.【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系.【分析】(Ⅰ)连结AC与BD交于点F,则F为BD的中点,连结NF,由三角形中位线定理可得NF∥PD,,在结合已知得四边形NFCE为平行四边形,得到NE∥AC.再由PD ⊥平面ABCD,得AC⊥PD,从而证得NE⊥PD;(Ⅱ)由PD⊥平面ABCD,得平面PDCE⊥平面ABCD,可得BC⊥CD,则BC⊥平面PDCE.然后利用等积法把三棱锥E﹣PBC的体积转化为B﹣PEC的体积求解.【解答】(Ⅰ)证明:连结AC与BD交于点F,则F为BD的中点,连结NF,∵N为线段PB的中点,∴NF∥PD,且,又EC∥PD且,∴NF∥EC且NF=EC.∴四边形NFCE为平行四边形,∴NE ∥FC ,即NE ∥AC .又∵PD ⊥平面ABCD ,AC ⊂面ABCD , ∴AC ⊥PD ,∵NE ∥AC ,∴NE ⊥PD ;(Ⅱ)解:∵PD ⊥平面ABCD ,PD ⊂平面PDCE , ∴平面PDCE ⊥平面ABCD ,∵BC ⊥CD ,平面PDCE ∩平面ABCD=CD ,BC ⊂平面ABCD , ∴BC ⊥平面PDCE . 三棱锥E ﹣PBC 的体积=.11.(1)证明见解析;(2)60°.试题解析:(1)∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC PD ⊥. ∵,60AD BD BAD =∠=,∴ABD ∆为正三角形,四边形ABCD 是菱形, ∴AC BD ⊥,又PD BD D=⋂,∴AC ⊥平面PBD ,而AC ⊂平面EAC ,∴平面EAC ⊥平面PBD .(2)如图,连接OE ,又(1)可知EO AC ⊥,又AC BD ⊥, ∴EOB ∠即为二面角E AC B --的平面角, 过E 作EHPD ,交BD 于点H ,则EH BD ⊥,又31 2,2,3,,33PE EB AB PD EH OH=====,在RT EHO∆中,tan3EHEOHOH∠==60EOH∠=,即二面角E AC B--的大小为60.考点:线面垂直的判定定理、面面垂直的判定定理及二面角的求法.12.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)推导出AF∥BE,由此能证明AF∥面BCE.(2)推导出AC⊥BE,AC⊥BC,由此能证明AC⊥面BCE.(3)三棱锥E﹣BCF的体积V E﹣BCF=V C﹣BEF,由此能求出结果.【解答】证明:(1)∵四边形ABEF为矩形,∴AF ∥BE,∵AF⊄平面BCE,BE⊄平面BCE,∴AF∥面BCE.(2)∵AF⊥面ABCD,四边形ABEF为矩形,∴BE⊥平面ABCD,∵AC⊂平面ABCD,∴AC⊥BE,∵四边形ABCD为直角梯形,∠DAB=90°,AB∥CD,AD=AF=CD=1,AB=2∴AC=BC==,∴AC2+BC2=AB2,∴AC⊥BC,∵BC∩BE=B,∴AC⊥面BCE.解:(3)三棱锥E﹣BCF的体积:V E﹣BCF=V C﹣BEF====.13.【考点】直线与平面垂直的判定;直线与平面所成的角.【专题】计算题;证明题.【分析】(Ⅰ)欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得AC⊥平面PDB;(Ⅱ)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE中求出此角即可.【解答】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD,∵PD⊥底面ABCD,∴PD⊥AC,∴AC⊥平面PDB,∴平面AEC⊥平面PDB.(Ⅱ)解:设AC∩BD=O,连接OE,由(Ⅰ)知AC⊥平面PDB于O,∴∠AEO为AE与平面PDB所的角,∴O,E分别为DB、PB的中点,∴OE∥PD,,又∵PD⊥底面ABCD,∴OE⊥底面ABCD,OE⊥AO,在Rt△AOE中,,∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.【点评】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.。

高一立体几何试卷及答案

高一立体几何试卷及答案

高一立体几何试卷及答案The document was prepared on January 2, 2021立体几何试题一.选择题每题4分,共40分1.已知AB 0300300150空间,下列命题正确的个数为1有两组对边相等的四边形是平行四边形,2四边相等的四边形是菱形3平行于同一条直线的两条直线平行 ;4有两边及其夹角对应相等的两个三角形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是A 平行B 相交C 在平面内D 平行或在平面内4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作A 1个 或2个B 0个或1个C 1个D 0个6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是A 平行B 垂直相交C 异面D 相交但不垂直7.经过平面α外一点和平面α内一点与平面α垂直的平面有A 0个B 1个C 无数个D 1个或无数个8.下列条件中,能判断两个平面平行的是A 一个平面内的一条直线平行于另一个平面;B 一个平面内的两条直线平行于另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是A //,,m n n m βα⊥⊂B //,,m n n m βα⊥⊥C ,,m n m n αβα⊥=⊂D ,//,//m n m n αβ⊥10 .已知四棱锥,则中,直角三角形最多可以有A 1个B 2个C 3个D 4个二.填空题每题4分,共16分11.已知∆ABC 的两边AC,BC 分别交平面α于点M,N,设直线AB 与平面α交于点O,则点O 与直线MN 的位置关系为_________12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有_____________条13.一块西瓜切3刀最多能切_________块14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________三、 解答题1510分如图,已知E,F 分别是正方形1111ABCD A B C D -的棱1AA 和棱1CC 上的点,且1AE C F =.求证:四边形1EBFD 是平行四边形1610分如图,P 为ABC ∆所在平面外一点,AP=AC,BP=BC,D 为PC 的中点, 证明:直线PC 与平面ABD 垂直CB1712分如图,正三棱锥A-BCD,底面边长为a,则侧棱长为2a,E,F分别为AC,AD 上的动点,求截面BEF∆周长的最小值和这时E,F的位置.DC1812分如图,长方形的三个面的对角线长分别是a,b,c,求长方体对角线AC'的长C1bC BA答案1三点共线2无数 无数3a 1证明: 1AE C F = 11AB C D =11EAB FC D ∠=∠∴ 11EAB FC D ∆≅∆1EB FD ∴=过1A 作11//A G D F又由1A E ∥BG 且1A E =BG可知1//EB AG 1//EB D F ∴∴四边形1EBFD 是平行四边形2 ∵AP AC =D 为PC 的中点∴AD PC ⊥∵BP BC =D 为PC 的中点∴BD PC ⊥∴PC ⊥平面ABD∴AB PC ⊥3 提示:沿AB 线剪开 ,则BB '为周长最小值.易求得EF 的值为34a ,则周长最小值为114a . 4解:()()()222AC AC CC ''=+ ()()222()AB BC CC '=++222a b c =++。

高一数学立体几何试题

高一数学立体几何试题

高一数学立体几何试题1.设三棱柱的体积为,分别是侧棱上的点,且,则四棱锥的体积为()A.B.C.D.【答案】C【解析】假设重合,重合,则【考点】棱柱棱锥的体积2.一个圆锥被过顶点的平面截去了较小的一部分几何体,余下的几何体的三视图如图,则该圆锥的体积为()A.πB.2πC.πD.π【答案】A【解析】由该几何体的三视图得到该圆锥的底面半径是:,高是,所以体积是:.【考点】1.三视图;2.几何体的体积.3.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.(1)求侧面与底面所成的二面角的大小;(2)若是的中点,求异面直线与所成角的正切值;(3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.【答案】(1)(2)(3)点为的四等分点【解析】(1)取中点,设面,连接则为二面角的平面角,设,则可利用表示出和,从而根据,即可求得,即可求出二面角的大小。

(2)连接为异面直线与所成的角,根据,判断出面,从而可推断,从而可知为直线与所成的角,根据勾股定理求得,从而求出,则即可求得。

(3)延长交于,取中点,连接,先证出平面和平面垂直,再通过已知条件证出平面,取中点,利用,推断出,可知,最后可推断出平面,即为四等分点。

试题解析:(1)取中点,连接,依条件可知,则为所求二面角P-AD-O的平面角.∵面,∴为侧棱与底面所成的角.∴,7(2)连接,∴∠OEA为异面直线PD与AE所成的角.为异面直线与所成的角∵,,∴⊥平面.又平面,∴⊥.(3)延长交于,取中点,连.,∴⊥平面.∴平面⊥平面.又,∴为正三角形..又平面平,∴MG⊥平面PBC.平面取中点,,∴平面.点为的四等分点.【考点】(1)直线与平面垂直的判定(2)二面角的求法4.下列说法不正确的是A.空间中,一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D.过一条直线有且只有一个平面与已知平面垂直.【答案】D【解析】A中由平行四边形判定定理可知结论正确;B中两垂线平行,因此确定一个平面;C中由线面垂直的判定定理可知结论正确;D中过一条直线有无数平面与已知平面垂直【考点】线面平行垂直的判定与性质5.已知是直线,是平面,下列命题中:①若垂直于内两条直线,则;②若平行于,则内可有无数条直线与平行;③若m⊥n,n⊥l则m∥l;④若,则;正确的命题个数为()A.1B.2C.3D.4【答案】A【解析】①改为垂直于平面内的两条相交直线;②正确;③改为或相交或异面;④改为或异面.故选A.【考点】线与线,面与面,线与面位置关系6.长方体的表面积是,所有棱长的和是,则对角线的长是()A.B.C.D.【答案】D【解析】设长方体的长、宽、高分别为.则有.则长方体的对角线长为.故D正确.【考点】长方体的表面积,对角线.【思路点晴】本题主要考查的是长方体的表面积,属容易题.应先设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后根据勾股定理可得对角线的长度.7.用到球心距离为2的平面去截球,所得的截面面积为,则球的体积为()A.B.C.D.【答案】B【解析】用到球心距离为2的平面去截球,所得的截面面积为,所以小圆的半径为1,已知球心到该截面的距离为2,所以球的半径为,所以球的体积为:;故选B.【考点】球的体积与表面积8.设是两条不同的直线,是两个不同的平面,下列命题中正确的是A.若,,则B.若,,则C.若,,则D.若,,,则【答案】D【解析】A中,与可垂直、可异面、可平行;B中与可平行、可异面;C中若,仍然满足,故C错误;故D正确.【考点】1.直线与直线的平行与垂直;2.平面与平面平行与垂直的命题判断.9.设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则B.若,则C.若,则D.若,则【答案】C【解析】若,则或∥,故A不正确;若,则或∥,故B不正确;若,则,故C正确;若,则或或∥,故D不正确,所以C为正确答案.【考点】直线与平面的位置关系.10.边长为的正三角形,在斜二测画法下的平面直观图的面积为.【答案】【解析】,所以.【考点】直观图.11.下列说法正确的是()A.底面是正多边形,侧面都是正三角形的棱锥是正棱锥B.各个侧面都是正方形的棱柱一定是正棱柱C.对角面是全等的矩形的直棱柱是长方体D.两底面为相似多边形,且其余各面均为梯形的多面体必为棱台【答案】A【解析】由正棱锥的定义可知A正确;B不正确,例如各个侧面都是正方形的四棱柱的底面一定是菱形,但不一定是正方形,所以此时的四棱柱不一定是正四棱柱;C不正确,对角面是全等的矩形的直棱柱的底面可能是等腰梯形;D不正确,不能保证此多面体的各侧棱交于一点.【考点】几何体的概念问题.12.一个几何体的三视图如图所示,则这个几何体的体积为()A.B.C.D.【答案】A【解析】由已知中的三视图可知该几何体是一个组合体,由一个底面半径为,高为的半圆锥和一个底面边长为的正方形,高为的四棱锥组合而成,分别代入圆锥和棱锥的体积公式,可得这个几何体的体积,故选A.【考点】由三视图求面积、体积.13.(2009•浙江)设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【答案】C【解析】本题考查的知识点是直线与平面之间的位置关系,逐一分析四个答案中的结论,发现A,B,D中由条件均可能得到l∥β,即A,B,D三个答案均错误,只有C满足平面平行的性质,分析后不难得出答案.解:若l⊥α,α⊥β,则l⊂β或l∥β,故A错误;若l∥α,α∥β,则l⊂β或l∥β,故B错误;若l⊥α,α∥β,由平面平行的性质,我们可得l⊥β,故C正确;若l∥α,α⊥β,则l⊥β或l∥β,故D错误;故选C【考点】空间中直线与平面之间的位置关系.14.(2015秋•鞍山校级期末)正六棱柱ABCDEF﹣A1B1C1D1E1F1的底面边长为,侧棱长为1,则动点从A沿表面移动到点D1时的最短的路程是.【答案】【解析】根据题意,画出图形,结合图形得出从A点沿表面到D1的路程是多少,求出即可.解:将所给的正六棱柱按图1部分展开,则AD′1==,AD1==,∵AD′1<AD1,∴从A点沿正侧面和上底面到D1的路程最短,为.故答案为:.【考点】多面体和旋转体表面上的最短距离问题.15.(2014•埇桥区校级学业考试)已知A(1,0,2),B(1,﹣3,1),点M在z轴上且到A、B两点的距离相等,则M点坐标为()A.(﹣3,0,0) B.(0,﹣3,0)C.(0,0,﹣3) D.(0,0,3)【答案】C【解析】点M(0,0,z),利用A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,建立方程,即可求出M点坐标解:设点M(0,0,z),则∵A(1,0,2),B(1,﹣3,1),点M到A、B两点的距离相等,∴∴z=﹣3∴M点坐标为(0,0,﹣3)故选C.【考点】两点间的距离公式.16.已知向量=(1,2),=(2,3﹣m),且∥,那么实数m的值是()A.﹣1B.1C.4D.7【答案】A【解析】根据向量的平行的条件和向量的坐标运算即可求出.解:向量=(1,2),=(2,3﹣m),且∥,∴1×(3﹣m)=2×2,∴m=﹣1,故选:A.【考点】平面向量共线(平行)的坐标表示.17.如图是一个几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法)(2)求这个几何体的表面积及体积.【答案】(1)见解析;(2)表面积;体积3.【解析】(1)由三视图可知该几何体为平放的三棱柱,则可画出其三棱柱;(2)由三视图可知棱柱的两底面为等腰三角形且底边长为2,高为1.一个侧面是长为3宽为2的矩形;另两个侧面都是长为3宽为的矩形,从而可得其表面积和体积.试题解析:(1)由三视图可知该几何体为平放的三棱柱,直观图为:(2)由三视图可知,该棱柱的高,底面等腰的底,的,高为1,.故所求全面积.几何体的体积.【考点】1三视图;2几何体的表面积,体积.18.(2011•南昌三模)如图,水平放置的三棱柱的侧棱长和底面边长均为2,且侧棱AA1⊥底面A1B1C1,主视图是边长为2的正方形,该三棱柱的左视图面积为()A.4B.C.D.【答案】B【解析】由三视图和题意可知三棱柱是正三棱柱,结合正视图,俯视图,不难得到侧视图,然后求出面积.解:由三视图和题意可知三棱柱是正三棱柱,底面边长为2,侧棱长2,结合正视图,俯视图,得到侧视图是矩形,长为2,宽为面积为:故选B.【考点】由三视图求面积、体积.19.(2015秋•沈阳校级月考)如图,四棱锥P﹣ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB,E,F,G,H分别为PC、PD、BC、PA的中点.求证:(1)PA∥平面EFG;(2)DH⊥平面EFG.【答案】见解析【解析】(1)根据面面平行的性质推出线面平行;(2)由题意可证DH⊥PA,DH⊥AB,可证DH⊥平面PAB,从而证明DH⊥PB,由(1)EF∥AB,EG∥PB,从而证明DH⊥EG,DH⊥EF,即可证明DH⊥平面EFG.证明:(1)∵E、G分别是PC、BC的中点,∴EG是△PBC的中位线,∴EG∥PB,又∵PB⊂平面PAB,EG⊄平面PAB,∴EG∥平面PAB,∵E、F分别是PC、PD的中点,∴EF∥CD,又∵底面ABCD为正方形,∴CD∥AB,∴EF∥AB,又∵AB⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB,又EF∩EG=E,∴平面EFG∥平面PAB,∵PA⊂平面PAB,∴PA∥平面EFG.(2)∵PD⊥AD,PD=AD,H为的中点,∴DH⊥PA,∵BA⊥平面PDA,DH⊂平面PDA,∴DH⊥AB,∴DH⊥平面PAB,∴DH⊥PB,由(1)EF∥AB,EG∥PB,∴DH⊥EG,DH⊥EF,∴DH⊥平面EFG.【考点】直线与平面垂直的判定;直线与平面平行的判定.20.(2015春•咸宁期末)如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行②CN与BE是异面直线③CN与BM成60°角④DM与BN是异面直线以上四个命题中,正确的命题序号是()A.①②③B.②④C.③④D.②③④【答案】C【解析】根据恢复的正方体可以判断出答案.解:根据展开图,画出立体图形,BM与ED垂直,不平行,CN与BE是平行直线,CN与BM成60°,DM与BN是异面直线,故③④正确.故选:C【考点】空间中直线与直线之间的位置关系.21.(2015秋•河池期末)下列结论判断正确的是()A.任意三点确定一个平面B.任意四点确定一个平面C.三条平行直线最多确定一个平面D.正方体ABCD﹣A1B1C1D1中,AB与CC1异面【答案】D【解析】根据题意,容易得出选项A、B、C错误,画出图形,结合异面直线的定义即可判断D 正确.解:对于A,不在同一直线上的三点确定一个平面,∴命题A错误;对于B,不在同一直线上的四点确定一个平面,∴命题B错误;对于C,三条平行直线可以确定一个或三个平面,∴命题C错误;对于D,如图所示,正方体ABCD﹣A1B1C1D1中,AB与CC1是异面直线,命题D正确.故选:D.【考点】平面的基本性质及推论.22.设点M是等腰直角三角形ABC的斜边BA的中点,P是直线BA上任意一点,PE⊥AC于E,PF⊥BC于F,求证:(1)ME=MF;(2)ME⊥MF.【答案】见解析【解析】(1)以等腰直角三角形的直角顶点C为坐标原点O,以OA为单位长,以直线OA.OB分别为x轴.y轴建立平面直角坐标系,由此能证明ME=MF.(2)分别求出ME2+MF2=,,由此能证明ME⊥MF.证明:(1)如图,以等腰直角三角形的直角顶点C为坐标原点O,以OA为单位长,以直线OA.OB分别为x轴.y轴建立平面直角坐标系,则A(1,0),B(0,1),…(2分)设P(x0,y),则有x+y=1,∵PE⊥OA,PF⊥OB,∴E(x0,0),F(0,y),,,∵,∴ME=MF.…(7分)(2)∵ME2+MF2=()2+++(﹣y)2=,,∴ME2+MF2=EF2,∴ME⊥MF.…(12分)【考点】空间中直线与直线之间的位置关系.23.已知l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥α,m⊂α,则l⊥mB.若l⊥m,m⊂α,则l⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m【答案】A【解析】对四个命题分别进行判断,即可得出结论.解:对于A,若l⊥α,m⊂α,则根据直线与平面垂直的性质定理知:l⊥m,故A正确;对于B,若l⊥m,m⊂α,则根据直线与平面垂直的判定定理知:l⊥α不正确,故B不正确;对于C,∵l∥α,m⊂α,∴由直线与平面平行的性质定理知:l与m平行或异面,故C不正确;对于D,若l∥α,m∥α,则l与m平行,异面或相交,故D不正确.故选:A.【考点】平面与平面之间的位置关系;空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.24.如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,AA′⊥平面ABCD(1)求证:A′C∥平面BDE;(2)求证:平面A′AC⊥平面BDE.【答案】见解析【解析】(1)首先找到线面平行的充分条件,可以通过中位线找到线线平行,再进一步证明线面平行.(2)要证明平面A′AC⊥平面BDE.可以通过BD⊥平面A'AC来进行转化,进一步找到BD⊥平面A'AC的充分条件,从而得到结果.证明:(1)设BD交AC于M,连结ME.∵ABCD为正方形,所以M为AC中点,又∵E为A'A的中点∴ME为△A'AC的中位线∴ME∥A'C又∵ME⊂平面BDE,A'C⊄平面BDE∴A'C∥平面BDE.(2)∵ABCD为正方形∴BD⊥AC∵A'A⊥平面ABCD∴A'A⊥BD.又AC∩A'A=A AC⊂面A'AC AA'⊂面A'AC∴BD⊥平面A'AC∵BD⊂平面BDE∴平面A'AC⊥平面BDE.【考点】平面与平面垂直的判定;直线与平面平行的判定.25.如图,在正方体中,分别为棱的中点.(Ⅰ)求证:∥平面;(Ⅱ)求异面直线与所成角.【答案】(Ⅰ)详见解析(Ⅱ)【解析】(Ⅰ)证明线面平行可通过证明线线平行或面面平行得以实现,本题证明时利用中点产生的中位线加以证明;(Ⅱ)求异面直线所成角时首先将异面直线平移为相交直线,求其夹角即可,本题中通过平移可知就是异面直线与所成角,通过求解角所在的三角形三边得到角的大小试题解析:(1)连结BD,分别为AD,AB的中点,所以EF∥BD,由所以四边形是平行四边形,所以,平面平面平面(Ⅱ)连接,四边形是平行四边形又∥就是异面直线与所成角在正方体中即异面直线与所成角为【考点】1.线面平行的判定;2.异面直线所成角26.将正方体截取一个四棱锥后得到的几何体如图所示,则有关该几何体的三视图表述正确的是()A.正视图与俯视图形状完全相同B.侧视图与俯视图形状完全相同C.正视图与侧视图形状完全相同D.正视图、侧视图与俯视图形状完全相同【答案】C【解析】根据三视图的特点,画出几何体的三视图,可得答案.解:该几何体的三视图如下所示:主视图:侧视图:俯视图:则正视图与侧视图形状完全相同,故选:C【考点】简单空间图形的三视图.27.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,且PM=3MC,求三棱锥P﹣QBM的体积.【答案】(1)见解析;(2)【解析】(1)由PA=PD,得到PQ⊥AD,又底面ABCD为菱形,∠BAD=60°,得BQ⊥AD,利用线面垂直的判定定理得到AD⊥平面PQB利用面面垂直的判定定理得到平面PQB⊥平面PAD;2)由平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,得PQ⊥平面ABCD,BC⊂平面ABCD,得PQ⊥BC,得BC⊥平面PQB,即得到高,利用椎体体积公式求出;解:(1)∵PA=PD,∴PQ⊥AD,又∵底面ABCD为菱形,∠BAD=60°,∴BQ⊥AD,PQ∩BQ=Q,∴AD⊥平面PQB又AD⊂平面PAD,∴平面PQB⊥平面PAD;(2)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,∴PQ⊥平面ABCD,BC⊂平面ABCD,∴PQ⊥BC,又BC⊥BQ,QB∩QP=Q,∴BC⊥平面PQB,又PM=3MC,∴V﹣QBM=V M﹣PQB=P【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.28.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和.过A、B 分别作两平面交线的垂线,垂足为A′、B′,则AB:A′B′=()A.2:1 B.3:1 C.3:2 D.4:3【答案】A【解析】设AB的长度为a用a表示出A'B'的长度,即可得到两线段的比值.解:连接AB'和A'B,设AB=a,可得AB与平面α所成的角为,在Rt△BAB'中有AB'=,同理可得AB与平面β所成的角为,所以,因此在Rt△AA'B'中A'B'=,所以AB:A'B'=,故选A.【考点】平面与平面垂直的性质.29.对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β【答案】C【解析】在A中,α与β相交或相行;在B中,α与β不一定垂直;在C中,由由面面垂直的判定定理得α⊥β;在D中,由面面平行的判定定理得α∥β.解:在A中,m⊥n,m∥α,n∥β,则α与β相交或相行,故A错误;在B中,m⊥n,α∩β=m,n⊂α,则α与β不一定垂直,故B错误;在C中,m∥n,n⊥β,m⊂α,由由面面垂直的判定定理得α⊥β,故C正确;在D中,m∥n,m⊥α,n⊥β,则由面面平行的判定定理得α∥β,故D错误.故选:C.【考点】空间中直线与平面之间的位置关系.30.正方体ABCD﹣A1B1C1D1的棱长为,△AB1D1面积为,三棱锥A﹣A1B1D1的体积为.【答案】,【解析】正方体ABCD﹣A1B1C1D1的棱长为,△AB1D1是边长为=2的等边三角形,由此能求出△AB1D1面积和三棱锥A﹣A1B1D1的体积.解:∵正方体ABCD﹣A1B1C1D1的棱长为,∴△AB1D1是边长为=2的等边三角形,∴△AB1D1面积S==.== =.故答案为:,.【考点】棱柱、棱锥、棱台的体积.31.已知正四面体中,是的中点,则异面直线与所成角的余弦值为()A.B.C.D.【答案】B【解析】如图,取中点,连接,因为是中点,则,或其补角就是异面直线所成的角,设正四面体棱长为1,则,,.故选B.【考点】异面直线所成的角.【名师】求异面直线所成的角的关键是通过平移使其变为相交直线所成角,但平移哪一条直线、平移到什么位置,则依赖于特殊的点的选取,选取特殊点时要尽可能地使它与题设的所有相减条件和解题目标紧密地联系起来.如已知直线上的某一点,特别是线段的中点,几何体的特殊线段.32.对于四面体ABCD,下列命题正确的是________.(写出所有正确命题的编号).①相对棱AB与CD所在的直线是异面直线;②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;③若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足重合;④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.【答案】①④⑤【解析】本题考查空间几何体的线线关系,以及空间想象能力.如图所示,四面体ABCD中,AB与CD是异面直线,故①正确;当四面体ABCD中,对棱AB与CD不垂直时,由顶点A作四面体的高,其垂足不是△BCD三条高线的交点,故②不正确;若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足不一定重合,故③不正确;如图,过顶点A 作AO ⊥面BCD ,O 为垂足,连结OB 、OC 、OD ,则S △ABC >S △BOC ,S △ACD >S △COD ,S △ABD >S △BOD ,∴S △ABC +S △ACD +S △ABD >S △BOC +S △COD +S △BOD =S △BCD , 故④正确. 如图四面体ABCD 中取AB 、CD 、AD 、BC 的中点分别为E 、F 、M 、N ,连线EF 、MN ,则EF 、MN 分别为▱EMFN 的对角线,∴EF 、MN 相交于点O ,且O 为EF 、MN 的中点,取AC 、BD 的中点分别为R 、H ,则ERFH 为平行四边形,即点O 也是RH 的中点,故⑤正确.33. 一个正三棱柱的三视图如图所示,求这个正三棱柱的体积和表面积。

高一数学立体几何单元测试题12

高一数学立体几何单元测试题12

立几测试012.一、选择题(本大题共12小题,每小题5分,共60分)1.与两个相交平面的交线平行的直线和这两个平面的位置关系是( )A .都平行B .都相交C .在两个平面内D .至少和其中一个平行2.空间四个点中,任意三点不共线是这四个点不共面的( )条件A .充分不必要B .必要不充分C .充要D .既不充分又不必要3.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AB 、C 1D 1的中点,则A 1B 1与截面A 1ECF 所成的角为( ) A .216arccosB .216arccosC .2arctanD .22arccos 4.正方形ABC 的边长为1,PA ⊥平面ABCD ,PA=1,M 、N 分别是PD 、PB 的中点,那么直线AM 与CN 所成角的余弦值是( ) A .63 B .63-C .33D .332 5.若面α∥β,点a ,b 分别在面α和β内,α、β间距离为d ,a 、b 间的距离为m ,则( )A .m<dB .m=dC .m>dD .m ≥d6.设平面α⊥平面β,又直线m 、n 分别在面α和β内,且m ⊥n 则( )A .m ⊥βB .n ⊥αC .m ⊥α且n ⊥αD .m ⊥β或n ⊥α7.已知从一点P 引三条射线PA 、PB 、PC ,且两两成600角,则二面角A —PB —C 的余弦值是( ) A .31 B .32 C .31- D .32- 8.一个正方体内接于一个球,过球心作一截面,则截面的图形不可能是( )A B C D9.在所有的两位数中,个位数比十位数大的数共有( )A .45个B .44个C .38个D .36个 10.一山坡与水平面成600的二面角,坡角水平线(即二面角的棱)为AB ,P 、Q 为AB 上的两点,甲沿山坡自P 朝垂直于AB 的方向走30m ,同时乙沿水平面自Q 点朝垂直于AB 的方向前走30m ,若PQ=10m ,此时甲乙两人之间的距离是( )A .720mB .1010mC .330mD .1910m 11.若P 、A 、B 、C 是球O 面上的四个点,PA 、PB 、PC 两两垂直,且PA=PB=PC=1,则球O 的表面积为( )A .2πB .3πC .4πD .5π 12.过正三棱锥的一条侧棱与底面中心作一截面,若截面是等腰三角形,侧面与底面所成角的余弦值为( ) A .21 B .31 C .66 D .31或66二、填空题(本大题共4个小题,每小题4分,共16分)13.若命题:“如果平面上有三点到平面的距离相等,则α∥β”为真,则此三点必须满足 。

2024届新高考数学大题精选30题--立体几何含答案

2024届新高考数学大题精选30题--立体几何含答案

大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。

高一数学立体几何练习题及答案

高一数学立体几何练习题及答案

高一数学立体几何练习题及答案一、选择题1. 下列哪个图形不是立体图形?A. 立方体B. 圆锥C. 圆柱D. 正方形答案:D2. 已知一个立方体的边长为5cm,求它的表面积和体积分别是多少?A. 表面积:150cm²,体积:125cm³B. 表面积:100cm²,体积:125cm³C. 表面积:150cm²,体积:100cm³D. 表面积:100cm²,体积:100cm³答案:A3. 以下哪个选项可以形成一个正方体?A. 六个相等的长方体B. 一个正方形和一个长方体C. 六个相等的正方形D. 一个正方形和一个正方体答案:C4. 以下哪个图形可以形成一个圆柱?A. 一个正方形和一个长方体B. 一个圆和一个长方体C. 一个长方形和一个长方体D. 一个正方形和一个正方体答案:C5. 以下哪个选项可以形成一个圆锥?A. 一个圆和一个长方体B. 一个圆和一个正方体C. 一个正方形和一个长方体D. 一个正方形和一个正方体答案:B二、填空题1. 已知一个正方体的表面积为96cm²,求它的边长是多少?答案:4cm2. 已知一个圆柱的半径为3cm,高为10cm,求它的表面积和体积分别是多少?答案:表面积:198cm²,体积:90π cm³3. 以下哪个选项可以形成一个长方体?A. 六个相等的正方形B. 一个圆和一个长方形C. 六个相等的长方形D. 一个正方形和一个正方体答案:C三、解答题1. 某长方体的长、宽、高分别为3cm、4cm、5cm,请回答以下问题:(1)它的表面积是多少?(2)它的体积是多少?答案:(1)表面积 = 2(长×宽 + 长×高 + 宽×高)= 2(3×4 + 3×5 + 4×5)= 2(12 + 15 + 20)= 2(47)= 94cm²(2)体积 = 长×宽×高= 3×4×5= 60cm³2. 某圆锥的半径是5cm,高是12cm,请回答以下问题:(1)它的表面积是多少?(2)它的体积是多少?答案:(1)斜面积= π×半径×斜高= π×5×13≈ 204.2cm²(2)体积= (1/3)π×半径²×高= (1/3)π×5²×12≈ 314.2cm³四、解析题某正方体的表面积是96cm²,它的边长是多少?解答:设正方体的边长为x,由表面积的计算公式可得:表面积 = 6x²96 = 6x²16 = x²x = 4所以,该正方体的边长为4cm。

高中立体几何试题及答案

高中立体几何试题及答案

高中立体几何试题及答案一、选择题(每题3分,共15分)1. 空间中,如果直线a与平面α平行,那么直线a与平面α内的任意直线b的位置关系是:A. 平行B. 异面C. 相交D. 垂直2. 一个正方体的棱长为a,那么它的对角线长度为:A. a√2B. a√3C. 2aD. 3a3. 已知一个圆锥的底面半径为r,高为h,圆锥的体积是:A. πr²hB. 1/3πr²hC. 2πr²hD. 3πr²h4. 一个球的半径为R,那么它的表面积是:A. 4πR²B. 2πR²C. πR²D. R²5. 空间中,如果两个平面α和β相交于直线l,那么直线l与平面α和平面β的位置关系是:A. 平行B. 垂直C. 相交D. 包含二、填空题(每题2分,共10分)6. 空间直角坐标系中,点A(2,3,4)到原点O的距离是________。

7. 一个正四面体的每个顶点都与其它三个顶点相连,那么它的边长与高之比为________。

8. 已知一个长方体的长、宽、高分别为l、w、h,那么它的体积是________。

9. 空间中,如果一个点到平面的距离是d,那么这个点到平面上任意一点的距离的最大值是________。

10. 一个圆柱的底面半径为r,高为h,它的侧面积是________。

三、解答题(共75分)11. (15分)已知空间直角坐标系中,点A(1,2,3),B(4,5,6),点C 在平面ABC内,且AC=BC=2,求点C的坐标。

12. (20分)一个圆锥的底面半径为3,高为4,求圆锥的全面积和表面积。

13. (20分)一个长方体的长、宽、高分别为5、3、2,求其外接球的半径。

14. (20分)已知一个球的表面积为4π,求该球的体积。

答案:一、选择题1. A2. B3. B4. A5. C二、填空题6. √(1²+2²+3²)=√147. √3:18. lwh9. d+R10. 2πrh三、解答题11. 点C的坐标可以通过向量运算求得,设C(x,y,z),则向量AC=向量BC,即(1-x,2-y,3-z)=(x-4,5-y,6-z),解得x=3,y=4,z=5,所以点C的坐标为(3,4,5)。

2023高一下学期备战期末立体几何专题期末专题08 立体几何大题综合解析版

2023高一下学期备战期末立体几何专题期末专题08 立体几何大题综合解析版

期末专题08 立体几何大题综合1.(2021春·江苏南京·高一校联考期末)如图,在五面体ABCDEF 中,已知DE ⊥平面ABCD ,//AD BC ,60BAD ∠=°,2AB =,1DE EF ==. (1)求证://BC EF ;(2)求三棱锥B DEF −的体积.2.(2022春·江苏南京·高一南京市中华中学校考期末)如图,在四棱锥P ABCD −中,平面PAD ⊥平面ABCD ,//AD BC ,6ABAD AC ===,8PA BC ==,10PD =,M 为棱AD 上一点,且2AM MD =,N 为棱PC 的中点.(1)证明:平面PAB ⊥平面ABCD ;(2)求四棱锥N BCDM −的体积.3.(2021·江苏·高一期末)如图在四棱锥P - ABCD 中,底面ABCD 是矩形,点E ,F 分别是棱PC 和PD 的中点.(1)求证:EF ∥平面P AB;2023高一下学期备战期末立体几何专题(2)若AP =AD ,且平面P AD ⊥平面ABCD ,证明AF ⊥平面PCD .4.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)如图,四棱锥P ABCD −中,PA ⊥底面ABCD ,底面ABCD 为菱形,点F 为侧棱PC 上一点.(1)若PF FC =,求证://PA 平面BDF ; (2)若BF PC ⊥,求证:平面⊥BDF 平面PBC .5.(2021春·江苏常州·高一校联考期末)如图,在四棱锥P ABCD −中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=°,平面PAD ⊥底面ABCD ,E 为AD 的中点,M 是棱PC 的中点,2PA PD ==,112BC AD ==,CD =(1)若平面PBC 与平面PAD 的交线为l ,求证://l BC ; (2)求直线BM 与平面ABCD 所成角的正切值; (3)求直线BM 与CD 所成角的余弦值.6.(2022春·江苏扬州·高一统考期末)如图,四棱锥P ABCD −中,底面ABCD 为平行四边形,6810PAAD PD AB PB =====,,,平面PAD ⊥平面ABCD ,平面PAB ∩平面PCD l =.(1)求四棱锥P ABCD −的体积; (2)求二面角A l D −−的余弦值.7.(2022春·江苏常州·高一统考期末)刍(ch ú)甍(m éng )是几何体中的一种特殊的五面体.中国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.求积术日:倍下表,上袤从之,以广乘之,又以高乘之,六而一.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶 ”现有一个刍甍如图所示,四边形ABCD 为长方形,//EF 平面ABCD ,ADE 和BCF △是全等的等边三角形.(1)求证://EF DC ;(2)若已知224AB BC EF ===, ①求二面角A EF C −−的余弦值; ②求该五面体ABCDEF 的体积.8.(2022春·江苏盐城·高一统考期末)如图,四棱锥P -ABCD 的底面是平行四边形,P A ⊥平面ABCD ,1,AB BC==4ABC π∠=.(1)求证:平面PCD ⊥平面P AC ; (2)若PD 与平面P AC 所成的角为6π,求PC 与平面P AD 所成的角的正弦值. 9.(2022春·江苏盐城·高一统考期末)如图,在四棱锥P -ABCD 中,112ABBC CD AD ====,//AD BC ,P 在以AD 为直径的圆O 上,平面ABCD ⊥平面P AD .(1)设点Q 是AP 的中点,求证:BQ //平面PCD ;(2)若二面角C PD A −−的平面角的正切值为2,求三棱锥A -PCD 的体积.10.(2022春·江苏宿迁·高一统考期末)在斜三棱柱111ABC A B C 中,底面是边长为4的正三角形,1=A B 1160A AB A AC ∠=∠=°.(1)证明:11//A C 平面1AB C ; (2)证明:1BC AA ⊥;(3)求直线BC 与平面11ABB A 所成角的正弦值.11.(2022春·江苏无锡·高一统考期末)如图,在四棱锥P ABCD −中,底面ABCD 为正方形,PA ⊥底面ABCD ,2PA AB ==,E 为PB 中点,M 为AD 中点,F 为线段BC 上一点.(1)若F 为BC 中点,求证://PM 平面AEF ;(2)设直线EF 与底面ABCD 所成角的大小为α,二面角E AF B −−的大小为β,若tan =βα,求BF 的长度.12.(2021春·江苏南京·高一南京师大附中校考期末)如图,在三棱柱111ABC A B C -中,1B C AB ⊥,侧面11BCC B 为菱形.(1)求证:1B C ⊥平面1ABC .(2)如果点D ,E 分别为11A C ,1BB 的中点,求证://DE 平面1ABC .13.(2021春·江苏南京·高一校联考期末)如图,在直三棱柱111ABC A B C -中,点D 是线段AB 上的动点.(1)线段AB 上是否存在点D ,使得1//AC 平面1B CD ?若存在,请写出ADDB值,并证明此时,1//AC 平面1B CD ;若不存在,请说明理由; (2)已知平面11ABB A ⊥平面1CDB ,求证:CD AB ⊥.14.(2021·江苏·高一期末)如图,在四棱锥P ABCD −中,平面ABCD ⊥平面PAB ,PAB 为等边三角形,四边形ABCD 为矩形,E 为PB 的中点.(1)证明:平面ADE ⊥平面PBC .(2)平面ADE 分此棱锥为两部分,若2AB AD =,求大的部分体积与小的部分体积之比.15.(2021·江苏·高一期末)已知在六面体PABCDE 中,PA ⊥平面ABCD ,ED ⊥平面ABCD ,且2PA ED =,底面ABCD 为菱形,且60ABC ∠=°.(1)求证:平面PAC ⊥平面PBD ;(2)若2AB =,1DE =,且M 为PB 的中点,求三棱锥E PAM −的体积.16.(2021春·江苏常州·高一校联考期末)如图,三棱锥−P ABC 的底面是等腰直角三角形,其中2ABAC ==,PA PB =,平面PAB ⊥平面ABC ,点E ,F ,M ,N 分别是AB ,AC ,PC ,BC 的中点.(1)证明:平面EMN ⊥平面PAB ; (2)当PF 与平面ABC 所成的角为3π时,求四棱锥A PMNB −的体积. 17.(2021春·江苏南京·高一南京师大附中校考期末)如图,圆锥顶点为P ,底面圆心为O ,其母线与底面所成的角为22.5°,AB 和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60°.(1)证明:平面P AB 与平面PCD 的交线平行于底面; (2)求二面角C OP D −−的余弦值.18.(2021春·江苏南京·高一南京市第二十九中学校考期末)如图在三棱柱111ABC A B C -中,侧面11BCC B 为菱形,平面11BCC B ⊥平面ABC ,直线1BB 与平面ABC 所成线面角为60°,且8BC =,10AC =,3cos 5CAB ∠=.(1)求证:平面1AB C ⊥平面1ABC ;(2)设P 为线段11A B 上一点,求三棱锥A PBC −的体积.19.(2021春·江苏苏州·高一统考期末)如图1,在矩形ABCD 中,已知2AB BC =,E 为AB 的中点.将ADE 沿DE 向上翻折,进而得到多面体1A BCDE −(如图2).(1)求证:1DE A C ⊥;(2)在翻折过程中,求二面角1A DC B −−的最大值.20.(2021春·江苏南京·高一校联考期末)如图,在三棱柱111ABC A B C -中,侧面11ACC A 是矩形,侧面11BCC B 是菱形,M 、N 分别是1AB 、1BC 的中点,1AC BC ⊥(1)求证://MN 平面111A B C ; (2)求证:11BC AB ⊥;(3)若2AC =,1BCC 是边长为4的正三角形,求三棱锥1B AB C −的体积. 21.(2021春·江苏徐州·高一统考期末)如图①,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为AB ,BC ,BB 1,的中点.(1)求证:平面EFG ⊥平面BB 1D 1D ;(2)将该正方体截去八个与四面体B -EFG 相同的四面体得到一个多面体(如图②),若该多面体的体积是1603,求该正方体的棱长. 22.(2021春·江苏南京·高一校考期末)如图,A 是以BD 为直径的半圆O 上一点,BC 垂直于圆O 所在的平面.(1)求证:AD ⊥平面ABC ;(2)若22BD BC ==, AD AB =,求二面角A CD B −−的余弦值.23.(2021春·江苏南京·高一南京市第一中学校考期末)如图,在四棱锥P ﹣ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,AD =2BC =2,CD .平面P AD ⊥平面ABCD ,∠PDA =90°.(1)若平面P AD ∩平面PBC =l ,求证:l ∥BC ;(2)求证:平面P AC ⊥平面PBD ;(3)若二面角B ﹣P A ﹣D 的正切值为,求四棱锥P ﹣ABCD 的体积.24.(2022春·江苏常州·高一校联考期末)如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D −−的大小为45°,求三棱锥A BCD −的体积.25.(2022春·江苏南京·高一统考期末)如图,三棱锥A BCD −中,ABC 为等边三角形,且面ABC ⊥面BCD ,CD ⊥.(1)求证:CD AB ⊥;(2)当AD 与平面BCD 所成角为45°时,求二面角C AD B −−的余弦值.26.(2022春·江苏苏州·高一江苏省昆山中学校考期末)已知一圆形纸片的圆心为O ,直径2AB =,圆周上有C 、D 两点.如图,OC AB ⊥,6AOD π∠=,点P 是 BD 上的动点.沿AB 将纸片折为直二面角,并连结PO ,PD ,PC ,CD .(1)当//AB 平面PCD 时,求PD 的长;(2)当三棱锥P COD −的体积最大时,求二面角O PD C −−的余弦值.27.(2022春·江苏连云港·高一连云港高中校考期末)在四棱锥P ABCD −中,平面ABCD⊥平面PCD ,底面ABCD 为梯形,//AB CD ,AD DC ⊥,且1AB =,2AD DC DP ===,120PDC ∠=°.(1)求证:AD PC ⊥; (2)求二面角______的余弦值;从① P AB C ,② P BD C −−,③ P BC D −−这三个条件中任选一个,补充在上面问题中并作答.(3)若M 是棱PA 的中点,求证:对于棱BC 上任意一点F ,MF 与PC 都不平行. 28.(2022春·江苏南通·高一金沙中学校考期末)如图,在四棱锥P ABCD −中,底面ABCD 为直角梯形,//CD AB ,90ABC ∠= ,2AB BC ==2CD ,侧面PAD ⊥平面ABCD .(1)求证:BD PA ⊥;(2)设平面PAD 与平面PBC 的交线为l ,PA 、PB 的中点分别为E 、F ,证明://l 平面DEF .29.(2022春·江苏苏州·高一江苏省昆山中学校考期末)如图,在四棱锥P ABCD −中,底面ABCD 是矩形,4PA AD ==,2AB =,PA ⊥平面ABCD ,且M 是PD 的中点.(1)求证:AM ⊥平面PCD ;(2)求异面直线CD 与BM 所成角的正切值;(3)求直线CD 与平面ACM 所成角的正弦值.30.(2022春·江苏扬州·高一期末)如图,在斜三棱柱111ABC A B C 中,AC BC =,D 为AB 的中点,1D 为11A B 的中点,平面111A B C ⊥平面11ABB A ,异面直线1BC 与1AB 互相垂直.(1)求证:平面1//A DC 平面11BD C ;(2)若1CC 与平面11ABB A 的距离为x ,116AC AB ==,三棱锥1A ACD −的体积为y ,试写出y 关于x 的函数关系式;(3)在(2)的条件下,当1CC 与平面11ABB A 的距离为多少时,三棱锥1A ACD −的体积取得最大值?并求出最大值.期末专题08 立体几何大题综合1.(2021春·江苏南京·高一校联考期末)如图,在五面体ABCDEF 中,已知DE ⊥平面ABCD ,//AD BC ,60BAD ∠=°,2AB =,1DE EF ==.(1)求证://BC EF ;(2)求三棱锥B DEF −的体积.【答案】(1)证明见解析;(2【分析】(1)先证明//BC 平面ADEF ,再利用线面平行的性质,证明//BC EF ; (2)在平面ABCD 内作BH AD ⊥于点H ,证明BH 是三棱锥B DEF −的高,即可求三棱锥B DEF −的体积.【详解】(1)因为//AD BC ,AD ⊂平面ADEF ,BC ⊄平面ADEF ,所以//BC 平面ADEF ,又BC ⊂平面BCEF ,平面BCEF 平面ADEF EF =, 所以//BC EF .(2)如图,在平面ABCD 内过点B 作BH AD ⊥于点H .因为DE ⊥平面ABCD ,BH ⊂平面ABCD ,所以DE BH ⊥.又AD ,DE ⊂平面ADEF ,AD DE D ∩=,所以BH ⊥平面ADEF ,所以BH 是三棱锥B DEF −的高.在直角三角形ABH 中,o 60BAD ∠=,2AB =,所以BH =因为DE ⊥平面ABCD ,AD ⊂平面ABCD ,所以DE AD ⊥.又由(1)知,//BC EF ,且//AD BC ,所以//AD EF ,所以DE EF ⊥,所以三棱锥B DEF −的体积11111332DEF V S BH ∆=××=×××= 2.(2022春·江苏南京·高一南京市中华中学校考期末)如图,在四棱锥P ABCD −中,平面PAD ⊥平面ABCD ,//AD BC ,6ABAD AC ===,8PA BC ==,10PD =,M 为棱AD 上一点,且2AM MD =,N 为棱PC 的中点.(1)证明:平面PAB ⊥平面ABCD ;(2)求四棱锥N BCDM −的体积.【答案】(1)证明见解析【分析】(1)依题意可得PA AD ⊥,由面面垂直的性质得到PA ⊥平面ABCD ,即可证明平面PAB ⊥平面ABCD ;(2)根据图中的几何关系,求出四边形BCDM 的面积,根据N 是PC 的中点,即可求解.【详解】(1)证明:由题意,222PA AD PD +=,PA AD ∴⊥,平面PAD ⊥平面ABCD ,PA ⊂平面PAD ,平面PAD ∩平面ABCD AD =, PA ∴⊥平面ABCD ,又PA ⊂ 平面PAB ,∴平面PAB ⊥平面ABCD ;(2)解:设BC 的中点为H ,连接AH ,AB AC = ,所以ABC 是等腰三角形,AH BC ∴⊥,即AH 是梯形底边上的高,AH ==由题意知,2MD =,所以()12822BCDM S DM BC AH ++⋅× N 是PC 的中点,N ∴到底面的距离为142PA =,四棱锥N BCDM −的体积为143××;综上,四棱锥N BCDM − 3.(2021·江苏·高一期末)如图在四棱锥P - ABCD 中,底面ABCD 是矩形,点E ,F 分别是棱PC 和PD 的中点.(1)求证:EF ∥平面P AB ;(2)若AP =AD ,且平面P AD ⊥平面ABCD ,证明AF ⊥平面PCD .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)由中位线定理得//EF CD ,从而可得//EF AB ,得线面平行;(2)由等腰三角形得AF PD ⊥,再由面面垂直的性质定理得CD 与平面PAD 垂直,从而得CD AF ⊥,再由线面垂直的判定定理得证线面垂直.【详解】证明:(1)因为点E ,F 分别是棱PC 和PD 的中点.,所以//EF CD ,又//CD AB ,所以//EF AB ,而EF ⊄平面PAB ,AB ⊂平面PAB ,所以//EF 平面PAB ;(2)AP AD =,F 是PD 的中点,所以AF PD ⊥,又平面P AD ⊥平面ABCD ,平面P AD 平面ABCD AD =,CD AD ⊥,CD ⊂平面ABCD , 所以CD ⊥平面PAD ,AF ⊂平面PAD ,所以CD AF ⊥,CD PD D = ,,CD PD ⊂平面PCD ,所以AF ⊥平面PCD .4.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)如图,四棱锥P ABCD −中,PA ⊥底面ABCD ,底面ABCD 为菱形,点F 为侧棱PC 上一点.(1)若PF FC =,求证://PA 平面BDF ;(2)若BF PC ⊥,求证:平面⊥BDF 平面PBC .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)AC ,BD 的交点为O ,连接OF ,由菱形及中位线性质有//PA OF ,再由线面平行的判定可证结论;(2)由题意及线面垂直的性质有BD AC ⊥、BD PA ⊥,再由线面垂直的判定和性质得BD PC ⊥,最后根据线面垂直、面面垂直的判定证结论.(1)设AC ,BD 的交点为O ,连接OF ,因为底面ABCD 为菱形,且O 为AC 中点,PF FC =,所以//PA OF ,又PA ⊄平面BDF ,OF ⊂平面BDF ,故//PA 平面BDF .(2)因为底面ABCD 为菱形,所以BD AC ⊥,因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD PA ⊥,又AC PA A ∩=,AC 、PA ⊂平面PAC , 所以BD ⊥平面PAC ,又PC ⊂平面PAC ,所以BD PC ⊥,又BF PC ⊥,BD BF B = ,BD ,BF ⊂平面BDF ,所以PC ⊥平面BDF ,又PC ⊂平面PBC ,故平面⊥BDF 平面PBC .5.(2021春·江苏常州·高一校联考期末)如图,在四棱锥P ABCD −中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=°,平面PAD ⊥底面ABCD ,E 为AD 的中点,M 是棱PC 的中点,2PA PD ==,112BC AD ==,CD =(1)若平面PBC 与平面PAD 的交线为l ,求证://l BC ;(2)求直线BM 与平面ABCD 所成角的正切值;(3)求直线BM 与CD 所成角的余弦值.【答案】(1)证明见解析;(2(3. 【分析】(1)利用线面平行的判定定理和性质定理进行证明即可;(2)根据面面垂直的性质,结合线面角定义进行求解即可;(3)根据平行线的性质,结合异面直线所成角的定义和余弦定理进行求解即可.【详解】证明:(1)∵//AD BC 、AD ⊂面PAD 、BC ⊄面PAD ,∴//BC 面PAD ,BC ⊂面PBC ,又∵面PAD ∩面PBC l =,∴//BC l .(2)解:连结EC ,取EC 中点H ,连结MH ,HB ,∵M 是PC 的中点,H 是EC 的中点,∴//MH PE ,∵PA PD =,E 为AD 的中点,∴PE AD ⊥,又∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD AD =,∴PE ⊥平面ABCD ,∴MH ⊥平面ABCD ,∴HB 是BM 在平面ABCD 内的射影,∴MBH ∠为BM 与平面ABCD 所成的角,∵//AD BC ,12BC AD =,E 为AD 的中点,90ADC ∠=°, ∴四边形BCDE 为矩形,∴EC =112HB EC ==,又∵12MH PE ==∴MHB 中,tan MH MBH HB ∠=,∴直线BM 与平面ABCD (3)解:由(2)知//CD BE , ∴直线BM 与CD 所成角即为直线BM 与BE 所成角,连接ME ,Rt MHE △中,ME =Rt MHB △中,BM又BE CD ==∴MEB中,222cos 2BM BE ME MBE BM BE +−∠==⋅ ∴直线BM 与CD6.(2022春·江苏扬州·高一统考期末)如图,四棱锥P ABCD −中,底面ABCD 为平行四边形,6810PA AD PD AB PB =====,,,平面PAD ⊥平面ABCD ,平面PAB ∩平面PCD l =.(1)求四棱锥P ABCD −的体积;(2)求二面角A l D −−的余弦值.【答案】(2)23【分析】(1)作PM AD ⊥,垂足为M ,显然PM ,P A 不重合,作AN PD ⊥,垂足为N ,由平面PAD ⊥平面ABCD ,得到PM ⊥平面ABCD ,再由平行四边形ABCD 为矩形,且面积为48,利用锥体的体积公式求解;(2)由AB ∥平面PCD ,平面PAB ∩平面PCD l =,得到AB l ∥,结合(1)得到l ⊥平面P AD ,则APD ∠二面角A l D −−的平面角求解.(1)解:如图所示:作PM AD ⊥,垂足为M ,显然PM ,P A 不重合,作AN PD ⊥,垂足为N .在PAD 中,68PAAD PD ===,,所以N 为PD 中点,且AN =所以118622PAD S PM =××=××△,解得:PM = 因为6,8,10PA AB PB ===, 所以222PA AB PB +=,则PA AB ⊥;因为平面PAD ⊥平面ABCD ,平面PAD ∩平面,,ABCD AD PM AD PM =⊥⊂平面P AD , 所以PM ⊥平面ABCD ,又AB ⊂平面ABCD ,所以PM AB ⊥,又,,PA PM P PA PM =⊂ 平面P AD , 则AB ⊥平面P AD ,又AD ⊂平面P AD ,所以AB AD ⊥,则平行四边形ABCD 为矩形,且面积为48;所以四棱锥P ABCD −的体积为1483× (2)因为底面ABCD 为平行四边形,所以AB CD ∥,又因为CD ⊂平面PCD ,AB ⊄位平面PCD ,所以AB ∥平面PCD .又因为AB ⊂平面P AB ,平面PAB ∩平面PCD l =,所以AB l ∥.由(1)知AB ⊥平面P AD ,所以l ⊥平面P AD ,又因为PA PD ⊂,平面P AD ,所以PA l ⊥且PD l ⊥,所以二面角A l D −−的平面角即APD ∠.在PAD 中,68PAAD PD ===,, 由余弦定理得2222226862cos 22683AP PD AD APD AP PD +−+−∠===⋅××. 所以二面角A l D −−的余弦值为23.7.(2022春·江苏常州·高一统考期末)刍(ch ú)甍(m éng )是几何体中的一种特殊的五面体.中国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.求积术日:倍下表,上袤从之,以广乘之,又以高乘之,六而一.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍字面意思为茅草屋顶 ”现有一个刍甍如图所示,四边形ABCD 为长方形,//EF 平面ABCD ,ADE 和BCF △是全等的等边三角形.(1)求证://EF DC ;(2)若已知224AB BC EF ===, ①求二面角A EF C −−的余弦值; ②求该五面体ABCDEF 的体积. 【答案】(1)证明见解析;(2)①13【分析】(1)利用线面平行的性质定理即得;(2)过点E 作EG DC ⊥,作EH AB ⊥,过点F 作FM DC ⊥,作FN AB ⊥,由题可得HEG ∠即为二面角A EF C −−的平面角,结合条件利用余弦定理可得;利用割补法可把该五面体分为两个四棱锥和一个三棱柱,然后利用锥体及柱体的体积公式即得. 【详解】(1)五面体ABCDEF 中,因为//EF 平面ABCD , EF ⊂平面CDEF ,平面CDEF 平面ABCD CD =,所以//EF CD .(2)过点E 作EG DC ⊥,作EH AB ⊥,垂足分别为G ,H , 过点F 作FM DC ⊥,作FN AB ⊥,垂足分别为M ,N , 连结GH ,MN ,如图,①由(1)及四边形ABCD 为长方形知,AB CD EF ∥∥, 所以EG EF ⊥,EH EF ⊥,所以HEG ∠即为二面角A EF C −−的平面角,因为224AB BC EF ===,且ADE 和BCF △是全等的等边三角形, 所以222GMDG MC ===,2ED EA FC FB ====,因此,在EGH 中,EG EH ==2GH =,由余弦定理,得2221cos 23EH EG GH HEGEG EH +−∠==⋅, 故二面角A EF C −−的余弦值为13.②取GH 中点O ,连结EO ,由EG EH =知,EO GH ⊥,因为DC EG ⊥,DC GH ⊥,且EG ,GH 是平面EGH 内两相交直线, 所以DC ⊥平面EGH , 因为EO ⊂平面EGH ,所以EO DC ⊥,又GH ,DC 是平面ABCD 内两相交直线, 所以EO ⊥平面ABCD ,在EGH 中,EG EH ==2GH =,可得EO =所以,四棱锥E ADGH −和F BCMN −的体积均为111(12)33ADGH V S EO =⋅=××=三棱柱EGH FMN −的体积21222FGH V S EF =⋅=××= △所以,该五面体ABCDEF 的体积为122V V +8.(2022春·江苏盐城·高一统考期末)如图,四棱锥P -ABCD 的底面是平行四边形,P A ⊥平面ABCD ,1,AB BC==4ABC π∠=.(1)求证:平面PCD ⊥平面P AC ; (2)若PD 与平面P AC 所成的角为6π,求PC 与平面P AD 所成的角的正弦值.【答案】(1)证明见解析;【分析】(1)由余弦定理、勾股定理知AC CD ⊥,根据线面垂直的性质得PA CD ⊥,再根据线面垂直、面面垂直的判定证结论.(2)由(1)知PD 与平面P AC 所成角的平面角为6CPD π∠=求得PC =,再通过线面垂直证面面垂直并找到在面PAD 上C 的射影位置,即可求C 到面PAD 的距离,即可求PC 与平面P AD 所成的角的正弦值.【详解】(1)由题意BC AD ==,1ABCD ==,又4ABC ADC π∠=∠=,在△ADC 中1AC =,故222AC CD AD +=,所以AC CD ⊥,又P A ⊥平面ABCD ,CD ⊂面ABCD ,则PA CD ⊥, 而PA AC A = ,,PA AC ⊂面PAC ,则CD ⊥面PAC , 由CD ⊂面PCD ,故面PCD ⊥面PAC .(2)由(1)知:CD ⊥面PAC ,则PD 与平面P AC 所成角的平面角为6CPD π∠=,而1CD =,易知:PC =,又P A ⊥平面ABCD ,PA ⊂面PAD ,则面ABCD ⊥面PAD ,而C ∈面ABCD ,面ABCD ∩面PAD AD =,则在面PAD 上C 的射影在AD 上, 又△ADC 为等腰直角三角形,故C 在AD 上射影为AD 中点,所以C 到面PAD 的距离为2ADh==故PC 与平面P AD 所成的角的正弦值为h PC =. 9.(2022春·江苏盐城·高一统考期末)如图,在四棱锥P -ABCD 中,112AB BC CD AD ====,//AD BC ,P 在以AD 为直径的圆O 上,平面ABCD ⊥平面P AD .(1)设点Q 是AP 的中点,求证:BQ //平面PCD ;(2)若二面角C PD A −−的平面角的正切值为2,求三棱锥A -PCD 的体积. 【答案】(1)证明见解析;(2)14.【分析】(1)E 为PD 中点,连接,QE CE ,中位线性质得//QE AD 且12QE AD =,结合已知有BCEQ 为平行四边形,再由线面平行的判定证明结论.(2)找到C 在面PAD 上射影F ,过F 作//FG AP 交PD 于G ,进而求出CF 、PA 、PD ,根据A PCD C ADP V V −−=及棱锥的体积公式求体积即可.【详解】(1)若E 为PD 中点,连接,QE CE ,又Q 是AP 的中点,即//QE AD 且12QE AD =,又12BC AD =,//AD BC ,故BC QE =且//BC QE , 所以BCEQ 为平行四边形,故//BQ CE ,由⊄BQ 面PCD ,CE ⊂面PCD ,则//BQ 面PCD .(2)面ABCD ⊥面P AD ,面ABCD ∩面PAD AD =,C ∈面ABCD , 则C 在面PAD 上射影F 在AD 上,即CF ⊥面PAD ,PD ⊂面PAD , 所以CF PD ⊥,又112ABBC CD AD ====,//AD BC ,故12DF =,CF 过F 作//FG AP 交PD 于G ,则14DF FG DG AD PA PD ===, 由P 在以AD 为直径的圆O 上,即AP PD ⊥, 所以FG PD ⊥,又CF FG F = ,,CF FG ⊂面CFG ,故PD ⊥面CFG ,而CG ⊂面CFG , 所以PD CG ⊥由FG ⊂面PAD ,CG ⊂面CDP ,面PAD ∩面CDP PD =,所以二面角C PD A −−对应平面角为CGF ∠,即tan 2CFCGF FG∠==,故FG =PA =,则1PD =, 所以111324A PCD C ADP V V CF PA PD −−==××××=.10.(2022春·江苏宿迁·高一统考期末)在斜三棱柱111ABC A B C 中,底面是边长为4的正三角形,1=A B 1160A AB A AC ∠=∠=°.(1)证明:11//A C 平面1AB C ; (2)证明:1BC AA ⊥;(3)求直线BC 与平面11ABB A 所成角的正弦值. 【答案】(1)证明见解析 (2)证明见解析【分析】(1)由线线平行证明线面平行;(2)作出辅助线,得到11A AB A AC ≌△△,即有11=AC A B ,证明出1BC A M ⊥,再有BC AM ⊥,证明出BC ⊥平面1AA M ,从而得到1BC AA ⊥;(3)法一:由余弦定理得到16AA =,得到1AM A M ⊥,求出11123−=×⋅△B AA C AA M V S BM ,由等体积法求出C 到平面11ABB A 的距离d ,设直线BC 与平面11ABB A 所成角为θ,从而得到sin ==dBC θ,法二:作出辅助线,找到线面角,求出各边长,从而得到BC 与平面11ABB A 所成角的正弦值. (1)证明:在三棱柱111ABC A B C 中有11//A C AC 又因为11A C ⊄平面1AB C ,AC ⊂平面1AB C 即有11//A C 平面1AB C(2)取BC 中点M ,连接1,AM A M因为ABC 为正三角形,AC AB =,M 为BC 中点 所以BC AM ⊥,因为111160,∠=∠=°=A AB A AC AA AA 所以11A AB A AC ≌△△,即有11=AC A B所以1BC A M ⊥又因为1,=⊂ AM A M M AM 平面11,⊂AA M A M 平面1AA M 所以BC ⊥平面1AA M ,又1AA ⊂平面1AA M ,即有1BC AA ⊥ (3)法一:在1A AB △中,由余弦定理得:2221111cos 2+−∠=⋅AA AB A B A AB AA AB 得21111628224+−=⋅AA AA 解得:16AA =或2−(舍去) 1A M BC ⊥,由勾股定理得:1A M ==因为AM =22211AM A M A A +=,由勾股定理逆定理得:1AM A M ⊥,所以111122A AM S A M AM =⋅=× 由BC ⊥平面1AA M得11123−=×⋅△B AA C AA M V S BM , 记C 到平面11ABB A 的距离为d因为11113C A AB B AA C A AB V V S d −−==⋅=,11111sin 46sin 6022ABA S AB AA BAA =⋅∠=××°=所以d =,又因为4BC = 记直线BC 与平面11ABB A 所成角为θ,则sin ==dBC θ法二:过点B 作1BE AA ⊥于点E ,连接EC ,又因为1,,,⊥=⊂ BC AA BC BE B BC BE 平面BEC , 所以1AA ⊥平面BEC 过C 作CH BE ⊥于H由CH ⊂平面CBE ,则1CH AA ⊥因为11,,=⊂ BE AA E AA BE 平面11ABB A 所以CH ⊥平面11ABB A ,则sin 604BE CE AB ==°=则2221cos23BE CE BC BEC BE CE +−∠==⋅,则sin BEC ∠所以1sin 2BEC S BE CE BEC =⋅∠= CH记直线BC 与平面11ABB A 所成角为θ,则sin ==CH BC θ11.(2022春·江苏无锡·高一统考期末)如图,在四棱锥P ABCD −中,底面ABCD 为正方形,PA ⊥底面ABCD ,2PA AB ==,E 为PB 中点,M 为AD 中点,F 为线段BC 上一点.(1)若F 为BC 中点,求证://PM 平面AEF ;(2)设直线EF 与底面ABCD 所成角的大小为α,二面角E AF B −−的大小为β,若tan =βα,求BF 的长度.【答案】(1)证明见解析; (2)2或1.【分析】(1)连接BM 交AF 于点O ,连接OE ,易得ABFM 为平行四边形,即O 为BM 中点,可得//EO PM ,再由线面平行的判定证结论.(2)取AB 中点H ,连接FH ,由中点及线面垂直的性质得EH ⊥底面ABCD ,则EFH ∠为直线EF 与底面ABCD 所成角,过H 作⊥HN AF 于N ,连接EH ,EN ,利用线面垂直的判定及性质得AF EN ⊥,则ENH ∠为二面角E AF B −−的平面角,用线段表示出tan ,tan βα,结合222AF AB BF =+求BF 的长度.(1)连接BM 交AF 于点O ,连接OE ,底面ABCD 为正方形,F 为BC 中点,//AM BF ∴且AM BF =,∴四边形ABFM 为平行四边形.O ∴为BM 中点,又E 为PB 中点,//EO PM ∴,又PM ⊄平面AEF ,EO ⊂平面AEF ,//PM ∴平面AEF . (2)取AB 中点H ,连接FH . E 为线段PB 中点,//EH PA ∴且112EH PA ==,又PA ⊥底面ABCD , EH ∴⊥底面ABCD ,HF ∴为斜线EF 在平面ABCD 内的射影,则EFH ∠为直线EF 与底面ABCD 所成角,即∠=EFH α,1tan ==EH HF HFα. 过H 作⊥HN AF 于N ,连接EH ,EN .⊥ EH 底面ABCD ,AF ⊂底面ABCD ,∴⊥EH AF ,又⊥HN AF ,= HN EH H ,,HN EH ⊂面EHN , AF ∴⊥平面EHN ,EN ⊂平面EHN ,∴⊥AF EN ,综上,ENH ∠为二面角E AF B −−的平面角,即∠=ENH β,1tan ==EH NH NHβ.由tan =βα,知1=NH =HF .设0 =≤≤ NH t t ,=HF ,则=AN 3=NF t ,=BF由222AF AB BF =+得:)22232+=+t,化简得4210710−+=t t ,解得212t =或15,则2BF =或1.12.(2021春·江苏南京·高一南京师大附中校考期末)如图,在三棱柱111ABC A B C -中,1B C AB ⊥,侧面11BCC B 为菱形.(1)求证:1B C ⊥平面1ABC .(2)如果点D ,E 分别为11A C ,1BB 的中点,求证://DE 平面1ABC . 【答案】(1)证明见解析.(2)证明见解析【分析】(1)根据侧面11BCC B 为菱形,则11B C BC ⊥,进而可得结论;(2)取1AA 的中点F ,连DF ,FE ,可得//DF 面1ABC ,同理可得//EF 面1ABC ,进而可得//DE 面1ABC .【详解】(1)因三棱柱111ABC A B C -的侧面11BCC B 为菱形,则11B C BC ⊥. 又1B C AB ⊥,且AB ,1BC 为平面1ABC 内的两条相交直线, 故1B C ⊥平面1ABC(2)如图,取1AA 的中点F ,连DF ,FE .因D 为11A C 的中点,则1//DF AC ,//EF AB 而DF ⊄平面1ABC ,1AC ⊂平面1ABC , 故//DF 面1ABC . 同理,//EF 面1ABC .因DF ,EF 为平面DEF 内的两条相交直线, 故平面//DEF 面1ABC . 因DE ⊂平面DEF , 故//DE 面1ABC .【点睛】本题考查线面垂直,线面平行的证明,属于基础题.13.(2021春·江苏南京·高一校联考期末)如图,在直三棱柱111ABC A B C 中,点D 是线段AB 上的动点.(1)线段AB 上是否存在点D ,使得1//AC 平面1B CD ?若存在,请写出ADDB值,并证明此时,1//AC 平面1B CD ;若不存在,请说明理由; (2)已知平面11ABB A ⊥平面1CDB ,求证:CD AB ⊥. 【答案】(1)存在,1=ADDB,证明见解析;(2)证明见解析. 【分析】(1)在线段AB 上存在点D ,当1=ADDB时,1//AC 平面1B CD ,连接1BC ,交1B C 于点E ,连接DE ,则点E 是1BC 的中点,证明1//DE AC 即可;(2)过B 作1⊥BP DB 并交1DB 于点P ,由平面11ABB A ⊥平面1CDB 可得BP ⊥平面1CDB ,从而得到CD BP ⊥,然后再证明1CD BB ⊥,然后可得CD ⊥平面11ABB A ,可得CD AB ⊥.【详解】(1)在线段AB 上存在点D ,当1=ADDB时,1//AC 平面1B CD . 证明如下:连接1BC ,交1B C 于点E ,连接DE ,则点E 是1BC 的中点, 又当1=ADDB,即点D 是AB 的中点,由中位线定理得1//DE AC , ∵DE ⊂平面1B CD ,1AC ⊄平面1B CD , ∴1//AC 平面1B CD .(2)证明:过B 作1⊥BP DB 并交1DB 于点P ,又∵平面11ABB A ⊥平面1CDB ,BP ⊂平面11ABB A ,平面11ABB A 平面11=CDB DB , ∴BP ⊥平面1CDB ,又∵CD ⊂平面1CDB ,∴CD BP ⊥.在直三棱柱111ABC A B C 中,1BB ⊥平面ABC ,CD ⊂平面ABC , ∴1CD BB ⊥,又∵1BB ⊂平面11ABB A ,BP ⊂平面11ABB A ,1= BB BP B , ∴CD ⊥平面11ABB A .又∵AB ⊂平面11ABB A ,∴CD AB ⊥.【点睛】本题主要考查的是立体几何中的平行和垂直关系,考查了学生的空间想象能力,属于中档题.14.(2021·江苏·高一期末)如图,在四棱锥P ABCD −中,平面ABCD ⊥平面PAB ,PAB 为等边三角形,四边形ABCD 为矩形,E 为PB 的中点.(1)证明:平面ADE ⊥平面PBC .(2)平面ADE 分此棱锥为两部分,若2AB AD =,求大的部分体积与小的部分体积之比. 【答案】(1)证明见解析;(2)53.【分析】(1)先证明AE PB ⊥,AD PB ⊥,可得PB ⊥平面ADE ,再利用面面垂直的判定定理可得结论.(2)求得P ABCD V −=F 为PC 的中点,连接DF ,EF ,则3322P ADFEP ADE D AEP V V V −−−===. 【详解】(1)证明:因为PAB 为等边三角形,E 为PB 的中点,所以AE PB ⊥. 因为平面ABCD ⊥平面PAB 且相交于AB ,AD AB ⊥, 所以AD ⊥平面PAB ,则AD PB ⊥. 又AD AE A ∩=,所以PB ⊥平面ADE .因为PB ⊂平面PBC ,所以平面ADE ⊥平面PBC .(2)设F 为PC 的中点,连接DF ,EF ,所以//EF DA ,12EF DA =令1AD =,则2AB =,AE =所以1213P ABCD V −=××=33311122232P ADFE P ADE D AEP V V V −−−===×××=所以大的部分体积与小的部分体积之比为53=.【点睛】方法点睛:空间几何体体积问题的常见类型及解题策略:(1)求简单几何体的体积时若所给的几何体为柱体锥体或台体,则可直接利用公式求解(2)求组合体的体积时若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解.15.(2021·江苏·高一期末)已知在六面体PABCDE 中,PA ⊥平面ABCD ,ED ⊥平面ABCD ,且2PA ED =,底面ABCD 为菱形,且60ABC ∠=°.(1)求证:平面PAC ⊥平面PBD ;(2)若2AB =,1DE =,且M 为PB 的中点,求三棱锥E PAM −的体积.【答案】(1)证明见解析;(2【分析】(1)连接BD 交AC 于O ,易知BD AC ⊥,由PA ⊥平面ABCD 得PA BD ⊥,进而得BD ⊥平面PAC ,由于BD ⊂平面PBD ,故即可证得;(2)根据题意易得//DE 平面PAC ,//BC 平面ADEP ,故根据等体积法得11112222E PAM M PAEB PAEC PAE E PACD PAC V V V V V V −−−−−−=====,再根据几何关系求解即可. 【详解】解:(1)证明:连接BD 交AC 于O ,∵ 底面ABCD 为菱形,∴BD AC ⊥,O 为,BD AC 中点, ∵ PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴ PA BD ⊥,∵ AC PA A ∩=, ∴ BD ⊥平面PAC , ∵ BD ⊂平面PBD , ∴ 平面PAC ⊥平面PBD .(2)∵ PA ⊥平面ABCD ,ED ⊥平面ABCD , ∴//PA DE ,∵ DE ⊄平面PAC ,PA ⊂平面PAC , ∴//DE 平面PAC ,∵ 底面ABCD 为菱形,∴ //BC AD ∵BC ⊄平面ADEP ,AD ⊂平面ADEP ∴//BC 平面ADEP , ∵ M 为PB 的中点,∴ 三棱锥E PAM −的体积11112222E PAM M PAEB PAEC PAE E PACD PAC V V V V V V −−−−−−=====, 由(1)知得BD ⊥平面PAC ,2AB =,1DE =,60ABC ∠=°,2PA ED =,∴ 12222PAC S =××= ,12OD BD ==所以11233D PAC PAC V S OD −=⋅=×=△所以12E PAM D PAC V V −−=【点睛】本题考查面面垂直的证明,等体积法求几何体的体积,考查空间想象能力,逻辑推理能力,运算求解能力,是中档题.本题第二问解题的关键在于根据已知条件,利用等体积转化法得11112222E PAM M PAEB PAEC PAE E PACD PAC V V V V V V −−−−−−=====. 16.(2021春·江苏常州·高一校联考期末)如图,三棱锥−P ABC 的底面是等腰直角三角形,其中2ABAC ==,PA PB =,平面PAB ⊥平面ABC ,点E ,F ,M ,N 分别是AB ,AC ,PC ,BC 的中点.(1)证明:平面EMN ⊥平面PAB ; (2)当PF 与平面ABC 所成的角为3π时,求四棱锥A PMNB −的体积.【答案】(1)证明见解析;(2 【分析】(1)先由平面PAB ⊥平面ABC ,得到EN ⊥平面PAB ,利用面面垂直的判定定理证明平面EMN ⊥平面PAB ;(2)连结PE ,证明PFE ∠就是直线PF 与平面ABC 所成的角,于是PE = 用切割法把四棱锥A PMNB −看出三棱锥−P ABC 切去三棱锥M ANC −,直接求体积即可.【详解】解:(1)证明:由题意可得,AB AC ⊥, 点E ,N 分别是AB ,BC 的中点, 故EN ∥AC ,故EN AB ⊥, 平面PAB ⊥平面ABC ,交线为AB 故EN ⊥平面PAB EN 在平面EMN 内,故平面EMN ⊥平面PAB ; (2)连结PE ,由PA PB =,点E 是AB 的中点,可知PE AB ⊥, 再由平面PAB ⊥平面ABC ,可知PE ⊥平面ABC , 连结EF ,可知PFE ∠就是直线PF 与平面ABC 所成的角,于是tan PEPFE EF=∠PE 因为PA PB =,E 是AB 中点,故PE AB ⊥, 又平面PAB ⊥平面ABC ,故PE ⊥平面ABC , 即点P 到平面ABC 的距离为PE点M 是PC 中点,故点M 到平面ABC 的距离为d =1133A PMNB P ABC M ANC ABC ANC V V V PE S d S −−−∆∆=−=⋅−⋅111122213232=××−××即四棱锥A PMNB − 【点睛】立体几何解答题的基本结构:(1)第一问一般是几何关系的证明,用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离).如果求体积(距离),常用的方法有:(1) 直接法;(2)等体积法;(3)补形法;(4)向量法.17.(2021春·江苏南京·高一南京师大附中校考期末)如图,圆锥顶点为P ,底面圆心为O ,其母线与底面所成的角为22.5°,AB 和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60°.(1)证明:平面P AB 与平面PCD 的交线平行于底面; (2)求二面角C OP D −−的余弦值.【答案】(1)证明见解析;(2)17−【分析】(1)设平面P AB 与平面PCD 的交线为l .由题意可证明//AB 平面PCD ,从而可得//AB l ,从而可证明结论.(2)由题意可得COD ∠为二面角C OP D −−的平面角. 可证平面OPF ⊥平面PCD ,直线OP 在平面PCD 上的射影为直线PF OPF 为OP 与平面PCD 所成的角,通过解三角形可得答案.【详解】(1)证明:设平面P AB 与平面PCD 的交线为l . ∵//AB CD ,AB ⊄平面PCD ,∴//AB 平面PCD∵AB ⊂面P AB ,平面P AB 与平面PCD 的交线为l ,∴//AB l ∵AB 在底面上,l 在底面外 ∴l 与底面平行;(2)因为OP OD ⊥,OP OC ⊥,所以COD ∠为二面角C OP D −−的平面角. 设CD 的中点为F ,连接OF ,PF ,由圆的性质,2COD COF ∠=∠,OF CD ⊥ ∵OP ⊥底面,CD ⊂底面,∴OP CD ⊥ ∵OP OF O ∩=,∴CD ⊥平面OPF ∵CD ⊂平面PCD ,∴平面OPF ⊥平面PCD ∴直线OP 在平面PCD 上的射影为直线PF ∴OPF ∠为OP 与平面PCD 所成的角。

高中数学立体几何经典大题训练

高中数学立体几何经典大题训练
〔2〕取BB’中点N,连结MN,如此MN⊥平面BCC’B’
过点N作NH⊥BC’于H,连结MH
如此由三垂线定理得BC’⊥MH
从而,∠MHN为二面角M-BC’-B’的平面角
MN=1,NH=Bnsin45°=
在Rt△MNH中,tan∠MHN=
故二面角M-BC’-B’的大小为arctan2
<3>易知,S△OBC=S△OA’D’,且△OBC和△OA’D’都在平面BCD’A’内
OH=OCsin600= ,MH= ,利用体积相等得: .
〔2〕CE是平面 与平面 的交线.
由〔1〕知,O是BE的中点,如此BCED是菱形.
作BF⊥EC于F,连AF,如此AF⊥EC,∠AFB就是二面角A-EC-B的平面角,设为 .
因为∠BCE=120°,所以∠BCF=60°.
,
,
所以,所求二面角的正弦值是 .
10.解法一:〔1〕连结AC,取AC中点K,如此K为BD的中点,连结OK
因为M是棱AA’的中点,点O是BD’的中点
所以AM
所以MO
由AA’⊥AK,得MO⊥AA’
因为AK⊥BD,AK⊥BB’,所以AK⊥平面BDD’B’
所以AK⊥BD’
所以MO⊥BD’
又因为OM是异面直线AA’和BD’都相交
故OM为异面直线AA'和BD'的公垂线
4.解<Ⅰ>在△PBC中,E,F分别是PB,PC的中点,∴EF∥BC.
又BC∥AD,∴EF∥AD,
又∵AD 平面PAD,EF 平面PAD,
∴EF∥平面PAD.
<Ⅱ>连接AE,AC,EC,过E作EG∥PA交AB于点G,
如此BG⊥平面ABCD,且EG= PA.

(完整版)高中数学立体几何大题(有答案)

(完整版)高中数学立体几何大题(有答案)

1.(2014•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.解答:证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.3.(2014•湖北)在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.(Ⅰ)求证:BE∥平面PAD;(Ⅱ)求证:BC⊥平面PBD;(Ⅲ)设Q为侧棱PC上一点,,试确定λ的值,使得二面角Q﹣BD﹣P为45°.解答:解:(Ⅰ)取PD的中点F,连接EF,AF,∵E为PC中点,∴EF∥CD,且,在梯形ABCD中,AB∥CD,AB=1,∴EF∥AB,EF=AB,∴四边形ABEF为平行四边形,∴BE∥AF,∵BE⊄平面PAD,AF⊂平面PAD,∴BE∥平面PAD.(4分)(Ⅱ)∵平面PCD⊥底面ABCD,PD⊥CD,∴PD⊥平面ABCD,∴PD⊥AD.(5分)如图,以D为原点建立空间直角坐标系D﹣xyz.则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1).(6分),,∴,BC⊥DB,(8分)又由PD⊥平面ABCD,可得PD⊥BC,∴BC⊥平面PBD.(9分)(Ⅲ)由(Ⅱ)知,平面PBD的法向量为,(10分)∵,,且λ∈(0,1)∴Q(0,2λ,1﹣λ),(11分)设平面QBD的法向量为=(a,b,c),,,由,,得,∴,(12分)∴,(13分)因λ∈(0,1),解得.(14分)4.(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.13.(2012•江苏)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.16.(2010•深圳模拟)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱S D⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.解答:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF 中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.。

立体几何测试题(共10篇)

立体几何测试题(共10篇)

立体几何测试题(共10篇)立体几何测试题(一): 立体几何问题立体几何试题已知正方体ABCD-A1B1C1D1中,E、F分别为D1C1、C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D、B、F、E四点共面;(2)若A1C交平面DBFE于R点,则P、Q、R三点共线.1.EF平行于B1D1,B1D1平行于BD,所以EF平行于BD,EFBD四点共面2.F,D,A,C1属于平面A1ACC1,且AC1与PQ不平行,所以AC1与PQ相交A1C交平面DBFE于R点,又因为PQ属于平面DBFE,所以AC1与PQ相交于R 所以R属于PQ,PQR共线立体几何测试题(二): 几个书后练习题立体几何1.如果a、b是两条直线,且a‖b,那么a平行于经过b的任何平面.是否正确2.如果a、b是两条直线,且a‖b,那么a平行于经过b的任何平面.为什么不对谢不对,因为a有可能在经过b的面上,不是平行关系立体几何测试题(三): 一道数学基本的立体几何的题目~在正方形ABCD-A"B"C"D"中,P、Q分别为A"B"、BB"的中点.(1)求直线AP与CQ所成的角的大小(2)求直线AP与BD所成的角的大小我还没学过空间向量,1.取DC中点E,连EC,证明EC平行AP,用余弦定理算2.取AB中点F,连接FB,用余弦定理算【立体几何测试题】立体几何测试题(四): 求大量立体几何难题!立体几何综合试题(自己画图)1、已知正三棱柱ABC—A1B1C1中,各棱长都相等,D、E分别为AC1,BB1的中点.(1)求证:DE‖平面A1B1C1;(2)求二面角A1—DE—B1的大小.2、已知直三棱柱ABC—A1B1C1,AB=AC,F为棱BB1上一点,BF∶FB1=2∶1,BF =BC=2a.(I)若D为BC的中点,E为AD上不同于A、D的任意一点,证明EF⊥FC1;(II)试问:若AB=2a,在线段AD上的E点能否使EF与平面BB1C1C成60°角,为什么证明你的结论3、在底面是直角梯形的四棱锥中,AD‖BC,∠ABC=90°,且 ,又PA⊥平面ABCD,AD=3AB=3PA=3a.(I)求二面角P—CD—A的正切值;(II)求点A到平面PBC的距离.4、在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.(Ⅰ)确定点G的位置;(Ⅱ)求直线AC1与平面EFG所成角θ的大小.5、已知四棱锥P—ABCD,底面ABCD是菱形,平面ABCD,PD=AD,点E为AB中点,点F为PD中点.(1)证明平面PED⊥平面PAB;(2)求二面角P—AB—F的平面角的余弦值6.在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P 在棱CC1上,且CC1=4CP.(Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);(Ⅱ)设O点在平面D1AP上的射影是H,求证:D1H⊥AP;(Ⅲ)求点P到平面ABD1的距离.7、在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.(I)证明平面;(II)证明平面EFD;(III)求二面角的大小.8、已知在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.(I)试确定点F的位置,使得D1E⊥平面AB1F;(II)当D 1E⊥平面AB1F时,求二面角C1—EF—A的大小(结果用反三角函数值表示).9、直四棱柱ABCD-A1B1C1D1的底面是梯形,AB‖CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点.点P到直线AD1的距离为⑴求证:AC‖平面BPQ⑵求二面角B-PQ-D的大小10、已知长方体ABCD—A1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD和CC1的中点,O1为下底面正方形的中心.(Ⅰ)证明:AF⊥平面FD1B1;(Ⅱ)求异面直线EB与O1F所成角的余弦值;这些题应该还可以!你来试试吧!题不要求多就精就可以了!不懂的或不会做的,我来帮你解答!立体几何测试题(五): 立体几何初步练习题已知正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱B1C1,C1D1,A1B1,D1A1的中点,求证(1)MN平行于DEF,(2)平面AMN平行于平面CEF(1)连接B1D1因为MN、EF为三角形A1B1D1、B1C1D1的中位线,所以MN平行于EF因为MN不属于面DEF,EF属于面DEF所以MN平行于面DEF(2)这题题目错了吧,应该是DEF吧立体几何测试题(六): 解析几何基础知识练习题靠!一楼的那么多废话那么多选择题:集合,函数(图像),立体几何,圆锥一、数学命题原则 1.普通高等学校招生数学科的考试,按照“考查基础知识的【立体几何测试题】立体几何测试题(七): 高一必修二立体几何习题1-7的题仓库的房顶呈正四棱锥形,量的地面的边长为2.6m,侧棱长2.1m,先要在房顶上铺一层油毡纸,问:需要油毡纸的面积多少运用海伦公式房顶为4个相同的三角形海伦公式a=2.6 b=2.1 c=2.1 p=a+b+c/2=3.4S=根号下p*(p-a)*(p-b)*(p-c)=2.1444S=2.144*4=8.576平方米立体几何测试题(八): 怎么根据题目画数学的立体几何图形搞懂了题目的要求,就照那意思去画,立体几何记住透视很重要.立体几何测试题(九): 求立体几何判断题的解题方法.①过平面外一点有且仅有一个平面与已知平面垂直②过直线外一点有且仅有一个平面与已知直线平行③过直线外一点有且仅有一条直线与已知直线垂直④过平面外一点有且仅有一条直线与已知平面垂直⑤……等等,诸如此类.见到很多这样的题目,但是却总找不到解题的方法,概念定理也经常记混.本人感激不尽!记一些模型,例如墙角模型什么的这个很重要.遇见不熟悉的题,用书本和笔(手指也可以)比划一下.这种题目主要是找反例!想象力也很重要啦……立体几何测试题(十): 一道高中立体几何的题目.已知长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=4,O1是底面A1B1C1D1的中心.E 是CO1上的点,设CE等于X,四棱锥E-ABCD的体积为y,求y关于X的函数关系式..图只有自己画一下了,做EF垂直于平面ABCD 垂足为F易得出CEF相似于O1CC1因为C1O1=根号2 CC1=4 得CO1=3根号2CE/CO1=EF/CC1 得出EF=4X/3根号2Y=底面积*EF/3=4*4X/9根号2Y=8根号2*X/9职高立体几何测试题空间立体几何测试题。

(完整版)高一数学常考立体几何证明的题目及答案

(完整版)高一数学常考立体几何证明的题目及答案

1、如图,已知空间四边形ABCD 中,,BCAC ADBD ,E 是AB 的中点。

求证:(1)AB平面CDE; (2)平面CDE 平面ABC 。

2、如图,在正方体1111ABCDA B C D 中,E 是1AA 的中点,求证:1//AC 平面BDE 。

3、已知ABC 中90ACB o,SA面ABC ,AD SC ,求证:AD面SBC .4、已知正方体1111ABCDA B C D ,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC 面11AB D .5、正方体''''ABCD A B C D 中,求证:(1)''AC B D DB 平面;(2)''BD ACB 平面.6、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ;(2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .AED BCAED 1CB 1DCBASDCBAD 1ODBAC 1B 1A 1CA 1B 1C 1C D 1DGEF7、四面体ABCD 中,,,ACBD E F 分别为,AD BC 的中点,且22EFAC ,90BDCo,求证:BD平面ACD8、如图,在正方体1111ABCDA B C D 中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .9、如图,在正方体1111ABCDA B C D 中,E 是1AA 的中点.(1)求证:1//A C 平面BDE ;(2)求证:平面1A AC 平面BDE .10、已知ABCD 是矩形,PA 平面ABCD ,2AB,4PA AD ,E 为BC 的中点.(1)求证:DE 平面PAE ;(2)求直线DP 与平面PAE 所成的角.11、如图,在四棱锥P ABCD 中,底面ABCD 是60DAB且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG 平面PAD ;(2)求证:AD PB .12、如图1,在正方体1111ABCDA B C D 中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO 平面MBD .13、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD .14.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形.已知:如图,三棱锥S—ABC,SC∥截面EFGH,AB∥截面EFGH.求证:截面EFGH是平行四边形.15.(12分)已知正方体ABCD—A1B1C1D1的棱长为a,M、N分别为A1B和AC上的点,A1M=AN=23a,如图.(1)求证:MN∥面BB1C1C;(2)求MN的长.16.(12分)(2009·浙江高考)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.17.(12分)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC ⊥平面BCD.1、如图,已知空间四边形ABCD 中,,BC AC AD BD ,E 是AB 的中点。

高一数学立体几何精选题目

高一数学立体几何精选题目

高一数学立体几何精选题目1.已知直角三角形ABC的斜边AC为6cm,BC为8cm。

在BC上取一点D,使得AD⊥BC,并且AD=6cm,求BC上的中点E到线段AD的距离。

2.正方体ABCDEFGH的棱长为a,M为EF的中点,N为GH的中点。

连接AN并延长至交点点P,连接BP。

证明:AP⊥BM。

3.棱长为2的正长方体ABCDEFGH中,取E为AB的中点,M为BF上一点,且满足AM=MF。

若连接EM,求证:EM⊥AC。

4.在正方形ABCD中,点E、F分别为AD、CD上的动点。

若BE=CF,求证:EF⊥BD。

5.直立四棱锥的底面为菱形ABCD,侧棱AB=CD=2,BC=√5,顶点O与底面中心P的连线为线段OP。

求证:线段OP⊥面ABCD。

6.已知正方体ABCDEFGH,边长为2。

平面P与线段AG、DH分别相交于点M、N,且AM:MG=DN:NH=2:1。

求证:平面P与线段BF的距离为2√2。

7.已知正方体ABCDEFGH,边长为2。

直线l通过B、D两点并与平面AFGH相交于点M。

若AM=MH,求证:直线l与平面BCGF垂直。

8.对于平行六面体ABCDEF-A'B'C'D'E'F',已知AA'⊥CC',BB'⊥DD',证明平面A'BB'与CC'的交线平行于平面C'AA'与BB'的交线。

9.平行四面体ABCD是正四面体,E为线段AC的中点。

则线段EB与平面ACD的交点为F,线段AF除E外的中点为G。

若BE=1,求证:CG的长度为1/√2。

10.已知四棱锥ABCDE,底面为正方形ABCD,侧棱AE=√2,角BED=120°,连接AC。

求证:AC⊥BC。

以上是高一数学立体几何的精选题目,希望对你的学习有所帮助!。

高一数学立体几何试题答案及解析

高一数学立体几何试题答案及解析

高一数学立体几何试题答案及解析1.如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为()A.B.C.D.【答案】A【解析】略2.在正方体ABCD–A1B1C1D1中,已知E是棱C1D1的中点,则异面直线B1D1与CE所成角的余弦值的大小是()A.B.C.D.【答案】D【解析】略3.如图1,正方体中,、是的三等分点,、是的三等分点,、分别是、的中点,则四棱锥的侧视图为()【答案】C【解析】侧视图从左向右投影,对应,对应,对应,对应,因此侧视图为C项【考点】三视图4.已知直线,平面,下列命题正确的是()A.B.C.D.【答案】D【解析】根据两个平面平行的判定定理:一个平面内的两条相交直线和另一个平面平行,则这两个平面平行,符号表示为:;【考点】空间中两个平面平行的判定定理;5.(本小题满分13分)如图,在棱长均为的直三棱柱中,是的中点.(1)求证:平面;(2)求直线与面所成角的正弦值.【答案】(1)见解析;(2).【解析】(1)直三棱柱的侧棱和底面垂直,从而可得到AD⊥BB1,并且AD⊥BC,从而由线面垂直的判定定理可得到AD⊥平面BCC1B1;(2)连接C1D,从而可得到∠AC1D为直线AC1和平面BCC1B1所成角,在Rt△AC1D中,容易求出AD,AC1,从而sin∠AC1D=.试题解析:(1)直三棱柱中,,又,D是BC的中点,,平面;(2)连接,由(1)平面,则即为直线与面所成角,在直角中,,,,.即直线与面所成角的正弦值为.【考点】直线与平面所成的角;直线与平面垂直的判定.6.正方体的表面积为24,则该正方体的内切球的体积为____________.【答案】【解析】正方形边长设为,内切球的直径为2,所以体积为【考点】正方体与球的基本知识7.在正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于()A.30°B.45°C.60°D.90°【答案】B【解析】根据二面角的定义,是所求二面角的平面角,易得:.【考点】二面角8.已知是直线,是平面,下列命题中:①若垂直于内两条直线,则;②若平行于,则内可有无数条直线与平行;③若m⊥n,n⊥l则m∥l;④若,则;正确的命题个数为()A.1B.2C.3D.4【答案】A【解析】①改为垂直于平面内的两条相交直线;②正确;③改为或相交或异面;④改为或异面.故选A.【考点】线与线,面与面,线与面位置关系9.如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________【答案】【解析】直观图中等腰直角三角形斜边长为2,所以两条直角边为,面积为1,因为直观图和平面图面积比为,所以平面图形的面积为【考点】平面直观图10.如图,是一个平面图形的水平放置的斜二测直观图,则这个平面图形的面积等于.【答案】【解析】水平放置的斜二测直观图还原成平面图形如上图,由斜二测画法的定义:平行于轴的线段仍平行于轴,长度不变,平行于轴的线段仍平行于轴,但长度减半,所以,,,所以.【考点】斜二测画法.11.如图,是正方体的棱的中点,给出下列命题①过点有且只有一条直线与直线,都相交;②过点有且只有一条直线与直线,都垂直;③过点有且只有一个平面与直线,都相交;④过点有且只有一个平面与直线,都平行.其中真命题是:A.①②③B.①②④C.①③④D.②③④【答案】B【解析】直线与是两条互相垂直的异面直线,点不在这两异面直线中的任何一条上,如图所示:取的中点,则,且,设与交于,则点共面,直线必与直线相交于某点.所以,过点有且只有一条直线与直线都相交;故①正确;过点有且只有一条直线与直线都垂直,此垂线就是棱,故②正确;过点有无数个平面与直线都相交,故③不正确;过点有且只有一个平面与直线都平行,此平面就是过点与正方体的上下底都平行的平面,故④正确.综上,①②④正确,③不正确,故选B.【考点】1.直线与平面平行的性质;2.平面与平面垂直的性质.【思路点睛】本题考查立体几何图形中直线和平面的相交、平行、垂直的性质,体现了数形结合的数学思想,①需要构造一个过点M且与直线AB、B1C1都相交的平面,就可判断;②利用过空间一点有且只有一条直线与已知平面平行判断;③可举反例,即找到两个或两个以上过点m且与直线AB、B1C1都相交的平面,即可判断.④利用线面平行的性质来判断即可.12.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积________________.【答案】【解析】因为设圆锥的底面半径为,母线为,利用圆锥的底面周长就是圆锥的侧面展开图的弧长,推出底面半径与母线的关系,通过圆锥的表面积求出底面半径,,得,圆锥的高,即圆锥的高为,即圆锥的体积.【考点】锥体的侧面积公式.【思路点睛】设圆锥的底面半径为,母线为,利用圆锥的底面周长就是圆锥的侧面展开图的弧长,推出底面半径与母线的关系,通过圆锥的表面积求出底面半径,求出圆锥的高,然后再根据圆锥的体积公式,即可求出圆锥的体积.13.正六棱柱的底面边长为,侧棱长为1,则动点从沿表面移到点时的最短的路程是.【答案】【解析】如下图所示,作出正六棱柱的展开图,如果动点从经侧面通过移到点时,则路程为;如果动点从经经沿上底面移到点时,根据题目条件,,则路程为;而,所以最短的路程是.【考点】1、棱锥的展开图;2、最值问题.14.若底面为正三角形的几何体的三视图如图所示,则几何体的侧面积为()A.B.C.D.【答案】D【解析】由三视图可知该几何体为底面为正三角形的直三棱柱,底面三角形的高为,棱柱高为4,设底面边长为x,则解得,故几何体的侧面积为故选:D.【考点】三视图,几何体的侧面积15.如下图所示,观察四个几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③不是棱锥D.④是棱柱【答案】D【解析】图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱;很明显③是棱锥,选D.【考点】空间几何体的结构特征.16.在空间直角坐标系中,给定点,若点与点关于平面对称,点与点关于轴对称,则()A.2B.4C.D.【答案】A【解析】由题意知:,,则,故选A.【考点】空间两点间的距离公式.17.某几何体的三视图如图所示(单位:),则该几何体的体积是()A.B.C.D.【答案】C【解析】由三视图可知该几何体的形状是棱长为的正方体上有一个高为的正四棱锥,其体积为.【考点】1、三视图;2、空间几何体的体积.18.(2015秋•大连校级期末)如图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥面PBC.(1)证明:EF∥BC.(2)证明:AB⊥平面PFE.(3)若四棱锥P﹣DFBC的体积为7,求线段BC的长.【答案】(1)、(2)见解析;(3)BC=3或BC=.【解析】(1)由EF∥面PBC可得出EF∥BC;(2)由PC=PD=CD=4可知△PDC是等边三角形,故PE⊥AC,由平面PAC⊥平面ABC可得PE⊥平面ABC,故PE⊥AB,由EF∥BC,BC⊥AB可得AB⊥EF,从而AB⊥平面PEF;(3)设BC=x,用x表示出四边形DFBC的面积,根据体积列出方程解出x.解:(1)证明:∵EF∥面PBC.EF⊂面ABC,面PBC∩面ABC=BC,∴EF∥BC.(2)∵由CD=DE+EC=4,PD=PC=4,∴△PDC是等边三角形,∴PE⊥AC,又∵平面PAC⊥平面ABC,平面PAC∩面ABC=AC,PE⊂平面PAC,∴PE⊥平面ABC,∵AB⊂平面ABC,∴PE⊥AB,∵∠ABC=,EF∥BC.∴AB⊥EF,又∵PE⊂平面PEF,EF⊂平面PEF,PE∩EF=E,∴AB⊥平面PEF.(3)设BC=x,则AB=,∴=,∵EF∥BC,∴△AFE∽△ABC,∴.∵AD=AE,,∴S=,四边形DFBC由(2)可知PE⊥平面ABC,且PE=,∴V=,解得x=3或者,∴BC=3或BC=.【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.19.(2015秋•鞍山校级期末)如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=.(Ⅰ)求证:AO⊥平面BCD;(Ⅱ)求O点到平面ACD的距离.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(1)连结OC,推导出AO⊥BD,AO⊥OC,由此能证明AO⊥平面BCD.(Ⅱ)设点O到平面ACD的距离为h,由V﹣ACD=V A﹣OCD,能求出点O到平面ACD的距离.O证明:(1)连结OC,∵△ABD为等边三角形,O为BD的中点,∴AO⊥BD.∵△ABD和△CBD为等边三角形,O为BD的中点,,∴.在△AOC中,∵AO2+CO2=AC2,∴∠AOC=90°,即AO⊥OC.∵BD∩OC=0,∴AO⊥平面BCD.解:(Ⅱ)设点O到平面ACD的距离为h.∵V﹣ACD=V A﹣OCD,∴.O在△ACD中,AD=CD=2,.而,,∴.∴点O到平面ACD的距离为.【考点】点、线、面间的距离计算;直线与平面垂直的判定.20.平面截球的球面所得圆的半径为1,球心到平面的距离为,则此球的体积为()A.B.C.D.【答案】B【解析】利用截面圆的性质先求得球的半径长.如图,设截面圆的圆心为,为∴,即球的半径为,∴,故选B.【考点】1、球体的体积;2、球体的性质.【思路点晴】本题考察的是球体的性质,属于中档题目;用平面截球面,得到一个圆,球心到圆心的连线垂直于圆所在的平面,从而得到直角三角形,利用勾股定理即可求出球的半径,再将球的半径代入球的体积公式中,即可求出球的体积.21.某几何体的三视图如图所示,则该几何体的体积为________.【答案】24【解析】由俯视图可以判断该几何体的底面为直角三角形,由正视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,,.故几何体的体积为.【考点】1、三视图;2、组合体的体积.【技巧点晴】本题考查的是空间几何体的体积的求法、三视图问题,属于中档题目;要先从三视图的俯视图入手,如果俯视图是圆,几何体为圆锥或三圆柱,如果俯视图是三角形,几何体为三棱柱或三棱锥;根据三视图得出该几何体为三棱柱截去三棱锥后的几何体,用两个体积相减即可.22.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD CD,将四边形ABCD沿对角线BD折成四面体,使平面平面BCD,则下列结论正确的是 .(1);(2);(3)与平面所成的角为;(4)四面体的体积为.【答案】(2)(4)【解析】由BD CD,使平面平面BCD,知平面,所以,又由,得,即,所以平面,即.因此是错误的,是正确的,由上面证明知是与平面所成的角,由知,.故选(2)(4)正确.【考点】命题的真假判断.【名师】折叠问题是考查学生空间想象能力的较好载体.如本题,不仅要求学生象解常规立几综合题一样懂得线线,线面和面面位置关系的判定方法及相互转化,角的作法,还要正确识别出平面图象折叠后的空间图形,更要识得折前折后有关线线、线面位置的变化情况以及有关量(边长与角)的变化情况,否则无法正确解题.这正是折叠问题的价值所在.23.如图,矩形ABCD中,BC=2,AB=1,PA⊥平面ABCD,BE∥PA,BE=PA,F为PA的中点.(1)求证:PC∥平面BDF.(2)记四棱锥C-PABE的体积为V1,三棱锥P-ACD的体积为V2,求的值.【答案】(1)证明见解析;(2).【解析】(1)要证线面平行,就是要证线线平行,这条平行线就是过的平面与平面的交线,从图中看,设与的交点为,就是要找的平行线,由中位线定理可证得平行;(2)题中四棱锥与三棱锥的体积没有直接的关系,我们可以通过体积公式进行转化,首先,而三棱锥与四棱锥的高相等(同),因此只要求得其底面积之比即可.试题解析:(1)证:连接EF,连接BD交AC与点O,连OF,依题得O为AC中点,又F为PA的中点,所以OF为中位线,所以OF//PC因为所以PC∥平面BDF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一立体几何大题练习
1.如图,平面α∩β=CD,EA⊥α,EB⊥β,且A∈α,B∈β:
求证:(1)CD⊥平面EAB;(2)CD⊥直线AB.
2.已知:在60º二面角的棱上有两个点A、B,AC、BD分别在这个二面角的两个面内,且垂直于线段AB,且AB=4cm,AC=6cm,BD=8cm,求CD的长。

3.已知正方体ABCD-A1B1C1D1.
(1)求直线DA1与AC1的夹角;
(2)求证:AC1⊥平面A1BD.
4.如图,在三棱柱ABC —C B A '''中,点D 是BC 的中点,欲过点A '作一截面与平面D C A ' 平行,问应当怎样画线,并说明理由。

5.已知在三棱锥S--ABC 中,∠ACB=900,又SA ⊥平面ABC ,
AD ⊥SC 于D ,求证:AD ⊥平面SBC ,
6.已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、边长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ;
(3)求点A 到平面PMB 的距离.
N
M
B
D C
A
7.如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。

求证:(1)平面CDE ⊥平面ABD (2)平面CDE ⊥平面ABC 。

8.已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA
上的点,且EH∥FG. 求证:EH ∥BD .
H G F E
D B
A
C
9.已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.
求证:(1) C 1O ∥面11AB D ;(2)1
AC ⊥面11AB D .
10.如图1-19,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE .且CE =CA =2BD , M 是EA 的中点,求证: (1)DE =DA ;
(2)平面BDM ⊥平面ECA ; (3)平面DEA ⊥平面ECA .
D 1
O
D
B
A C 1
B 1
A 1
C。

相关文档
最新文档