2010年广东省中山市中考数学试题
2010年广东省中考数学真题试题(含答案)

机密☆启用前2010年广东中考数学试题及答案(含答案)说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、 试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑, 如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域 内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-3的相反数是( ) A .3B .31 C .-3D .13-2.下列运算正确的是( ) A .ab b a 532=+B .()b a b a -=-422C .()()22b a b a b a -=-+D . ()222b a b a +=+3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( ) A.70° B.100° C.110° D.120°4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、 9元,则这组数据的中位数与众数分别为( ) A .6,6 B .7,6 C . 7,8 D .6,85. 左下图为主视方向的几何体,它的俯视图是( )二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过 8000000人次,试用科学记数法表示8000000= .7.分式方程112=+x x的解x = . 8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =54,则 AC = .9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两 年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: . 10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…, 则正方形A 4B 4C 4D 4的面积为 .三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:()001260cos 2214π-+-⎪⎭⎫ ⎝⎛+-.12. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2 .13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为 (-3,3).(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,并写出点A 1的坐标。
2010中考数学试题分类汇编-分式与分式方程

2010年中考数学试题分类汇编 分式5. (2010年浙江省东阳县)使分式12-x x有意义,则x 的取值范围是( ) A.21≥x B.21≤x C. 21>x D.21≠x 【关键词】分式有意义【答案】D16.(2)(2010年山东省青岛市)化简:22142a a a+--. 【关键词】分式计算 【答案】(2)解:原式 = ()()21222a a a a -+--()()()()222222a a a a a a +=-+-+-()()()()()2222222a a a a a a a -+=+--=+-12a =+.1、(2010年宁波市)先化简,再求值:21422++--a a a ,其中3=a 。
【关键词】分式运算【答案】解:原式21)2)(2(2++-+-=a a a a222121+=+++=a a a当2=a 时,原式52232=+=2、(2010浙江省喜嘉兴市)若分式3621x x -+的值为0,则( ) A .x =-2 B .x =-12 C .x =12D .x =2【关键词】分式分子、分母特点【答案】D17.(2010山东德州)先化简,再求值:1112221222-++++÷--x x x x x x ,其中12+=x . 【关键词】分式、分母有理化 【答案】解:原式=11)1()1(2)1)(1(22-+++÷-+-x x x x x x =11)1(2)1()1)(1(22-+++⋅-+-x x x x x x =11)1(22-+--x x x =)1(2-x x.当12+=x 时,原式=422+.(2010年广东省广州市)若分式51-x 有意义,则实数x 的取值范围是_______. 【关键词】分式的意义 【答案】5≠x2.(2010年重庆)先化简,再求值:xx x x x 24)44(222+-÷-+,其中1-=x . 【答案】解:原式=)2()2)(2(442+-+÷-+x x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x .当1-=x 时,原式=-1-2=-3.21.(2010重庆市)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-1解:原式=4244222-+⋅+-x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x 当x =-1时,原式=2-x =-1.19.(2010江苏泰州,19(2),8分)计算:(2))212(112aa a a a a +-+÷--.【答案】原式=()21112a a a a a ---÷+=()()()21111a a a a a a +--⋅+-=211a a +-+ =()121a a a +-++=121a a a +--+=11a -+.【关键词】分式的加减乘除混合运算1.(2010年浙江省绍兴市)化简1111--+x x ,可得( ) A .122-x B .122--x C .122-x x D .122--x x【答案】B2.(2010年宁德市)化简:=---ba bb a a _____________. 【答案】121.(2010重庆市)先化简,再求值:(x 2+4x -4)÷ x 2-4x 2+2x,其中x =-1解:原式=4244222-+⋅+-x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x 当x =-1时,原式=2-x =-1.(2010年浙江省东阳市)使分式12-x x有意义,则x 的取值范围是 ( ) A.21≥x B.21≤x C. 21>x D.21≠x【关键词】分式 分式有意义【答案】D3.(2010年福建省晋江市)先化简,再求值:x x x x x x11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x 【关键词】分式运算、化简求值【答案】解一:原式=()()()()()()x x x x x x x x x x 111111132-⋅⎥⎦⎤⎢⎣⎡+---+-+ = ()()xx x x x x x x 11133222-⋅+-+-+= ()()xx x x x x 1114222-⋅+-+ =()()()()()xx x x x x x 111122-+⋅+-+ =()22+x 当22-=x 时,原式=()2222+-=22解二:原式=xx x x x x x x 1111322-⋅+--⋅- =()()()()xx x x x x x x x x 1111113+-⋅+-+-⋅-= ()()113--+x x = 133+-+x x =42+x当22-=x 时,原式=224+)=225. (2010年浙江省东阳市)使分式12-x x有意义,则x 的取值范围是 ( ) A.21≥x B.21≤x C. 21>x D.21≠x【关键词】分式有意义的条件 【答案】D15. (2010年安徽中考) 先化简,再求值:aa a a a -+-÷--2244)111(,其中1-=a【关键词】分式的运算 【答案】解:()()22211442(1)1122a a a a a aa a a a a a --+--÷=⋅=----- 当a=-1时,原式=112123a a -==---1、(2010年宁波市)先化简,再求值:21422++--a a a ,其中3=a 。
【真题集详解版】2010年广东省中考数学试卷及答案

2010年广东省中考数学试卷一、填空题(共6小题,满分23分)1、(2010•广东)﹣2的绝对值是.考点:绝对值。
分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣2|=2.故填2.点评:规律总结:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0.2、(2010•广东)据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8 000 000人次.试用科学记数法表示8 000 000= .考点:科学记数法—表示较大的数。
专题:应用题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:用科学记数法表示8 000 000=8×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2010•定西)分式方程的解x= .考点:解分式方程。
专题:计算题。
分析:本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.解答:解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.点评:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.4、(2010•广东)如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC= .考点:解直角三角形。
分析:根据题中所给的条件,在直角三角形中解题.根据角的正弦值与三角形边的关系,可求出AC.解答:解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt△ABC中,∵tanB=,∴AC=×=5.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.5、(2010•广东)某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,试列出关于x的方程:.考点:由实际问题抽象出一元二次方程。
2010年广东省中考数学试卷解析

2010年广东省中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.(4分)﹣3的相反数是()A.3 B.C.﹣3 D.﹣考点:难易度M111 相反数容易题分析:根据相反数的概念解答即可.即:∵互为相反数相加等于0,∴﹣3的相反数是3.故选:A.解答: A点评:此题主要考查了相反数的意义,属于中考的一个高频考点,要注意一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)下列运算正确的是()A.2a+3b=5ab B.2(2a﹣b)=4a﹣b C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2考点:容易题:M11K 整式运算容易题分析:A、利用合并同类项的法则即可判定∵2a,3b不是同类项,∴2a+3b≠5ab,故选项错误;B、利用去括号的法则可得2(2a﹣b)=4a﹣2b,故选项错误;C、利用平方差公式可得(a+b)(a﹣b)=a2﹣b2,正确;D、利用完全平方公式可得(a+b)2=a2+b2+2ab,故选项错误.故选C.解答: C点评:此题较容易,属于送分题,主要考查了整式的运算法则,其中对于平方差公式和完全平方公式的公式结构一定要熟练.3.(4分)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110°D.120°考点:M31B 平行线的判定及性质M31A 相交线(对顶角、邻补角、同位角、同旁内角、内错角、).难易度:容易题.分析:此题解法不唯一,可以先求出∠1的邻补角,再根据两直线平行,同位角相等即可求出.亦可以先求出∠1的对顶角,再根据两直线平行,同旁内角相等即可求出,具体解法如下:解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°﹣∠1=180°﹣70°=110°.故选:C.解答: C点评:本题解法不唯一,主要考查平行线的判定及性质,属于中考高频考点,需要熟练掌握.4.(4分)某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为()A.6,6 B.7,6 C.7,8 D.6,8考点:难易度:M214 中位数、众数容易题分析:首先把所给数据按从小到大的顺序重新排序,然后利用中位数和众数的定义就可以求出结果.具体如下:把已知数据按从小到大的顺序排序后为5元,6元,6元,7元,8元,9元,10元,∴中位数为7∵6这个数据出现次数最多,∴众数为6.故选B.解答: B点评:本题结合众数与中位数考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为中位数.如果是偶数个则找中间两位数的平均数.众数只要找次数最多的即可.5.(4分)如图为主视图方向的几何体,它的俯视图是()A .B .C .D .考点: 难易度 M414 视图与投影 容易题分析: 找到从上面看所得到的图形即可.从上面看可得到三个左右相邻的长方形,故选D 解答: D .点评:本题考查了三视图的知识,属于中考常考知识,注意俯视图是从物体的上面看得到的视图是解题的关键.6.(4分)如图,把等腰直角△ABC 沿BD 折叠,使点A 落在边BC 上的点E 处.下面结论错误的是( )A .AB=BEB .AD=DC C .AD=DED .AD=EC 考点: 难易度: M411 图形的折叠、镶嵌 容易题 分析: 根据折叠性质,有AB=BE ,AD=DE ,∠A=∠DEC=90°.∴A 、C 正确; 又∠C=45°,∴△CDE 是等腰直角三角形,EC=DE ,CD >DE . ∴D 正确,B 错误. 故选B . 解答:B 点评: 本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边、角相等.7.(4分)已知方程x 2﹣5x+4=0的两根分别为⊙O 1与⊙O 2的半径,且O 1O 2=3,那么两圆的位置关系是( )A .相交B .外切C .内切D .相离 考点: 难易度: M34C 圆与圆的位置关系 M127 解一元二次方程 容易题. 分析: 解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.具体解法如下:解:解方程x2﹣5x+4=0得x1=1,x2=4,∵O1O2=3,x2﹣x1=3,∴O1O2=x2﹣x1∴⊙O1与⊙O2内切.故选C.解答: C点评:此题综合考查一元二次方程的解法及两圆的位置关系的判断方法.属于中考常考题,注意:外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).8.(4分)已知一次函数y=kx﹣1的图象与反比例函数的图象的一个交点坐标为(2,1),那么另一个交点的坐标是()A.(﹣2,1)B.(﹣1,﹣2) C.(2,﹣1)D.(﹣1,2)考点:M154 反比例函数的应用M144 一次函数的应用难易度:较难题分析:把交点坐标代入一次函数可求得一次函数的解析式,让一次函数解析式与反比例函数解析式组成方程组即可求得另一交点的坐标.具体解法如下:解:∵(2,1)在一次函数解析式上,∴1=2k﹣1,解得k=1,y=x﹣1,与反比例函数联立得:;解得x=2,y=1;或x=﹣1,y=﹣2.故选:B.解答: B点评:本题考查了反比例函数与一次函数交点的问题,解法不唯一,点在函数图象上,那么点适合函数图象,注意也可根据反比例函数上的点的横纵坐标的积为2可很快得到答案.二、填空题(共5小题,每小题4分,满分20分)9.(4分)据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8 000 000人次.试用科学记数法表示8 000 000=.考点:M11C 科学记数法.难易度:容易题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.则此题用科学记数法表示为:8 000 000=8×106解答:8×106点评:此题考查科学记数法的表示方法.属于中考热点,注意科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(4分)分式方程的解x=.考点:M12B 解可化为一元一次方程的分式方程.难易度:容易题.分析:本题的最简公分母是x+1,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.具体解法如下:解:方程两边都乘x+1,得2x=x+1,解得x=1.检验:当x=1时,x+1≠0.∴x=1是原方程的解.解答: 1点评:本题不难,主要考查了解可化为一元一次方程的分式方程,解此类题型的一般步骤如下:(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.11.(4分)如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=.考点:难易度:M32E 解直角三角形容易题分析:对于此题,在直角三角形中,根据角的正弦值与三角形边的关系,可求出AC.具体解法如下:解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt△ABC中,∵tanB=,∴AC=×=5.解答: 5点评:本题考查了解直角三角形,属于中考常考知识点,注意边角之间的函tanB=,是解决此题的根本所在.数关系tanB=、12.(4分)某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,试列出关于x的方程:.考点:M12A 一元二次方程的应用M127 解一元二次方程.难易度:中等题分析:由于设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,那么2008年商品房每平方米平均价格为4000(1+x),2009年商品房每平方米平均价格为4000(1+x)(1+x),再根据2009年商品房每平方米平均价格为5760元即可列出方程.具体解法如下:解:设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,依题意得4000(1+x)(1+x)=5760,即4000(1+x)2=5760.故填空答案:4000(1+x)2=5760.解答:4000(1+x)2=5760点评:此类题为中考热点题型,主要考查了增长率的问题,注意:一般公式为原来的量(1±x)2=现在的量,x为增长或减少百分率.增加用+,减少用﹣.13.(4分)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为.考点:M335 正方形的性质与判定M339 四边形的面积M612 规律型题.难易度:较难题.分析:本题需先根据已知条件得出延长n次时面积的公式,再根据求正方形A4B4C4D4正好是要求的第5次的面积,把它代入即可求出答案.具体解法如下:解:最初边长为1,面积1,延长一次为,面积5,再延长为51=5,面积52=25,下一次延长为5,面积53=125,以此类推,当N=4时,正方形A4B4C4D4的面积为:54=625.故答案为:625.解答:625点评:本题属于规律型题,主要考查了正方形的性质与判定,属于中考必考题型,在解题时要根据已知条件找出规律,从而得出正方形的面积.三、解答题(共11小题,满分98分)14.(7分)计算:.考点:难易度: M119 实数的混合运算M32D 特殊角三角函数的值M11E 二次根式的化简容易题.分析:对于本题,在计算时,需要针对每个式子分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:=2﹣2﹣1+1 (4)=0 (6)点评:本题考查实数的实数的综合运算能力,涉及零指数幂、负指数幂、二次根式化简、特殊角的锐角三角函数值等考点,是各地中考题中常见的计算题型.解题时注意各个式子的计算方式,确保正确无误。
2010——2012年中山市初三数学竞赛试题真题以及详细答案

中山市2010年初三数学竞赛试题一、选择题(共5小题,每小题7分,共35分. 每道小题有且只有一个选项是正确的. 请将正确选项代号填入题后的括号里,不填、多填或错填都得0分)1.若20 10a b b c ==,,则a b b c ++的值为 ( ) (A )1121 (B )21011 (C )11021 (D )21112.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( )(A )a ≤2- (B )a ≥4 (C )2-≤a ≤4 (D )a ≤2-或 a ≥43.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =BC =4-CD =则AD 边的长为 ( )(A )(B )64 (C )622+(D )64+4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭,(取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于 ( ) (A) 1 (B) 2 (C) 3 (D) 45.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是 ( ) (A )(2010,2) (B )(2012,2-)(C )(2010,2-) (D )(0,2) 二、填空题(共5小题,每小题7分,共35分)6.已知a =5-1,则2a 3+7a 2-2a -11 的值等于 .7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t = .8.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .9.如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .若CD =CF ,则AEAD= . 10.对于i =2,3,…,k ,正整数n 除以i 所得的余数为i -1.若n 的最小值0n 满足020003000n <<,则正整数k 的最小值为 . 三、解答题(共4题,每题20分,共80分)11.设实数a ,b 满足:2231085100a ab b a b -++-=,求u =29722a b ++的最小值.12.如图,AB 为⊙O 的直径,C 为圆上一点,AD 平分∠BAC 交⊙O 于点D ,DE ⊥AC 交AC 的延长线于点E ,FB 是⊙O 的切线交AD 的延长线于点F . (1)求证:DE 是⊙O 的切线. (2)若DE = 3,⊙O 的半径为5,求BF 的长.13.设1x ,2x ,…,008 2x 是整数,且满足下列条件: (1)21≤≤-n x (n =1,2,…,2 008); (2)++21x x …+008 2x =200;(3)++2221x x …+2008 2x =2 008. 求++3231x x …+3008 2x 的最小值和最大值.14.如图,已知直线b x y l +=31:经过点)41 0(,M ,一组抛物线的顶点11(1, y )B ,22(2, y )B ,33(3, y )B ,…,n (, y )n B n (n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:11(, 0)A x ,22(, 0)A x ,33(, 0)A x ,…,11(,0)n n A x ++(n 为正整数),设d x =1(0<d <1). (1)求经过点1A 、1B 、2A 的抛物线的解析式(用含d 的代数式表示);(2)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”. 探究:当d (0<d <1)的大小变化时,这组抛物线中是否存在“美丽抛物线”?若存在,请求出相应的d 的值.中山市2010年初三数学竞赛试题参考答案一、选择题1.B 解:由题设得12012101111110a ab bc b c b +++===+++. 2.D 解:因为b 是实数,所以关于b 的一元二次方程21202b ab a -++= 21()41(2)2a a ∆--⨯⨯+=≥0, 解得a≤2-或 a≥4.3.C 解:如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F . 由已知可得CF=DF =于是 EF =4过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得AD ==2+4.B 解:由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得 11x =,22x =,33x =,44x =, 51x =,62x =,73x =,84x =,……因为2010=4×502+2,所以2010x =2.5.C 解:由已知可以得到,点1P ,2P 的坐标分别为(2,0),(2,2-). 记222 )P a b (,,其中222,2a b ==-.根据对称关系,依次可以求得: 322(42)P a b --,--,422(2)P a b ++,4,522(2)P a b ---,,622(4)P a b +,. 令662(,)P a b ,同样可以求得,点10P 的坐标为(624,a b +),即10P (2242,a b ⨯+), 由于2010=4⨯502+2,所以点2010P 的坐标为(2010,2-). 二、填空题6.1解:由已知得 (a +1)2=5,所以a 2+2a =4,于是2a 3+7a 2-2a -12=2a 3+4a 2+3a 2-2a -11=3a 2+6a -11=17.15解:设在某一时刻,货车与客车、小轿车的距离均为S 千米,小轿车、货车、客车的速度分别为a b c ,,(千米/分),并设货车经x 分钟追上客车,由题意得 ()10a b S -=, ① ()152a c S -=, ② ()x b c S -=. ③由①②,得30b c S -=(),所以,x=30. 故 3010515t =--=(分).8. 11133y x =-+ 解:如图,延长BC 交x 轴于点F ;连接OB ,AF ;连接CE ,DF ,且相交于点N .由已知得点M (2,3)是OB ,AF 的中点,即点M 为矩形ABFO 的中心,所以直线l 把矩形ABFO 分成面积相等的两部分.又因为点N (5,2)是矩形CDEF 的中心,所以,过点N (5,2)的直线把矩形CDEF 分成面积相等的两部分.于是,直线MN 即为所求的直线l .设直线l 的函数表达式为y kx b =+,则2352k b k b =⎧⎨+=⎩+,,解得 1311.3k b ⎧=-⎪⎪⎨⎪=⎪⎩, 故所求直线l 的函数表达式为11133y x =-+. 9.215- 解:见题图,设,FC m AF n ==.因为Rt △AFB ∽Rt △ABC , 所以2AB AF AC =⋅. 又因为 FC =DC =AB ,所以 2()m n n m =+,即2()10n n m m +-=,解得n m =,或n m =(舍去). 又Rt △AFE ∽Rt △CFB ,所以AE AE AF n AD BC FC m ====12,即AE AD=12. 10.9解:因为1n +为2 3 k ,,,的倍数,所以n 的最小值0n 满足 []012 3 n k +=,,,,其中[]2 3 k ,,,表示2 3 k ,,,的最小公倍数. 由于[][]2 3 88402 3 92520 ==,,,,,,,, [][]2 3 1025202 3 1127720==,,,,,,,, 因此满足020003000n <<的正整数k 的最小值为9.三、解答题11.解:由2231085100a ab b a b -++-= 可得()()23450a b a b --+=,(6分)所以 20a b -=,或 3450a b -+=. …………(8分)(i )当20a b -=时, ()22297223672236134u a b b b b =++=++=+-,于是1b =-时,u 的最小值为34-,此时2a =-,1b =-. …………(13分)(ii )当3450a b -+=时,()222972216322716111u a b b b b =++=++=++,于是1b =-时,u 的最小值为11,此时3a =-,1b =-. …………(18分)综上可知,u 的最小值为34-. …………(20分) 12、解:(1)如图,连接OD .因为AD 平分∠BAC ,所以∠1=∠2.又因为OA =OD ,所以∠1=∠3.所以∠2=∠3.所以OD ∥AE .因为DE ⊥AE ,所以DE ⊥OD .而点D 在⊙O 上,所以DE 是⊙O 的切线. …………(7分)(2)如图,连接BE 与OD 交于点H ,作OG ⊥AE 于点G . 则 OG = DE =3, EG = DO =5,所以AG=4,AE = 4+5= 9…………(10分),因为EA ∥OD , AO=OB ,所以HO=12AE =92,HD = 5-92=12,故HE = =(20分)13.解:设1x ,2x ,…,008 2x 中有q 个0,r 个-1,s 个1,t 个2. …………(2分) 则220042008r s t r s t -++=⎧⎨++=⎩① …………(5分)两式相加得31104s t +=.故0368t ≤≤. …………(10分)由33312200886200x x x r s t t ++⋅⋅⋅+=-++=+, …………(12分)得33312200820063682002408x x x ≤++⋅⋅⋅+≤⨯+=.…………(15分)由方程组①知:当0,1104,904t s r ===时,++3231x x …+3008 2x 取最小值200; ……(17分) 当368,0,536t s r ===时, ++3231x x …+3008 2x 取最小值2408. …………(20分)14.解:(1)易得14b =,B 1(7121,),…………(3分) 设其解析式为27(1)(0),12y a x a =-+≠由1(,0),A d 得2712(1)a d =--,…………(7分) 于是2277(1)12(1)12y x d =--+-为所求;…………(8分)(或者由12(,0),(2,0)A d A d -为该抛物线与x 轴的两个交点,设其解析式为()(2)(0)y a x d x d a =--+≠,再代入点17(1,)12B ,同样可得) (2)根据对称性易得12345...A A A A A 、、、、的横坐标依次为d,2-d,2+d,4-d,4+d,6-d,…(10分)1223344522,2,22,2...A A d A A d A A d A A d=-==-=,(12分) 要使三角形为直角三角形,则斜边上中线等于斜边的一半,因为0<d <1,斜边长都小于2,所以只要高123,,...y y y 小于1才能构成直角三角形,…………(14分)当>3x 时,所对应的函数值都大于1,可以得到符合要求的顶点为1B 、2B ,………(16分) 再求得相应的d 的值为512或1112.…………(20分)(B )3MN =(C )若MN 与⊙O 相切,则∠MON =90°(D )若MN 与⊙O 相交,则AM ≥二、填空题(共5小题,每小题7分,共35分)6.一个密码箱的密码, 每个数位上的数都是从0到9的自然数, 若要使不知道密码的人一次拨对密码的概率小于12011, 则密码的位数至少需要 4 位. 7.已知非负数a b c ,,满足条件75a b c a +=-=,,设S a b c =++的最大值为m ,最小值为n ,则m n -的值为 7 .8.已知二次函数()()221y x a a =-+-(a 为常数),当a 取不同的值时,其图像构成一个“抛物线系”.下图分别是当1a =-,0a =,1a =,2a =时二次函数的图像.它们的顶点在一条直线上,这条直线的解析式是xy 12=-.(第8题图 ) (第9题 图)9.如图,在平面直角坐标系中,边长为1的正方形11OA B C 的对角线1AC 和1OB 交于点1M ,以11M A 为对角线作第二个正方形2121A A B M ,对角线11A M 和22A B 交于点2M ;以21M A 为对角线作第三个正方形3132A A B M ,对角线12A M 和33A B 交于点3M ;……依此类推,这样作的第n 个正方形对角线交点n M 的坐标为n n11122(,)-. 10.如图,一次函数y ax b =+的图像与x 轴,y 轴交于A ,B 两点,与反比例函数ky x=的图像相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE ,EF .有下列四个结论:①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ; ③△DCE ≌△CDF ;④AC BD =.其中正确的结论是 ①②④ .(把你认为正确结论的序号都填上)(第10题图)三、解答题(共4题,每题20分,共80分)11.设关于x 的方程0212482=-+-+-a x a x x 恰有两个实根.求实数a 的取值范围.解:原方程变形为.0)2(2442=+--+-a x a x ……………………………(5分) 令).0(4≥-=y x y 则0)2(22=+-+a ay y0)2)](2([=-++⇒y a y ,2),2(21=+-=⇒y a y ……………………………(10分)即x 4a 2()-=-+或.24=-x 故原方程恰有两实根2)2(=+-⇔a 或)2(+-a <0. ……………………………(15分)因此,4-=a 或a >-2 ……………………………(20分)12.已知a 、b 、c 是三角形的三边长,实数p 、q 满足1=+q p .判断代数式222p q c qb pa -+的符号并写出理由.解:令.222pqc qb pa y -+= 将p q -=1代入上式得222)1()1(c p p b p pa y ---+=.)(222222b p c b a p c +--+= ……………………………(5分) 将上式视为关于p 的二次函数,图像开口向上,则.4)(222222c b c b a ---=∆ ])(][)([2222c b a c b a +---=).( )( )( )(c b a c b a c b a c b a --+++--+= ……………………………(10分) 由于a 、b 、c 是三角形三边,则有c b a -+>0,c b a +->0,c b a ++>0,c b a --<0, ……………………………(15分)于是,∆<0y ⇒>0. ……………………………(20分)13.在凹四边形ABCD 中,∠A=∠C=o 40,∠B=o50,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点.判断四边形EFGH 的形状并证明你的结论.解:四边形EFGH 是矩形. ………………(5分) 如右图,联结AC 、BD.由三角形中位线定理得,21//BD EH .21//BD FG则.//FG EH 故四边形EFGH 是平行四边形. ……………………………(10分)由∠BAD+∠ABC=o90,∠BCD+∠ABC=o90, 得AD ⊥BC,CD ⊥AB.于是,D 是△ABC 的垂心,BD ⊥AC. ……………………………(15分) 又GH ∥AC,则BD ⊥GH. 从而,FG ⊥GH.故四边形EFGH 是矩形. ……………………………(20分) 14.对于每个正整数n ,设)(n f 表示1+2+⋅⋅⋅+n 的末位数字(如,1)1(=f ,3)2(=f 6)3(=f ),试计算)2011()2()1(f f f +⋅⋅⋅++的值。
中山市2010年初三数学竞赛试题参考答案

中山市2010年初三数学竞赛试题参考答案一、选择题1.B 解:由题设得12012101111110a ab bc b c b +++===+++. 2.D 解:因为b 是实数,所以关于b 的一元二次方程21202b ab a -++= 21()41(2)2a a ∆--⨯⨯+=≥0, 解得a≤2-或 a≥4. 3.C 解:如图,过点A ,D 分别作AE ,DF 垂直于直线BC ,垂足分别为E ,F .由已知可得,CF=DF =于是 EF =4过点A 作AG ⊥DF ,垂足为G .在Rt △ADG 中,根据勾股定理得AD ==2+4.B 解:由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得 11x =,22x =,33x =,44x =, 51x =,62x =,73x =,84x =,……因为2010=4×502+2,所以2010x =2.5.C 解:由已知可以得到,点1P ,2P 的坐标分别为(2,0),(2,2-). 记222 )P a b (,,其中222,2a b ==-.根据对称关系,依次可以求得: 322(42)P a b --,--,422(2)P a b ++,4,522(2)P a b ---,,622(4)P a b +,. 令662(,)P a b ,同样可以求得,点10P 的坐标为(624,a b +),即10P (2242,a b ⨯+), 由于2010=4⨯502+2,所以点2010P 的坐标为(2010,2-). 二、填空题6.1解:由已知得 (a +1)2=5,所以a 2+2a =4,于是2a 3+7a 2-2a -12=2a 3+4a 2+3a 2-2a -11=3a 2+6a -11=17.15解:设在某一时刻,货车与客车、小轿车的距离均为S 千米,小轿车、货车、客车的速度分别为a b c ,,(千米/分),并设货车经x 分钟追上客车,由题意得()10a b S -=, ① ()152a c S -=, ② ()x b c S -=. ③由①②,得30b c S -=(),所以,x=30. 故 3010515t =--=(分).8. 11133y x =-+解:如图,延长BC 交x 轴于点F ;连接OB ,AF ;连接CE ,DF ,且相交于点N .由已知得点M (2,3)是OB ,AF 的中点,即点M 为矩形ABFO 的中心,所以直线l 把矩形ABFO 分成面积相等的两部分.又因为点N (5,2)是矩形CDEF 的中心,所以,过点N (5,2)的直线把矩形CDEF 分成面积相等的两部分.于是,直线l .设直线l 的函数表达式为y kx b =+,则2352k b k b =⎧⎨+=⎩+,, 解得 1311.3k b ⎧=-⎪⎪⎨⎪=⎪⎩, 故所求直线l 的函数表达式为11133y x =-+. 9. 215- 解:见题图,设,FC m AF n ==.因为Rt △AFB ∽Rt △ABC ,所以2AB AF AC =⋅. 又因为 FC =DC =AB ,所以 2()m n n m =+,即 2()10n n m m +-=,解得n m =,或n m =(舍去). 又Rt △AFE ∽Rt △CFB ,所以AE AE AF n AD BC FC m ====即AE AD 10.9解:因为1n +为2 3 k ,,,的倍数,所以n 的最小值0n 满足 []012 3 n k += ,,,,其中[]2 3 k ,,,表示2 3 k ,,,的最小公倍数. 由于[][]2 3 88402 3 92520 == ,,,,,,,, [][]2 3 1025202 3 1127720== ,,,,,,,, 因此满足020003000n <<的正整数k 的最小值为9.三、解答题11.解:由2231085100a ab b a b -++-= 可得()()23450a b a b --+=,(6分) 所以 20a b -=,或 3450a b -+=. …………(8分)(i )当20a b -=时, ()22297223672236134u a b b b b =++=++=+-, 于是1b =-时,u 的最小值为34-,此时2a =-,1b =-. …………(13分)(ii )当3450a b -+=时,()222972216322716111u a b b b b =++=++=++, 于是1b =-时,u 的最小值为11,此时3a =-,1b =-. …………(18分)综上可知,u 的最小值为34-. …………(20分)12、解:(1)如图,连接OD .因为AD 平分∠BAC ,所以∠1=∠2.又因为OA =OD ,所以∠1=∠3.所以∠2=∠3.所以OD ∥AE .因为DE ⊥AE ,所以DE ⊥OD .而点D 在⊙O 上,所以DE 是⊙O 的切线. …………(7分)(2)如图,连接BE 与OD 交于点H ,作OG ⊥AE 于点G. 则 OG = DE =3, EG = DO =5,所以AG = ,AE = 4+5= 9…………(10分),因为EA ∥OD , AO=OB ,所以HO=12AE =92,HD = 5-92=12,故HE = =(20分)13.解:设1x ,2x ,…,008 2x 中有q 个0,r 个-1,s 个1,t 个2. …………(2分) 则220042008r s t r s t -++=⎧⎨++=⎩① …………(5分) 两式相加得31104s t +=.故0368t ≤≤. …………(10分)由33312200886200x x x r s t t ++⋅⋅⋅+=-++=+, …………(12分)得33312200820063682002408x x x ≤++⋅⋅⋅+≤⨯+=.…………(15分)由方程组①知:当0,1104,904t s r ===时,++3231x x …+3008 2x 取最小值200; ……(17分)当368,0,536t s r ===时, ++3231x x …+3008 2x 取最小值2408. …………(20分)14.解:(1)易得14b =,B 1(7121,),…………(3分) 设其解析式为27(1)(0),12y a x a =-+≠由1(,0),A d 得2712(1)a d =--,…………(7分) 于是2277(1)12(1)12y x d =--+-为所求;…………(8分) (或者由12(,0),(2,0)A d A d -为该抛物线与x 轴的两个交点,设其解析式为()(2)(0)y a x d x d a =--+≠,再代入点17(1,)12B ,同样可得) (2)根据对称性易得12345...A A A A A 、、、、的横坐标依次为d,2-d,2+d,4-d,4+d,6-d,…(10分)1223344522,2,22,2...A A d A A d A A d A A d =-==-=,(12分) 要使三角形为直角三角形,则斜边上中线等于斜边的一半,因为0<d <1,斜边长都小于2,所以只要高123,,...y y y 小于1才能构成直角三角形,…………(14分)当>3x 时,所对应的函数值都大于1,可以得到符合要求的顶点为1B 、2B ,………(16分)再求得相应的d 的值为512或1112.…………(20分)。
【VIP专享】2010年广东省初中毕业生学业考试数学试卷及答案

一、选择题(本大题 5 小题,每小题 3 分,共 15 分)在每小题列出的四个选项中,只有一个是正 确
的,请把答题卡上对应题目所选的选项涂黑.
1.-3 的相反数是( )
A.3
1
B.
3
2.下列运算正确的是( )
A. 2a 3b 5ab
C. a ba 图,已知∠1=70°,如果 CD∥BE,那么∠B 的度数为( )
D.6,8
)
二、填空题(本大题 5 小题,每小题 4 分,共 20 分)请将下列各题的正确答案填写在答题卡相应
的位置上.
6.根据新网上海 6 月 1 日电:世博会开园一个月来,客流平稳,累计到当晚 19 时,参观者已超过
8000000 人次,试用科学记数法表示 8000000=
7.分式方程 2x 1的解 x =
机密☆启用前 2010 年广东省初中毕业生学业考试
数学
说明:1.全卷共 4 页,考试用时 100 分钟,满分为 120 分. 2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、 试室号、座位号.用 2B 铅笔把对应该号码的标号涂黑. 3.选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑, 如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域 内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液.不按以上要求作答的答案无效. 5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.
A.70°
B.100°
C.110°
D.120°
D. 1 3
B. 22a b 4a b
2010年中考数学试题及答案

2010年中考数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1) A. BC.-D2.反比例函数23m y x--=的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限3.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对 B .6对 C .5对 D .3对4.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +5.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是A .2x >-;B .0x >;C .2x <-;D .0x <7.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .32二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处.xb +8.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .9.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.10.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是 1.2m ,在同一时刻测得某棵树的影长为 3.6m ,则这棵树的高度约为 m . 12.如图所示的半圆中,AD 是直径,且3AD =,2AC =,则sin B 的值是 .13.某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为︒120的扇形,则这个圆锥的底面半径为______________cm .三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分)14.计算:230116(2)(πtan60)3-⎛⎫--÷-+-- ⎪⎝⎭.15.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)C BD A16.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径; (2)求图中阴影部分的面积.17.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超..过.132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?18.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间C OABD的函数图象如图所示,根据图象所提供的信息解答问题:(1) 他们在进行 米的长跑训练,在0<x <15的时段内,速度较快的人是 ;(2) 求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式; (3) 当x =15时,两人相距多少米?在15<x <20的时段内,求两人速度之差.Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)19.把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.如图,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河分)岸b 上的A 处测得30DAB ∠= ,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).21.三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.Ⅳ(本题满分8分)BED CFab A22.如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动) . (1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.Ⅴ(本题满分14分)图① 图② 图③A·BCD EF··N MFEDCB ANMF EDCBA·23.如图,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在C 上.(1)求ACB 的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.2010年中考数学试题参考答案及评分标准二、填空题(本大题共6小题,每小题4分,共24分) 8.(00),;9.152;10.210;11.4.8;12.23;13.4 三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式=9-16÷(-8)+1-23×23……………………2分 =9+2+1-3.……………………………………4分 =9 ………………………………6分15.解:原式211(1)1(1)(1)1x x x x x -=-++-+······································································ 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.(1)连结OC ,则 OC AB ⊥. …………………………………………………1分∵OA OB =,∴1122AC BC AB ===⨯ ………………………………………2分在Rt AOC △中,3OC ===.∴ ⊙O 的半径为3. …………………………………………………………3分 (2)∵ OC =12OB , ∴ ∠B =30o , ∠COD =60o . ……………………………………5分 ∴扇形OCD 的面积为OCD S 扇形=260π3360⨯⨯=32π. …………………………………5分阴影部分的面积为:Rt Δ=OBC OCD S S S -阴影扇形=12OC CB ⋅-3π2-3π2.…………………………7分 17.解:(1)设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台,根据题意,列不等式: ································································ 1分120021600(803)2000132000x x x ⨯++-⨯≤. ···························································· 3分解这个不等式,得14x ≥. ·································································································· 4分 ∴至少购进乙种电冰箱14台. ····························································································· 5分 (2)根据题意,得2803x x -≤. ····················································································· 6分 解这个不等式,得16x ≤. ·································································································· 7分 由(1)知14x ≥. 1416x ∴≤≤. 又x 为正整数, 141516x ∴=,,. ···················································································································· 8分 所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台; 方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台; 方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台. ··················· 10分 18.解:(1)5000…………………………………2分甲 ………………………………4分(2)设所求直线的解析式为:y =kx +b (0≤x ≤20), ………5分由图象可知:b =5000,当x =20时,y =0, ∴0=20k +5000,解得k = -250. …7分即y = -250x +5000 (0≤x ≤20) ……………7分(3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. ………8分 两人相距:(5000 -1250)-(5000-2000)=750(米)………………9分 两人速度之差:750÷(20-15)=150(米/分)……………11分Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19解:(1)P (抽到牌面数字是4)13=; ········································································ 2分(2)游戏规则对双方不公平. ················································································· 5分 理由如下:由上述树状图或表格知:所有可能出现的结果共有9种. P (抽到牌面数字相同)=3193=, P (抽到牌面数字不相同)=6293=.∵1233<,∴此游戏不公平,小李赢的可能性大. ············································ 12分 (说明:答题时只需用树状图或列表法进行分析即可)20.解:过点C 作CE AD ∥,交AB 于E CD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分21.答:(1)甲厂的广告利用了统计中的平均数. ····························································· 2分乙厂的广告利用了统计中的众数. ············································································ 4分 丙厂的广告利用了统计中的中位数. ············································································ 7分分…………………………8分11F B C (2) 选用甲厂的产品. 因为它的平均数较真实地反映灯管的使用寿命 ······················· 10分 或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月 ··························· 10分Ⅳ.(本题满分8分)22.(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ········ 2分(2)成立. ······························ 3分 证明:法一:连结DE ,DF .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°,∴∠MDF =∠NDE .在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE ,∴△DMF ≌△DNE . 8∴MF =NE . ·························· 6分法二:延长EN ,则EN 过点F .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点, ∴EF =DF =BF .∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°,∴∠BDM =∠FDN .又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN .∴BM =FN .∵BF =EF , ∴MF =EN . ·························· 6分(3)画出图形(连出线段NE ), 6MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 8分Ⅴ.(本题满分14分)23.解:(1)作CHN C A B F M D E NC A B F MD E12 1CH = ,半径2CB = ·························································· 1分60BCH ∠= ,120ACB ∴∠= ········································· 3分(2)1CH = ,半径2CB =HB ∴=(1A ,················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分 设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分 222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分 PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分又2PC = ,2OD ∴=,即(02)D ,. 又(02)D ,满足222y x x =-++, ∴点D 在抛物线上 ··············································································································· 13分 所以存在(02)D ,使线段OP 与CD 互相平分. ·································································· 14分。
广东省2010年初中毕业生学业考试数学试卷(含答案)

第10题图(1) A 1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第10题图(2)2010年广东省初中毕业生学业考试数 学 试 题一、选择题1.-3的相反数是( ) A .3B .31C .-3D .31-2.如图,已知∠1 = 70º,如果CD ∥BE ,那么∠B 的度数为( ) A .70ºB .100ºC .110ºD .120º3.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( ) A .6,6B .7,6C .7,8D .6,84.左下图为主视方向的几何体,它的俯视图是( )5.下列式子运算正确的是( ) A .123=-B .248=C .331= D .4321321=-++二、填空题(本大题5小题,每小题4分,共20分)6. 据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000人次。
试用科学记数法表示8000000=__________。
7.化简:11222---+-y x y xy x =__________________。
8.如图,已知Rt △ABC 中,斜边BC 上的高AD=4,AB=5,则AC=____________。
9.已知一次函数b x y -=与函数y=x2的图象,有一个交点的纵坐标是2,则b 的值为________。
10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2)以此下去···,则正方形A 4B 4C 4D 4的面积为__________。
三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:。
2010——2012年中山市初三数学竞赛试题真题以及详细答案

2010——2012年中山市初三数学竞赛试题真题以及详细答案中山市2010年初三数学竞赛试题一、选择题(共5小题,每小题7分,共35分)1.若 a/(ba+c) = 20.c/(cb+a) = 10,则 b 的值为(B)。
2.若实数 a,b 满足 a - ab + b + 2 = 0,则 a 的取值范围是(C)。
3.如图,在四边形 ABCD 中,∠B = 135°,∠C = 120°,AB = 23,BC = 4 - √22,CD = 42,则 AD 边的长为2 + 2√6.4.在一列数 x1,x2,x3,…… 中,已知 x1 = 1,且当k ≥ 2 时,xk = xk-1 + [k-1/4] - [k-2/4],(取整符号 [a] 表示不超过实数 a 的最大整数),则 x2010 等于(B)。
5.如图,在平面直角坐标系 xOy 中,等腰梯形 ABCD 的顶点坐标分别为 A(1,1),B(2,-1),C(-2,-1),D (-1,1)。
y 轴上一点 P(0,2)绕点 A 旋转 180°得点 P1,点 P1 绕点 B 旋转 180°得点 P2,点 P2 绕点 C 旋转 180°得点P3,点 P3 绕点 D 旋转 180°得点 P4,……,重复操作依次得到点 P2010,P2010 的坐标是(A)(2010,2)。
二、填空题(共5小题,每小题7分,共35分)6.已知 a = 5 - √2,则 2a^3 + 7a^2 - 2a - 11 的值等于 267 - 94√2.7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶。
在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间。
过了 10 分钟,小轿车追上了货车;又过了 5 分钟,小轿车追上了客车;再过 t 分钟,货车追上了客车,则 t = 15.8.在平面直角坐标系xOy中,有一个五边形OABCDE,其顶点坐标分别为O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0)。
2010年广东省中考数学试卷

2010年广东省中考数学试卷一、填空题(共6小题,满分23分)1.(3分)(2010•东莞)﹣2的绝对值是_________.6.(4分)(2010•东莞)据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8 000 000人次.试用科学记数法表示8 000 000=_________.7.(4分)(2010•东莞)分式方程的解x=_________.8.(4分)(2010•东莞)如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=_________.9.(4分)(2010•汕头)某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,试列出关于x的方程:_________.10.(4分)(2010•东莞)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为_________.二、选择题(共4小题,每小题3分,满分12分)3.(3分)(2010•东莞)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()4.(3分)(2010•东莞)某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,5.(3分)(2010•东莞)如图为主视图方向的几何体,它的俯视图是( ).CD .三、解答题(共12小题,满分85分) 11.(6分)(2010•汕头)计算:12.(6分)(2010•汕头)先化简,再求值,其中x=. 13.(6分)(2010•东莞)如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt △ABC 的顶点均在个点上,在建立平面直角坐标系后,点A 的坐标为(﹣6,1),点B 的坐标为(﹣3,1),点C 的坐标为(﹣3,3). (1)将Rt △ABC 沿x 轴正方向平移5个单位得到Rt △A 1B 1C 1,试在图上画出的图形Rt △A 1B 1C 1,并写出点A 1的坐标;(2)将原来的Rt △ABC 绕点B 顺时针旋转90°得到Rt △A 2B 2C 2,试在图上画出Rt △A 2B 2C 2的图形.14.(6分)(2010•东莞)如图,PA 与⊙O 相切于A 点,弦AB ⊥OP ,垂足为C ,OP 与⊙O 相交于D 点,已知OA=2,OP=4.(1)求∠POA 的度数; (2)计算弦AB 的长.15.(6分)(2010•广东)如图,一次函数y=kx ﹣1的图象与反比例函数的图象交于A 、B 两点,其中A 点坐标为(2,1).(1)试确定k 、m 的值;(2)求B点的坐标.16.(7分)(2010•东莞)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.17.(7分)(2010•东莞)已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.18.(7分)(2010•东莞)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.19.(7分)(2010•东莞)某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?20.(9分)(2010•东莞)已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC 上,AB与EF交于点G、∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.(1)求证:△EGB是等腰三角形;(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小_________度时,四边形ACDE成为以ED为底的梯形(如图(2)).求此梯形的高.21.(9分)(2010•东莞)阅读下列材料:1×2=(1×2×3﹣0×1×2),2×3=(2×3×4﹣1×2×3),3×4=(3×4×5﹣2×3×4),由以上三个等式相加,可得:1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×(n+1)=_________;(3)1×2×3+2×3×4+3×4×5+…+7×8×9=_________.22.(9分)(2010•东莞)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN 三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:(1)说明△FMN∽△QWP;(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW 不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值.2010年广东省中考数学试卷参考答案与试题解析一、填空题(共6小题,满分23分)1.(3分)(2010•东莞)﹣2的绝对值是2.6.(4分)(2010•东莞)据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8 000 000人次.试用科学记数法表示8 000 000=8×106.7.(4分)(2010•东莞)分式方程的解x=1.8.(4分)(2010•东莞)如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=5.cosB=,=..,×=59.(4分)(2010•汕头)某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x,试列出关于x的方程:4000(1+x)2=5760.10.(4分)(2010•东莞)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为625.,延长一次为5二、选择题(共4小题,每小题3分,满分12分)3.(3分)(2010•东莞)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()4.(3分)(2010•东莞)某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为:5元,10元,6元,6元,5.(3分)(2010•东莞)如图为主视图方向的几何体,它的俯视图是().C D.三、解答题(共12小题,满分85分)11.(6分)(2010•汕头)计算:•时,原式.13.(6分)(2010•东莞)如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在个点上,在建立平面直角坐标系后,点A的坐标为(﹣6,1),点B的坐标为(﹣3,1),点C的坐标为(﹣3,3).(1)将Rt△ABC沿x轴正方向平移5个单位得到Rt△A1B1C1,试在图上画出的图形Rt△A1B1C1,并写出点A1的坐标;(2)将原来的Rt△ABC绕点B顺时针旋转90°得到Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形.14.(6分)(2010•东莞)如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4.(1)求∠POA的度数;(2)计算弦AB的长.POA==×=AB=2AC=215.(6分)(2010•广东)如图,一次函数y=kx﹣1的图象与反比例函数的图象交于A、B两点,其中A点坐标为(2,1).(1)试确定k、m的值;(2)求B点的坐标.和,得,y=组成方程组为:,,.16.(7分)(2010•东莞)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.=;=,两人获胜的概率相同,所以游戏公平.17.(7分)(2010•东莞)已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.,解得18.(7分)(2010•东莞)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.19.(7分)(2010•东莞)某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?20.(9分)(2010•东莞)已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC 上,AB与EF交于点G、∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.(1)求证:△EGB是等腰三角形;(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小30度时,四边形ACDE成为以ED为底的梯形(如图(2)).求此梯形的高.DE=2×==2321.(9分)(2010•东莞)阅读下列材料:1×2=(1×2×3﹣0×1×2),2×3=(2×3×4﹣1×2×3),3×4=(3×4×5﹣2×3×4),由以上三个等式相加,可得:1×2+2×3+3×4=×3×4×5=20.读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程);(2)1×2+2×3+3×4+…+n×(n+1)=[n×(n+1)×(n+2)];(3)1×2×3+2×3×4+3×4×5+…+7×8×9=1260.[a2=((11=(+(++(+[n(((((((+(22.(9分)(2010•东莞)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN 三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:(1)说明△FMN∽△QWP;(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW 不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值.;或,,MN=。
2010年广东省各市中考数学压轴题及答案

2010年广东省各市中考数学压轴题及答案1.(2010广东中山).已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G 。
∠C=∠EFB=90º,∠E=∠ABC=30º,AB=DE=4。
(1)求证:△EGB 是等腰三角形;(2)若纸片DEF 不动,问△ABC 绕点F 逆时针旋转最小_____度时,四边形ACDE 成为以ED为底的梯形(如图(2)),求此梯形的高。
2.(2010广东中山)阅读下列材料:1×2 =31×(1×2×3-0×1×2), 2×3 = 31×(2×3×4-1×2×3), 3×4 = 31×(3×4×5-2×3×4), 由以上三个等式相加,可得1×2+2×3+3×4 = 31×3×4×5 = 20。
读完以上材料,请你计算下列各题: (1)1×2+2×3+3×4+···+10×11(写出过程);(2)1×2+2×3+3×4+···+n×(n +1) = _________; (3)1×2×3+2×3×4+3×4×5+···+7×8×9 = _________。
3.(2010广东中山)如图(1),(2)所示,矩形ABCD 的边长AB=6,BC=4,点F 在DC 上,DF=2。
动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动。
2010年广东省初中数学毕业生学业考试数学试卷详细答案

机密★启用前2010年广东省初中毕业生学业考试数 学 试 卷说明:1.全卷共6页,考试用时100分钟,满分为120分。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。
1.-3的相反数是( )A .3B .31C .-3D .31-2.如图,已知∠1 = 70º,如果CD∥BE,那么∠B 的度数为( )A .70ºB .100ºC .110ºD .120º3.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元, 8元,9元,则这组数据的中位数与众数分别为( ) A .6,6B .7,6C .7,8D .6,84.左下图为主视方向的几何体,它的俯视图是( )5.下列式子运算正确的是( ) A .123=- B .248=C .331= D .4321321=-++二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上。
6. 据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000 人次。
试用科学记数法表示8000000=_______________________。
2010年广东中考数学试题及答案

2010年广州中考数学试题及答案本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟 注意事项:第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. (2010广东广州,1,3分)如果+10%表示“增加10%”,那么“减少8%”可以记作( ) A .-18% B .-8% C .+2% D .+8% 【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变. 【答案】B【涉及知识点】负数的意义【点评】本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一,有利于提高本题的信度.【推荐指数】★ 2. (2010广东广州,2,3分)将图1所示的直角梯形绕直线l 旋转一周,得到的立体图形是( )A .B .C.D .图1【分析】图1是一个直角题型,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台. 【答案】C【涉及知识点】面动成体【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,以及对点线面体之间关系的理解,考查知识点单一,有利于提高本题的信度.【推荐指数】★3. (2010广东广州,3,3分)下列运算正确的是( ) A .-3(x -1)=-3x -1 B .-3(x -1)=-3x +1 C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3【分析】去括号时,要按照去括号法则,将括号前的-3与括号内每一项分别相乘,尤其需要注意,-3与-1相乘时,应该是+3而不是减3. 【答案】D【涉及知识点】去括号【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是-3只与x 相乘,忘记乘以-1;二是-3与-1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分,信度相当好. 【推荐指数】★★4. (2010广东广州,4,3分)在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( ) A .2.5 B .5 C .10 D .15l【分析】由D 、E 分别是边AB 、AC 的中点可知,DE 是△ABC 的中位线,根据中位线定理可知,DE=12BC =2.5. 【答案】A【涉及知识点】中位线【点评】本题考查了中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半. 【推荐指数】★★5. (2010广东广州,5,3分)不等式110320.x x ⎧+>⎪⎨⎪-⎩,≥的解集是( )A .-31<x ≤2B .-3<x ≤2C .x ≥2D .x <-3【分析】解不等式①,得:x >-3;解不等式②,得:x ≤2,所以不等式组的解集为-3<x <2. 【答案】B【涉及知识点】解不等式组【点评】解不等式组是考查学生的基本计算能力,求不等式组解集的时候,可先分别求出组成不等式组的各个不等式的解集,然后借助数轴或口诀求出所有解集的公共部分. 【推荐指数】★★★6. (2010广东广州,6,3分)从图2的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称称图形的卡片的概率是( )图2A .41B .21C .43D .1【分析】在这四个图片中只有第三幅图片是中心对称图形,因此是中心对称称图形的卡片的概率是41.【答案】A【涉及知识点】中心对称图形 概率【点评】本题将两个简易的知识点,中心对称图形和概率组合在一起,是一个简单的综合问题,其中涉及的中心对称图形是指这个图形绕着对称中心旋转180°后仍然能和这个图形重合的图形,简易概率求法公式:P (A )=mn ,其中0≤P (A )≤1. 【推荐指数】★★★★7. (2010广东广州,7,3分)长方体的主视图与俯视图如图所示,则这个长方体的体积是( ) A .52B .32C .24D .9主视图 俯视图【分析】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24平方单位. 【答案】C【涉及知识点】三视图【点评】三视图问题一直是中考考查的高频考点,一般题目难度中等偏下,本题是由两种视图来推测整个正方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽. 【推荐指数】★★★★8. (2010广东广州,8,3分)下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0【分析】A 项中a ·b >0可得a 、b 同号,可能同为正,也可能同为负;B 项中a ·b <0可得a 、b 异号,所以错误;C 项中a ·b =0可得a 、b 中必有一个字母的值为0,但不一定同时为零. 【答案】D【涉及知识点】乘法法则 命题真假【点评】本题主要考查乘法法则,只有深刻理解乘法法则才能求出正确答案,需要考生具备一定的思维能力. 【推荐指数】★★9. (2010广东广州,9,3分)若a <11=( ) A .a ﹣2B .2﹣aC .aD .﹣a【分析】根据公式a=1=11a --,由于a <1,所以a -1<0,因此11a --=(1-a )-1=-a .【答案】D【涉及知识点】二次根式的化简【点评】本题主要考查二次根式的化简,难度中等偏难. 【推荐指数】★★★10.(2010广东广州,10,3分)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a ,b ,c ,…,z 依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s 对应密文c按上述规定,将明文“maths ”译成密文后是( )2A .wkdrcB .wkhtcC .eqdjcD .eqhjc【分析】m 对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w ;a 对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k ;t 对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d ;…,所以本题译成密文后是wkdrc . 【答案】A【涉及知识点】阅读理解【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度. 【推荐指数】★★★★第二部分(非选择题 共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.(2010广东广州,11,3分)“激情盛会,和谐亚洲”第16届亚运会将于2010年11月在广州举行,广州亚运城的建筑面积约是358000平方米,将358000用科学记数法表示为_______. 【分析】358000可表示为3.58×100000,100000=105,因此358000=3.58×105. 【答案】3.58×105 【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a ×10n的形式(其中1≤a<10,n 为整数,这种计数法称为科学记数法),其方法是(1)确定a ,a 是只有一位整数的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零). 【推荐指数】★★★★★12.(2010广东广州,12,3分)若分式51-x 有意义,则实数x 的取值范围是_______. 【分析】由于分式的分母不能为0,x -5在分母上,因此x -5≠0,解得x ≠5. 【答案】5≠x【涉及知识点】分式的意义【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零.【推荐指数】★★★ 13.(2010广东广州,13,3分)老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是2甲S =51、2乙S=12.则成绩比较稳定的是_______ (填“甲”、“乙”中的一个).【分析】由于两人的平均分一样,因此两人成绩的水平相同;由于2甲S >2乙S ,所以乙的成绩比甲的成绩稳定. 【答案】乙【涉及知识点】数据分析【点评】平均数是用来衡量一组数据的一般水平,而方差则用了反映一组数据的波动情况,方差越大,这组数据的波动就越大. 【推荐指数】★★★ 14.(2010广东广州,14,3分)一个扇形的圆心角为90°.半径为2,则这个扇形的弧长为________. (结果保留π)【分析】扇形弧长可用公式:180n r l π=求得,由于本题n =90°,r =2,因此这个扇形的弧长为π.【答案】π【涉及知识点】弧长公式【点评】与圆有关的计算一直是中考考查的重要内容,主要考点有:弧长和扇形面积及其应用等. 【推荐指数】★★★★15.(2010广东广州,15,3分)因式分解:3ab2+a2b =_______. 【分析】3ab2+a2b =ab (3b +a). 【答案】ab (3b +a)【涉及知识点】提公因式法因式分解【点评】本题是对基本运算能力的考查,因式分解是整式部分的重要内容,也是分式运算和二次根式运算的基础,因式分解的步骤,一提(提公因式),二套(套公式,主要是平方差公式和完全平方公式),三分组(对于不能直接提公因式和套公式的题目,我们可将多项式先分成几组后后,分组因式分解). 【推荐指数】★★★16.(2010广东广州,16,3分)如图4,BD 是△ABC 的角平分线,∠ABD =36°,∠C =72°,则图中的等腰三角形有_____个.ABCD【分析】由于BD 是△ABC 的角平分线,所以∠ABC =2∠ABD =72°,所以∠ABC =∠C =72°,所以△ABC 是等腰三角形.∠A =180°-2∠ABC =180°-2×72°=36°,故∠A =∠ABD ,所以△ABD 是等腰三角形∠DBC =∠ABD =36°,∠C =72°,可求∠BDC =72°,故∠BDC =∠C ,所以△BDC 是等腰三角形. 【答案】3【涉及知识点】等腰三角形的判定【点评】要想说明一个三角形是等腰三角形,只要能找到两个相等的角或两条相等的边即可,本题主要考查的“等角对等边”的应用,本题难度中等,只要细心,很容易拿分.【推荐指数】★★★★三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(2010广东广州,17,9分)解方程组.1123,12⎩⎨⎧=-=+y x y x【答案】.112312⎩⎨⎧=-=+②①y x y x①+②,得4x =12,解得:x =3.将x =3代入①,得9-2y =11,解得y =-1.所以方程组的解是⎩⎨⎧-==13y x .【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.【推荐指数】★★★18.(2010广东广州,18,9分)如图5,在等腰梯形ABCD 中,AD ∥BC . 求证:∠A +∠C =180°AB CD【分析】由于AD ∥BC ,所以∠A +∠B =180°,要想说明∠A +∠C =180°,只需根据等腰梯形的两底角相等来说明∠B =∠C 即可. 【答案】证明:∵梯形ABCD 是等腰梯形, ∴∠B =∠C 又∵AD ∥BC , ∴∠A +∠B =180° ∴∠A +∠C =180°【涉及知识点】等腰梯形性质【点评】本题是一个简单的考查等腰梯形性质的解答题,属于基础题. 【推荐指数】★★★19.(2010广东广州,19,10分)已知关于x 的一元二次方程)0(012≠=++a bx ax有两个相等的实数根,求4)2(222-+-b a ab的值。
2010年广东各中考数学试题8套打包广东

2010年广东省初中毕业生学业考试说明:1 •全卷共4页,考试用时100分钟,满分为120分.2•答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号•用 2B 铅笔把对应该号码的标号涂黑.3 •选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4•非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液•不按以上要求作答的答案无效.5 •考生务必保持答题卡的整洁•考试结束时,将试卷和答题卡一并交回.一、选择题(本大题 5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. -3的相反数是(B . 132. 下列运算正确的是(3.如图,已知/ 仁70°,如果CD// BE,那么/ B 的度数为( )A. 70 °B. 100 °C. 110 °D. 1204. 某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为 9元,则这组数据的中位数与众数分别为()机密☆启用前A. 3C.A . 2a 3b =5ab • 2 2a - b = 4a - b C. a b a - b = a 2 -b 2D .(a + b f = a 2 +b 25元、6元、6 元、7 元、8元、A.6,6B.7,6C. 7,8D.6,85. 左下图为主视方向的几何体,它的俯视图是()A, R. C.D.、填空题(本大题 5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应 的位置上.6. 根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚 8000000人次,试用科学记数法表示 8000000 = _________ .7. 分式方程-2X1的解X =.X +148. 如图,已知Rt △ ABC 中,斜边BC 上的高 AD= 4,cosB = ,贝U5AC =.19时,参观者已超过9. 某市2007年、2009年商品房每平方米平均价格分别为 4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为X ,试列出关于X 的方程: _______________ .10. 如图(1),已知小正方形 ABCD 勺面积为1,把它的各边延长一倍得到新正方形ABQD ;把正方形A 1B 1CD 边长按原法延长一倍得到新正方形 A 2B2GD (如图(2));以此下去…,则正方形 A 4B4GD 的面积为 __________ .A,第10题图(1)第8题图第10题图伐)三、解答题(一)(本大题5小题,每小题6分,共30 分)13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,Rt △ ABC的顶点均在格点上,在建立平面直角坐标系以后,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3).(1 )将Rt △ ABC沿X轴正方向平移5个单位得到Rt△ A1B1C1,试在图上画出Rt△ A1B C1的图形, 并写出点A的坐标。
中山市2010年初三数学竞赛试题

中山市2010年初三数学竞赛试题一、选择题(共5小题,每小题7分,共35分. 每道小题有且只有一个选项是正确的. 请将正确选项代号填入题后的括号里,不填、多填或错填都得0分)1.若20 10a b b c ==,,则a b b c ++的值为 ( ) (A )1121 (B )21011 (C )11021 (D )21112.若实数a ,b 满足21202a ab b -++=,则a 的取值范围是 ( )(A )a ≤2- (B )a ≥4 (C )2-≤a ≤4 (D )a ≤2-或 a ≥43.如图,在四边形ABCD 中,∠B =135°,∠C =120°,AB =BC =4-CD =AD 边的长为( )(A )(B )64 (C )622+(D )64+4.在一列数123x x x ,,,……中,已知11=x ,且当k ≥2时,1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭,(取整符号[]a 表示不超过实数a 的最大整数,例如[]2.62=,[]0.20=),则2010x 等于 ( )(A) 1 (B) 2 (C) 3 (D) 45.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是 ( )(A )(2010,2) (B )(2012,2-)(C )(2010,2-) (D )(0,2) 二、填空题(共5小题,每小题7分,共35分)6.已知a =5-1,则2a 3+7a 2-2a -11 的值等于 .7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t 分钟,货车追上了客车,则t = .8.如图,在平面直角坐标系xOy 中,多边形OABCDE 的顶点坐标分别是O (0,0),A (0,6),B (4,6),C (4,4),D (6,4),E (6,0).若直线l 经过点M (2,3),且将多边形OABCDE 分割成面积相等的两部分,则直线l 的函数表达式是 .9.如图,射线AM ,BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE ,BN 于点F ,C ,过点C 作AM 的垂线CD ,垂足为D .若CD =CF ,则AEAD= . 10.对于i =2,3,…,k ,正整数n 除以i 所得的余数为i -1.若n 的最小值0n 满足020003000n <<,则正整数k 的最小值为 .三、解答题(共4题,每题20分,共80分)11.设实数a ,b 满足:2231085100a ab b a b -++-=,求u =29722a b ++的最小值.12.如图,AB 为⊙O 的直径,C 为圆上一点,AD 平分∠BAC 交⊙O 于点D ,DE ⊥AC 交AC 的延长线于点E ,FB 是⊙O 的切线交AD 的延长线于点F . (1)求证:DE 是⊙O 的切线.(2)若DE = 3,⊙O 的半径为5,求BE 的长.13.设1x ,2x ,…,008 2x 是整数,且满足下列条件: (1)21≤≤-n x (n =1,2,…,2 008); (2)++21x x …+008 2x =200;(3)++2221x x …+2008 2x =2 008. 求++3231x x …+3008 2x 的最小值和最大值.14.如图,已知直线b x y l +=31:经过点)41 0(,M ,一组抛物线的顶点11(1, y )B ,22(2, y )B ,33(3, y )B ,…,n (, y )n B n (n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:11(, 0)A x ,22(, 0)A x ,33(, 0)A x ,…,11(,0)n n A x ++(n 为正整数),设d x =1(0<d <1).(1)求经过点1A 、1B 、2A 的抛物线的解析式(用含d 的代数式表示);(2)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”. 探究:当d (0<d <1)的大小变化时,这组抛物线中是否存在“美丽抛物线”?若存在,请求出相应的d 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年广东省中山市初中毕业生学业考试
数 学
说明:1.全卷共4页,考试用时100分钟,满分为120分.
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.
5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.
一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.-3的相反数是( ) A .3
B .
3
1
C .-3
D .3
1-
2.如图,已知∠1 = 70º,如果CD ∥BE ,那么∠B 的度数为( ) A .70º
B .100º
C .110º
D .120º
3.某学习小组7位同学,为玉树地重灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( ) A .6,6
B .7,6
C .7,8
D .6,8
4.左下图为主视图方向的几何体,它的俯视图是( )
5.下列式子运算正确的是( ) A .123=- B .248=
C .
33
1= D .
43
213
21=-+
+
二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.
6.据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000人次.试用科学记数法表示8000000=__________.
7.化简:1
1
222---+-y x y xy x =__________.
A .
B . D .
C .
第4题图
第8题图
A
B
C D
第2题图
B C
E
D
A 1
(
8.如图,已知Rt △ABC 中,斜边BC 上的高AD =4,cosB =5
4
,则AC =_________. 9.已知一次函数b x y -=与反比例函数x
y 2
=
的图象,有一个交点的纵坐标是2,则b 的值为__________. 10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1
边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为
__________.
三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:()0
1260cos 2)2
1
(4π-+︒--+-.
12.解方程组:⎩⎨
⎧=-+=-4
33022
2
y y x y x
13.如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt △ABC 的顶点均在个点上,在建立平面直角坐标系后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为(-3,3).
(1)将Rt △ABC 沿x 轴正方向平移5个单位得到Rt △A 1B 1C 1,试在图上画出的图形Rt △A 1B 1C 1,并写出点A 1的坐标;
(2)将原来的Rt △ABC 绕点B 顺时针旋转90°得到Rt △A 2B 2C 2,试在图上画出Rt △A 2B 2C 2的图形.
14.如图,PA 与⊙O 相切于A 点,弦AB ⊥OP ,垂足为C ,OP 与⊙O 相交于D 点,已知OA =2,OP =4. (1)求∠POA 的度数;
第10题图(1) 1 B 1 C 1 D 1 A B C D D 2 A 2
B 2
C 2
D 1 C 1 B 1 A 1 A B
C
D 第10题图(2)
第13题图
(2)计算弦AB 的长.
15.已知一元二次方程022=+-m x x . (1)若方程有两个实数根,求m 的范围;
(2)若方程的两个实数根为x 1,x 2,且3321=+x x ,求m 的值.
四、解答题(二)(本大题4小题,每小题7分,共28分)
16.分别把带有指针的圆形转盘A 、B 分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示).欢欢、乐乐两人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.
(1)试用列表或画树状图的方法,求欢欢获胜的概率;
(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.
17.已知二次函数c bx x y ++-=2的图象如图所示,它与x 轴的一个交点坐标为(-1,0),与y 轴的交点坐标为(0,3).
(1)求出b ,c 的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y 为正数时,自变量x 的取值范围.
18.
AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30º,EF ⊥AB ,
垂足为F ,连结DF .
第16题图 转盘A
转盘B A B D E F
第18题图
(1)试说明AC =EF ;
(2)求证:四边形ADFE 是平行四边形. 19.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. (1)请你帮助学校设计所有可行的租车方案;
(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?
五、解答题(三)(本大题3小题,每小题9分,共27分)
20.已知两个全等的直角三角形纸片ABC 、DEF ,如图(1)放置,点B 、D 重合,点F 在BC 上,AB 与EF 交于点G .∠C =∠EFB =90º,∠E =∠ABC =30º,AB =DE =4. (1)求证:△EGB 是等腰三角形; (2)若纸片DEF 不动,问△ABC 绕点F 逆时针旋转最小_____度时,四边形ACDE 成为以ED 为底的梯形(如图(2)).求此梯形的高.
21.阅读下列材料:
1×2 = 31(1×2×3-0×1×2), 2×3 = 31
(2×3×4-1×2×3),
3×4 = 3
1
(3×4×5-2×3×4),
由以上三个等式相加,可得
1×2+2×3+3×4= 3
1
×3×4×5 = 20.
读完以上材料,请你计算下列各题:
(1) 1×2+2×3+3×4+···+10×11(写出过程); (2) 1×2+2×3+3×4+···+n ×(n +1) = _________;
(3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = _________.
22.如图(1),(2)所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B
第20题图(1)
A B C E F F B (D ) G G A E D
第20题图(2)
同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A 时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值.
第22题图(1)。