使用桥博进行34+50+34m连续梁桥计算
混凝土连续梁桥的计算
第四章混凝土连续梁桥的计算授课时间:2006年10月30日授课地点:试验楼试验三教学内容:1、结构恒载内力计算2、结构活载内力计算3、恒活载内力计算时的几点注意事项重点:1、悬臂施工连续梁桥恒载内力计算2、结构活载内力计算方法思考题及习题:第一节结构恒载内力计算一、计算特点简支梁桥-------成桥结构图式连续梁桥等超静定结构--------根据施工方法来确定其计算图式相应施工阶段的计算图式单独地计算然后进行内力或应力叠加连续梁桥的施工方法,大体有以下几种:1.有支架施工法;2.逐孔施工法;3.悬臂施工法;4.顶推施工法等。
结构体系转换和内力(或应力)叠加的问题,这就是连续梁桥恒载内力计算的一个重要特点。
二、恒载内力计算(一)满常支架现浇连续梁桥恒载内力计算特点:1、整联布设支架,一次落架。
2、无体系转换,结构力学中的连续梁进行计算(二)悬臂施工连续梁桥恒载内力计算例子:某5跨连续梁桥,跨径为30m+3×45m+30m合龙次序------由边孔对称向中孔依次进行1.悬拼完毕,吊机拆除悬臂完毕时的恒载内力如图2-4-1a所示2.现浇边跨部分一端固定,一端简支,现浇段自重作用恒载内力如图2-4-1b)所示3.拆除2号墩、5号墩上的临时支座一端固定一端简支的梁式结构-----两端简支的单悬臂结构的内力临时支座释放的不平衡弯矩在两端简支的单悬臂上所产生的内力(图2-4-1c))。
4.边跨合龙边跨的单悬臂梁与3号墩(4号墩)的T构现浇合龙。
计算单悬臂梁和T构的支架、模板重力及合龙段自重作用下的内力(图2-4-1d))。
5.合龙段支架模板拆除后,考虑合龙段的上述重力从相反方向加在已合龙的结构体系上产生的内力(图2-4-1e))。
6.拆除3号墩(4号墩)的临时支座,计算因拆除临时支座所产生的内力(图2-4-1f));7.中跨合龙把左半跨与右半跨合龙成5跨连续梁。
计算合龙段两侧臂端在支架、模板重力、合龙段自重作用下的内力(图2-1-4g))。
桥梁博士常见问题解答
横梁计算(1) 计算方法概述横梁按照一次落架的施工方法采用平面杆系理论进行计算,考虑长度为6倍顶板厚度的顶底板参与横梁受力,根据荷载组合要求的内容进行内力、应力、极限承载力计算,按钢筋混凝土构件(钢筋混凝土横梁)/预应力构件(预应力混凝土横梁)验算结构在施工阶段、使用阶段应力、极限承载力是否符合规范要求。
(2) 荷载施加方法横梁重量按实际施加,同时将纵向计算时永久作用和除汽车、人群以外的可变作用引起的支反力标准值作为永久荷载平均施加在横梁的各腹板位置,汽车、人群荷载在其实际作用范围按最不利加载。
当然,用户可以采用其他的荷载施加方法,不必拘泥于上述内容。
(3) 将纵向一列车的支反力作为汽车横向分布调整系数时(注意城市荷载纵向计算的车道数大于4时,计算剪力时荷载乘1.25,故用多列车支反力除横向分布系数较真实),横向加载有效区域需手动扣除车轮距路缘石的距离。
(4) 每m宽人群纵向支反力作为人群横向系数,人行道宽度为纵向宽度,填1,人群集度填1,加载有效区域按实际填。
(5) 满人横向系数与人群相同,满人总宽填1预应力构件中单元应力验算应以主应力控制还是正应力控制?主应力主要用来控制构件腹板内部斜裂缝的,铁路规范明确定义截面重心轴处及翼缘板与腹板交接处需要进行主拉应力验算,桥博的计算结果中虽然也给出了主应力值,但是对于单元顶、底缘的主应力可以不受控制,因为一般主应力在单元内部发生。
正应力主要是用来控制单元顶、底缘的。
使用刚接板梁计算横向分布系数左板和右板惯矩怎么计算出来的啊?对于小箱梁和T梁,就是将上部结构沿纵桥向取1m,在这1m的范围内上部结构拼接处的悬臂接触面积。
以T梁为例,就是图中阴影部分的面积计算惯性矩即可。
部分支座的反力为0?Q:桥博计算的收缩支反力中部分支座的反力为0,结构自重在各支座处产生的支反力均不为0,可为何支反力汇总列表中收缩反力为0的支座,支反力汇总也为0。
A:程序计算各项反力后,将各作用产生的支反力叠加,若某个支座支反力为负,即出现支座脱空时,程序就将这个支座拆除,在其上反向增加一个外荷载,荷载大小等于除收缩之外其余荷载及作用产生的支反力合力,重新计算其余支座的支反力,在各支座支反力汇总时,被拆除的支反力为0,其余支反力为各作用的合力汇总。
混凝土连续梁桥的计算
2、吻合索
调整预应力束筋在中间支点的位置,使 预应力筋重心线线性转换至压力线位置 上,预加力的总预矩不变,而次力矩为 零。
次力矩为零时的配束称吻合索
多跨连续梁在任意荷载作用下
结论: 按外荷载弯矩图形状布置预应力束及为 吻合束 吻合束有任意多条
均布荷载q 集中荷载q
第五节 徐变、收缩次内力计算
滑动模板支架系统MSS造桥机
上 导 梁 式 施 工 方 法
第二节 连续梁桥恒载内力计算
必须考虑施工过程中的体系转换,不同的荷 载作用在不同的体系上
1、满堂支架现浇施工 所有恒载直接作用在连续梁上
2、简支变连续施工
一期恒载作用在简支梁上,二期恒载作用在连 续梁上
3、逐跨施工
3.预应力混凝土梁计算预加力引起的应力时, 其轴向力部分按全宽计算,偏心部分按有效 宽度计算。 4.对超静定结构进行作用效应分析时,可取 实际宽度计算。
第四节 连续梁桥荷载横向分布计算
桥梁结构属空间受力,内力分析和计算复杂, 为简化计算常利用主梁的内力影响线和考 虑荷载横向分布相结合的分离变量方法计 算桥梁的空间受力作用。
– 徐变系数——徐变与弹性应变之比
二、 徐变、收缩量计算表达
1、实验拟合曲线法
建立一个公式,参数通过查表计算, 各国参数取法不相同,常用公式有: – CEB—FIP 1970年公式 – 联邦德国规范1979年公式 – 国际预应力协会(FIP)1978年公式—— 我国采用的公式
2、徐变系数数学模型
面内力,即总预矩
• 4.求解截面次预矩
M 次=M总 M 初
3、初预矩与总预矩
– 将等效荷载作用在基本结构上可得初预矩 – 将等效荷载直接作用在连续梁上可得总预
midas截面几何性质计算2
看大家对横向力分布系数计算疑惑颇多,特在这里做一期横向力分布系数计算教程(本教程讲的比较粗浅,适用于新手)。
总的来说,横向力分布系数计算归结为两大类(对于新手能够遇到的):1、预制梁(板梁、T梁、箱梁)这一类也可分为简支梁和简支转连续2、现浇梁(主要是箱梁)首先我们来讲一下现浇箱梁(上次lee_2007兄弟问了,所以先讲这个吧)在计算之前,请大家先看一下截面这是一个单箱三室跨径27+34+27米的连续梁,梁高1.55米,桥宽12.95米!!支点采用计算方法为为偏压法(刚性横梁法)mi=P/n±P×e×ai/(∑ai x ai)跨中采用计算方法为修正偏压法(大家注意两者的公式,只不过多了一个β)mi=P/n±P×e×ai×β/(∑ai x ai)β---抗扭修正系数β=1/(1+L^2×G×∑It/(12×E×∑ai^2 Ii)其中:∑It---全截面抗扭惯距Ii ---主梁抗弯惯距Ii=K Ii` K为抗弯刚度修正系数,见后L---计算跨径G---剪切模量G=0.4E 旧规范为0.43EP---外荷载之合力e---P对桥轴线的偏心距ai--主梁I至桥轴线的距离在计算β值的时候,用到了上次课程/thread-54712-1-1.html我们讲到的计算截面几何性质中的抗弯惯矩和抗扭惯矩,可以采用midas计算抗弯和抗扭,也可以采用桥博计算抗弯,或者采用简化截面计算界面的抗扭,下面就介绍一下这种大箱梁是如何简化截面的:简化后箱梁高度按边肋中线处截面高度(1.55m)计算,悬臂比拟为等厚度板。
①矩形部分(不计中肋):计算公式:It1=4×b^2×h1^2/(2×h/t+b/t1+b/t2)其中:t,t1,t2为各板厚度h,b为板沿中心线长度h为上下板中心线距离It1= 4×((8.096+7.281)/2)^2×1.34^2/(2×1.401/0.603+8.097/0.22+7.281/0.2)=5.454 m4②悬臂部分计算公式: It2=∑Cibiti3其中:ti,bi为单个矩形截面宽度、厚度Ci为矩形截面抗扭刚度系数,按下式计算:Ci=1/3×(1-0.63×ti/bi + 0.052×(ti/bi)^5)=1/3×(1-0.63×0.26/2.2+0.052×(0.26/2.2)^5)=0.309It2=2×0.309×2.2×0.26^3=0.0239 m4③截面总的抗扭惯距It= It1+ It2=5.454+0.0239=5.4779 m4大家可以用midas计算对比一下看看简化计算和实际能差多少??先计算一下全截面的抗弯和中性轴,下面拆分主梁需要用的到采用<<桥梁博士>>V2.9版中的截面设计模块计算全截面抗弯惯距,输出结果如下:<<桥梁博士>>---截面设计系统输出文档文件: D: \27+34+27.sds文档描述: 桥梁博士截面设计调试任务标识: 组合截面几何特征任务类型: 截面几何特征计算------------------------------------------------------------截面高度: 1.55 m------------------------------------------------------------计算结果:基准材料: JTJ023-85: 50号混凝土基准弹性模量: 3.5e+04 MPa换算面积: 7.37 m2换算惯矩: 2.24 m4中性轴高度: 0.913 m沿截面高度方向5 点换算静矩(自上而下):主截面:点号: 高度(m): 静矩(m××3):1 1.55 0.02 1.16 1.773 0.775 1.834 0.388 1.585 0.0 0.0------------------------------------------------------------计算成功完成结果:I全= 2.24 m4 中性轴高度H=0.913m下面来讲一下主梁拆分的原则:将截面划分为τ梁和I梁,保持将两截面中性轴与全截面中性轴位置一致。
利用桥梁博士进行3x25m+5x25+3x25m预应力混凝土连续梁桥设计毕业设计计算书
毕业设计设计题目利用桥梁博士进行3x25m+5x25+3x25m预应力混凝土连续梁桥设计院系名称土木与水利工程学院20xx 年6月3日1绪论............................................................................................ 错误!未定义书签。
1.1工程概况 (5)1.1.2技术标准 (5)1.1.3工程地质条件 (5)1.1.4自然条件及气象、水文 (6)1.2方案比选 (7)1.3力学特点及适用范围 (11)1.4立面布置 (11)1.4. 1.桥跨布臵 (11)1.4.2 梁高布置 (12)1.5设计依据 (12)2桥跨总体布置及结构主要尺寸 ............................................... 错误!未定义书签。
2.1桥跨结构图式及尺寸拟定 (13)2.1.1设计技术标准: (13)2.1.2结构图式 (13)2.1.3主要尺寸拟定 (13)2.2主梁分段与施工阶段的划分 (15)2.2.1具体分段 (15)3内力计算及荷载组合 ............................................................... 错误!未定义书签。
3.1 恒载内力计算 (15)3.1.1计算方法 (15)3.1.2 截面几何特性的计算 (16)3.2内力组合 (18)3.3 荷载组合 (19)3.3.1 承载能力极限状态内力组合 (20)3.3.2 正常使用极限状态内力组合 (20)4桥梁博士建模............................................................................ 错误!未定义书签。
4.1 数据准备 (20)4.1.1 材料及设计参数 (20)4.2项目的建立 (21)4.1.1 输入总体信息 (22)4.1.2 基本信息 (23)4.2.1 输入单元信息 (25)4.2. 2 活荷载描述 (28)4.3 计算内容 (28)4.3.1 估算结构配筋面积 (29)5 预应力钢束的估算与布置 ....................................................... 错误!未定义书签。
使用桥博进行34+50+34m连续梁桥计算
34+50+34m连续梁桥计算本例题利用《桥梁博士V3.03》计算连续梁桥,着重熟悉施工阶段的输入。
一、前处理输入(一)总体信息输入1.计算类型计算类别中有四个选项,其中的区别请自行查阅软件的帮助文件,本次计算中直接选用“全桥结构安全验算”。
2.计算内容计算内容中的6个选项,根据实际需要选取,对于一般的预应力桥梁前4项是最为常用,后两项为非线性计算内容。
3.桥梁环境这个选项一般情况下不需要做太多修改,但是如果桥梁环境有特殊情况则需要修改。
4.设计规范设计规范中有交通规范和铁路规范。
在这里选择相应的规范,软件就可以自动对规范中一部分的条文和计算公式进行校核。
(二)单元信息输入1.输入截面在AutoCAD中使用dxf文件格式绘制跨中截面(以mm为单位),导入到桥梁博士中,存为1.sec文件。
同样操作渐变段任意一截面和墩顶截面分别存为2.sec和3.sec文件。
2.边跨直线单元组编辑3.对称操作利用对称操作完成中跨半跨的单元输入工作。
再次利用对称操作完成全桥的单元输入工作。
全桥单元如下图所示:4.自重调整1.定义钢束参考线输入49种钢束。
(四)施工信息输入1.施工阶段1:施工0号1号块。
安装单元:15-18 33-36张拉、灌浆钢束号:33-34施加中横梁恒载:740.90kN边界条件:桥墩支座固结。
2.施工阶段2:安装吊篮、加2号块湿重吊篮假设自重为350kN,偏心距为1.5m。
2号块混凝土湿重为1075.7kN,偏心距为1.5m。
合计为:竖向力1425.5kN,力矩2138.25kNm,采用临时荷载输入。
3.施工阶段3:施工2号块。
安装单元:14 19 32 37张拉、灌浆钢束号:35 36吊篮假设自重为350kN,偏心距为1.5m,力矩为525kNm。
4.施工阶段4:安装吊篮、加3号块湿重吊篮假设自重为350kN,偏心距为1.5m。
3号块混凝土湿重为1002.7kN,偏心距为1.5m。
合计为:竖向力1352.7kN,力矩2029.05kNm,采用临时荷载输入。
桥博和midas考虑有效分布宽度的快速输入方法-图文
桥博和midas考虑有效分布宽度的快速输入方法-图文在桥博和mida中,考虑有效分布宽度的属输入都不是很轻松的事情,桥博要求输入上下翼缘的有效宽度,mida的非内嵌截面要求输入有效截面相对原截面的惯性矩折减系数;相对来说,桥博数据较直接、简单方便;mida数据较底层,麻烦、数据处理量较大;但即使是使用桥博,有效分布宽度的处理也是件工作量很大的工作;老任利用朋友们开发的cad小工具软件,总结出一套有效宽度处理的方法,相对比较方便快捷;下面以一个例子的方式介绍一下这种方法的操作过程和工具软件;这个过程的总体思路是:第一步、在cad中使用y某kd程序计算出翼缘的折减后宽度曲线,并使用程序将该曲线坐标输出到e某cel中,计算得到折减系数沿跨长的分布函数;第二步、使用桥博通用截面拟合功能输入截面有效宽度;第三步:对于使用mida程序,可先使用进行第一步、第二步得到桥博模型,然后按一次落架方式计算,再使用报表输出原截面和有效截面的截面特性,得到惯性矩折减系数;例子为计算跨径34.35+48+34.35m的变截面连续箱梁,翼缘悬臂2.5m内,标准断面上缘箱室净宽6.073m;下缘净宽5.763m;梁端至边支座中心线距离为0.55m;2、计算有效分布宽度系数为简单起见,全桥的翼缘计算宽度统一取标准断面的翼缘实际宽度,不考虑由于腹板加宽造成的翼缘宽度差异;工程上,类似取舍造成的误差微乎其微;计算有效分布宽度使用张文锋工程师开发的lip程序--y某kd,该程序在程序编制的过程中,笔者对张树仁推荐的有效分布宽度折减系数回归方程进行了计算研究,发现p表达式值相对规范表格值误差较大,最大达到20%左右;这个误差可能无法接受,因此未采用该公式;经过检索文献,发现桂林工学院景天虎拟合公式较为合理,该公式为:y某kd数据采用了该公式。
加载后操作如下:命令:Y某KD请选择结构类型[(T梁或工型截面梁)T/(箱梁)B]:请选择结构体系[(简直梁)J/(连续梁)L/(悬臂梁)某]:输入梁的计算跨径(形如:A+N某B+C):34.35+48+34.35输入理论跨径范围以外的一端附加长度(若两端不等,取最大)<0>:0.55选择有效宽度分布图的插入点:>>选择有效宽度分布图的插入点:指定第一个翼缘实际宽度:3.037指定下一个翼缘实际宽度:2.5程序执行完毕后,会自动以多义线的方式在cad中绘制出实际翼缘宽度对应的折减后翼缘宽度曲线,如下图所示:接下来,我们把y某kd程序得到的有效宽度输出到cad中;这个功能需要使用lip程序---将多义线坐标输出到e某cel中,我使用的是g1--我同济院同事吕世军高工开发的;其本意用于钢束坐标处理,被我挪用在这里,可也算是活学活用了;第一步,使用uc命令将坐标原点设到桥博模型的零点处;第二步:输入命令g1:命令:g1某某某《钢束工具1》某某某A-输出文本,B-输出E某cel:b请输入小数点位数:3命令:选取PLINE多义线...选择对象:找到1个完毕后,程序自动启动e某cel,生成下图数据:接下来,我们在e某cel对y坐标进行处理,因为这里的y坐标是翼缘考虑折减后的宽度,我们在桥博的通用截面拟合中为保证数据的合理性,需要使用折减系数;因此,我们统一对此列除于实际宽度宽度,得到折减系数,如下图:其实如果程序支持直接输出折减系数曲线,这个过程是多余的,我一直让张工改写一下,支持该参数输出,可张工太忙!其他翼缘宽度如以上过程,依次处理数据;3、使用桥博通用截面工具输入上下缘的有效分布宽度桥博的通用截面拟合工具支持截面数据和有效分布宽度数据分离输入,所以在使用这个功能你可以和截面脚本一起使用,你也可以先使用程序自带参数截面、cad导入截面或者快速编辑器的方法先输入截面数据,然后使用通用截面拟合的方式单独输入有效分布宽度,在这里,为简单起见,我单独输入有效分布宽度,参数如下:B:箱室顶缘全宽;B1:外悬臂实际翼缘宽度;B2:底缘实际全度Fb:腹板在顶缘的映射宽度(斜投影),即水平宽度;P1:外悬臂实际翼缘宽度对应折减系数;P2:箱室内腔顶缘实际宽度对应折减系数;P2:箱室内腔底缘实际宽度对应折减系数;界面如下图:Section0.Top=B1某p1某2+(B-2某B1-2某Fb)某p2+2某Fb;//上缘有效了宽度Section0.Bottom=(B2-2某Fb)某p3+2某Fb;;//下缘有效了宽度依次将构造参数值填入,将之前在e某cel中的处理得到P1、P2、P3复制粘贴到截面拟合中的参数表中,点击“生成截面输入”,完毕;4、mida考虑有效宽度的惯性矩折减系数mida因为需要用户直接输入有效截面惯性矩折减系数,这个非常底层的数据处理方法对用户来说,是非常不人道的!这也是我经常批评mida方不懂设计的原因;很多用户为简单起见,直接拿有效宽度的折减系数输入到mida中,这种取舍造成的误差就不是微乎其微的了,这是完全错误的做法。
连续梁桥计算
M0
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
1
0
-1
2
0
0.250000
-1
3
0
-0.066667
0.266667
-1
4
0
0.017857
-0.071429
0.267857
-1
5
0
-0.004785
0.019139
-0.071771
0.267943
-1
6
0
0.001282
-0.005128
0.019231
阶段图式1在主墩上悬臂浇注砼2边跨合龙3中跨合龙4拆除合龙段挂篮5上二期恒载图11采用悬臂浇筑法施工时连续梁自重内力计算图式四阶段4拆除合龙段的挂篮此时全桥已经形成整体结构超静定结构拆除合龙段挂篮后原先由挂篮承担的合龙段自重转而作用于整体结构上
第一章 混凝土悬臂体系和连续体系梁桥的计算
第一节 结构恒载内力计算
阶段
图 式
1
在主墩上悬臂浇注砼
2
边跨合龙
3
中跨合龙
4
拆除合龙段挂篮
5
上
二
期
恒
载
图1-1采用悬臂浇筑法施工时连续梁自重内力计算图式
(四)阶段4 拆除合龙段的挂篮
此时全桥已经形成整体结构(超静定结构),拆除合龙段挂篮后,原先由挂篮承担的合龙段自重转而作用于整体结构上。
(五)阶段5 上二期恒载
在桥面均布二期恒载 的作用下,可得到三跨连续梁桥的相应弯矩图。
顶推连续梁的内力呈动态型的,其内力值与主梁和导梁二者的自重比,跨长比和刚度比等因素有关,很难用某个公式来确定图1-2b中最大正弯矩截面的所在位置,因此,只能借助有限元计算程序和通过试算来确定。但在初步设计中,可以近似地按图1-4的三跨连续梁计算图式估算。其理由是距顶推连续梁端部0.4 截面处的正弯矩影响线面积之和相对最大,虽然在导梁的覆盖区也有负弯矩影响线面积,但导梁自重轻,故影响较小。
m预应力连续梁计算书(桥梁博士
目录一、预应力钢筋砼上部结构纵向计算书 (1)(一)工程概况: (1)(二)设计荷载 (2)(三)主要计算参数 (2)(四)计算模型 (3)(五)主要计算结果 (4)1、施工阶段简明内力分布图和位移图 (4)2、支承反力 (5)3、承载能力极限状态内力图 (6)4、正常使用极限状态应力图 (7)(六)主要控制截面验算 (8)1、截面受弯承载能力计算 (8)2、斜截面抗剪承载能力计算 (16)3、活载位移计算 (17)(七)结论 (17)30+45+30米连续梁计算书一、预应力钢筋砼上部结构纵向计算书(一)工程概况:本计算书是针对标段中的30+45+30米的预应力混凝土连续梁桥进行。
桥宽为9.5m,采用单箱单室,单侧翼板长2.5米;梁高为1.6~2.3米,梁底按二次抛物线型变化。
箱梁腹板采用斜腹板,腹板的厚度随着剪力的增大而从跨中向支点逐渐加大,箱梁边腹板厚度为50~70cm。
箱梁顶板厚22cm。
为了满足支座布置及承受支点反力的需要,底板的厚度随着负弯矩的增大而逐渐从跨中向支点逐渐加大,厚度为22~35cm。
其中跨跨中断面形式见图1.1,支承横梁边的截面形式见图1.2。
结构支承形式见图1.3。
主梁设纵向预应力。
钢束采用Ø15.24低松弛预应力钢绞线,j标准强度为1860MPa,弹性模量为1.9X105 MPa,公称面积为140mm2。
预应力钢束采用真空吸浆工艺,管道采用与其配套的镀锌金属波纹管。
纵向钢束采用大吨位锚。
钢束为19Øs15.24的钢绞线,均为两端张拉,张拉控制应力为1339MPa。
图1.1 中跨跨中截面形式图1.2 横梁边截面形式图1.3 结构支承示意图(二)设计荷载结构重要性系数:1.0设计荷载:桥宽9.5米,车道数为2,城-A汽车荷载。
人群荷载:没有人行道,所以未考虑人群荷载。
设计风载:按平均风压1000pa计,地震荷载:按基本地震烈度7度设防,温度变化:结构按整体温升200C,整体温降200C计,桥面板升温140C,降温70C。
关于midas分析时需要注意的问题
最近将阳光论坛上的几个常见的问题整理了一下,与大家共勉。
1.在midas中横向计算问题.在midas中横向计算时遇到下列几个问题,请教江老师.1.荷载用"用户定义的车辆荷载",DD,FD,BD均取1.3m,P1,P2为计算值,输入时为何提示最后一项的距离必须为0?2.同样在桥博中用特列荷栽作用时,计算连续盖梁中中支点的负弯距相差很大.其他位置相差不多.主要参数:两跨2X7.5m,bXh=1.4X1.2m,P1,P2取100midas结果支点活载负弯矩-264.99kn.m桥博结果支点活载负弯矩-430kn.m通过多次尝试及MIDAS公司的大力支持,现在最终的结果如下:肯定是加载精度的问题,可以通过将每个梁单元的计算的影响线点数改成6,或者,将梁单元长度改成0.1米,就能保证正好加载到这一点上。
由这个精度引起的误差应该可以接受的,如果非要消除,也是有办法的。
2.梁板模拟箱梁问题腹板用梁单元,顶底板用板单元,腹板和顶底板间用什么连接,刚性?用这个模型做顶底板验算是否合适?在《铁道标准》杂志的“铁道桥梁设计年会专辑”上有一篇文章,您可以参考一下:铁四院康小英《组合截面计算浅析》里面讨论组合截面分别用MIDAS施工阶段联合截面与梁+板来实现,最后得出结论是用梁+板的结果是会放大板的内力。
可能与您关心的问题有相似的地方。
建议您可以先按您的想法做一个,再验证一下,一定要验证!c3.midas里面讲质量转换为荷载什么意思!是否为“荷载转为质量”?在线帮助中这么写:将输入的荷载(作用于整体坐标系(-)Z方向)的垂直分量转换为质量并作为集中质量数据。
该功能主要用于计算地震分析时所需的重力荷载代表值。
直观的理解就是将已输入的荷载,转成质量数据,不必第二次输入。
一般用得比较多的是将二期恒载转成质量。
另外,这里要注意的是,自重不能在这里转换,应该在模型--结构类型中转换。
准确来讲,是算自振频率时(特征值分析)时用的,地震计算时需要各振形,所以间接需要输入质量。
变截面连续梁桥横梁计算与配筋
变截面连续梁桥横梁计算与配筋随着我国交通运输业的蓬勃发展,公路建设正处于高速发展时期。
而近年来水运以其低廉的运输成本也越来越得到重视,因而内河航道等级不断提高,这就要求跨越航道的桥梁跨径也越来越大。
变截面连续箱梁桥以其工艺成熟,施工方便,在跨越Ⅲ~Ⅴ级航道中得到广泛的应用。
箱梁横梁的计算实质上就是桥梁的荷载如何传递至横梁的问题。
目前工程设计中,变截面连续箱梁桥的计算一般采用桥梁博士软件进行计算,在完成纵桥向计算后,将计算所得恒载与车辆活载支反力按力平衡原理等代为永久荷载与汽车荷载,并加载于横梁之上。
在横梁计算中,不同的设计单位(或设计者)对于等代后的荷载在横梁上的分布位置与荷载大小却不尽相同,有的设计单位(或设计者)将永久荷载与车辆荷载全部按集中力加载于横梁腹板位置;有的设计单位(或设计者)则近似将永久荷载的的80%等代为永久集中荷载加载于横梁腹板位置,20%等代为均布永久荷载加载于整个横梁,将车辆荷载支反力全部等代为汽车荷载并布置于横向加载有效区内。
上述两种方法对支点处横梁顶面负弯矩计算结果相差较大。
第一种方法:将永久荷载与车辆荷载全部按集中力加载于横梁腹板位置,未考虑车辆荷载的纵横向不均匀分布,偏于不安全。
第二种方法:将恒载20%等代为均布永久荷载并加载于整个横梁,将车辆荷载支反力全部等代为汽荷载并布置于横向加载有效区内的计算结果,对翼缘板悬臂根部产生的弯矩和剪力均远大于按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)5.2.2条及5.2.10条计算的翼缘板弯矩和剪力承载力值,而据目前的工程经验,按此方法设计的桥梁并未发生破坏现象,故我们可初步得出结论:第二种计算方法的计算结果偏于保守。
从理论上分析:大跨径变截面连续箱梁桥面板悬臂部分为悬臂板,腹板中间部分长边与短边之比远远大于2,故为单向板,无论是永久荷载还是车辆荷载,均是先由桥面板传递至箱梁腹板,然后再由腹板传给横梁,只有横梁宽度范围内部分的荷载是直接作用于横梁,因此第二种方法有明显不合理之处。
桥梁博士常见问题解答
常见问题解答第一节直线桥梁设计计算一、一般步骤1 利用本系统进行设计计算一般需要经过:离散结构划分单元,施工分析,荷载分析,建立工程项目,输入总体信息、单元信息、钢束信息、施工阶段信息、使用阶段信息,进行项目计算,输出计算结果等几个步骤。
2 结构离散的一般原则:参考使用手册P36。
二、总体信息1 极限组合计预应力与极限组合计预二次矩V3.0中预应力二次矩的计算方法仅适用于连续梁,其他结构形式不适用。
程序仅考虑竖向边界条件对变形的约束影响(次竖向力产生的弯矩),没有考虑次水平力和次弯距的影响。
一般情况下,对于连续梁,应只选择“计入二次矩”,但应保证在形成超静定结构后不能有体系转化;对于一次落架或逐孔施工的结构体系,可以采取一次落架的模型计算。
对于大跨度连续刚构体系的桥梁,由于结构的线刚度比较小,二次效应的比重比较小,对于梁体,计不计二次效应对极限组合内力基本影响不大。
但对于墩身的计算应分计入预应力和不计预应力两种工况进行偏安全的计算(墩身中没有预应力通过,预应力对墩身的效应就是二次效应了)。
2 累计初位移选择此项表示新安装的工作节点将根据邻近节点的累计位移作为本节点的初始位移,对于除悬臂拼装以外的结构在计算时不应勾选该项。
一般情况下,对于悬臂施工的结构,要输出位移图的时候,同一节点处,由于施工缝的影响,位移会不连续(有突变)。
如果想输出连续的位移图时,可选择此项,此时,输出位移图时,新单元的左节点位移以已浇筑单元右节点累计位移为准来进行输出,这样就可以得到一张连续的位移图(慎用仅用于出图)三、单元信息1 单元的自重:单元的自重是根据用户指定的截面大小和自重系数在单元安装阶段自动计入的,如果不计入自重,则将自重系数置为0。
附加截面的自重是根据附加截面中指定的计自重阶段来计算的。
2 附加截面:附加截面用来模拟结构单元截面的分次施工或不同材料等情况的,附加截面与主截面共同形成有效断面参与结构受力。
输入数据图形显示中主、附加截面的横向(自重系数同时影响主、附截面)位置有时出现重叠现象,由于系统没有输入主、附截面的横向相对位置,因此会出现此类情况,这并不影响结构的计算,因为平面杆系计算中不考虑截面对竖直轴的几何特性,因此横向位置没有影响。
连续梁桥的设计与计算
连续梁桥的设计与计算
一 连续梁桥的体系 与构造特点 体系特点 由于支点负弯矩的卸载作用,跨中正弯矩大大减小,恒载、活载均有卸载作用 由于弯矩图面积的减小,跨越能力增大 超静定结构,对基础变形及温差荷载较敏感 行车条件好
构造特点 跨径布置 布置原则:减小弯矩、增加刚度、方便施工、 美观要求 不等跨布置——大部分大跨度连续梁 边跨为0.5~0.8中跨 等跨布置——中小跨度连续梁 短边跨布置——特殊使用要求
线性温度梯度对结构的影响 非线性温度梯度对结构的影响
温度梯度场
自应力计算
温差应变 T(y)=T(y)
平截面假定 a(y)=0+y
温差自应变 (y)=T(y)-a(y)=T(y)-(0+y)
温差自应力 s0(y)=E(y)=E{T(y)-(0+y)}
将Dinshinger公式应用与老化理论
先天理论 不同加载龄期的混凝土徐变增长规律都一样 混凝土的徐变终极值不因加载龄期不同而异,而是一个常值 该理论较符合加载龄期长的混凝土的特性
混合理论 对新混凝土采用老化理论,对加载龄期长的混凝土采用先天理论
结构因混凝土徐变引起的变形计算
基本假定 不考虑钢筋对混凝土徐变的约束作用 混凝土弹性模量为常数 线性徐变理论
05
混凝土收缩会使较厚构件的表面开裂
06
2、收缩徐变的影响
3、线性徐变
当混凝土棱柱体在持续应力不大与0.5Ra时,徐变变形与初始弹性变形成线性比例关系 徐变系数——徐变与弹性应变之比
建立一个公式,参数通过查表计算,
各国参数取法不相同,常用公式有: CEB—FIP 1970年公式 联邦德国规范1979年公式 国际预应力协会(FIP)1978年公式——我国采用的公式
连续梁桥设计计算
第1章绪论1.1 概述随着我国交通运输业的发展,人们对公路桥梁的建设提出了更高的要求,例如行车要舒适、平稳,建设周期要短等等。
于是,兼顾简支梁桥和连续梁桥优点的先简支后连续桥梁形式应运而生。
简支变连续梁桥经历了简支梁桥面(板)连续→恒载简支、活载连续、体系不转换→先简支后连续结构体系的发展历程,从原来的普通钢筋连接墩顶发展到现在的采用预应力筋连接,但是墩顶混凝土的开裂问题的克服效果不佳,就此国内外主要对墩顶混凝土开裂,以及如何更好连接墩顶以防止开裂的研究进行了大量的研究。
跨径大有增加,并且有继续增大的趋势,成为现代桥梁建设中的一种重要桥型。
简支梁桥属于单孔静定结构,它构造简单,施工方便,其结构尺寸易于设计成系列化和标准化,有利于在工厂内或地上广泛采用工业化施工,组织大规模预制生产,并用现代化的起重设备进行安装。
采用装配式的施工方法可以大量节约模板支架木材,降低劳动强度,缩短工期,显著加快建桥速度。
然而简支梁桥也存在很大缺点:从运营条件来说,简支梁桥在梁衔接处的挠曲线会发生不利于行车的折点,一般简支梁在梁衔接处设置成伸缩缝或桥面连续,伸缩缝造价较高,易受破坏,又无法避免行车的不舒适性;桥面连续也容易出现破坏(已建工程中简支梁上桥面连续出现破坏的屡见不鲜),另外简支梁跨中弯矩较大,致使梁的截面尺寸和自重显著增加,需要耗用材料多,这些都是简支梁桥的显著缺点。
而连续梁桥同简支梁桥相比较而言,其特点差别很大:结构较复杂,且从桥梁建筑现代化的角度来衡量,钢筋混凝土连续梁桥逊色于简支梁桥,因为当跨径较大时,长而重的构件不利于预制安装施工,而往往要在工费昂贵的支架上现浇,需要的工期长。
但是连续梁桥无断点,行车舒适,且由于支点负弯矩的存在,使跨中正弯矩值明显减少,从而减少材料用量及结构自重,这些特点是简支梁桥所无法比拟的。
先简支后连续梁桥刚好发挥了上述两种梁桥的优点,克服它们的缺点。
其施工特点是先按简支梁规模化施工,后用湿接缝把相临跨的梁块连接成连续梁,从而得到连续梁优越的使用效果。
成桥预拱度计算方法
5.5.1 成桥预拱度计算方法目前,由于对混凝土徐变的计算,不论是老化理论,修正老化理论还是规范规定的计算方法,都难以正确地估算混凝土徐变的影响,在施工中对这一影响不直接识别、修正,通常是用以往建成的同类跨径的下挠量来类比的,并且通过立模标高的预留来实现的。
因此,成桥预拱度合理设置尤为重要。
根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L:中孔跨径),边孔最大挠度一般发生在3/4L处,约为中孔最大挠度1/4。
另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。
在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠。
中孔跨中下挠。
因此,边跨成桥预拱度一般设置较小,在3/4L处设置fc/4预拱度(fc:中孔跨中成桥预拱度)。
根据陕西省连续刚构桥成桥预拱度计算方法:“中跨预拱度在设计预拱度的基础上,按L/1000+1/2d2(L为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4L处。
其余各点按余弦曲线分配。
在中孔跨中fc确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。
边孔3/4L处成桥预拱度取中孔跨中成桥预拱度fc的1/4,边孔其余各点按余弦曲线分配。
原因:(1)余弦曲线在墩顶两曲线连接处切线斜率为零,满足平顺要求;(2)余弦曲线在L/4处预拱度为跨中预拱度1/2,与有限元计算吻合。
1.活载挠度计算1) 荷载等级:公路—Ⅰ;2) 车道系数:三车道,车道折减系数0.78;3) 中跨活载最大挠度: d 2=0.029m;A 曲线:1cos()290y =-⎢⎥⎣⎦ (090x ≤≤) B 曲线:21cos()261fc x y π⎡⎤=-⎢⎥⎣⎦ (22.553x ≤≤) C 曲线:21cos()245fc x y π⎡⎤=-⎢⎥⎣⎦(022.5x ≤≤) 5.5.2 施工预拱度的计算方法不论采用什么施工方法,桥梁结构在施工过程中总要产生变形,并且结构的变形将受到诸多因素的影响,极易使桥梁结构在施工过程中的实际位置(立面标高、平面位置)状态偏离预期状态,使桥梁难以顺利合拢,或成桥线形与设计要求不符,所以必须对桥梁进行施工控制,使其在施工中的实际位置状态与预期状态之间的误差在容许范围和成桥状态符合设计要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
34+50+34m连续梁桥计算
本例题利用《桥梁博士V3.03》计算连续梁桥,着重熟悉施工阶段的输入。
一、前处理输入
(一)总体信息输入
1.计算类型
计算类别中有四个选项,其中的区别请自行查阅软件的帮助文件,本次计算中直接选用“全桥结构安全验算”。
2.计算内容
计算内容中的6个选项,根据实际需要选取,对于一般的预应力桥梁前4项是最为常用,后两项为非线性计算内容。
3.桥梁环境
这个选项一般情况下不需要做太多修改,但是如果桥梁环境有特殊情况则需要修改。
4.设计规范
设计规范中有交通规范和铁路规范。
在这里选择相应的规范,软件就可以自动对规范中一部分的条文和计算公式进行校核。
(二)单元信息输入
1.输入截面
在AutoCAD中使用dxf文件格式绘制跨中截面(以mm为单位),导入到桥梁博士中,存为1.sec文件。
同样操作渐变段任意一截面和墩顶截面分别存为2.sec和3.sec文件。
2.边跨直线单元组编辑
3.对称操作
利用对称操作完成中跨半跨的单元输入工作。
再次利用对称操作完成全桥的单元输入工作。
全桥单元如下图所示:
4.自重调整
1.定义钢束参考线
输入49种钢束。
(四)施工信息输入
1.施工阶段1:施工0号1号块。
安装单元:15-18 33-36
张拉、灌浆钢束号:33-34
施加中横梁恒载:740.90kN
边界条件:桥墩支座固结。
2.施工阶段2:安装吊篮、加2号块湿重
吊篮假设自重为350kN,偏心距为1.5m。
2号块混凝土湿重为1075.7kN,偏心距为1.5m。
合计为:竖向力1425.5kN,力矩2138.25kNm,采用临时荷载输入。
3.施工阶段3:施工2号块。
安装单元:14 19 32 37
张拉、灌浆钢束号:35 36
吊篮假设自重为350kN,偏心距为1.5m,力矩为525kNm。
4.施工阶段4:安装吊篮、加3号块湿重
吊篮假设自重为350kN,偏心距为1.5m。
3号块混凝土湿重为1002.7kN,偏心距为1.5m。
合计为:竖向力1352.7kN,力矩2029.05kNm,采用临时荷载输入。
5.施工阶段5:施工3号块。
安装单元:14 19 32 37
张拉、灌浆钢束号:35 36
吊篮假设自重为350kN,偏心距为1.5m,力矩为525kNm。
6.施工阶段6:安装吊篮、加4号块湿重
吊篮假设自重为350kN,偏心距为1.5m。
4号块混凝土湿重为942.7kN,偏心距为1.5m。
合计为:竖向力1292.7kN,力矩1939.05kNm,采用临时荷载输入。
7.施工阶段7:施工4号块。
安装单元:12 21 30 39
张拉、灌浆钢束号:39 40
吊篮假设自重为350kN,偏心距为1.5m,力矩为525kNm。
8.施工阶段8:安装吊篮、加5号块湿重
吊篮假设自重为350kN,偏心距为1.5m。
5号块混凝土湿重为895.7kN,偏心距为1.5m。
合计为:竖向力1245.7kN,力矩1868.55kNm,采用临时荷载输入。
9.施工阶段9:施工5号块。
安装单元:11 22 29 40
张拉、灌浆钢束号:41 42
吊篮假设自重为350kN,偏心距为1.5m,力矩为525kNm。
10.施工阶段10:安装吊篮、加6号块湿重
吊篮假设自重为350kN,偏心距为1.5m。
6号块混凝土湿重为1144.5kN,偏心距为2.0m。
合计为:竖向力1494.5kN,力矩2814kNm,采用临时荷载输入。
11.施工阶段11:施工6号块
安装单元:10 23 28 41
张拉、灌浆钢束号:43 44
吊篮假设自重为350kN,偏心距为1.5m,力矩为525kNm。
12.施工阶段12:安装吊篮、加7号块湿重
吊篮假设自重为350kN,偏心距为1.5m。
7号块混凝土湿重为1114.1kN,偏心距为2.0m。
合计为:竖向力1464.1kN,力矩2753.2kNm,采用临时荷载输入。
13.施工阶段13:施工边跨满堂支架段和7号块
安装单元:1-6 9 24 27 42 45-50
张拉、灌浆钢束号:43 44
14.施工阶段14:边跨合拢、拆除边跨吊篮
安装单元:7 8 43 44
张拉、灌浆钢束号:47 48 17-32
边界条件变化
15.施工阶段15:中跨合拢、拆除中跨吊篮
安装单元:25 26
张拉、灌浆钢束号:1-16 49
边界条件变化
16.施工阶段16:桥面附属设施施工
17.施工阶段17:收缩徐变
(五)使用信息输入。