最新全国各地中考数学解答题压轴题解析2
2023届中考数学压轴题含答案解析
2023年中考数学压轴题
1.如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),
B(0,2),二次函数y=1
2
x2+bx﹣2的图象经过C点.
(1)求二次函数的解析式;
(2)平移该二次函数图象的对称轴所在直线l,若直线l恰好将△ABC的面积分为1:2两部分,请求出此时直线l与x轴的交点坐标;
(3)将△ABC以AC所在直线为对称轴翻折180°,得到△AB′C,那么在二次函数图象上是否存在点P,使△PB′C是以B′C为直角边的直角三角形?若存在,请求出P 点坐标;若不存在,请说明理由.
解:(1)过点C作KC⊥x轴交于点K,
∵∠BAO+∠CAK=90°,∠BAO+∠CAK=90°,
∴∠CAK=∠OBA,
又∠AOB=∠AKC=90°,AB=AC,
∴△ABO≌△CAK(AAS),
∴OB=AK=2,AO=CK=1,故点C的坐标为(3,1),
将点C的坐标代入二次函数表达式得:1=1
2
×9+3b﹣2,
第1页共12页。
第十八章全国通用版中考数学:《平行四边形》与坐标系结合压轴题(二)—解析版
第十八章专题:《平行四边形》与坐标系结合压轴题(二)1.如图,在平面直角坐标系中,AB //OC, A (0, 12), B (a, c) , C (b, 0),并且a, b满足b= 府市 /口' + 16. 一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点 B 运动;动点Q 从点。
出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P 运动到点B时,点Q随之停止运动.设运动时间为t (秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,APQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.(1) •, b= ^a-21 J^T^+16,••.a=21, b=16,故B (21, 12) C (16, 0); (2)由题意得:AP=2t, QO=t,贝U: PB=21-2t , QC=16-t,•••当PB=QC时,四边形PQCB是平行四边形,.•.21-2t=16-t,解得:t=5,,P (10, 12) Q (5, 0);(3)当PQ=CQ 时,过Q 作QN^AB,由题意得:122+t2=(16-t) 2, 解得:t=3.5,故P (7, 12), Q (3.5, 0),当PQ=PC时,过P作PM ±x轴,由题意得:QM=t , CM=16-2t ,则t=16-2t,解得:t=16, 2t=32, 3 3故P( 32,12), Q(16,3 30).2.如图1,在平面直角坐标系中, AB ,y 轴于点A, BC ,x 轴于点B,点D 为线段BC 的中点,若AB=a , CD=b ,且J 2 a 8 v 5 +/4我 a +2屈=b .连接AD ,在线段OC 上取一点E,使/ EAD= / DAB .(1)贝U a=, b=(2)求证:AE=OE+CD ;【解答】(1) a =4 v15 , b =2 后,(2)由(1)可知 AB=4 75, CD=BD=2 V 5 , • . AB=CB ,,.AB ±y 轴于点 A, BC±x 轴于点 B,,乙 BAO= / B= / AOC=90° ,••・四边形ABCO 是矩形,••・AB=CB , ••・四边形ABCO 是正方形,延长 CO 至u M ,使得 OM=BD ,贝u ^ABD AOM , ,/4=/M, Z1 = Z2=Z3,. OA//BC, . ・/4=/2+/5=/5+/3=/EAM , . . / M= / EAM , • . AE=EM=OE+OM=OE+BD ••• BD=CD , .1. AE=OE+CD .(3)如图 2 中,设 AE=EM=x .在 RtAAOE 中,AO 2+OE 2=AE 2, - x 2= (4<5 ) 2+ (x-2 J 5 ) 2, . . x=5石, OE=3 而,•.D (4V 5, 2 45), E (3V5 , 0), •. F (0, -6V5 )风0)3.如图,在平面直角坐标系中,有一矩形ABCD,其中A(0, 0), B (m, 0) , D (0, n), m是最接近质的整数,n是16的算术平方根,若将4ABC沿矩形又•角线AC所在直线翻折,点B落在点E处,AE与边CD相交于点M .(1)求AC的长;(2)求4AMC的面积;(3)求点E的坐标.【解答】(1)•' m是最接近#5的整数,• ' m=8,.「n 是16 的算术平方根,,n=4,,B (8, 0), D (0, 4),.••点C 矩形ABCD 的一个顶点,..C (8, 4),,AB=8, BC=4 ,AC=4 J5 ,(2)由折叠有,CE=AD=BC=4 , AE=AB=8 ,设DM=x 则CM=8-x ,・. /ADM= / CEM , /AMD=/CME, /.A ADM ^ACEM , • .AM=CM=8-x , ME=MD , 在RtAADM 中,AD=4 , DM=x , AM=8-x ,根据勾股定理有:AD2+DM 2=AM 2,即:16+x2= (8-x) 2, •1- x=3 , DM=3 , CM=5 , S AAMC = —Ch/|X AD=)>^M=10,2 2(3)过点E作EFXCD,如图,由(2)有,CM=5 , CE=4, ME=DM=3在Rt^CEM 中,由射影定理得,CE2=CFXCM , 16=CFX5,,CF=3.2,••・Ma CE=CMK EF (直角三角形的面积的两种计算) ,,EF=2.4,• . DF=CD -CF=4.8 , BC+EF=6.4 , . . E (4.8, 6.4)4 .已知正方形OABC 在平面直角坐标系中,点 A, C 分别在x 轴,y 轴的正半轴上,等腰直角三角形OEF 的直角顶点O 在原点,E, F 分别在OA, OC 上,且OA=4 , OE=2 .将AOEF 绕点O 逆 时针旋转,得△OE I F I ,点E, F 旋转后的对应点为Ei, Fi.(I )①如图①,求EiFi 的长;②如图②,连接CFi, AEi,求证△OAEi^^OCFi;「(II)将AOEF 绕点O 逆时针旋转一周,当 OEi//CFi 时,求点Ei 的坐标(直接写出结果即可)姝 姝CB C 石【解答】(I )①解:二.等腰直角三角形 OEF 的直角顶点O 在原点,OE=2, / EOF=90 , OF=OE=2 ,「. EF=2 血,・ ••将AOEF 绕点 O 逆时针旋转,得△OE i F i, ••.E i F i =EF=2 J 2 ; ②证明:四边形OABC 为正方形,OC=OA .・ •・将AOEF 绕点 O 逆时针旋转,得 △OE i F i,AOE i =/COF i, • △OEF 是等腰直角三角形,・•.△OEiFi 是等腰直角三角形, ••OE i =OF i.在 AOAE i 和 ^OCF i 中,OA=OC, /AOEi=/COF i, OEi=OFi% E・•.△OAE 卢^OCF i (SAS);(n)解:••• OEXOF,卜过点F与OE平行的直线有且只有一条,并与OF垂直,当三角板OEF绕。
全国各地中考数学压轴题精选(含详细答案)
12.(黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系 ,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点, 动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒. (1)求直线BC的解析式; (2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的 ; (3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S 与t的函数关系式,并指出自变量t的取值范围;
8
点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐 标原点O.(如图2) ①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时, S的值恰好等于梯形OEFG面积的 ;
②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM 是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在, 请说明理由.(利用图3进行探索)
04挑战压轴题(解答题二)-2022年中考数学冲刺挑战压轴题专题汇编(安徽卷)(原卷版)
2022年中考数学冲刺 挑战压轴题专题汇编(安徽考卷)04 挑战压轴题(解答题二)1.(2022·全国)已知抛物线221(0)y ax x a =-+≠的对称轴为直线1x =.(1)求a 的值;(2)若点M (x 1,y 1),N (x 2,y 2)都在此抛物线上,且110x -<<,212x <<.比较y 1与y 2的大小,并说明理由;(3)设直线(0)y m m =>与抛物线221y ax x =-+交于点A 、B ,与抛物线23(1)y x =-交于点C ,D ,求线段AB 与线段CD 的长度之比.2.(安徽省2020年中考数学试题)在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,A B C 三点中的两点. ()1判断点B 是否在直线y x m =+上.并说明理由;()2求,a b 的值;()3平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.3.(安徽省2019年中考数学试题)一次函数y =kx +4与二次函数y =ax 2+c 的图像的一个交点坐标为(1,2),另一个交点是该二次函数图像的顶点(1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图像相交于B ,C 两点,点O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值.4.(安徽省2018年中考数学试题)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元)(1)用含x 的代数式分别表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少? 5.(2021·江苏·涟水县义兴中学)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W(元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?1.(2022·陕西师大附中九年级期末)已知抛物线223y x x =--与x 轴交于点A ,B (点A 在点B 左侧),与y 轴交于点C ,顶点为D .(1)求点B 、D 的坐标;(2)若点P 是x 轴上的动点,过点P 作x 轴的垂线交抛物线于点Q ,是否存在这样的P ,使得以点A 、P 、Q 为顶点的三角形与BCD ∆相似?若存在请求出,点P 的坐标;若不存在,请说明理由.2.(2022·黑龙江·哈尔滨市第四十九中学校九年级开学考试)已知,在平面直角坐标系中,点O 为坐标原点,抛物线23y x mx =-++与x 轴交于点A 、点B ,与y 轴交于点C ,OB OC =.(1)如图1,求m 的值;(2)如图2,点P 是第四象限抛物线上一点,连接P A 交y 轴于点D ,E 为PD 中点,连接BE ,设点P 的横坐标为t ,ABE △的面积为S ,求S 与t 的函数关系式;(3)如图3,在(2)的条件下,连接CE ,F 为CE 上一点,连接PF ,M 为抛物线的顶点,连接PM ,将射线PM 绕点P 逆时针旋转45︒,交y 轴于点G ,交抛物线于点N ,若DCE FPM ∠=∠,2PF DG =,求点N 的坐标.3.(2022·四川凉山·九年级期末)某商场出售甲乙两种商品,出售甲种商品15件,乙种商品20件共获利390元,出售甲、乙两种商品各10件共获利220元.(1)求甲、乙两种商品每件的利润;(2)商场调研甲种商品发现:若按现在售价出售,每周可出售商品100件,如果每件商品的售价每上涨2元,则每周少卖10件,商场要求每周甲商品的销量不低于80件.设甲种商品每件价格上涨x (元),销售数量为y (件)①写出y (件)与x (元)之间的函数关系式及自变量x 的取值范围;②每件甲商品的利润为多少元时,每周可获得最大利润?最大的利润是多少元?4.(2021·河南·模拟预测)已知二次函数y =ax 2﹣2ax +c (a >0).(1)若该图象经过点A (1,0),B (2,4),求这个二次函数的解析式;(2)若(x 1,y 1),(4,y 2)在该函数图象上,当y 2>y 1时,求x 1的取值范围;(3)该函数图象与x 轴只有一个交点时,将该图象向上平移2个单位恰好经过点(4,8),当m ≤x ≤n 时,2m ≤y ≤2n ,求m ﹣n 的值.5.(2021·黑龙江·牡丹江四中九年级阶段练习)一天早晨,佳佳从家出发匀速步行去学校,妈妈发现佳佳忘带数学书了,于是立即下楼骑车沿佳佳行进路线匀速追赶,妈妈追上佳佳后,立即按原路线返回家中,由于路人渐多,妈妈返回时的速度只是去时的23,佳佳则以原速度的1.5倍赶往学校妈妈与佳佳之间的路程y (米)与佳佳从家出发后步行的时间x (分)之间的关系如图所示(佳佳与妈妈交接学习用品耽搁的时间忽略不计),结合图象信息解答下列问题:(1)佳佳步行速度是______,妈妈追佳佳时的速度是______;(2)求图象中线段DE所表示的y与x的函数解析式,并写出自变量x的取值范围;(3)直接写出佳佳出发多长时间,佳佳与妈妈相距300米的时间.1.(2022·贵州遵义·九年级期末)已知二次函数y=ax2+bx+4(a≠0,a、b为常数)的图象与x轴交于点A(﹣1,0),B(6,0),与y轴的正半轴交于点C,过点C的直线y=﹣43x+4与x轴交于点D.(1)求二次函数的解析式;(2)如图1,点P是第一象限内二次函数图象上的一个动点,试探究点P的坐标是多少时,△CDP的面积最大,并求出最大面积;(3)如图2,点M是二次函数图象上一动点,过点M作ME△CD于点E,MF//x轴交直线CD于点F,是否存在点M,使得△MEF△△COD,若存在,请直接写出点M的坐标;若不存在,请说明理由.2.(2021·河南省实验中学模拟预测)在平面直角坐标系中,已知点(1,4)A ,(1,0)B -,(0,2)C ,抛物线23y ax bx =++经过A ,B ,C 三点中的两点.(1)求抛物线的表达式;(2)点(,)M m n 为(1)中所求抛物线上一点,且04m <<,求n 的取值范围;(3)一次函数(1)33y k x k =--+(其中1)k ≠与(1)中所求抛物线交点的横坐标分别是1x 和2x ,且121x x <-<,请直接写出k 的取值范围.3.(2022·四川成都·九年级期末)如图,在平面直角坐标系xOy 中,直线y =x +b 与反比例函数y =k x(x >0)的图象交于点A (3,n ),与y 轴交于点B (0,﹣2),点P 是反比例函数y =k x(x >0)的图象上一动点,过点P 作直线PQ ∥y 轴交直线y =x +b 于点Q ,设点P 的横坐标为t ,且0<t <3,连接AP ,BP .(1)求k ,b 的值.(2)当ABP 的面积为3时,求点P 的坐标.(3)设PQ 的中点为C ,点D 为x 轴上一点,点E 为坐标平面内一点,当以B ,C ,D ,E 为顶点的四边形为正方形时,求出点P 的坐标.4.(2021·江苏扬州·一模)如图,抛物线与x 轴交于A ,B 两点,点B 坐标为()3,0顶点P 的坐标为()1,4-,以AB 为直径作圆,圆心为D ,过P 向右侧作D 的切线,切点为C .(1)求抛物线的解析式;(2)请通过计算判断抛物线是否经过点C ;(3)设M ,N 分别为x 轴,y 轴上的两个动点,当四边形PNMC 的周长最小时,请直接写出M ,N 两点的坐标. 5.(2020·福建省福州屏东中学九年级期中)在平面直角坐标系中,抛物线Γ:()2430y ax ax a a =-+<与x轴交于点A ,B (点B 在点A 的右侧).抛物线顶点为C 点,△ABC 为等腰直角三角形.(1)求此抛物线解析式.(2)若直线1:l y kx k =-与抛物线Γ有两个交点,且这两个交点与抛物线Γ的顶点所围成的三角形面积等于6,求k 的值.(3)若点()2,0D ,且点E ,D 关于点C 对称,过点D 作直线2l 交抛物线Γ于点M ,N ,过点E 作直线3l x ∥轴,过点N 作3NF l ⊥于点F ,求证:点M ,C ,F 三点共线.。
中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)
中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。
2024成都中考数学一轮复习专题 二次函数解答压轴题 (含解析)
2024成都中考数学一轮复习专题二次函数解答压轴题一、解答题1.(2023·浙江绍兴·统考中考真题)已知二次函数2y x bx c =-++.(1)当4,3b c ==时,①求该函数图象的顶点坐标.②当13x -≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式.2.(2023·浙江·统考中考真题)已知点(),0m -和()3,0m 在二次函数23,(y ax bx a b =++是常数,0)a ≠的图像上.(1)当1m =-时,求a 和b 的值;(2)若二次函数的图像经过点(),3A n 且点A 不在坐标轴上,当21m -<<-时,求n 的取值范围;(3)求证:240b a +=.5(1)求二次函数的表达式;(2)求四边形ACDB 的面积;(3)P 是抛物线上的一点,且在第一象限内,若ACO PBC ∠=∠6.(2023·山东烟台·统考中考真题)如图,抛物线2y ax =+(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以若不存在,请说明理由;(3)以点B 为圆心,画半径为2的圆,点P 为7.(2023·江苏苏州·统考中考真题)如图,二次函数268y x x =-+的图像与x 轴分别交于点,A B (点A 在点B 的左侧),直线l 是对称轴.点P 在函数图像上,其横坐标大于4,连接,PA PB ,过点P 作PM l ⊥,垂足为M ,以点M 为圆心,作半径为r 的圆,PT 与M 相切,切点为T .(1)求点,A B 的坐标;(2)若以M 的切线长PT 为边长的正方形的面积与PAB 的面积相等,且M 不经过点()3,2,求PM 长的取值范围.8.(2023·山东东营·统考中考真题)如图,抛物线过点()0,0O ,()10,0E ,矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上,设(),0B t ,当2t =时,4BC =.(1)求抛物线的函数表达式;(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持2t =时的矩形ABCD 不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形ABCD 的面积时,求抛物线平移的距离.(1)求这条抛物线的函数解析式;(2)P 是抛物线上一动点(不与点A ,B ,C 重合),作①如图,若点P 在第三象限,且tan 2CPD ∠=,求点②直线PD 交直线BC 于点E ,当点E 关于直线PC 周长.10.(2023·四川自贡·统考中考真题)如图,抛物线(1)求抛物线解析式及B ,(2)以A ,B ,C ,D 为顶点的四边形是平行四边形,求点(3)该抛物线对称轴上是否存在点11.(2023·四川达州·统考中考真题)如图,抛物线2y ax bx c =++过点()()()1,0,3,,00,3A B C -.(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.12.(2023·四川泸州·统考中考真题)如图,在平面直角坐标系xOy 中,已知抛物线2y ax 2x c =++与坐标轴分别相交于点A ,B ,()0,6C 三点,其对称轴为2x =.(1)求该抛物线的解析式;(2)点F 是该抛物线上位于第一象限的一个动点,直线AF 分别与y 轴,直线BC 交于点D ,E .①当CD CE =时,求CD 的长;②若CAD ,CDE ,CEF △的面积分别为1S ,2S ,3S ,且满足1322S S S +=,求点F 的坐标.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.∠的边与x轴平行时,求点P与点Q的纵坐标的差.(3)当PAQ(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD(3)在(2)的条件下,将该抛物线向右平移5个单位,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以Q15.(2023·四川凉山·统考中考真题)如图,已知抛物线与x 轴交于()1,0A 和()5,0B -两点,与y 轴交于点C .直线33y x =-+过抛物线的顶点P .(1)求抛物线的函数解析式;(2)若直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F .①当EF 取得最大值时,求m 的值和EF 的最大值;②当EFC 是等腰三角形时,求点E 的坐标.16.(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy 中,已知抛物线2y ax c =+经过点3(4,)P -,与y 轴交于点(0,1)A ,直线(0)y kx k =≠与抛物线交于B ,C 两点.(1)求抛物线的函数表达式;(2)若ABP 是以AB 为腰的等腰三角形,求点B 的坐标;(3)过点(0,)M m 作y 轴的垂线,交直线AB 于点D ,交直线AC 于点E .试探究:是否存在常数m ,使得OD OE ⊥始终成立?若存在,求出m 的值;若不存在,请说明理由.(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BE EC的值.(2)连接,PC CPE ∠与BAO ∠能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P ,使得由;(3)点Q 是对称轴l 上一点,且点Q 的纵坐标为(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC标及PDDB的最大值;(3)过点P作x轴的垂线交直线AC于点M,连接PC,将好落在y轴上时,请直接写出此时点M的坐标.33(1)求点,,D E C 的坐标;(2)F 是线段OE 上一点()OF EF <,连接①求证:DFC △是直角三角形;②DFC ∠的平分线FK 交线段DC 于点K 坐标.28.(2023·江苏扬州·统考中考真题)在平面直角坐标系xOy 中,已知点A 在y 轴正半轴上.(1)如果四个点()()()()0,00,21,11,1-、、、中恰有三个点在二次函数2y ax =(a 为常数,且0a ≠)的图象上.①=a ________;②如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长;③如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m -是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2y ax =(a 为常数,且0a >)的图象上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式.(1)请求出抛物线1Q 的表达式.(2)如图1,在y 轴上有一点()0,1D -,点E 在抛物线1Q 上,点F 为坐标平面内一点,是否存在点边形DAEF 为正方形?若存在,请求出点,E F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线1Q 向右平移2个单位,得到抛物线2Q ,抛物线2Q 的顶点为(1)求抛物线的表达式;(2)如图1,直线11:y OP y x x =交BF 于点G ,求BPG BOGS S △△的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于求点P 的横坐标.31.(2023·山东枣庄·统考中考真题)如图,抛物线2y x bx c =-++经过(1,0),(0,3)A C -两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接..写出所有满足条件的点Q 的坐标;若不存在,请说明理由.32.(2023·湖北随州·统考中考真题)如图1,平面直角坐标系xOy 中,抛物线2y ax bx c =++过点(1,0)A -,(2,0)B 和(0,2)C ,连接BC ,点(,)P m n (0)m >为抛物线上一动点,过点P 作PN x ⊥轴交直线BC 于点M ,交x 轴于点N .(1)直接写出....抛物线和直线BC 的解析式;(2)如图2,连接OM ,当OCM 为等腰三角形时,求m 的值;(3)当P 点在运动过程中,在y 轴上是否存在点Q ,使得以O ,P ,Q 为顶点的三角形与以B ,C ,N 为顶点的三角形相似(其中点P 与点C 相对应),若存在,直接写出....点P 和点Q 的坐标;若不存在,请说明理由.(1)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点交x轴于点D,求与12PK PD+的最大值及此时点2①求证:23DO EO =.②当点E 在线段OB 上,且BE =35.(2023·山西·统考中考真题)如图,二次函数直线与该函数图象交于点()1,3B (1)求直线AB 的函数表达式及点C 的坐标;(2)点P 是第一象限内二次函数图象上的一个动点,过点P 作直线PE 设点P 的横坐标为m .①当12PD OC =时,求m 的值;②当点P 在直线AB 上方时,连接OP ,过点B 作BQ x ⊥轴于点Q ,36.(2023·湖北武汉·统考中考真题)抛物线21:28=--C y x x 交x 轴于,A B 两点(A 在B 的左边),交y 轴于点C .(1)直接写出,,A B C 三点的坐标;(2)如图(1),作直线()04=<<x t t ,分别交x 轴,线段BC ,抛物线1C 于,,D E F 三点,连接CF .若BDE 与CEF △相似,求t 的值;(3)如图(2),将抛物线1C 平移得到抛物线2C ,其顶点为原点.直线2y x =与抛物线2C 交于,O G 两点,过OG 的中点H 作直线MN (异于直线OG )交抛物线2C 于,M N 两点,直线MO 与直线GN 交于点P .问点P 是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.(1)直接判断AOB 的形状:AOB 是_________三角形;(2)求证:AOE BOD △≌△;(3)直线EA 交x 轴于点(,0),2C t t >.将经过B ,C 两点的抛物线21y ax =物线2y .①若直线EA 与抛物线1y 有唯一交点,求t 的值;(1)求抛物线的表达式;(2)如图1,点P 是抛物线的对称轴l 上的一个动点,当PAC △(3)如图2,取线段OC 的中点D ,在抛物线上是否存在点若不存在,请说明理由.(1)直接写出结果;b =_____,c =_____,点A 的坐标为_____,tan ABC ∠=______;(2)如图1,当2PCB OCA ∠=∠时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=︒,点E ,F 分别为BDQ △的边,DQ DB 上的动点,QE DF =,记BE Q F +的最小值为m .①求m 的值;②设PCB 的面积为S ,若214S m k =-,请直接写出k 的取值范围.(1)求抛物线的解析式.(2)过点M 作x 轴的垂线,与拋物线交于点N .若04t <<,求NED 面积的最大值.(3)抛物线与y 轴交于点C ,点R 为平面直角坐标系上一点,若以B C M R 、、、为顶点的四边形是菱形,请求出所有满足条件的点R 的坐标.41.(2023·四川·统考中考真题)如图1,在平面直角坐标系中,已知二次函数2y ax bx =++交于点()2,0A -,()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴且90BFE ∠=︒,求出点F 的坐标;(3)如图2,P 为第一象限内抛物线上一点,连接运动过程中,12OM ON +是否为定值?若是,求出这个定值;若不是,请说明理由.42.(2023·山东聊城·统考中考真题)如图①,抛物线29y ax bx =+-与x 轴交于点()30A -,,()6,0B ,与y 轴交于点C ,连接AC ,BC .点P 是x 轴上任意一点.(1)求抛物线的表达式;(2)点Q 在抛物线上,若以点A ,C ,P ,Q 为顶点,AC 为一边的四边形为平行四边形时,求点Q 的坐标;(3)如图②,当点(),0P m 从点A 出发沿x 轴向点B 运动时(点P 与点A ,B 不重合),自点P 分别作∥PE BC ,交AC 于点E ,作PD BC ⊥,垂足为点D .当m 为何值时,PED V 面积最大,并求出最大值.43.(2023·湖北荆州·统考中考真题)已知:y 关于x 的函数()()221y a x a x b =-+++.(1)若函数的图象与坐标轴...有两个公共点,且4a b =,则a 的值是___________;(2)如图,若函数的图象为抛物线,与x 轴有两个公共点()2,0A -,()4,0B ,并与动直线:(04)l x m m =<<交于点P ,连接PA ,PB ,PC ,BC ,其中PA 交y 轴于点D ,交BC 于点E .设PBE △的面积为1S ,CDE 的面积为2S .①当点P 为抛物线顶点时,求PBC 的面积;②探究直线l 在运动过程中,12S S -是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.(1)求抛物线的解析式;(2)若32m<<,当m为何值时,四边形CDNP是平行四边形?(3)若32m<,设直线MN交直线BC于点E,是否存在这样的m值,使值;若不存在,请说明理由.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD 好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点F ,过点F 作FG x ⊥轴,垂足为G ,求2FG +(1)求二次函数的表达式;(2)如图1,求AOD △周长的最小值;(3)如图2,过动点D 作DP AC ∥交抛物线第一象限部分于点P ,连接,PA PB ,记PAD 与△为S ,当S 取得最大值时,求点P 的坐标,并求出此时S 的最大值.(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?50.(2023·四川南充·统考中考真题)如图1,抛物线23y ax bx =++(0a ≠)与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点()1,3K 的直线(直线KD 除外)与抛物线交于G ,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.51.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()4,0A -、()2,0B ,且经过点()2,6C -.(1)求抛物线的表达式;(2)在x 轴上方的抛物线上任取一点N ,射线AN 、BN 分别与抛物线的对称轴交于点P 、Q ,点Q 关于x 轴的对称点为Q ',求APQ '△的面积;(3)点M 是y 轴上一动点,当AMC ∠最大时,求M 的坐标.52.(2023·四川广安·统考中考真题)如图,二次函数2y x bx c =++的图象交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()1,0,对称轴是直线=1x -,点P 是x 轴上一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的解析式.(2)若点P 在线段AO 上运动(点P 与点A 、点O 不重合),求四边形ABCN 面积的最大值,并求出此时点P 的坐标.(3)若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M 、N C Q 、、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.53.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =--的顶点为P .直线l 过点()()0,3M m m ≥-,且平行于x 轴,与抛物线1L 交于A B 、两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC CD DB 、、,若BCD △为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD △的面积为3,E F 、两点分别在边BC CD 、上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.54.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA 标;(3)设直线135 :4l y kx k=+-交抛物线于点M、N,求证:无论存在一点E,使得MEN∠为直角.(1)求a 的值.(2)将直线BC 向下平移()0m m >个单位长度,交抛物线于在定点D ,无论m 取何值时,都是点D 到直线B C ''的距离最大,若存在,请求出点请说明理由.(3)抛物线上是否存在点P ,使45PBC ACO ∠+∠=︒,若存在,请求出直线58.(2023·湖北十堰·统考中考真题)已知抛物线28y ax bx =++过点()4,8B 和点()8,4C ,与y 轴交于点A .(1)求抛物线的解析式;(2)如图1,连接,AB BC ,点D 在线段AB 上(与点,A B 不重合),点F 是OA 的中点,连接FD ,过点D 作DE FD ⊥交BC 于点E ,连接EF ,当DEF 面积是ADF △面积的3倍时,求点D 的坐标;(3)如图2,点P 是抛物线上对称轴右侧的点,(),0H m 是x 轴正半轴上的动点,若线段OB 上存在点G (与点,O B 不重合),使得GBP HGP BOH ∠=∠=∠,求m 的取值范围.59.(2023·吉林长春·统考中考真题)在平面直角坐标系中,点O 为坐标原点,抛物线22y x bx =-++(b 是常数)经过点(2,2).点A 的坐标为(,0)m ,点B 在该抛物线上,横坐标为1m -.其中0m <.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点B 在x 轴上时,求点A 的坐标;(3)该抛物线与x 轴的左交点为P ,当抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点与最低点的纵坐标之差为2m -时,求m 的值.(4)当点B 在x 轴上方时,过点B 作BC y ⊥轴于点C ,连结AC 、BO .若四边形AOBC 的边和抛物线有两个交点(不包括四边形AOBC 的顶点),设这两个交点分别为点E 、点F ,线段BO 的中点为D .当以点C 、E 、O 、D (或以点C 、F 、O 、D )为顶点的四边形的面积是四边形AOBC 面积的一半时,直接写出所有满足条件的m 的值.60.(2023·湖北·统考中考真题)如图1,在平面直角坐标系xOy 中,已知抛物线()260y ax bx a =+-≠与x 轴交于点()()2,0,6,0A B -,与y 轴交于点C ,顶点为D ,连接BC .(1)抛物线的解析式为__________________;(直接写出结果)(2)在图1中,连接AC 并延长交BD 的延长线于点E ,求CEB ∠的度数;(3)如图2,若动直线l 与抛物线交于,M N 两点(直线l 与BC 不重合),连接,CN BM ,直线CN 与BM 交于点P .当MN BC ∥时,点P 的横坐标是否为定值,请说明理由.61.(2023·黑龙江齐齐哈尔·统考中考真题)综合与探究如图,抛物线2y x bx c =-++上的点A ,C 坐标分别为()0,2,()4,0,抛物线与x 轴负半轴交于点B ,点M 为y 轴负半轴上一点,且2OM =,连接AC ,CM .(1)求点M 的坐标及抛物线的解析式;【基础训练】(1)请分别直接写出抛物线214y x =的焦点坐标和准线l 的方程:___________,___________【技能训练】(2)如图2,已知抛物线21y x =上一点()()000,0P x y x >到焦点F 的距离是它到x 轴距离的参考答案一、解答题222(3)如图,P是抛物线上的一点,且在第一象限,当⊥交BP于连接PB,过C作CE BC∵5OC OB ==,则OCB 为等腰直角三角形,由勾股定理得:52CB =,∵ACO PBC ∠=∠,∴tan tan ACO PBC ∠=∠,即1552CE CE CB ==,∴2CE =由CH BC ⊥,得90BCE ∠=︒,【点拨】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.A7.【答案】(1)()2,0,y=【分析】(1)令0(2)由题意可得抛物线的对称轴为假设M 过点()3,2N ,则有以下两种情况:①如图1:当点M 在点N 的上方,即∴2683m m -+=,解得:m =∵4m >∴5m =;②如图2:当点M 在点N 的上方,即∴2681m m -+=,解得:m =∵4m >∴32m =±;综上,32PM m =-=或2.∴当M 不经过点()3,2时,1【点拨】本题主要考查了二次函数的性质、切线的性质、勾股定理等知识点,掌握分类讨论思想是解答本题的关键.∵直线GH平分矩形ABCD的面积,∴直线GH过点P..由平移的性质可知,四边形OCHG是平行四边形,=.∴PQ CH∵四边形ABCD是矩形,∴P是AC的中点.33⎝∴90,PEC CED ∠=∠=︒。
04(解答题(二))-2021年中考数学专题(湖南长沙卷)(解析版)
2021年中考数学冲刺 挑战压轴题专题汇编(湖南长沙卷)04挑战压轴题(解答题(二))1. (2020年长沙中考第24题)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”。
根据该约定,完成下列各题。
(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号内打“√”,不是“H 函数”的打“×”。
① x y 2= ( ) ② )(0≠=m xmy ( ) ③ 13-=x y ( )(2)若点A (1,m )与点B (n ,-4)是关于x 的“H 函数”)(02≠++=a c bx ax y 的一对“H 点”,且该函数的对称轴始终位于直线x=2的右侧,求a 、b 、c 的值或取值范围。
(3)若关于x 的“H 函数”是常数),,(c b a c bx ax y 322++=同时满足下列两个条件:① 0=++c b a , ② 0322<++•-+)()(a b c a b c ,求该“H 函数”截x 轴得到的线段长度的取值范围。
【答案】(1)√、√、× (2)-1<a<0,b=4,0<c<1 (3)72221<-<x x【解析】(1)根据题意,易知“H 函数”图像上存在关于原点对称的点。
①、②图像均关于原点对称,故为“H 函数”;对于函数③,变形为:31=+x y ,令xy x y -+-=+33,无解,故不是“H 函数”。
(2)∵若点A (1,m )与点B (n ,-4)是关于x 的“H 函数”)(02≠++=a c bx ax y 的一对“H 点”∴m=4,n=-1 ∴A (1,4) B (-1,-4) 代入c bx ax y ++=2中,得:⎩⎨⎧-=+-=++44c b a c b a 解得:⎩⎨⎧==+40b c a∵函数的对称轴始终位于直线x=2的右侧 ∴22->ab∴224>-a解得:01<<-a ∵100<<∴=+c c a∴-1<a<0,b=4,0<c<1(3)c bx ax y 322++=∵是H 函数,∴至少存在不同的两点关于原点对称的“H 点” 设H 点坐标分别为(m ,n );(-m ,-n ),则:⎪⎩⎪⎨⎧-=+-=++nc bm am n c bm am 323222∴n bm c am ==+2032因为002<∴>ac c a m 异号,即、∵c a b c b a -=∴=++0∵0322<++•-+)()(a b c a b c ∴0)32)(2(<+-----a c a c a c a c∴0)2)(2(<+-a c a c 即:224a c <∴22<∴<a cac ∴02<<-ac 令02<<-∴=t act设函数与x 轴的两个交点分别为)0(1,x 、)0(2,x ,则21x x 、是方程0322=++c bx ax 的两根 ∴a ca c a a c ab a ac b x x 12)(4124124a 2222221-+=-=-=∆=-)1(412)21(412))(21(4222+-=-++=•-+•+=t t t t t aca c a c 43)21(22+-=t ∵时02<<-t 函数递减,所以当t=-2时取最大值,当t=0时取最小值∴72221<-<x x2.(2019年长沙中考第25题)已知抛物线)2020()2(22-+-+-=c x b x y (b ,c 为常数). (1)若抛物线的顶点坐标为(1,1),求b ,c 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围;(3)在(1)的条件下,存在正实数m ,n ( m<n ),当n x m ≤≤时,恰好有122112+≤+≤+n ny m m ,求m ,n 的值.【解析】(1)由题可设()1122+--=x y去括号得:1422-+-=x x y⎩⎨⎧-=-=-∴1202042c b20196==∴c b ,(2)设抛物线上关于远点对称且不重合的两点坐标分别为()()0000--y x y x ,、, 代入解析式可得:⎪⎩⎪⎨⎧-+---=--+-+-=)2020()2(2)2020()2(202000200c x b x y c x b x y∴两式相加可得:0)2020(24-20=-+c x20202020220≥∴+=∴c x c(3)由(1)可知抛物线为()11214222+--=-+-=x x x y ,∴1≤y12211210+≤+≤+≤≤<<n ny m m n x m m 时,恰好有,当nm m mm y n <≤∴≥≤∴≤≤∴111111,即 ∵抛物线对称轴x =1,开口向下 ∴当n x m ≤≤时,y 随x 增大而减小∴当x =m 时,1422max -+-=m m y当x =n 时,1422min -+-=n n y又∵my n 11≤≤ ⎪⎪⎩⎪⎪⎨⎧=-+=-+∴)()(21142-11142-22m m m n n n将(1)式整理得:014223=++-n n n变形得:()()01232223=----n n n n 即:()()()0112122=-+--n n n n()()012212=---∴n n n1>n01222=--∴n n(舍去),2311-=∴n 2312+=n 同理整理(2)式得:()()012212=---m m mn m <≤1.2312311321(舍去)(舍去),,+=-==∴m m m ∴综上所示:m =1,n =231+ 3.(2018年长沙中考第25题)如图,在平面直角坐标系xOy 中,函数xmy =(m 为常数,m >1,x >0)的图象经过点P (m ,1)和Q (1,m ),直线PQ 与x 轴,y 轴分别交于C ,D 两点,点M (x ,y )是该函数图象上的一个动点,过点M 分别作x 轴和y 轴的垂线,垂足分别为A ,B . (1)求∠OCD 的度数;(2)当m =3,1<x <3时,存在点M 使得△OPM ∽△OCP ,求此时点M 的坐标; (3)当m =5时,矩形OAMB 与△OPQ 的重叠部分的面积能否等于4.1?请说明你的理由.【分析】(1)想办法证明OC =OD 即可解决问题;(2)设M (a ,a 3),由△OPM ∽△OCP ,推出CPPMOP OM OC OP ==,由此构建方程求出a ,再分类求解即可解决问题;(3)不存在分三种情形说明:①当1<x <5时,如图1中;②当x ≤1时,如图2中;③当x ≥5时,如图3中;【解答】解:(1)设直线PQ 的解析式为y =kx +b ,则有⎩⎨⎧=+=+m b k b km 1,解得⎩⎨⎧+=-=11m b k ,∴y =﹣x +m +!,令x =0,得到y =m +1,∴D (0,m +1),令y +0,得到x =m +1,∴C (m +1,0),∴OC =OD ,∵∠COD =90°, ∴∠OCD =45°.(2)设M (a ,a 3),∵△OPM ∽△OCP ,∴CPPM OP OM OC OP ==,∴OP 2=OC •OM ,当m =3时,P (3,1),C (4,0),OP 2=32+12=10,OC =4,OM =229a a +,∴410=OC OP ,∴10=4229a a +, ∴4a 4﹣25a 2+36=0, (4a 2﹣9)(a 2﹣4)=0, ∴a =±23,a =±2, ∵1<a <3, ∴a =23或2, 当a =23时,M (23,2), PM =213,CP =2, 4102213≠=CM PM (舍弃), 当a =2时,M (2,23),PM =25,CP =2,∴410225==CP PM ,成立,∴M (2,23). (3)不存在.理由如下:当m =5时,P (5,1),Q (1,5),设M (x ,x5), OP 的解析式为:y =51x ,OQ 的解析式为y =5x , ①当1<x <5时,如图1中,E∴E (x 1,x 5),F (x ,51x ), S =S 矩形OAMB ﹣S △OAF ﹣S △OBE =5﹣21•x •51x ﹣21•x 1•x5=4.1, 化简得到:x 4﹣9x 2+25=0,△<O , ∴没有实数根. ②当x ≤1时,如图2中,S=S△OGH<S△OAM=2.5,∴不存在,③当x≥5时,如图3中,S=S△OTS<S△OBM=2.5,∴不存在,综上所述,不存在.1.(2021·湖南长沙市·九年级一模)如图1,我们将经过抛物线顶点的所有非竖直的直线,叫做该抛物线的“风车线”,若抛物线的顶点为P(a,b),则它的所有“风车线”可以统一表示为:y=k(x﹣a)+b,即当x=a时,y始终等于b.(1)若抛物线y=﹣2(x+1)2+3与y轴交于点A,求该抛物线经过点A的“风车线”的解析式;(2)若抛物线可以通过y=﹣x2平移得到,且它的“风车线”可以统一表示为y=kx+3k﹣2,求该抛物线的解析式;(3)如图2,直线m:y=x+3与直线n:y=﹣2x+9交于点A,抛物线y=﹣2(x﹣2)2+1的“风车线”与直线m、n分别交于B、C两点,若△ABC的面积为12,求满足条件的“风车线”的解析式.【答案】(1)y=-2x+1;(2)y=-(x+3)2-2;(3)y= -x+3或y=1.【分析】(1)先求出点A的坐标,再确定P的坐标为(-1,3),然后将A点坐标代入求解即可;(2)y=kx+3k-2=k(x+3)-2,确定点P的坐标为(-3,-2),然后求出解析式即可;(3)由△ABC的面积=S△APB+S△APC=12,求出x C-x B=6,则点x B(t,t+3),x C(t+6,-2t-3),将点B、C的坐标分别代入y=k(x-2)+1求解即可.【详解】解:(1)∵y=-2(x+1)2+3,∴令x=0,则y=1,∴点A的坐标为(0,1),顶点P的坐标为(-1,3),∴风车线的表达式为y=k(x+1)+3,将点A的坐标代入并求解得:k=-2∴“风车线”的解析式为y=-2(x+1)+3=-2x+1;(2)∵y=kx+3k-2=k(x+3)-2∴点P的坐标为(-3,-2),∴平移后的抛物线表达式为y=-(x+3)2-2;(3)∵y=-2(x-2)2+1,∴点P(2,1),即“风车线”的表达式为y=k(x-2)+1,联立329y xy x=+⎧⎨=-+⎩,解得25xy=⎧⎨=⎩,故点A(2,5),∴AP=5-1=4,∴△ABC的面积=S△APB+S△APC=12×4×(x C-x B)=12,解得:x C-x B=6,设点B的横坐标为t,则点C的横坐标为t+6,∵点B在直线m上,∴点B(t,t+3),同理:点C(t+6,-2t-3),将点B、C的坐标分别代入y=k(x-2)+1,得:3(2)123(62)1t k tt k t+=-+⎧⎨--=+-+⎩解得1tk=⎧⎨=-⎩或2tk=⎧⎨=-⎩∴“风车线”的表达式为y=k(x-2)+1=-(x-2)+1=-x+3或y=1.【点睛】本题属于二次函数综合题,主要考查了一次函数的性质、面积的计算等知识点,灵活应用所学知识成为解答本题的关键.2.(2021·湖南长沙市·九年级一模)我们不妨约定,过坐标平面内任意两点(例如A ,B 两点)作x 轴的垂线,两个垂足之间的距离叫做这两点在x 轴上的“垂足距”,记作____AB .根据该约定,完成下列各题 (1)若点A (1x ,4),B (2x ,8-).当点A 、B 在函数4y x =的图象上时,____AB = ; 当点A ,B 在函数16y x=-的图象上时,____AB = . (2)若一次函数()30y kx k =+≠的图象上有两点A (1x ,k ),B (2x ,222k -),当____AB k =时,求k的值.(3)若抛物线2y ax bx c =++与直线()230y bx c b =--≠在同一坐标平面内交于点A (1x ,1y ),B (2x ,2y ),且同时满足下列两个条件:①a b c >>;②抛物线经过点(1,0),试求____AB 的范围、【答案】(1)3,6;(2)k =2或1;(3____AB 【分析】(1)先把点A 和点B 坐标代入4y x =和16y x=-分别得出 1x 和2x 的值,由“垂足距”的定义即可得出答案 (2)根据“垂足距”的定义得出k 的方程,解方程即可;(3)由2=23++--ax bx c bx c 得出1x ,2x 是方程234=0++ax bx c 的两根,根据根与系数的关系可得1x +2x 和1x 2x 的值,再结合抛物线经过点(1,0)得出22____b b 9+16+16a a ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭AB ,再根据a b c >>和二次函数的增减性得出答案;【详解】解:(1)∵点A (1x ,4),B (1x ,8-)在函数4y x =的图象上,∴1=1x ,2=-2x ,∴()____=1--2=3AB ,∵点A (1x ,4),B (2x ,8-)在函数16y x=-的图象上 ∴1=-4x ,2=2x ,∴()____=2--4=6AB ,(2)∵A (1x ,k ),B (2x ,222k -)在()30y kx k =+≠的图象, ∴1k-3=k x ,222k -5=kx , ∵____AB k = ∴22k -5k-3-=k k k, ∴222--2=k k k当22--20>k k 时,2--2=0k k ,解得:k =2或-1,当22--20<k k 时,23--2=0k k ,解得:k =2-3或1, ∵k >0,∴k =2或1;(3)∵2=23++--ax bx c bx c ()0b ≠∴234=0++ax bx c∴1x ,2x 是方程234=0++ax bx c 的两根,∴1x +23b =-a x ,1x 24c =a x ; ∴()()22221212___122_9b -16ac =x -x =x +x -4x x =a ⎛⎫ ⎪⎝⎭AB , ∵抛物线经过点(1,0),∴=0a b c ++,∴=--c a b , ∴____22229b -16ac b b =9+16+16a a a ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭AB , ∵a b c >>,∴b -a-b >, ∴1b -a 2>, ∴1a -a 2>, ∴a 0>, ∴1b -12a<<, ∵22____b b 9+16+16a a ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭AB , ∴对称轴为b 81=--a 92<, ∴当1b -12a <<时,_2___⎛⎫ ⎪⎝⎭AB 随b a 的增大而增大, ∴当b =1a时, ____AB ,∴当b 1=-a 2时, ____AB∴____AB 的范围为____2AB ; 【点睛】本题是二次函数和一次函数的综合题,解题的关键是理解题意,利用“垂足距”的定义解决问题,属于压轴题. 3.(2021·湖南长沙市·九年级专题练习)我们约定:图象关于y 轴对称的函数称为偶函数.(1)下列函数是偶函数的有 (填序号);①y =x +1;②y =﹣2020x 2+5;③y =|2018x|;④y =2021x 2﹣2020x +2018. (2)已知二次函数y =(k +1)x 2+(k 2﹣1)x +1(k 为常数)是偶函数,将此偶函数进行平移得到新的二次函数y =ax 2+bx +c ,新函数的图象与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,若AB =2,且以AB 为直径的圆恰好经过点C ,求平移后新函数的解析式;(3)如图,已知偶函数y =ax 2+bx +c (a ≠0)经过(1,2),(2,5),过点E (0,2)的一次函数的图象与二次函数的图象交于A ,B 两点(A 在B 的左侧),过点AB 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,分别用S 1,S 2,S 3表示△ACE ,△ECD ,△EDB 的面积,问:是否存在实数m ,使S 22=m S 1S 3都成立?若成立,求出m 的值,若不存在,说明理由.【答案】(1)②③;(2)y =2x 2﹣4x 或y =2x 2+4x 或y =2x 2﹣12-或y =2x 2x ﹣12;(3)存在,m =4【分析】(1)根据每个函数是否关于y 轴对称进行判断; (2)根据偶函数的概念可得:k 2﹣1=0且k +1≠0,即可求得抛物线解析式,再依据平移的性质可知a =2,设A (x 1,0),B (x 2,0)(x 1<x 2),利用根与系数关系及乘法公式可得:b 2﹣8c =16,再根据圆的性质和勾股定理得:b 2+16c 2=16,从而求得b 、c ,即可得到新函数的解析式;(3)由偶函数性质可知b =0,再利用待定系数法即可得函数解析式,设过点E (0,2)的一次函数解析式为:y =kx +2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=k ,x 1x 2=﹣1,根据题意建立方程求解即可.【详解】解:(1)①y =x +1的图像经过第一、三象限,y 轴不是其对称轴,所以y =x +1不是偶函数;②y =﹣2020x 2+5的图像抛物线是轴对称图形,且对称轴是y 轴,是偶函数;③y =|2018x|是关于y 轴对称的,是偶函数; ④y =2021x 2﹣2020x +2018的图像抛物线是轴对称图形,对称轴是直线x =10102021,不是偶函数; 故答案为:②③;(2)∵二次函数y =(k +1)x 2+(k 2﹣1)x +1(k 为常数)是偶函数,∴21010k k ⎧-=⎨+≠⎩,解得:k =1,∴该二次函数解析式为:y =2x 2+1,∵平移抛物线时,开口方向和形状都不变,即a 的值不变,∴平移得到新的二次函数为y =2x 2+bx +c ,由题意知,新函数的图象与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,设A (x 1,0),B (x 2,0)(x 1<x 2),令x =0,得y =c ,∴C (0,c ),∵AB =2,∴x 2﹣x 1=2,由根与系数关系可知:x 1+x 2=﹣2b ,x 1x 2=2c , ∵(x 1+x 2)2﹣4x 1x 2=(x 2﹣x 1)2,∴(﹣2b )2﹣4×2c =22,即b 2﹣8c =16, ∵以AB 为直径的圆恰好经过点C ,∴该圆的圆心为F (122x x +,0),即F (﹣4b ,0), ∴CF =1,即(﹣4b )2+c 2=1,整理,得:b 2+16c 2=16, 联立方程组:2228161616b c b c ⎧-=⎨+=⎩, 解得:1140b c =-⎧⎨=⎩,2240b c =⎧⎨=⎩,3312b c ⎧=-⎪⎨=-⎪⎩,4412b c ⎧=⎪⎨=-⎪⎩; ∴平移后新函数的解析式为:y =2x 2﹣4x 或y =2x 2+4x 或y =2x 2﹣x 12-或y =2x 2﹣12; (3)∵偶函数y =ax 2+bx +c (a ≠0)经过(1,2),(2,5),∴b =0,即y =ax 2+c ,∴245a ca c+=⎧⎨+=⎩,解得:11ac=⎧⎨=⎩,∴y=x2+1,设过点E(0,2)的一次函数解析式为:y=kx+2,将y=x2+1代入,得:x2+1=kx+2,即x2﹣kx﹣1=0,设A(x1,y1),B(x2,y2),则x1+x2=k,x1x2=﹣1,∴y1y2=(kx1+2)(kx2+2)=k2•x1x2+2k(x1+x2)+4=k2+4,∵用S1,S2,S3表示△ACE,△ECD,△EDB的面积,∴S1=12AC•(﹣x1)=12y1•(﹣x1)=﹣12x1y1,S2=12CD•OE=12(x2﹣x1)×2=x2﹣x1,S3=12BD•x2=12x2y2,∴S22=(x2﹣x1)2=(x1+x2)2﹣4x1x2=k2﹣4×(﹣1)=k2+4,S1S3=﹣12x1y1•12x2y2=﹣14(x1x2)(y1y2)=﹣14×(﹣1)×(k2+4)=14(k2+4),∵S22=m S1S3,∴k2+4=m•14(k2+4),∴m=4.【点睛】本题考查了待定系数法,一次函数和二次函数交点,根与系数关系,三角形面积,圆的性质等,是一道综合性强,涉及知识点多的中考压轴题型;解题关键是灵活运用根与系数关系和乘法公式.4.(2021·湖南长沙市·九年级专题练习)在平面直角坐标系中,A(0,a),B(b,0),D(c,0)c2﹣4c+4=0,b为最大的负整数,DE⊥x轴且∠BED=∠ABD,BE交y轴于点C,AE交x轴于点F.(1)求A,B,D的坐标;(2)在y轴上是否存在点G使得GF+GE有最小值?如果存在,求出GF+GE的最小值;如果不存在,请说明理由;(3)如图,过P(0,﹣1)作x轴的平行线,在平行线上有一点Q(点Q在P的右侧)使∠QEM=45°,QE交x轴于N,ME交y轴正半轴于M,求AM MQPQ-的值.【答案】(1)A(0,3),B(﹣1,0),D(2,0);(2;(3)1.【分析】(1)由非负数的性质可求得a、c的值,可求得A、B、D的坐标;(2)由条件可证明△ABO≌△BED,可求得DE和BD的长,可求得E点坐标,再求得直线AE的解析式,可求得F点坐标;如图1,作点F关于y轴的对称点F'(﹣3,0),连接EF',交AO于G,则GF+GE最小值为EF',由勾股定理可求解;(3)过E作EG⊥OA于点G,EH⊥PQ于点H,可证明四边形GEHP为正方形,在GA上截GI=QH,可证明△IGE≌△QHE,可证得∠IEM=∠MEQ=45°,可证明△EIM≌△EQM,可得到IM=MQ,再结合条件可求得AI=PQ,可求得答案.【详解】解:(1)+c2﹣4 c+4=0,+(c﹣2)2=0,∴a=3,c=2,∵b为最大的负整数,∴b=﹣1,∴A(0,3),B(﹣1,0),D(2,0);(2)∵A(0,3),B(﹣1,0),D(2,0),∴OB=1,OD=2,OA=3,∴AO=BD,在△ABO和△BED中,90ABOBED AOBBDE AO BD ,∴△ABO ≌△BED (AAS ),∴DE =BO =1,∴E (2,1),设直线AE 解析式为y =kx +b ,把A 、E 坐标代入可得312b k b ,解得13k b =-⎧⎨=⎩,∴直线AE 的解析式为y =﹣x +3,令y =0,可解得x =3,∴F (3,0),如图1,作点F 关于y 轴的对称点F '(﹣3,0),连接EF ',交AO 于G ,则GF +GE 最小值为EF ',∴EF ' ,∴GF +GE(3)过E 作EG ⊥OA ,EH ⊥PQ ,垂足分别为G 、H ,在GA 上截取GI =QH ,如图2,∵E (2,1),P (﹣1,0),∴GE =GP =EH =PH =2,∴四边形GEHP 为正方形,∴∠IGE =∠EHQ =90°,在Rt △IGE 和Rt △QHE 中,{GE HEIGE EHQ IG QH=∠=∠=∴△IGE ≌△QHE (SAS ),∴IE =EQ ,∠1=∠2,∵∠QEM =45°,∴∠2+∠3=45°,∴∠1+∠3=45°,∴∠IEM =∠QEM ,在△EIM 和△EQM 中,IE QEIEM QEMME ME,∴△EIM≌△EQM(SAS),∴IM=MQ,∴AM﹣MQ=AM﹣IM=AI,由(2)可知OA=OF=3,∠AOF=90°,∴∠A=∠AEG=45°,∴PH=GE=GA=IG+AI,∴AI=GA﹣IG=PH﹣QH=PQ,∴AM MQ AIPQ PQ-==1.【点睛】本题是三角形综合题,涉及知识点有非负数的性质,全等三角形的判定和性质,待定系数法,正方形的判定和性质等知识,熟悉相关性质是解题的关键.5.(2021·湖南长沙市·九年级专题练习)如图1,已知抛物线F1:y=ax2﹣36a(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C,直线l:y=kx+b经过点B,与y轴负半轴交于点D.(1)若D(0,﹣8)为△ABC的外心,求a的值;(2)如图2,若D为△ABC的内心且△ABC的内切圆半径为3,点P为线段BC的中点,求经过点P的反比例函数的解析式;(3)如图3,点E是抛物线F1与直线l的另一个交点,已知OC=2OD,△BCE的面积为6,点E在双曲线F2:y=1cx+上,若当m≤x≤n(其中mn<0)时,二次函数y=﹣x2+2x+c的函数值的取值范围恰好是2m≤y≤2n,求m +n 的值.【答案】(1)a =12;(2)y =﹣6x 或y =﹣18x;(3)m +n =3【分析】(1)在y =ax 2﹣36a 中,令y =0,可求得点A ,B 的坐标,根据D (0,﹣8)为△ABC 的外心,可得DA =DB =DC ,再运用勾股定理即可求得a 的值;(2)根据勾股定理可求得AC =BC ,可得S △ABC =12AB •OC =216a ,再根据D 为△ABC 的内心且△ABC 的内切圆半径为3,亦可得S △ABC =12×(AB +BC +AC )×3,建立方程即可求得a 的值,从而可得点C 坐标,再利用中点坐标公式可得点P 坐标,即可求得结论;(3)先运用待定系数法求得直线l 解析式,再联立方程组求得点E 坐标,利用△BCE 的面积建立方程求a 的值,通过点E 坐标求得c 的值,从而得到抛物线解析式,再结合二次函数增减性和最值进行分类讨论求得m ,n 的值即可得到答案.【详解】解:(1)在y =ax 2﹣36a 中,令y =0,得:ax 2﹣36a =0,解得:x 1=﹣6,x 2=6,∴A (﹣6,0),B (6,0),∵D(0,﹣8)为△ABC的外心,∴DA=DB=DC,∵抛物线F1:y=ax2﹣36a(a>0)与y轴交于点C,∴C(0,﹣36a),∴DC=﹣8﹣(﹣36a)=36a﹣8,在Rt△BOD中,DB=10,∴36a﹣8=10,∴a=12;(2)由(1)知:AB=6﹣(﹣6)=12,OC=36a,由勾股定理得:AC=BC,∵D为△ABC的内心且△ABC的内切圆半径为3,∴S△ABC=12×(AB+BC+AC)×3,∵S△ABC=12AB•OC=12×12×36a=216a,∴12×(AB+BC+AC)×3=216a,即12×(×3=216a,解得:a1=19,a2=13,∴C(0,﹣4)或C(0,﹣12),∵点P为线段BC的中点,∴P(3,﹣2)或P(3,﹣6),设经过点P的反比例函数的解析式为y=kx,将P(3,﹣2)或P(3,﹣6)分别代入,得:k=﹣6或﹣18,∴经过点P的反比例函数的解析式为y=﹣6x或y=﹣18x;(3)由(1)知:B(6,0),C(0,﹣36a),∵OC=2OD,∴D(0,﹣18a),∵直线l:y=kx+b经过点B,与y轴负半轴交于点D,∴6018k bb a+=⎧⎨=-⎩,解得:318k ab a=⎧⎨=-⎩,∴直线l解析式为:y=3ax﹣18a,∵点E是抛物线F1与直线l的另一个交点,∴236318y ax a y ax a ⎧=-⎨=-⎩,解得:116 0x y =⎧⎨=⎩(舍去)22327xy a=-⎧⎨=-⎩,∴E(﹣3,﹣27a),∴S△BCE=12×DC×(3+6)=12×[﹣18a﹣(﹣36a)]×9=81a,∵△BCE的面积为6,∴81a=6,解得:a=2 27,∴E(﹣3,﹣2),∵点E在双曲线F2:y=1cx上,∴c+1=6,∴c=5,∵当m≤x≤n(其中mn<0)时,二次函数y=﹣x2+2x+c的函数值的取值范围恰好是2m≤y≤2n,∴二次函数y=﹣x2+2x+5,当m≤x≤n(其中mn<0)时,2m≤y≤2n,且m<0,由y=﹣x2+2x+5=﹣(x﹣1)2+6,可知:抛物线对称轴为直线x=1,顶点(1,6),①当n≤1时,y随x增大而增大,又x=m时,y=2m,x=n时,y=2n,∴2m=﹣m2+2m+5或2n=﹣n2+2n+5,解得:m n∵m<0,0<n≤1,∴m,n=;②当n>1时,则2n=6,解得n=3,若﹣1<m<0,则最小值在x=3处取得,即2m=﹣32+2×3+5=2,解得:m=1>0,不符合题意,舍去;若m≤﹣1,最小值在x=m处取得,即2m=﹣m2+2m+5,解得:m1m2,∴m,n=3,综上所述,m,n=3;∴m+n=3【点睛】本题考查了二次函数的性质,待定系数法,一次函数与二次函数交点,三角形内心、外心,三角形面积,中点坐标,反比例函数等;是一道综合性较强的压轴题,解题时务必要认真审题,理清思路,能够将相关知识点结合起来;充分利用题目中的信息,运用方程思想,分类讨论思想是解题关键.6.(2020·湖南广益实验中学九年级月考)已知点M为关于x的二次函数y=ax2﹣2amx+am2﹣2m+2(a≠0,m为常数)的顶点.(1)若此二次函数与x轴只有一个交点,试确定m的值;(2)已知以坐标原点O为圆心的圆半径是45,试判断点M与⊙O的位置关系,若能确定,请说明理由,若不能确定,也请分类讨论之;(3)对于任意实数m,点M都是直线l上一点,直线l与该二次函数相交于A、B两点,a是以3、4、5为边长的三角形内切圆的半径长,点A、B在以O为圆心的圆上.①求⊙O的半径;②求该二次函数的解析式.【答案】(1)1;(2)点M在⊙O外,理由见解析;(3)①4;②21634 525y x x=-+【分析】(1)由二次函数与x轴只有一个交点,可得△=0,从而得出关于m的方程,解方程即可确定m的值;(2)写出点M的坐标,用含m的式子表示出OM2,从而可得关于m的二次函数,将其写成顶点式,根据二次函数的性质可得OM2的最小值,求其算术平方根,可得OM的最小值,从而可判断点M与⊙O的位置关系;(3)①由切线长定理求得a的值,将其代入抛物线的解析式,写出直线l的解析式,由抛物线的解析式与直线l的解析式可得关于x的方程,解方程,从而用含m的式子表示出点A和点B的坐标,由勾股定理或两点距离公式可得⊙O的半径;②将a和m的值代入抛物线y=ax2﹣2amx+am2﹣2m+2计算即可得出答案.【详解】解:(1)∵二次函数与x轴只有一个交点,∴△=(﹣2am)2﹣4a(am2﹣2m+2)=0,∴8am﹣8a=8a(m﹣1)=0,∵a≠0,∴m﹣1=0,∴m=1;(2)∵点M为关于x的二次函数y=ax2﹣2amx+am2﹣2m+2的顶点,∴M(m,﹣2m+2),∵原点O的坐标为(0,0),∴OM2=m2+(﹣2m+2)2=5m 2﹣8m +4 =2445()55m -+, ∴当m =45时,OM 2有最小值45,455=>, ∴点M 在⊙O 外;(3)①作出以3、4、5为边长的三角形,F ,G ,H 是三角形与⊙O 的切点,连接OF ,OG ,如图所示:由勾股定理可知该三角形是直角三角形,则∠E =90°,由切线的性质可知,OF ⊥DE ,OG ⊥CE ,∴∠OFE =90°,∠OGE =90°,∴四边形OFEG 是矩形,∵OF =OG =a ,∴四边形OFEG 是正方形,∴FE =EG =a ,∵CH =CG ,DH =DF ,∴2a =3+4﹣5,∴a =1,∴y =x 2﹣2mx +m 2﹣2m +2,∵对于任意实数m ,点M 都是直线l 上一点,且M (m ,﹣2m +2),∴直线l 的解析式为y =﹣2x +2,令﹣2x +2=x 2﹣2mx +m 2﹣2m +2,解得x 1=m ,x 2=m ﹣2,∴A (m ,﹣2m +2),B (m ﹣2,﹣2m +6),∵点A 、B 在以O 为圆心的圆上,∴m 2+(﹣2m +2)2=(m ﹣2)2+(﹣2m +6)2,解得m =85,∴⊙O 4==. ②将a =1,m =85代入抛物线y =ax 2﹣2amx +am 2﹣2m +2得21634525y x x =-+. ∴该二次函数的解析式为21634525y x x =-+. 【点睛】 本题属于二次函数综合题,考查了抛物线与x 轴的交点、利用二次函数的性质求最值、点与圆的位置关系、切线长定理、直线与抛物线的交点及解一元二次方程等知识点,综合性较强,需要熟练掌握相关性质及定理并正确运算.7.(2021·长沙市湘郡培粹实验中学九年级期末)对于一个函数给出如下定义;对于函数y ,若当a x b ≤≤,函数值y 满足m y n ≤≤,且满足()n m k b a -=-,则称此函数为“k 属合函数”.例如:正比例函数2y x =-,当13x ≤≤时,62y -≤≤-,则()()2631k ---=-,求得:2k =,所以函数2y x =-为“2属合函数”. (1)一次函数10,13()y ax a x =-<≤≤为“1属合函数”,求a 的值.(2)反比例函数(0,k y k a x b x=>≤≤,且0a b <<)是“k 属合函数”,且a b +=,请求出22a b +的值; (3)已知二次函数22362y x ax a a =-+++,当11x -≤≤时,y 是“k 属合函数”,求k 的取值范围.【答案】(1)a =-1;(2)2019;(3)k ≥32. 【分析】(1)利用“k 属合函数”的定义即可得出结论;(2)先判断出函数的增减性,利用“k 属合函数”的定义得出ab =1,最后利用完全平方公式即可得出结论; (3)分四种情况,各自确定出最大值和最小值,最后利用“k 属合函数”的定义即可得出结论.【详解】解:(1)当a <0时,一次函数的y 随着x 的增大而减小,∵1≤x ≤3,∴3a -1≤y ≤a -1,∵一次函数y =ax -1(a <0,1≤x ≤3)为“1属合函数”,∴(a -1)-(3a -1)=1×(3-1),∴a =-1;(2)∵反比例函数y =k x,k >0, ∴在第一象限内,y 随x 的增大而减小,当a ≤x ≤b 且0<a <b 是“k 属合函数”, ∴()k k k b a a b-=-, ∴ab =1,∵a+b∴a2+b2=(a+b)2-2ab=2021-2=2019;(3)∵二次函数y=-3x2+6ax+a2+2a的对称轴是:直线62(3)ax a =-=⨯-,∴当-1≤x≤1时,y是“k属合函数”,∴当x=-1时,y=a2-4a-3,当x=1时,y=a2+8a-3,当x=a时,y=4a2+2a,①如图1,当a≤-1时,当x=-1时,有y max=a2-4a-3,当x=1时,有y min=a2+8a-3,∴(a2-4a-3)-(a2+8a-3)=2k,∴k=-6a,∴k≥6;②如图2,当-1<a≤0时,当x =a 时,有y max =4a 2+2a ,当x =1时,有y min =a 2+8a -3,∴(4a 2+2a )-(a 2+8a -3)=2k , ∴23(1)2k a =-, ∴362k ≤<; ③如图3,当0<a ≤1时,当x =a 时,有y max =4a 2+2a ,当x =-1时,有y min =a 2-4a -3∴(4a 2+2a )-(a 2-4a -3)=2k , ∴23(1)2k a =+, ∴362k <≤; ④如图4,当a >1时,当x =1时,有y max =a 2+8a -3,当x =-1时,有y min =a 2-4a -3,∴(a 2+8a -3)-(a 2-4a -3)=2k ,∴k =6a ,∴k >6;综上,k 的取值范围为k ≥32. 【点睛】此题是二次函数,一次函数,反比例函数的综合题,主要考查了新定义的理解和应用,反比例函数的性质,二次函数的性质,一次函数的性质,利用分类讨论的思想解决问题是解本题的关键.8.(2021·湖南长沙市·九年级专题练习)一般地,在画一个图形关于某点的中心对称图形时,首先找到对称中心,将关键点与对称中心相连,并延长至等长,最后将所得的对应点连接即可得到对称图形.若将函数C 1的图象沿某一点旋转180度,与函数C 2的图象重合,则称函数C 1与C 2关于这个点互为“中心对称函数”,这个点叫作函数C 1、C 2的“对称中心”,如:求函数y x =的关于(1,0)的中心对称函数,可以在函数上取(0,0)和(1,1),两个点关于(1,0)中心对称点分别是(2,0)和(1,1-),这样我们就可以得到函数y x =关于(1,0)中心对称函数2y x =-.(1)求函数32y x =+关于(1,0)的中心对称函数;(2)若函数C 1:2y x b =+,对称中心是(0,b -),此时C 1的关于(0,b -)的中心对称函数C 2的图象与函数2y x=-的图象有且只有一个交点,求b 的值;(3)若函数C 1:211y x =+,对称中心是(1,10),当04x ≤≤时,此时函数C 1关于(1,10)的中心对称函数C 2的图象与函数3y kx k =+的图象始终有交点,求k 的取值范围.【答案】(1)y=3x-8;)(2)b=43±;(3)57≤k≤2. 【分析】(1)由“中心对称函数”的概念解答即可;(2)在函数2y x b =+求出两个点关于(0,b -)的中心对称点,则得到函数2C 的解析式,再根据C 2的图象与函数2y x=-的图象有且只有一个交点,得△=0,求出b 即可; (3)求出函数C 1:211y x =+关于(1,10)的中心对称函数2C ,再根据C 2的图象与函数3y kx k =+的图象始终有交点,得△≥0,求出k ,再根据x 的取值范围对k 进行检验.【详解】解:(1)由题意得:可在32y x =+上取(0,2)和(-23,0), 两个点关于(1,0)的中心对称点分别是(2,-2)和(8,03), 则得到函数32y x =+关于(1,0)的中心对称函数y=3x-8;(2)可在函数1C :y=2x+b 上取(0,b )和(-b ,02), 两个点关于(0,b -)的中心对称点分别是(0,-3b )和(,22b b -), 则得到函数y=2x+b 关于(0,b -)的中心对称函数2C : y=2x-3b ,又∵函数C 2的图象与函数2y x=-的图象有且只有一个交点, ∴2x+b=-2x22320x bx -+=△=29b 160-=b=±43(3)在函数C 1:211y x =+上取(0,11)、(1,12),两个点关于(1,10)的中心对称点分别是(2,9)、(1,8),则得到函数2C 的解析式:y=-245x x ++,当x=4时,y=5,∴A(4,5),∵函数C 2的图象与函数3y kx k =+的图象在0≤x≤4上始终有交点,∴-245x x ++=kx+3k∴-2(4)530x k x k +-+-=∵△=2(4)+4(53)k k -⨯-=0∴22036k k -+=0解得:122,18k k ==,把A(4,5)代入y=kx+3k 得k=57, ∴k 的取值范围为57≤k≤2. 【点睛】本题考查了对“中心对称函数”的概念理解与运用和判别式的应用,掌握这些知识点是解题的关键. 9.(2021·湖南长沙市·九年级专题练习)规定:我们把一个函数关于某条直线或者某点作对称后形成的新函数,称之为原函数的“对称函数”.(1)已知一次函数y =﹣2x +3的图象,求关于直线y =﹣x 的对称函数的解析式;(2)已知二次函数y =ax 2+4ax +4a ﹣1的图象为C 1;①求C 1关于点R (1,0)的对称函数图象C 2的函数解析式;②若两抛物线与y 轴分别交于A 、B 两点,当AB =16时,求a 的值;(3)若直线y =﹣2x ﹣3关于原点的对称函数的图象上的存在点P ,不论m 取何值,抛物线y =mx 2+(m ﹣23)x ﹣(2m ﹣38)都不通过点P ,求符合条件的点P 坐标. 【答案】(1)y =1322x - ,(2) ①28161y ax ax a =-+-+ ,②910或7-10 (3)(1,1),(-2,7). 【分析】(1)取y =-2x +3上两点(0,3),(32,0),求出这两点关于y =-x 对称点,代入y =k x +b ,求出k ,b 的值则可以得出解析式; (2)①设C 2上的点为(x ,y ),其关于(1,0)的对称点代入C 1上,则可以求出C 2 的解析式; ②C 1与y 轴交于(0,4a -1), C 2与y 轴交于(0,-16a +1)根据AB =16,列方程求出a 的值,(3)求出y =-2x -3关于原点对称函数为y =-2x +3,根据抛物线不通过点P :222323()(2)(2)3838y mx m x m x x x =+---=+--+ ,令220x x +-= ,得出x ,将x 的值代入y =-2x +3中,由于函数值得唯一性,得出点P 的坐标.【详解】(1)取y =-2x +3上两点(0,3),(32 ,0)两点关于y =-x 对称点为(-3,0),(0,-32) 设y =x +b ,则0332k b b =-+⎧⎪⎨=-⎪⎩ ,解得1232k b ⎧=-⎪⎪⎨⎪=-⎪⎩ , 则1322y x =-- , (2)①设C 2上的点为(x ,y ),其关于(1,0)的对称点为(2-x ,-y ),(2-x ,-y )在C 1上,则()()224241y a x a x a -=-+-+-C 2:28161y ax ax a =-+-+,②C 1关于y 轴交于(0,4a -1), C 2关于y 轴交于(0,-16a +1),AB =|(4a -1)-(-16a +1)|=16,|2a -2|=16,解得a =910或-710 , (3)y =-2x -3关于原点对称函数为y =-2x +3,抛物线:()222323223838y mx m x m x x m x ⎛⎫⎛⎫=+---=+--+ ⎪ ⎪⎝⎭⎝⎭ 令220x x +-= ,得x 1=1,x 2=-1,则抛物线经过(1,7-24 ),(-2,4124) 令x =1,y =-2x -3=1,令x =-2,y =-2x +3=7,点(1,1)(-2,7)在y =-2x +3上由于函数值的唯一性,上述两点不可能在抛物线上,故P 为(1,1)或(-2,7).【点睛】 此题是一次函数,二次函数的综合,包含求函数的解析式,函数的对称性,一次函数的点的坐标特征,二次函数图像和性质,以及一次函数与一元一次方程结合,解题的关键是熟悉一次函数,二次函数的图像和性质.10.(2020·湖南长沙市·九年级月考)已知y 是关于x 的函数,若其图像经过点(,2)P t t ,则称点P 为函数图像上的“偏离点”.例如:直线3y x =-上存在“偏离点”(3,6)P --.(1)在双曲线1y x =上是否存在“偏离点”?若存在,请求出“偏离点”的坐标;若不存在,请说明理由. (2)若抛物线2212221239y x a x a a ⎛⎫=-++--+ ⎪⎝⎭上有“偏离点”,且“偏离点”为()11,A x y 和()22,B x y ,求22123ka w x x =+-的最小值(用含k 的式子表示); (3)若函数21(2)24y x m t x n t =+-+++-的图像上存在唯一的一个“偏离点”,且当23m -≤≤时,n 的最小值为t ,求t 的值.【答案】(1)2P ⎛ ⎝和2P ⎛- ⎝;(2)2241632k k ++-;(2)4或1. 【分析】(1)根据“偏离点”的坐标特征设出坐标,代入双曲线中,有解则有“偏离点”;(2)设抛物线“偏离点”的坐标为P (x ,2x ),代入抛物线的关系式中得到关于x 的一元二次方程,因为有两个偏离点,则这两个偏离点的横坐标就是这个一元二次方程的两个根,先由△的值确定a 的取值,再由根与系数的关系得:两根和与两根据积的式子,再将所求式子代入w=x 12+x 22-3ka 进行变形,得到w 关于a 的二次函数,求最小值即可;(3)设函数“偏离点”的坐标为P (x ,2x ),代入函数的关系式中得到关于x 的一元二次方程,因为有一个偏离点,则△=0,得到n=(m-t )2-t+2,把它看成一个二次函数,对称轴m=t ,分三种情况讨论:①t <-2,列方程,方程无解,没有符合条件的t 值;②t >3,列方程,解出t 并取舍;③当-2≤t≤3,同理得t=1.【详解】(1)设存在这样的“偏离点”P ,坐标为(),2t t ,将点P 的坐标代入双曲线1y x=得: 12t t =,221t =,解得2t =±, 故存在两个“偏离点”,坐标为2P ⎛ ⎝和2P ⎛- ⎝. (2)设抛物线“偏离点”的坐标为(),2P x x , 将点P 的坐标代入抛物线2212221239y x a x a a ⎛⎫=-++--+ ⎪⎝⎭中得 22122221239x x a x a a ⎛⎫=-++--+ ⎪⎝⎭, 2212210239x ax a a -+--+=, ∵“偏离点”为()11,A x y 和()22,B x y , ∴1x 、2x 是方程2212210239x ax a a -+--+=的两个根, 22212410329a a a ⎛⎫⎛⎫⎛⎫∆=-⨯---+≥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 224221099a a a ⎛⎫∆=+--+≥ ⎪⎝⎭, 220a ∆=-+≥,∴1a ≤, ∵12243132a a x x +=-=-,2212214922192a a x x a a --+⋅==+--,()2221212122244222393233a ka a a ka ka w x x x x x x ⎛⎫=+-=+-⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭-, 28(4)493k w a a =-++, ∵809>, ∴抛物线开口向上,且对称轴:4363391628kk a --+=-=⨯ , ∴若36316k a +=≥1时,即36+3k≥16,则当a=1时,w 的最小值是:893k -; 若36316k a +=<1时,即36+3k <16,k <203-,则当36316k a +=时, 则w 小=28449849(4)3k ⨯⨯-⨯+=21313242k k ---=2241632k k ++- ; (3)设函数“偏离点”的坐标为(),2P x x , 将点P 的坐标代入函数()21224y x m t x n t =+-+++-得 ()21224x x m t x n t =+-+++-, ()21204x m t x n t +-++-=, ∵存在唯一的一个“偏离点”,∴()()214204m t n t ∆=--⨯⨯+-=,()22n m t t =--+,这是一个n 关于m 的二次函数,图象为抛物线,开口向上,对称轴为m t =,对称轴左侧,n 随m 的增大而减小;对称轴右侧,n 随m 的增大而增大;①2t <-,当23m -≤≤时,在对称轴右侧递增,∴当2m =-时,n 有最小值为t ,即()222t t t ---+=,2260t t ++=, 44160∆=-⨯⨯<,方程无解,②3t >,当23m -≤≤时,在对称轴左侧递减,∴当3m =时,n 有最小值为t ,即()232t t t --+=,解得14t =243t =<(舍),③当23t -≤≤,当23m -≤≤时,n 有最小值为2t -+,∴2t t -+=,1t =.综上所述,t 的值为4+或1.【点睛】本题是一个阅读理解问题,考查了对函数“偏离点”的掌握和运用,还考查了反比例函数和二次函数的性质及一元二次方程的根与二次函数的关系;明确一元二次方程根据与系数的关系,方程的解与根的判别式的关系;尤其是二次函数的最值问题,在自变量的所有取值中:当a >0时,抛物线在对称轴左侧,y 随x 的增大而减少;在对称轴右侧,y 随x 的增大而增大,函数有最小值,当a <0时,抛物线在对称轴左侧,y 随x 的增大而增大;在对称轴右侧,y 随x 的增大而减少,函数有最大值;如果在规定的取值中,要看图象和增减性来判断.。
最新中考数学压轴题精析2
最新中考数学压轴题(10. 2012广东深圳9分)22.如图,已知△ABC 的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6).(1)求经过A 、B 、C 三点的抛物线解析式;(2)设直线BC 交y 轴于点E ,连接AE ,求证:AE=CE;(3)设抛物线与y 轴交于点D ,连接AD 交BC 于点F ,试问以A 、B 、F ,为顶点的三角形与△ABC 相似吗? 请说明理由.【答案】解:(1)∵抛物线经过A(-4,0)、B(1,0),∴设函数解析式为:y=a (x +4)(x -1)。
又∵由抛物线经过C (-2,6),∴6=a(-2+4)(-2-1),解得:a=-1。
∴经过A 、B 、C 三点的抛物线解析式为:y=-(x +4)(x -1),即y=-x 2-3x +4。
(2)证明:设直线BC 的函数解析式为y=kx+b ,由题意得: k b 0 2k b 6+=⎧⎨-+=⎩ ,解得:k 2 b 2=-⎧⎨=⎩。
∴直线BC 的解析式为y=-2x+2.∴点E 的坐标为(0,2)。
∴AE CE ====∴AE=CE。
(3)相似。
理由如下:设直线AD 的解析式为y=k 1x+b 1,则 1114k b 0 b 4-+=⎧⎨=⎩,解得:11k 1b 4=⎧⎨=⎩。
∴直线AD 的解析式为y=x+4。
联立直线AD 与直线BC 的函数解析式可得:y x 4 y 2x 2=+⎧⎨=-+⎩,解得:2 x 310 y 3⎧=-⎪⎪⎨⎪=⎪⎩。
∴点F 的坐标为(21033- ,)。
则BF AF = 又∵AB=5,BC∴BF AB AB BC == ,。
∴BF ABAB BC=。
又∵∠ABF=∠CBA,∴△ABF∽△CBA。
∴以A 、B 、F 为顶点的三角形与△ABC 相似。
【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,勾股定理,相似三角形的判定。
【分析】(1)利用待定系数法求解即可得出抛物线的解析式。
124--2021年全国中考数学压轴题解析汇编(2)及答案(浙苏赣皖湘鄂省会)
【2021·杭州·22题】(1)先求解下列两题:②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B、C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数y=k x (x>0)的图象经过点B、D,求k的值。
(2)解题后,你发现以上两小题有什么共同点?请简单写出。
解:(1)①∵在△ADE中,∠EDM=∠A+∠AED∴∠AED=∠EDM-∠A∵CD=DE∴∠AED=∠DCE∴∠DCE=∠EDM-∠A∵在△ACD中,∠DCE=∠A+∠ADC∴∠ADC=∠DCE-∠A=∠EDM-2∠A∵BC=CD∴∠ADC=∠DBC∴∠DBC=∠EDM-2∠A∵在△ABC中,∠DBC=∠A+∠ACB∴∠ACB=∠DBC-∠A=∠EDM-3∠A∵AB=BC∴∠A=∠ACB∴∠A=∠EDM-3∠A∴∠A=14∠EDM∵∠EDM=84°∴∠A=21°②∵点B在反比例函数图象上,且横坐标为3∴可设点B的坐标为(3,3k)∵C的横坐标是3,且BC=2∴点C的坐标为(3,23k+)∵D的横坐标为1,且AC∥x轴∴点D的坐标为(1,23k+)∵点D在反比例函数图象上∴1·(23k+)=k∴k=3(2)两小题的共同点是:用已知的量通过一定的等量关系去表示未知的量,建立方程解答问题【2013·杭州·23题】如图,已知正方形ABCD 的边长为4,对称中心为点P ,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件∠EPF =45°,图中两块阴影部分图形关于直线AC 成轴对称,设它们的面积为S 1.(1)求证:∠APE =∠CFP ;(2)设四边形CMPF 的面积为S 2,CF =x ,y =12S S 。
① 求y 关于x 的函数解析式和自变量x 的取值范围,并求出y 的最大值;② 当图中两块阴影部分图形关于点P 成中心对称时,求y 的值。
中考数学解答题压轴题突破 重难点突破八 几何综合探究题 类型二:操作型探究问题
5.(2022·嘉兴)小东在做九上课本 123 页习题:“1∶ 2 也是一个很有 趣的比.已知线段 AB(如图①),用直尺和圆规作 AB 上的一点 P,使 AP∶ AB=1∶ 2.”小东的作法是:如图②,以 AB 为斜边作等腰直角三角形 ABC,再以点 A 为圆心,AC 长为半径作弧,交线段 AB 于点 P,点 P 即为 所求作的点.小东称点 P 为线段 AB 的“趣点”.
(1)【阅读理解】我国是最早了解勾股定理的国家之一,它被记载于我国 古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理, 创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”. 根据“赵爽弦图”写出勾股定理和推理过程;
解: a2+b2=c2(直角三角形两条直角边的平方和等于斜边的平方). 推理如下: ∵如图①,4 个△ADE 的面积和+正方形 EFGH 的面积=正方形 ABCD 的面 积, 即 4×12ab+(b-a)2=c2, 整理得 a2+b2=c2.
解:∵在正方形 PQMN 中,PN=PQ=DE,PN∥BC,∴△APN∽△ABC,AE=
PN AE AD-DE=AD-PN,∴BC=AD,
PN h-PN
ah
ah
∴ a = h ,∴PN=a+h,∴正方形 PQMN 的边长为a+h.
(2)【操作推理】如何画出这个正方形 PQMN 呢? 如图②,小杰画出了图①的△ABC,然后又进行以下操作:先在 AB 边上 任取一点 P′,画正方形 P′Q′M′N′,使点 Q′,M′在 BC 边上,点 N ′在△ABC 内,然后连接 BN′,并延长交 AC 于点 N,作 NM⊥BC 于点 M, NP⊥NM 交 AB 于点 P,PQ⊥BC 于点 Q,得到四边形 PQMN.证明:图②中的 四边形 PQMN 是正方形; 【分层分析】先推出四边形 PQMN 是矩形,再根据 P′N′∥PN,M′N′∥ MN,可得P′PNN′=N′NMM′,结合 M′N′=P′N′,推得 MN=PN 进而得证;
2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)(含简单答案)
(1)点A的坐标为;
(2)若射线 平分 ,求二次函数的表达式;
(3)在(2)的条件下,如果点 是线段 (含A、B)上一个动点,过点D作x轴的垂线,分别交直线 和抛物线于E、F两点,当m为何值时, 为直角三角形?
②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,求出满足条件的所有点N的坐标.
14.如图1,抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),与y轴交于点C.M是抛物线任意一点,过点M作直线l⊥x轴,交x轴于点E,设M的横坐标为m(0<m<3).
(1)求抛物线的解析式及tan∠OBC的值;
(2)当m=1时,P是直线l上的点且在第一象限内,若△ACP是直角三角形时,求点P的坐标;
(3)如图2,连接BC,连接AM交y轴于点N,交BC于点D,连接BM,设△BDM的面积为S1,△CDN的面积为S2,求S1﹣S2的最大值.
15.如图,抛物线 与 轴交于 , 两点,与 轴交于点 ,已知抛物线的对称轴是直线 , . 为抛物线上的一个动点,过点 作 轴于点 ,交直线 于点 .
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求直线 的解析式.
6.已知抛物线 经过 、 两点,O为坐标原点,抛物线交正方形 的边 于点E,点M为射线 上一动点,连接 ,交 于点F.
(1)求b和c的值及点C的坐标;
(2)求证∶
(3)是否存在点M,使 为等腰三角形?若不存在,请说明理由;若存在,求ME的长.
(1)求 , 的长(结果均用含 的代数式表示).
中考数学压轴题及答案(共20题) 2百度文库
一、中考数学压轴题1.在平面直角坐标系中,直线4(0)3y x b b =-+>交x 轴于点A ,交y 轴于点B ,10AB =.(1)如图1,求b 的值;(2)如图2,经过点B 的直线(4)(40)y n x b n =++-<<与直线y nx =交于点C ,与x 轴交于点R ,//CD OA ,交AB 于点D ,设线段CD 长为d ,求d 与n 的函数关系式; (3)如图3,在(2)的条件下,点F 在第四象限,CF 交OA 于点E ,45AEF ∠=︒,点P 在第一象限,PH OA ⊥,点N 在x 轴上,点M 在PH 上,MN 交PE 于点G ,PH EN =,过点E 作EQ CF ⊥,交PH 于点Q , 32==EQ EF PM ,∠=∠OBR HNM ,BC CR =,点G 的坐标为1927,55⎛⎫ ⎪⎝⎭,连接FN ,求EFN 的面积.2.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.3.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.4.如图,在四边形ABCD中,∠B=90°,AD//BC,AD=16,BC=21,CD=13.(1)求直线AD和BC之间的距离;(2)动点P从点B出发,沿射线BC以每秒2个单位长度的速度运动,动点Q从点A出发,在线段AD上以每秒1个单位长度的速度运动,点P、Q同时出发,当点Q运动到点D 时,两点同时停止运动,设运动时间为t秒.试求当t为何值时,以P、Q、D、C为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P,使△PQD为等腰三角形?若存在,请直接写出相应的t值,若不存在,请说明理由.5.如图,AB∥CD,定点E,F分别在直线AB,CD上,平行线AB,CD之间有一动点P.(1)如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为.(2)如图3,当∠EPF=90°,F P平分∠EFC时,求证:EP平分∠AEF;(3)如图4,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.①若∠EPF=60°,则∠EQF=.②猜想∠EPF与∠EQF的数量关系,并说明理由;6.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC的值.(拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.10AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.7.如图①,四边形ABCD 中,//,90AB CD ADC ∠=︒.(1)动点M 从A 出发,以每秒1个单位的速度沿路线A B C D →→→运动到点D 停止,设运动时间为a ,AMD ∆的面积为,S S 关于a 的函数图象如图②所示,求AD CD 、的长.(2)如图③动点P 从点A 出发,以每秒2个单位的速度沿路线A D C →→运动到点C 停止,同时,动点Q 从点C 出发,以每秒5个单位的速度沿路线C D A →→运动到点A 停止,设运动时间为t ,当Q 点运动到AD 边上时,连接CP CQ PQ 、、,当CPQ ∆的面积为8时,求t 的值.8.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若12,(33)2ADH a S ==+,求sin GAB ∠的值.9.∠MON=90°,点A ,B 分别在OM 、ON 上运动(不与点O 重合).(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB= °(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D ①若∠BAO=60°,则∠D= °.②随着点A ,B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由.(3)如图③,延长MO 至Q ,延长BA 至G ,已知∠BAO ,∠OAG 的平分线与∠BOQ 的平分线及其延长线相交于点E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,求∠ABO 的度数.10.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.11.问题背景:如图(1),ABC 内接于O ,过点A 作O 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB PC 、,比较BPC ∠与BAC ∠的大小,并说明理由.问题解决:如图(2),A (0,2)、B (0,4),在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出点P 的坐标;若不存在,请说明理由.拓展应用:如图(3),四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C =,9DEP S =,求sin APB ∠的最大值.12.注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD ,放置在平面直角坐标系中,()0,0A ,()4,0B ,()0,3D ,M 是边CD 上一点,将ADM 沿直线AM 折叠,得到ANM .(Ⅰ)当AN 平分MAB ∠时,求DAM ∠的度数和点M 的坐标;(Ⅱ)连接BN ,当1DM =时,求ABN 的面积;(Ⅲ)当射线BN 交线段CD 于点F 时,求DF 的最大值.(直接写出答案) 在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题. 小明:我是这样想的,延长MN 与x 轴交于P 点,于是出现了Rt NAP △.小雨:我和你想的不一样,我过点N 作y 轴的平行线,出现了两个Rt NAP △.13.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形).(1)当x =(s )时,PQ ⊥BC ;(2)当点M 落在AC 边上时,x = (s );(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.14.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 15.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度16.如图,在平面直角坐标系中,矩形ABCD 的顶点,A D 在坐标轴上,两点的坐标分别是点()0,,A m 点(),0,D m 且m 满足:322m m -+62=边AB 与x 轴交于点,E 点F 是边AD 上一动点,连接FB ,分别与x 轴,y 轴交于点,P 点,H 且FD BE =.(1)求m 的值;(2)若45,APF ∠=︒求证:AHF HFA ∠=∠;(3)若点F 的纵坐标为,n 则线段HF 的长为 .(用含n 的代数式表示)17.已知抛物线2y ax bx c =++过点(6,0)A -,(2,0)B ,(0,3)C -.(1)求此抛物线的解析式;(2)若点H 是该抛物线第三象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且45GQA ∠=︒,求点Q 的坐标.18.如图,在⊙O 中,直径AB =10,tanA 3 (1)求弦AC 的长;(2)D 是AB 延长线上一点,且AB =kBD ,连接CD ,若CD 与⊙O 相切,求k 的值; (3)若动点P 以3cm/s 的速度从A 点出发,沿AB 方向运动,同时动点Q 以32cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为t (0<t <103),连结PQ .当t 为何值时,△BPQ为Rt△?19.如图1,以AB为直径作⊙O,点C是直径AB上方半圆上的一点,连结AC,BC,过点C作∠ACB的平分线交⊙O于点D,过点D作AB的平行线交CB的延长线于点E.(1)如图1,连结AD,求证:∠ADC=∠DEC.(2)若⊙O的半径为5,求CA•CE的最大值.(3)如图2,连结AE,设tan∠ABC=x,tan∠AEC=y,①求y关于x的函数解析式;②若CBBE=45,求y的值.20.如图1,在平面直角坐标系中,O是坐标原点,矩形OACB的顶点A、B分别在x轴和y轴上,已知OA=5,OB=3,点D的坐标是(0,1),点P从点B出发以每秒1个单位的速度沿折线BCA的方向运动,当点P与点A重合时,运动停止,设运动的时间为t秒.(1)点P运动到与点C重合时,求直线DP的函数解析式;(2)求△OPD的面积S关于t的函数解析式,并写出对应t的取值范围;(3)点P在运动过程中,是否存在某些位置使△ADP是不以DP为底边的等腰三角形,若存在,请求出点P 的坐标;若不存在,请说明理由.21.(操作发现)如图1,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于45︒),旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF CD =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF .(1)请求出EAF ∠的度数?(2)DE 与EF 相等吗?请说明理由;(类比探究)如图2,ABC ∆为等边三角形,先将三角板中的60︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于30).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .(3)直接写出EAF ∠=_________度;(4)若1AE =,2BD =,求线段DE 的长度.22.如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点(1)则m =_________;C 点坐标为___________;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由.(3)P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t =________时,四边形PBQC 的面积最大.23.综合与探究:如图1,抛物线24832999y x x =-++与x 轴交于,A B 两点(点A 在点B 的左侧),顶点为D ,P 为对称轴右侧抛物线的一个动点,直线AD 与y 轴于点C ,过点P 作//PF AD ,交x 轴于点F .(1)求直线AD 的函数表达式及点C 的坐标;(2)如图2,当//PC x 轴时,将AOC ∆以每秒1个单位长度的速度沿x 轴的正方向平移,当点C 与点P 重合时停止平移.设平移t 秒时,在平移过程中AOC ∆与四边形AFPC 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出自变量t 的取值范围; (3)如图3,过点P 作x 轴的平行线,交直线AD 于点E ,直线DF 与PE 交于点M ,设点P 的横坐标为m .①当3DM MF =时,求m 的值;②试探究点P 在运动过程中,是否存在值m ,使四边形AFPE 是菱形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.24.(1)探究发现数学活动课上,小明说“若直线21y x =-向左平移3个单位,你能求平移后所得直线所对应函数表达式吗?”经过一番讨论,小组成员展示了他们的解答过程:在直线21y x =-上任取点()01A -,, 向左平移3个单位得到点()31,'--A 设向左平移3个单位后所得直线所对应的函数表达式为2y x n =+.因为2y x n =+过点()31,'--A , 所以61n -+=-,所以5n =,填空:所以平移后所得直线所对应函数表达式为(2)类比运用已知直线21y x =-,求它关于x 轴对称的直线所对应的函数表达式;(3)拓展运用将直线21y x =-绕原点顺时针旋转90°,请直接写出:旋转后所得直线所对应的函数表达式 .25.小明研究了这样一道几何题:如图1,在ABC 中,把AB 绕点A 顺时针旋转()0180a a ︒<<︒得到AB ',把AC 绕点A 逆时针旋转β得到AC ',连接B C ''.当180a β+=︒时,请问AB C ''△边B C ''上的中线AD 与BC 的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当ABC 为等边三角形时,猜想AD 与BC 的数量关系为AD =_______BC ;②如图3,当90BAC ∠=︒,8BC =时,则AD 长为________. 猜想论证:(2)在图1中,当ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD ,90C ∠=︒,120A B ∠+∠=︒,3BC =6CD =,3DA =P ,使PDC △与PAB △之间满足小明探究的问题中的边角关系?若存在,请画出点P 的位置(保留作图痕迹,不需要说明)并直接写出PDC △的边DC 上的中线PQ 的长度;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.B解析:(1)8b =;(2)382d n =+;(3)92EFN S =△ 【解析】【分析】(1)先用b 表示出点B 和点A 的坐标,然后利用勾股定理列出方程即可求出b 的值; (2)联立直线BC 的解析式和直线AB 的解析式即可用n 表示出点C 的坐标,从而求出点D 的坐标,从而求出d 与n 的函数关系式;(3)过点C 作CS ⊥x 轴于S ,过点F 作FT ⊥x 轴于T ,过点G 作GD ⊥y 轴于D ,MN 与y 轴交于点I ,根据相似三角形判定可得△RSC ∽△ROB ,列出比例式即可求出OR 和CS ,然后根据等角的锐角三角函数相等求出ON ,再根据等腰直角三角形的性质求出NE ,然后结合已知条件和等角的锐角三角函数相等求出TF ,即可求出结论.【详解】解:(1)当x=0时,y=b ;当y=0时,x=34b∴点B 的坐标为(0,b ),点A 的坐标为(34b ,0) ∴OB=b ,OA=34b 根据勾股定理OB 2+OA 2=AB 2b 2+(34b )2=102 解得:b=8或-8(不符合已知条件,舍去)∴b=8(2)直线BC 的解析式为(4)8=++y n x ,直线AB 的解析式为483y x =-+ 联立(4)8y n x y nx =++⎧⎨=⎩解得:22x y n =-⎧⎨=-⎩∴点C 的坐标为(-2,-2n )∵//CD OA∴点D 的纵坐标为-2n将y=-2n 代入483y x =-+中,解得:x=362+n ∴点D 的坐标为36,22⎛⎫+- ⎪⎝⎭n n ∴线段CD 长d =362+n -(-2)=382+n (3)过点C 作CS ⊥x 轴于S ,过点F 作FT ⊥x 轴于T ,过点G 作GD ⊥y 轴于D ,MN 与y 轴交于点I∴OD=275,GD=195由(2)知点C 坐标为(-2,-2n )∴CS=-2n ,OS=2∵BC CR =,CS ∥y 轴∴RB=2RC ,△RSC ∽△ROB ∴12===CS RS RC OB OR RB 即22182--==n OR OR 解得:n=-2,OR=4∴CS=4∵∠=∠OBR HNM ,GD ∥x 轴∴∠=∠OBR HNM =∠DGI∴tan tan ∠=∠OBR HNM =tan ∠DGI ∴==OR OI ID OB ON GD即48927515-==ID ID ON解得:1910,7==ID ON ∵45AEF ∠=︒∴∠CES=∠AEF=45°,∠QEH=∠QEF -∠AEF=45°∴△CES 、△EFT 和△EHQ 都是等腰直角三角形∴CS=SE=4,ET=TF=2EF , EH=HQ ,设EH=HQ=a ,则∴EN=ON +OE=ON +SE -OS=9∵3==EQ EF ,PH EN = ∴,PM=a ,PH=9, ∴NH=EN +EH=9+a ,MH=PH -PM=9-a ∴tan ∠HNM =12==MH OI NH ON ∴9192-=+a a 解得:a=3∴EF=33⨯=∴TF=12=∴S△EFN =12EN·TF=12×9×1=92【点睛】此题考查的是一次函数与几何图形的综合题型,此题难度较大,掌握勾股定理、联立方程求交点坐标、锐角三角函数的性质、勾股定理、等腰直角三角形的性质和相似三角形的判定及性质是解决此题的关键.2.C解析:(1)112y x=-+;(2)1d t=-+;(3)64215t-=【解析】【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE的解析式,再将点C坐标代入即可求解;(2)过点E作EM⊥y轴于点M,过点E作EN x⊥轴于点N,通过解直角三角形可证EDM≌EAN,ENH≌EMG,得到AN=DM,HN=GM,进而得到AH DG=,再根据CE解析式求出D点坐标,即可找出d与t之间的函数关系式;(3)过点B作BT CM⊥于点T,在直线BT上截取TL NK=,证四边形BGMT与四边形HNMC均为矩形,得MN MT=,再进一步证明ENH≌EMG,利用全等三角形的性质通过角度计算,得出△BML为等腰三角形且BM BL=,再用含有t的代数式表示BM,最后在Rt△BMG中利用勾股定理建立等式,求出t的值.【详解】解:(1)∵CE⊥AB,∴设直线CE的解析式为:12y x c=-+,把点C(2,0)代入上述解析式,得1c=,∴直线CD的解析式为:112y x=-+;(2)过点E作EM⊥y轴于点M,过点E作EN x⊥轴于点N,令26112y xy x=+⎧⎪⎨=-+⎪⎩,解得22x y =-⎧⎨=⎩, ∴()2,2E -,易证EDM ≌EAN ,ENH ≌EMG ,∴AN =DM ,HN =GM ,∴AH DG =,由直线CE 的解析式112y x =-+,可求点D (0,1) ∴DG =1—t ,∴1d t =-+;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,易证四边形BGMT 与四边形HNMC 均为矩形,由(2)问可知1t AH GD ==-,则6t HC =-∴6t BG MT ==-,∴MN MT =,∵90KNM LTM ∠=∠=︒,∴ENH ≌EMG ,∴L NKM ∠=∠,设KMN α∠=,则KMB KMN α∠=∠=,∴90NKM α∠=︒-,∴90NKM L α∠=∠=︒-, ∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-,∴BM BL =,∵1tan 2KCH ∠=, ∴11322KH CH t ==-,∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中, 222BM BG GM =+,解得65t +=(不合题意舍去)或65t -=故,65t -=. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.3.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】(1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+,即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x x x -++,∵抛物线的解析式为2y x 2x 3=-++,当y=0时,2023x x =-++,解得x=-1或x=3,∴A (-1.0),∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上,则OM=x ,AM=x+1, ∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+, ∴2210332233FN EM x x x +--++==, 解得x=1或x=2, ∴点E 的坐标为(2,3)或(1,4);(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (32,0), 可得,3023k b b ⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM的解析式为y=-2x+3,∴32OM=,3OD=,∴tan∠DMO=2,如图,过点P作PT∥y轴交直线DM于点T,过点F作直线GH⊥y轴交PT于点G,交直线CE于点H.∵PQ⊥MT,∴∠TFG=∠TPF,∴TG=2GF,GF=2PG,∴PT=25 GF,∵PF=QF,∴△FGP≌△FHQ,∴FG=FH,∴PT=45 GH.设点P(m,-m²+2m+3),则T(m,-2m+3),∴PT=m²-4m,GH=1-m,∴m²-4m=45(1-m),解得:111201m-=211201m+=(不合题意,舍去),∴点P的横坐标为112018-.【点睛】本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.4.A解析:(1)12;(2)5s或373s;(3)163s或685s或72s【解析】【分析】(1)AD与BC之间的距离即AB的长,如下图,过点D作BC的垂线,交BC于点E,在RtDEC中可求得DE的长,即AB的长,即AD与BC间的距离;(2)四边形QDCP为平行四边形,只需QD=CP即可;(3)存在3大类情况,情况一:QP=PD,情况二:PD=QD,情况三:QP=QD,而每大类中,点P存在2种情况,一种为点P还未到达点C,另一种为点P从点C处返回.【详解】(1)如下图,过点D作BC的垂线,交BC于点E∵∠B=90°,AD∥BC∴AB⊥BC,AB⊥AD∴AB的长即为AD与BC之间的距离∵AD=16,BC=21,∴EC=5∵DC=13∴在Rt DEC中,DE=12同理,DE的长也是AD与BC之间的距离∴AD与BC之间的距离为12(2)∵AD∥BC∴只需QD=PC,则四边形QDCP是平行四边形QD=16-t,PC=21-2t或PC=2t-21∴16-t=21-2t或16-t=2t-21解得:t=5s或t=37 3s(3)情况一:QP=PD图形如下,过点P作AD的垂线,交AD于点F∵PQ=PD,PF⊥QD,∴QF=FD∵AF ∥BP ,AB ∥FP ,∠B=90°∴四边形ABPF 是矩形,∴AF=BP由题意得:AQ=t ,则QD=16-t ,QF=8-2t ,AF=8+2t BP=2t 或BP=21-(2t -21)=42-2t∵AF=BP∴8+2t =2t 或8+2t =42-2t 解得:t=163或t=685情况二:PD=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理QD=16-t ,PF=AB=12BP=2t 或21-(2t -21)=42-2t则FD=AD -AF=AD -BP=16-2t 或FD=16-(42-2t)=2t -26∴在Rt PFD 中,()22212162PD t =+-或()22212226PD t =+-∵PD=QD ,∴22PD QD =∴()()22216t 12162t =+--或()()22216t 12226t =+--解得:2个方程都无解情况三:QP=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理:QD=16-t ,FP=12BP=2t 或BP=42-2tQF=AF -AQ=BP -AQ=2t -t=t 或QF=42-2t -t=42-3t在Rt QFP 中,22212PQ t =+或()22212423PQ t =+- ∵PQ=QD ,∴22PQ QD =∴()22216t 12t =+-或()()22216t 12423t =+--第一个方程解得:t=72,第二个方程解得:无解 综上得:t=163或685或72 【点睛】本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q 运动的轨迹,得出BP 的长度. 5.E解析:(1)∠EPF=∠AEP+∠PFC,∠AEP+∠EPF+∠PFC=360°;(2)见解析;(3)①150°,∠EQF=180°-12∠EPF 【解析】【分析】(1)如下图,过点P 作AB 的平行线,根据平行线的性质可推导出角度关系;(2)如下图,根据(1)的结论,可得∠AEP+∠PFC=∠EPF=90°,利用△EPF 内角和为180°可推导得出∠PEF+∠PFE=90°,从而得出∠PEF=∠AEP ;(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°,再利用角平分线的性质得出∠PEQ+∠PFQ=150°,最后在四边形EPFQ 中得出结论;②根据(1)的结论知:∠AEP+∠PFC=∠EPF°,再利用角平分线的性质得出∠PEQ+∠PFQ=180°-1EPF 2∠,最后在四边形EPFQ 中得出结论. 【详解】(1)如下图,过点P 作PQ ∥AB∵PQ ∥AB ,AB ∥CD ,∴PQ ∥CD∴∠AEP=∠EPQ ,∠QPF=∠PFC又∵∠EPF=∠EPQ+∠QPF∴∠EPF=∠AEP+∠PFC如下图,过点P 作PQ ∥AB同理,AB ∥QP ∥CD∴∠AEP+∠QPE=180°,∠QPF+∠PFC=180°∴∠AEP+∠EPF+∠PFC=∠AEP+∠EPQ+∠QPF+∠PFC=360°(2)根据(1)的结论知:∠AEP+∠PFC=∠EPF=90°∵PF 是∠CFE 的角平分线,∴∠PFC=∠PFE在△PEF 中,∵∠EPF=90°,∴∠PEF+∠PFE=90°∴∠PEF+∠PFE=∠AEP+∠PFC∴∠PEF=∠AEP ,∴PE 是∠AEF 的角平分线(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=300°∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线∴∠PEQ=QEB ,∠PFQ=∠QFD∴∠PEQ+∠PFQ=150°在四边形PEQF 中,∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-60°-150°=150° ②根据(1)的结论知:∠AEP+∠PFC=∠EPF∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=360°-∠EPF∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线∴∠PEQ=∠QEB ,∠PFQ=∠QFD∴∠PEQ+∠PFQ=()1360EPF 2∠︒-=180°-1EPF 2∠ ∴在四边形PEQF 中: ∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-EPF ∠-(180°-1EPF 2∠)=180°-1EPF 2∠ 【点睛】本题考查“M ”型模型,解题关键在过两条平行线中间的点作已知平行线的平行线,然后利用平行线的性质进行角度转化可推导结论.6.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)329AB BC =3)①12561535AD CD =. 【解析】【分析】(1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论; (2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出AB BC的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到3CF DF =,则(23)35AC x =+=,即可求出DF 的长度,然后得到CD 的长度;②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AF AE EC=,然后求出CD 和AD 的长度,即可得到答案.【详解】解:(1)ABC 是“准黄金”三角形.理由:如图,过点A 作AD BC ⊥于点D ,∵12AC =,30ACB ∠=︒, ∴162AD AC ==. ∴:6:103:5AD BC ==. ∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称,∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.不防设3AE k =,5BC k =,∵点C 为ABD △的重心,∴:2:1BC CE =.∴52k CE =,152k BE =. ∴2215329(3)22k AB k k ⎛⎫=+= ⎪⎝⎭.∴329329:5210AB k k BC ==. (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3, ∵35AE BC =, ∴BC=5, ∵10AB BC =, ∴10AB ,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=,∴156EC =+=, ∴223635AC =+=∵∠AEC=∠DFA=90°,∠ACE=∠DAF ,∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°, ∴3CF x =, ∴(23)35AC x ==解得:65315DF x == ∴2125615CD DF == ②如图,过点A 作AE BC ⊥于点E ,则3AE =.∵ABC 是“准黄金”三角形,BC 是“金底”,∴:3:5AE BC =.∴5BC =.∵10AB BC =,∴10AB. ∴221BE AB AE =-=.∴6CE BE BC =+=,2236935AC CE AE =+=+=.分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,∴90B GC DFC '∠=∠=︒,3B G '=,5C B B C '==,则CG 4=.∵GCB FCD α'∠=∠=,∴AEC DFA ∽△△.∴::::3:4:5DF FC CD B G GC CB ''==. ∴设3DF k =,4FC k =,5CD k =.∵12l l //,∴ACE CAD ∠=∠,且90AEC AFD ∠=∠=︒.∴AEC DFA ∽△△.∴DF AF AE EC =. ∴335436k k =,解得3510k =. ∴3552CD k ==,2222959595102AF DF AD ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=. ∴93525355AD CD ===. 【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.7.C解析:(1)12,16AD CD ==;(2)277和297. 【解析】【分析】 (1)根据题意由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时16秒求出CD ,再利用三角形面积公式求得AD 即可;(2)由题意可知只能有P 和Q 点都在AD 边上,此时分当P 在Q 上方时以及当P 在Q 下方时两种情况运用数形结合思维进行分析得出答案.【详解】解:(1)由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时36-20=16秒,即CD=16,而此时AMD ∆的面积为96,又因为90ADC ∠=︒, 即有11169622CD AD AD =⨯=,解得12AD =. 所以12,16AD CD ==. (2)由题意可知Q 运动到点A 停止的时间为285,而P 运动到点D 停止的时间为6, 所以只能有P 和Q 点都在AD 边上,此时以PQ 为底边,CD 为高,设运动时间为t ,则AP=2t ,QD=5t-16,(162855t ≤<), ①当P 在Q 上方时,则有PQ=AD-AP-QD= 122516287t t t --+=-, 可知CPQ ∆的面积为8时即11(287)16822PQ CD t =⨯-⨯=,解得277t =(满足条件);②当P 在Q 下方时,则有PQ=QD-(AD-AP )= 516(122)728t t t ---=-,可知CPQ ∆的面积为8时即11(728)16822PQ CD t =⨯-⨯=,解得297t =(满足条件). 所以当CPQ ∆的面积为8时,t 的值为277和297. 【点睛】本题考查四边形动点问题和一次函数结合,熟练掌握四边形动点问题的解决办法和一次函数图象的相关性质,运用数形结合思维分析是解题的关键.8.E解析:(1)EF =,见解析;(2)BK =;(3)①AGH 是等边三角形,见解析;②14【解析】【分析】(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到3AE EC =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案;②由三角形的面积公式得到31DH =+,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)3EF EC =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=. AF CD ⊥,垂足为F , 1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AF ADF AD ∠=, 23AF a ∴=在Rt ABF 中,22BF AB AF =+, 7BF a ∴= AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆,AB BK FB BA∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形.理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=.//AB CD ,60BCH ABC ︒∴∠=∠=,120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=,60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,AF ∴=.1(32ADH S =, 11(322DH ∴⨯=,1DH ∴=1CH DH CD ∴=-=,HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M .在Rt CMH 中,sin CM CHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CM MAC AC ∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠, 1sin sin 4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.9.A解析:(1)135°;(2)①45°,②不发生变化,45°;(3)60°或45°【解析】【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解;(2)①利用对顶角相等、两角互余、两角互补、角平分线性质即可求解;②证明和推理过程同①的求解过程;(3)由(2)的证明求解思路,不难得出EAF ∠=90°,如果有一个角是另一个角的3倍,所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO 一定要小于90°,注意解得取舍.【详解】(1)()11801802118090180451352AEB EBA BAE OBA BAO ∠=︒-∠-∠=︒-∠+∠=︒-⨯︒=︒-︒=︒(2)①如图所示AD 与BO 交于点E ,()9060301180307521909030602180180756045OBA DBO NBC DEB OEA OAB D DBE DEB ∠=︒-︒=︒∠=∠=︒-︒=︒∠=∠=︒-∠=︒-︒=︒∠=︒-∠-∠=︒-︒-︒=︒②∠D 的度数不随A 、B 的移动而发生变化设BAD α∠=,因为AD 平分∠BAO ,所以2BAO α∠=,因为∠AOB=90°,所以180902ABN ABO AOB BAO α∠=︒-∠=∠+∠=+。
专题21 与三角形四边形相关的压轴题-2022年中考数学真题分项汇编(全国通用)(第2期)(解析版)
专题21 与三角形、四边形相关的压轴题解答题1.(2022·黑龙江)如图,在平面直角坐标系中,平行四边形ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,M 为BC 的中点,OA 、OB 的长分别是一元二次方程27120x x -+=的两个根()OA OB <,4tan 3DAB ∠=,动点P 从点D 出发以每秒1个单位长度的速度沿折线DC CB -向点B 运动,到达B 点停止.设运动时间为t 秒,APC △的面积为S .(1)求点C 的坐标;(2)求S 关于t 的函数关系式,并写出自变量t 的取值范围;(3)在点P 的运动过程中,是否存在点P ,使CMP 是等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)点C 坐标为()7,4 (2)()()14207149871255t t S t t ⎧-≤<⎪=⎨-<≤⎪⎩(3)存在点P ()4,4或9,42⎛⎫ ⎪⎝⎭或59,412⎛⎫ ⎪⎝⎭,使CMP 是等腰三角形 【分析】(1)先求出方程的解,可得3OA =,4OB =,再由4tan 3DAB ∠=,可得4OD =,然后根据四边形ABCD 是平行四边形,可得CD =7,90ODC AOD ∠=∠=︒,即可求解; (2)分两种情况讨论:当07t <时,当712t <时,过点A 作AF BC ⊥交CB 的延长线于点F ,即可求解; (3)分三种情况讨论:当CP =PM 时,过点M 作MF ⊥PC 于点F ;当52PC CM ==时;当PM =CM 时,过点M 作MG ⊥PC 于点G ,即可求解.(1)解:27120x x -+=,解得13x =,24x =,∵OA OB <,∴3OA =,4OB =, ∵4tan 3DAB ∠=, ∴43OD OA =, ∴4OD =,∵四边形ABCD 是平行四边形,∴347DC AB ==+=,DC AB ∥,∴点C 坐标为()7,4;(2)解:当07t <时,()117414222S CP OD t t =⋅=-⋅=-, 当712t <时,过点A 作AF BC ⊥交CB 的延长线于点F ,如图,5AD ,∵四边形ABCD 是平行四边形,∴5BC AD ==,∵BC AF AB OD ⋅=⋅,∴574AF ⋅=⨯, ∴285AF =, ∴()11281498722555S CP AF t t =⋅=-⋅=-, ∴()()14207149871255t t S t t ⎧-≤<⎪=⎨-<≤⎪⎩;(3)解:存在点P ,使CMP 是等腰三角形,理由如下:根据题意得:当点P 在CD 上运动时,CMP 可能是等腰三角形,∵四边形ABCD 是平行四边形,∴∠C =∠BAD ,BC =AD =5, ∴4tan tan 3C DAB =∠=, ∵点M 为BC 的中点,∴52CM =, 当CP =PM 时,过点M 作MF ⊥PC 于点F ,∴3,22CF FM ==, 设PC =PM =a ,则PD =7-a ,32PF a =-, ∵PF 2+FM 2=PM 2, ∴222322a a ⎛⎫-+= ⎪⎝⎭,解得:2512a =, ∴59712DP PC =-=, ∴此时点P 59,412⎛⎫ ⎪⎝⎭; 当52PC CM ==时,∴972PD PC =-=, ∴此时点P 9,42⎛⎫ ⎪⎝⎭; 当PM =CM 时,过点M 作MG ⊥PC 于点G ,则32CG =,∴23PC CG ==,∴PD =7-PC =4,∴此时点P ()4,4;综上所述,存在点P ()4,4或9,42⎛⎫ ⎪⎝⎭或59,412⎛⎫ ⎪⎝⎭,使CMP 是等腰三角形 【点睛】本题主要考查了平行四边形的性质,坐标与图形,等腰三角形的性质,解直角三角形,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.2.(2022·贵州黔东南)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题: 如图,ABC 和BDE 都是等边三角形,点A 在DE 上.求证:以AE 、AD 、AC 为边的三角形是钝角三角形.(1)【探究发现】小明通过探究发现:连接DC ,根据已知条件,可以证明DC AE =,120ADC =∠︒,从而得出ADC 为钝角三角形,故以AE 、AD 、AC 为边的三角形是钝角三角形.请你根据小明的思路,写出完整的证明过程.(2)【拓展迁移】如图,四边形ABCD 和四边形BGFE 都是正方形,点A 在EG 上.①试猜想:以AE 、AG 、AC 为边的三角形的形状,并说明理由.②若2210AE AG +=,试求出正方形ABCD 的面积.【答案】(1)钝角三角形;证明见详解(2)①直角三角形;证明见详解;②S 四边形ABCD =5【分析】(1)根据等边三角形性质得出,BE =BD ,AB =CB ,∠EBD =∠ABC =60°,再证△EBA ≌△DBC (SAS )∠AEB =∠CDB =60°,AE =CD ,求出∠ADC =∠ADB +∠BDC =120°,可得△ADC 为钝角三角形即可; (2)①以AE 、AG 、AC 为边的三角形是直角三角形,连结CG ,根据正方形性质,得出∠EBG =∠ABC ,EB =GB ,AB =CB ,∠BEA =∠BGE =45°,再证△EBA ≌△GBC (SAS )得出AE =CG ,∠BEA =∠BGC =45°,可证△AGC 为直角三角形即可;②连结BD ,根据勾股定理求出AC面积公式求解即可.(1)证明:∵△ABC 与△EBD 均为等边三角形,∴BE =BD ,AB =CB ,∠EBD =∠ABC =60°,∴∠EBA +∠ABD =∠ABD +∠DBC ,∴∠EBA =∠DBC ,在△EBA 和△DBC 中,EB DB EBA DBC AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△EBA ≌△DBC (SAS ),∴∠AEB =∠CDB =60°,AE =CD ,∴∠ADC =∠ADB +∠BDC =120°,∴△ADC 为钝角三角形,∴以AE 、AD 、AC 为边的三角形是钝角三角形.(2)证明:①以AE 、AG 、AC 为边的三角形是直角三角形.连结CG ,∵四边形ABCD 和四边形BGFE 都是正方形,∴∠EBG =∠ABC ,EB =GB ,AB =CB ,∵EG 为正方形的对角线,∴∠BEA =∠BGE =45°,∴∠EBA +∠ABG =∠ABG +∠GBC =90°,∴∠EBA =∠GBC ,在△EBA 和△GBC 中,G EB B EBA GBC AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△EBA ≌△GBC (SAS ),∴AE =CG ,∠BEA =∠BGC =45°,∴∠AGC =∠AGB +∠BGC =45°+45°=90°,∴△AGC 为直角三角形,∴以AE 、AG 、AC 为边的三角形是直角三角形;②连结BD ,∵△AGC 为直角三角形,2210AE AG +=,∴AC∴四边形ABCD 为正方形,∴AC =BD∴S 四边形ABCD =211522AC BD AC ⋅==.【点睛】本题考查等边三角形的性质,三角形全等判定与性质,正方形的性质,勾股定理,掌握等边三角形的性质,三角形全等判定与性质,正方形的性质,勾股定理是解题关键.3.(2022·海南)如图1,矩形ABCD 中,6,8AB AD ==,点P 在边BC 上,且不与点B 、C 重合,直线AP 与DC 的延长线交于点E .(1)当点P 是BC 的中点时,求证:ABP ECP △≌△;(2)将APB △沿直线AP 折叠得到APB ',点B '落在矩形ABCD 的内部,延长PB '交直线AD 于点F . ①证明FA FP =,并求出在(1)条件下AF 的值;②连接B C ',求PCB '△周长的最小值;③如图2,BB '交AE 于点H ,点G 是AE 的中点,当2EAB AEB ∠=∠''时,请判断AB 与HG 的数量关系,并说明理由.【答案】(1)见解析(2)①见解析;132AF =;②12,;③2AB HG =,见解析 【分析】(1)根据矩形的性质得到AB DE ∥,再结合P 是BC 的中点证明ABP ECP △≌△;(2)①设FA x =,在Rt AB F '中,表示出三角形的其他两边,再由勾股定理列方程计算即可; ②当点B '恰好位于对角线AC 上时,CB AB '+'最小,利用勾股定理计算即可;③过点B '作B M DE '∥,交AE 于点M ,证明B M EM AB AB ==='',再由11()22HG AG AH AE AM EM =-=-=即可得到12HG AB =. (1)解:如图9-1,在矩形ABCD 中,AB DC ,即AB DE ∥,∴1,2E B ∠=∠∠=∠.∵点P 是BC 的中点,∴BP CP =.∴(AAS)ABP ECP △≌△.(2)①证明:如图9-2,在矩形ABCD 中,AD BC ∥,∴3FAP ∠=∠.由折叠可知34∠=∠,∴4FAP ∠=∠.∴FA FP =.在矩形ABCD 中,8BC AD ==,∵点P 是BC 的中点, ∴118422BP BC ==⨯=. 由折叠可知6,4AB AB PB PB ==='=',90B AB P AB F ∠=∠=∠=''︒.设FA x =,则FP x =.∴4FB x '=-.在Rt AB F '中,由勾股定理得222AF B A B F '+'=,∴2226(4)x x =+-,∴132x =, 即132AF =. ②解:如图9-3,由折叠可知6A B B A '==,B P BP '=.∴8PCB C CP PB CB CB CB CB '''=+'+=+=+'△.由两点之间线段最短可知,当点B '恰好位于对角线AC 上时,CB AB '+'最小.连接AC ,在Rt ADC 中,90D ∠=︒,∴10AC ==,∴1064CB AC AB =-'='-=最小值, ∴88412PCB C CB '=+'=+=最小值.③解:AB 与HG 的数量关系是2AB HG =.理由是:如图9-4,由折叠可知16,,AB AB BB AE ∠=∠=⊥''.过点B '作B M DE '∥,交AE 于点M ,∵AB DE ∥,∴AB DE B M '∥∥,∴165AED ∠=∠=∠=∠.∴AB B M AB ''==,∴点H 是AM 中点.∵2EAB AEB ∠=∠'',即628∠=∠,∴528∠=∠.∵578∠=∠+∠,∴78∠=∠.∴B M EM '=.∴B M EM AB AB ===''.∵点G 为AE 中点,点H 是AM 中点, ∴11,22AG AE AH AM ==. ∴11()22HG AG AH AE AM EM =-=-=. ∴12HG AB =. ∴2AB HG =.【点睛】此题考查了矩形的性质、折叠问题、勾股定理、全等三角形的判定、等腰三角形的性质,关键是作出辅助线,根据等腰三角形的性质证明.4.(2022·吉林)如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,6cm =AB .动点P 从点A 出发,以2cm/s 的速度沿边AB 向终点B 匀速运动.以PA 为一边作120APQ ∠=︒,另一边PQ 与折线AC CB -相交于点Q ,以PQ 为边作菱形PQMN ,点N 在线段PB 上.设点P 的运动时间为(s)x ,菱形PQMN 与ABC 重叠部分图形的面积为2()cm y .(1)当点Q 在边AC 上时,PQ 的长为 cm ;(用含x 的代数式表示)(2)当点M 落在边BC 上时,求x 的值;(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.【答案】(1)2x(2)1(3)22201312332x y x x ⎧⎪≤≤⎪⎪=-+-≤⎨⎪⎪-+≤≤⎪⎩< 【分析】(1)先证明∠A =∠AQP =30°,即AP =PQ ,根据题意有AP =2x ,即PQ =2x ;(2)当M 点在BC 上,Q 点在AC 上,在(1)中已求得AP =PQ =2x ,再证明△MNB 是等边三角形,即有BN =MN ,根据AB =6x =6cm ,即有x =1(s );(3)分类讨论:当01x ≤<时,此时菱形PQMN 在△ABC 的内部,此时菱形PQMN 与△ABC 重叠的面积即是菱形PQMN 的面积,过Q 点作QG ⊥AB 于G 点,求出菱形的面积即可;当x >1,且Q 点在线段AC 上时,过Q 点作QG ⊥AB 于G 点,设QM 交BC 于F 点,MN 交BC 于E 点,过M 点作NH ⊥EF 于H 点,先证明△ENB 是等边三角形、△MEF 是等边三角形,重叠部分是菱形PQMN 的面积减去等边△MEF 的面积,求出菱形PQMN 的面积和等边△MEF 的面积即可,此时需要求出当Q 点在C 点时的临界条件;当332x ≤<时,此时Q 点在线段BC 上,此时N 点始终与B 点重合,过Q 点作QG ⊥AB 于G 点,重叠部分的面积就是△PBQ 的面积,求出等边△PBQ 的面积即可.(1)当Q 点在AC 上时,∵∠A =30°,∠APQ =120°,∴∠AQP =30°,∴∠A =∠AQP ,∴AP =PQ ,∵运动速度为每秒2cm ,运动时间为x 秒,∴AP =2x ,∴PQ =2x ;(2)当M 点在BC 上,Q 点在AC 上,如图,在(1)中已求得AP =PQ =2x ,∵四边形QPMN 是菱形,∴PQ =PN =MN =2x ,PQ MN ∥,∵∠APQ =120°,∴∠QPB =60°,∵PQ MN ∥,∴∠MNB =∠QPB =60°,∵在Rt △ABC 中,∠C =90°,∠A =30°,∴∠B =60°,∴△MNB 是等边三角形,∴BN =MN ,∴AB =AP +PN +BN =2x ×3=6x =6cm ,∴x =1(s );(3)当P 点运动到B 点时,用时6÷2=3(s ),即x 的取值范围为:03x ≤≤,当M 点刚好在BC 上时,在(2)中已求得此时x =1,分情况讨论,即当01x ≤<时,此时菱形PQMN 在△ABC 的内部,∴此时菱形PQMN 与△ABC 重叠的面积即是菱形PQMN 的面积,过Q 点作QG ⊥AB 于G 点,如图,∵∠APQ =120°,∴∠QPN =60°,即菱形PQMN 的内角∠QPN =∠QMN =60°,∴QG =PQ ×sin ∠QPN =2x ,∴重叠的面积等于菱形PQMN 的面积为,即为:22y PN QG x =⨯==;当x >1,且Q 点在线段AC 上时,过Q 点作QG ⊥AB 于G 点,设QM 交BC 于F 点,MN 交BC 于E 点,过M 点作NH ⊥EF 于H 点,如图,∵PQ MN ∥,∴∠MNB =∠QPN =60,∵∠B =60°,∴△ENB 是等边三角形,同理可证明△MEF 是等边三角形∴BN =NE ,∠MEF =60°,ME =EF ,∵AP =PQ =PN =MN =2x ,AB =6,∴BN =6-AN =6-4x ,∴ME =MN -NE =2x -BN =6x -6,∵MH ⊥EF ,∴MH =ME ×sin ∠MEH =(6x -6)×sin60°=(3x -∴△MEF 的面积为:2(3311(66)1)22MEF S EF MH x x x =⨯⨯=-⨯-⨯=-△,QG =PQ ×sin ∠QPN =2x ,∵菱形PQMN 的面积为22PN QG x ⨯==,∴重叠部分的面积为2221)MEF PQMN y S S x =-=--=-+-△菱形当Q 点与C 点重合时,可知此时N 点与B 点重合,如图,∵∠CPB =∠CBA =60°,∴△PBC 是等边三角形,∴PC =PB ,∵AP =PQ =2x ,∴AP =PB =2x ,∴AB =AP +PB =4x =6,则x =32,即此时重合部分的面积为:2y =-+-312x ≤<; 当332x ≤<时,此时Q 点在线段BC 上,此时N 点始终与B 点重合,过Q 点作QG ⊥AB 于G 点,如图,∵AP =2x ,∴PB =AB -AP =6-2x ,∵∠QPB =∠ABC =60°,∴△PQB 是等边三角形,∴PQ =PB ,同时印证菱形PQMN 的顶点N 始终与B 点重合,∴QG =PQ ×sin ∠QPN =(6-2x )x -,∴211(62))22PBQ S x PB QG x =⨯⨯=⨯---=+△∴此时重叠部分的面积2PBQ y S ==-+△综上所述:22201312332x y x x ⎧⎪≤≤⎪⎪=-+-≤⎨⎪⎪-+≤≤⎪⎩<. 【点睛】本题考查了一次函数的应用、菱形的性质、等边三角形的判定与性质、等腰三角形的判定与性质、解直角三角形等知识,理清运动过程中Q 点的位置以及菱形PQMN 的位置是解答本题的关键.解答本题需要注意分类讨论的思想.5.(2022·黑龙江牡丹江)在菱形ABCD 和正三角形BGF 中,60ABC ∠=︒,P 是DF 的中点,连接PG 、PC .(1)如图1,当点G 在BC 边上时,写出PG 与PC 的数量关系 .(不必证明)(2)如图2,当点F 在AB 的延长线上时,线段PC 、PG 有怎样的数量关系,写出你的猜想,并给予证明;(3)如图3,当点F 在CB 的延长线上时,线段PC 、PG 又有怎样的数量关系,写出你的猜想(不必证明).【答案】(1)PG =(2)PG =,证明见解析(3)PG =【分析】(1)延长GP 交DC 于点E ,利用()PED PGF SAS △≌△,得出PE PG =,DE FG =,得到CE CG =,CP 是EG 的中垂线,在Rt CPG 中,60PCG ∠=︒,利用正切函数即可求解;(2)延长GP 交DA 于点E ,连接EC ,GC ,先证明()DPE FPG ASA △≌△,再证明()CDE CBG SAS △≌△,利用在Rt CPG 中,60PCG ∠=︒,即可求解;(3)延长GP 到H ,使PH PG =,连接CH ,CG ,DH ,作FE ∥DC ,先证GFP HDP △≌△,再证HDC GBC ≌△△,利用在Rt CPG 中,60PCG ∠=︒,即可求解.(1)解:如图1,延长GP 交DC 于点E ,∵P 是DF 的中点,∴PD=PF ,∵BGF 是正三角形,∴60BGF ∠=︒,∵60ABC ∠=︒,∴BGF ABC ∠=∠,∴AB GF ,∵四边形ABCD 是菱形,∴AB CD ,∴CD GF ∥,∴CDP PFG ∠=∠,在PED 和PGF 中,DPE FPG DP PFCDP PFG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()PED PGF SAS △≌△,∴PE PG =,DE FG =,∵BGF 是正三角形,∴FG BG =,∵四边形ABCD 是菱形,∴CD CB =,CE CG ∴=,CP ∴是EG 的中垂线,在Rt CPG 中,60PCG ∠=︒,tan tan 60PG PCG PC PC ∴=∠⋅=︒⋅= .(2)解:PG =,理由如下:如图2,延长GP 交DA 于点E ,连接EC ,GC ,60ABC ∠=︒,BGF 正三角形,∴GF BC AD ,EDP GFP ∴∠=∠,在DPE 和FPG 中,EDP GFP DP FPDPE FPG ∠=∠⎧⎪=⎨⎪∠=∠⎩()DPE FPG ASA ∴△≌△PE PG ∴=,DE FG BG ==,60CDE CBG ∠=∠=︒,CD CB =,在CDE △和CBG 中,60CD CB CDE CBG CD CB =⎧⎪∠=∠=︒⎨⎪=⎩()CDE CBG SAS ∴△≌△CE CG ∴=,DCE BCG ∠=∠,120ECG DCB ∴∠=∠=︒,PE PG =,CP PG ∴⊥,1602PCG ECG ∠=∠=︒(3)解:猜想:PG = .证明:如图3,延长GP 到H ,使PH PG =,连接CH ,CG ,DH ,作FE DC ,P 是线段DF 的中点,FP DP ∴=,GPF HPD ∠=∠,GFP HDP ∴△≌△,GF HD ∴=,GFP HDP ∠=∠,120GFP PFE ∠+∠=︒,PFE PDC ∠=∠,120CDH HDP PDC ∴∠=∠+∠=︒,四边形ABCD 是菱形,CD CB ∴=,60ADC ABC ∠=∠=︒,点A 、B 、G 又在一条直线上,120GBC ∴∠=︒,四边形BEFG 是菱形,GF GB ∴=,HD GB ∴=,HDC GBC ∴△≌△,CH CG ∴=,DCH BCG ∠=∠,120DCH HCB BCG HCB ∴∠+∠=∠+∠=︒,即120HCG ∠=︒CH CG =,PH PG =,PG PC ∴⊥,60GCP HCP ∠=∠=︒,【点睛】本题主要考查了等边三角形的性质、菱形的性质、全等三角形的判定和性质、解直角三角形. 6.(2022·内蒙古呼和浩特)下面图片是八年级教科书中的一道题:如图,四边形ABCD 是正方形,点E 是边BC 的中点,90AEF ∠=︒,且EF 交正方形外角的平分线CF 于点F .求证AE EF =.(提示:取AB 的中点G ,连接EG .)(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件: ;(2)如图1,若点E 是BC 边上任意一点(不与B 、C 重合),其他条件不变.求证:AE EF =;(3)在(2)的条件下,连接AC ,过点E 作EP ⊥AC ,垂足为P .设=BE k BC,当k 为何值时,四边形ECFP 是平行四边形,并给予证明.【答案】(1)AG=CE (2)过程见解析(3)13,证明过程见解析 【分析】对于(1),根据点E 是BC 的中点,可得答案;对于(2),取AG=EC ,连接EG ,说明△BGE 是等腰直角三角形,再证明△GAE ≌△CEF ,可得答案;对于(3),设BC=x ,则BE =kx ,则GE =,(1)EC k x =-,再利用等腰直角三角形的性质表示EP 的长,利用平行四边形的判定得只要EP=FC ,即可解决问题.(1)解:∵E 是BC 的中点,∴BE=CE .∵点G 是AB 的中点,∴BG=AG ,∴AG=CE .故答案为:AG=CE ;(2)取AG=EC ,连接EG .∵四边形ABCD 是正方形, ∴AB=BC ,∠B =90°.∵AG=CE ,∴BG=BE ,∴△BGE 是等腰直角三角形, ∴∠BGE=∠BEG=45°,∴∠AGE =135°.∵四边形ABCD 是正方形, ∴∠BCD=90°.∵CF 是正方形ABCD 外角的平分线, ∴∠DCF=45°,∴∠ECF=90°+45°=135°. ∵AE ⊥EF ,∴∠AEB +∠FEC =90°.∵∠BAE +∠AEB =90°,∴∠BAE=∠CEF ,∴△GAE ≌△CEF ,∴AE=EF ;(3)当13k =时,四边形PECF 是平行四边形. 如图.由(2)得,△GAE ≌△CEF , ∴CF=EG .设BC=x ,则BE =kx ,∴GE =,(1)EC k x =-. ∵EP ⊥AC ,∴△PEC 是等腰直角三角形,∴∠PEC=45°,∴∠PEC+∠ECF =180°,)PE k x =-. ∴PE CF ∥,当PE=CF 时,四边形PECF 是平行四边形,)k x -=,解得13k =. 【点睛】这是一道关于四边形的综合问题,主要考查了正方形的性质,全等三角形的性质和判定,平行四边形的判定等知识.7.(2022·福建)已知ABC DEC ≌△△,AB =AC ,AB >BC .(1)如图1,CB 平分∠ACD ,求证:四边形ABDC 是菱形;(2)如图2,将(1)中的△CDE 绕点C 逆时针旋转(旋转角小于∠BAC ),BC ,DE 的延长线相交于点F ,用等式表示∠ACE 与∠EFC 之间的数量关系,并证明;(3)如图3,将(1)中的△CDE 绕点C 顺时针旋转(旋转角小于∠ABC ),若BAD BCD ∠=∠,求∠ADB 的度数.【答案】(1)见解析(2)180ACE EFC ∠+∠=︒,见解析(3)30°【分析】(1)先证明四边形ABDC 是平行四边形,再根据AB =AC 得出结论;(2)先证出ACF CEF ∠=∠,再根据三角形内角和180CEF ECF EFC ∠+∠+∠=︒,得到180ACF ECF EFC ∠+∠+∠=︒,等量代换即可得到结论;(3)在AD 上取一点M ,使得AM =CB ,连接BM ,证得ABM CDB △△≌,得到MBA BDC ∠=∠,设BCD BAD α∠=∠=,BDC β∠=,则ADB αβ∠=+,得到α+β的关系即可.(1)∵ABC DEC ≌△△,∴AC =DC ,∵AB =AC ,∴∠ABC =∠ACB ,AB =DC ,∵CB 平分∠ACD ,∴ACB DCB ∠=∠,∴ABC DCB ∠=∠,∴AB CD ∥,∴四边形ABDC 是平行四边形,又∵AB =AC ,∴四边形ABDC 是菱形;(2)结论:180ACE EFC ∠+∠=︒.证明:∵ABC DEC ≌△△,∴ABC DEC ∠=∠,∵AB =AC ,∴A ABC CB =∠∠,∴ACB DEC ∠=∠,∵180ACB ACF DEC CEF ∠+∠=∠+∠=︒,∴ACF CEF ∠=∠,∵180CEF ECF EFC ∠+∠+∠=︒,∴180ACF ECF EFC ∠+∠+∠=︒,∴180ACE EFC ∠+∠=︒;(3)在AD 上取一点M ,使得AM =CB ,连接BM ,∵AB =CD ,BAD BCD ∠=∠,∴ABM CDB △△≌,∴BM =BD ,MBA BDC ∠=∠,∴ADB BMD ∠=∠,∵BMD BAD MBA ∠=∠+∠,∴ADB BCD BDC ∠=∠+∠,设BCD BAD α∠=∠=,BDC β∠=,则ADB αβ∠=+,∵CA =CD ,∴2CAD CDA αβ∠=∠=+,∴2BAC CAD BAD β∠=∠-∠=, ∴()1180902ACB BAC β∠=︒-∠=︒-, ∴()90ACD βα∠=︒-+,∵180ACD CAD CDA ∠+∠+∠=︒,∴()()9022180βααβ︒-+++=︒,∴30αβ+=︒,即∠ADB =30°.【点睛】本题考查了菱形的判定定理、全等三角形的判定和性质、三角形内角和定理等,灵活运用知识,利用数形结合思想,做出辅助线是解题的关键.8.(2022·湖南衡阳)如图,在菱形ABCD 中,4AB =,60BAD ∠=︒,点P 从点A 出发,沿线段AD 以每秒1个单位长度的速度向终点D 运动,过点P 作PQ AB ⊥于点Q ,作PM AD ⊥交直线AB 于点M ,交直线BC 于点F ,设PQM 与菱形ABCD 重叠部分图形的面积为S (平方单位),点P 运动时间为t (秒).(1)当点M 与点B 重合时,求t 的值;(2)当t 为何值时,APQ 与BMF 全等;(3)求S 与t 的函数关系式;(4)以线段PQ 为边,在PQ 右侧作等边三角形PQE ,当24t ≤≤时,求点E 运动路径的长.【答案】(1)2t = (2)4t =或43t =(3)())220224t S t ≤≤=⎨⎪+-<≤⎪⎩【分析】(1)画出图形,根据30°直角三角形求解即可;(2)根据全等的性质计算即可,需要注意分类讨论;(3)利用面积公式计算即可,需要根据M 在B 点左边和右边分类讨论;(4)先确定E 点的运动轨迹是一条直线,再根据24t ≤≤求点E 运动路径的长.(1)M 与B 重合时,∵60A ∠=︒, ∴122PA AB ==, ∴2t =.(2)①当02t ≤≤时,∵2AM t =,∴42BM t =-,∵APQ BMF △≌△,∴AP BM =,∴42t t =-, ∴43t =. ②当24t <≤,∵2AM t =,∴24BM t =-,∵APQ BMF △≌△,∴AP BM =,∴24t t =-,∴4t =.∴4t =或43t =.(3)①当02t ≤≤时,PQ =, ∴32MQ t =,∴2PQM S S ==△. ②当24t <≤时,∵2BF t =-,)2MF t -,∴22)BFM S t =-△,∴2PQM BFM S S S =-=+-△△∴22,0224t S t ≤≤=⎨⎪+-<≤⎪⎩. (4)连接AE .∵PQE 为正三角形,∴PE =,在Rt △APE 中,2tan PE PAE PA t ∠=== ∴PAE ∠为定值.∴E 的运动轨迹为直线,AE =,当2t =时AE =当4t =时=AE∴E 的运动路径长为=【点睛】本题属于四边形的综合问题,考查了菱形的性质,30°直角三角形的性质,全等三角形的性质,锐角三角函数等知识,综合程度较高,考查学生灵活运用知识的能力.9.(2022·浙江金华)如图,在菱形ABCD 中,310,sin 5AB B ==,点E 从点B 出发沿折线B C D --向终点D 运动.过点E 作点E 所在的边(BC 或CD )的垂线,交菱形其它的边于点F ,在EF 的右侧作矩形EFGH .(1)如图1,点G 在AC 上.求证:FA FG =.(2)若EF FG =,当EF 过AC 中点时,求AG 的长.(3)已知8FG =,设点E 的运动路程为s .当s 满足什么条件时,以G ,C ,H 为顶点的三角形与BEF 相似(包括全等)?【答案】(1)见解析(2)7AG=或5(3)1s=或3225s=或327s=或1012s≤≤【分析】(1)证明△AFG是等腰三角形即可得到答案;(2)记AC中点为点O.分点E在BC上和点E在CD上两种情况进行求解即可;(3)过点A作AM BC⊥于点M,作AN CD⊥于点N.分点E在线段BM上时,点E在线段MC上时,点E 在线段CN上,点E在线段ND上,共四钟情况分别求解即可.(1)证明:如图1,∵四边形ABCD是菱形,∴BA BC=,∴BAC BCA∠=∠.∵FG BC,∴FGA BCA∠=∠,∴BAC FGA∠=∠,∴△AFG是等腰三角形,∴FA FG=.(2)解:记AC中点为点O.①当点E在BC上时,如图2,过点A作AM BC⊥于点M,∵在Rt ABM 中,365AM AB ==,∴8BM ==.∴6,2FG EF AM CM BC BM ====-=,∵,OA OC OE AM =∥, ∴112122CE ME CM ===⨯=, ∴1AF ME ==,∴167AG AF FG =+=+=.②当点E 在CD 上时,如图3,过点A 作AN CD ⊥于点N .同理,6,2FG EF AN CN ====,112AF NE CN ===, ∴615AG FG AF =-=-=.∴7AG =或5.(3)解:过点A 作AM BC ⊥于点M ,作AN CD ⊥于点N .①当点E 在线段BM 上时,08s <≤.设3EF x =,则4,3BE x GH EF x ===,ⅰ)若点H 在点C 的左侧,810s +≤,即02s <≤,如图4,10(48)24CH BC BH x x =-=-+=-.∵GHC FEB △∽△, ∴GH CH EF BE =, ∴GH EF CH BE =, ∴33244x x =-, 解得14x =, 经检验,14x =是方程的根, ∴41s x ==.∵GHC BEF △∽△, ∴GH CH BE EF =, ∴GH BE CH EF =, ∴34243x x =-, 解得825x =, 经检验,825x =是方程的根, ∴32425s x ==. ⅰ)若点H 在点C 的右侧,810s +>,即28s <≤,如图5,(48)1042CH BH BC x x =-=+-=-.∵GHC FEB △∽△, ∴GH CH EF BE =, ∴GH EF CH BE =, ∴33424x x =-, 此方程无解.∵GHC BEF △∽△, ∴GH CH BE EF =, ∴GH BE CH EF =, ∴34423x x =-, 解得87x =, 经检验,87x =是方程的根, ∴3247s x ==. ②当点E 在线段MC 上时,810s <≤,如图6,6,8,EF EH BE s ===.∴8,2BH BE EH s CH BH BC s =+=+=-=-.∵GHC FEB △∽△, ∴GH CH EF BE =, ∴GH EF CH BE =, ∴662s s=-, 此方程无解.∵GHC BEF △∽△, ∴GH CH BE EF =, ∴GH BE CH EF =, ∴626s s =-,解得1s =经检验,1s =∵810s <≤,∴1s =±③当点E 在线段CN 上时,1012s ≤≤,如图7,过点C 作⊥CJ AB 于点J ,在Rt BJC △中,10,6,8BC CJ BJ ===.8,EH BJ JF CE ===,∴BJ JF EH CE +=+,∴CH BF =,∵,90GH EF GHC EFB =∠=∠=︒,∴GHC EFB △≌△,符合题意,此时,1012s ≤≤.④当点E 在线段ND 上时,1220s <<,∵90EFB ∠>︒,∴GHC 与BEF 不相似.综上所述,s 满足的条件为:1s =或3225s =或327s =或1012s ≤≤. 【点睛】此题考查了相似三角形的性质、菱形的性质、勾股定理、等腰三角形的判定和性质、矩形的性质、锐角三角函数等知识,分类讨论方法是解题的关键.10.(2022·四川南充)如图,在矩形ABCD 中,点O 是AB 的中点,点M 是射线DC 上动点,点P 在线段AM 上(不与点A 重合),12OP AB =.(1)判断ABP △的形状,并说明理由.(2)当点M 为边DC 中点时,连接CP 并延长交AD 于点N .求证:PN AN =.(3)点Q 在边AD 上,85,4,5AB AD DQ ===,当90CPQ ∠=︒时,求DM 的长. 【答案】(1)ABP △为直角三角形,理由见解析(2)见解析 (3)43或12 【分析】(1)由点O 是AB 的中点,12OP AB =可知OP OA OB ==,由等边对等角可以推出90APB APO BPO ∠=∠+∠=︒;(2)延长AM ,BC 交于点E ,先证EC BC =,结合(1)的结论得出PC 是直角BPE 斜边的中线,推出12PC BE CE ==,进而得到34∠=∠,再通过等量代换推出21∠=∠,即可证明PN AN =; (3)过点P 作AB 的平行线,交AD 于点F ,交BC 于点G ,得到两个K 型,证明BPG FAP ∆∆,CPG PQF ∆∆,利用相似三角形对应边成比例列等式求出QF ,FP ,再通过AFP ADM ∆∆即可求出DM .(1)解:ABP △为直角三角形,理由如下:∵点O 是AB 的中点,12OP AB =, ∴OP OA OB ==,∴APO PAO ∠=∠,BPO PBO ∠=∠,∵ 180APO PAO BPO PBO ∠+∠+∠+∠=︒, ∴1180=902APO BPO ∠+∠=⨯︒︒, ∴90APB ∠=︒,∴ABP △为直角三角形;(2)证明:如图,延长AM ,BC 交于点E ,由矩形的性质知://AD BE ,90ADM ECM ∠=∠=︒,∴14∠=∠,∵ 点M 为边DC 中点,∴DM CM =,在ADM △和ECM 中,14ADM ECM DM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)ADM ECM ≅△△,∴EC AD =,∵BC AD =,∴EC BC =,即C 点为BE 的中点,由(1)知90APB ∠=︒,∴90BPE ∠=︒,即BPE 为直角三角形, ∴12PC BE CE ==, ∴34∠=∠,又∵23∠∠=,14∠=∠,∴21∠=∠,∴PN AN =;(3)解:如图,过点P 作AB 的平行线,交AD 于点F ,交BC 于点G ,由已知条件85,4,5AB AD DQ ===,设QF a =,FP x =, 则8124455GB AF DQ QF a a ==--=--=-,5PG x =-,85CG a =+. ∵AB AD ⊥,AB BC ⊥,//FG AB ,∴FG AD ⊥,FG BC ⊥,∴90AFP PGB ∠=∠=︒,∴90FAP FPA ∠+∠=︒,∵90APB ∠=︒,∴90BPG FPA ∠+∠=︒,∴BPG FAP ∠=∠,∴BPG FAP ∆∆, ∴GB PG FP AF =,即1255125a x x a --=-, ∴212(5)()5x x a -=-. 同理,∵ 90QFP ∠=︒,∴90FQP FPQ ∠+∠=︒,∵90CPQ ∠=︒,∴90CPG FPQ ∠+∠=︒,∴CPG FQP ∠=∠,∴CPG PQF ∆∆, ∴CG PG FP QF =,即855a x x a+-=, ∴8(5)()5x x a a -=+. ∴2128()()55a a a -=+, 解得910a =, ∴12352AF a =-=, 将910a =代入8(5)()5x x a a -=+得989(5)()10510x x -=⨯+, 整理得242090x x -+=, 解得12x =或92x =. ∵FAP DAM ∠=∠,AFP ADM ∠=∠,∴AFP ADM ∆∆, ∴FP AF DM AD =,即324x DM =, ∴83DM x =, ∴当12x =时,814323DM =⨯=,当92x =时,891232DM =⨯=,此时点M 在DC 的延长线上, 综上,DM 的长为43或12. 【点睛】本题考查矩形的性质,直角三角形斜边中线的性质,相似三角形的判定与性质等,第3问有一定难度,解题关键是作辅助线构造K 字模型.11.(2022·湖北武汉)已知CD 是ABC 的角平分线,点E ,F 分别在边AC ,BC 上,AD m =,BD n =,ADE 与BDF 的面积之和为S .(1)填空:当90ACB ∠=︒,DE AC ⊥,DF BC ⊥时,①如图1,若45B ∠=︒,m =n =_____________,S =_____________;②如图2,若60B ∠=︒,m =n =_____________,S =_____________;(2)如图3,当90ACB EDF ∠=∠=︒时,探究S 与m 、n 的数量关系,并说明理由:(3)如图4,当60ACB ∠=︒,120EDF ∠=︒,6m =,4n =时,请直接写出S 的大小.【答案】(1)①25;②4;(2)S =12mn(3)S =【分析】(1)①先证四边形DECF 为正方形,再证△ABC 为等腰直角三角形,根据CD 平分∠ACB ,得出CD ⊥AB ,且AD =BD =m ,然后利用三角函数求出BF=BD cos45°=5,DF =BD sin45°=5,AE =AD cos45°=5即可;②先证四边形DECF 为正方形,利用直角三角形两锐角互余求出∠A =90°-∠B =30°,利用30°直角三角形先证求出DE =1122AD =⨯=AE =ADcos 30°=6,DF =DE =BF =DF tan30°=2,BD =DF ÷sin60°=4即可;(2)过点D 作DH ⊥AC 于H ,DG ⊥BC 于G ,在HC 上截取HI =BG ,连接DI ,先证四边形DGCH 为正方形,再证△DFG ≌△DEH (ASA )与△DBG ≌△DIH (SAS ),然后证明∠IDA =180°-∠A -∠DIH =90°即可; (3)过点D 作DP ⊥AC 于P ,DQ ⊥BC 于Q ,在PC 上截取PR =QB ,连接DR ,过点A 作AS ⊥DR 于S ,先证明△DQF ≌△DPE ,△DBQ ≌△DRP ,再证△DBF ≌△DRE ,求出∠ADR =∠ADE +∠BDF =180°-∠FDE =60°即可.(1)解:①∵90ACB ∠=︒,DE AC ⊥,DF BC ⊥,CD 是ABC 的角平分线,∴四边形DECF 为矩形,DE =DF ,∴四边形DECF 为正方形,∵45B ∠=︒,∴∠A =90°-∠B =45°=∠B ,∴△ABC 为等腰直角三角形,∵CD 平分∠ACB ,∴CD ⊥AB ,且AD =BD =m ,∵m =∴BD =n =∴BF =BDcos 45°=5,DF =BDsin 45°=5,AE =ADcos 45°=5,ED =DF =5,∴S = 1155552522ADE BDF S S ∆+=⨯⨯+⨯⨯=;故答案为25;②∵90ACB ∠=︒,DE AC ⊥,DF BC ⊥,CD 是ABC 的角平分线,∴四边形DECF 为矩形,DE =DF ,∴四边形DECF 为正方形,∵60B ∠=︒,∴∠A =90°-∠B =30°,∴DE =1122AD =⨯AE =AD cos30°=6,DF =DE = ∵∠BDF =90°-∠B =30°,∴BF =DF tan30°=2,∴BD =DF ÷sin60°=4,∴BD =n =4,∴S=116222ADE BDF S S ∆+=⨯+⨯⨯ 故答案为:4;(2)解:过点D 作DH ⊥AC 于H ,DG ⊥BC 于G ,在HC 上截取HI =BG ,连接DI ,∴∠DHC =∠DGC =∠GCH =90°,∴四边形DGCH 为矩形,∵CD 是ABC 的角平分线,DH ⊥AC ,DG ⊥BC ,∴DG =DH ,∴四边形DGCH 为正方形,∴∠GDH =90°,∵90EDF ∠=︒,∴∠FDG +∠GDE =∠GDE +∠EDH =90°,∴∠FDG =∠EDH ,在△DFG 和△DEH 中,FDG EDH DG DHDGF DHE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DFG ≌△DEH (ASA )∴FG =EH ,在△DBG 和△DIH 中,DG DH DGB DHI BG IH =⎧⎪∠=∠⎨⎪=⎩,∴△DBG ≌△DIH (SAS ),∴∠B =∠DIH ,DB =DI =n ,∵∠DIH +∠A =∠B +∠A =90°,∴∠IDA =180°-∠A -∠DIH =90°,∴S △ADI =1122AD DI mn ⋅=, ∴S =12ADE BDF ADE HDI ADI S S SS S mn ∆∆∆+=+==;(3)过点D 作DP ⊥AC 于P ,DQ ⊥BC 于Q ,在PC 上截取PR =QB ,连接DR ,过点A 作AS ⊥DR 于S , ∵CD 是ABC 的角平分线,DP ⊥AC ,DQ ⊥BC ,∴DP =DQ ,∵∠ACB=60°∴∠QDP =120°,∵120EDF ∠=︒,∴∠FDQ +∠FDP =∠FDP +∠EDP =120°,∴∠FDQ =∠EDP ,在△DFQ 和△DEP 中,FDQ EDP DQ DPDQF DPE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DFQ ≌△DEP (ASA )∴DF =DE ,∠QDF =∠PDE ,在△DBQ 和△DRP 中,DQ DP DQB DPR BQ RP =⎧⎪∠=∠⎨⎪=⎩,∴△DBQ ≌△DRP (SAS ),∴∠BDQ =∠RDP ,DB =DR ,∴∠BDF =∠BDQ +∠FDQ =∠RDP +∠EDP =∠RDE ,∵DB =DE ,DB =DR ,∴△DBF ≌△DRE ,∴∠ADR =∠ADE +∠BDF =180°-∠FDE =60°,∴S =S △ADR=111sin 6064222AS DR AD DR ⋅=︒⨯=⨯=. 【点睛】本题考查等腰直角三角形判定与性质,正方形判定与性质,三角形全等判定与性质,直角三角形判定,三角形面积,角平分线性质,解直角三角形,掌握等腰直角三角形判定与性质,正方形判定与性质,三角形全等判定与性质,直角三角形判定,三角形面积,角平分线性质,解直角三角形是解题关键. 12.(2022·山东临沂)已知ABC 是等边三角形,点B ,D 关于直线AC 对称,连接AD ,CD .(1)求证:四边形ABCD 是菱形;(2)在线段AC 上任取一点Р(端点除外),连接PD .将线段PD 绕点Р逆时针旋转,使点D 落在BA 延长线上的点Q 处.请探究:当点Р在线段AC 上的位置发生变化时,DPQ ∠的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ 与CP 之间的数量关系,并加以证明.【答案】(1)见解析(2)DPQ ∠大小不变,理由见解析(3)CP AQ =,证明见解析【分析】(1)连接BD ,由等边三角形的性质可得AC 垂直平分BD ,继而得出AB BC CD AD ===,便可证明;(2)连接PB ,过点P 作PE CB ∥交AB 于点E ,PF ⊥AB 于点F ,可证明APE 是等边三角形,由等腰三角形三线合一证明APF EPF ∠=∠,QPF BPF ∠=∠,即可求解;(3)由等腰三角形三线合一的性质可得AF = FE ,QF = BF ,即可证明.(1)连接BD , ABC 是等边三角形,AB BC AC ∴==,点B ,D 关于直线AC 对称,∴AC 垂直平分BD ,,DC BC AD AB ∴==,AB BC CD AD ∴===,∴四边形ABCD 是菱形;(2)当点Р在线段AC 上的位置发生变化时,DPQ ∠的大小不发生变化,始终等于60°,理由如下: 将线段PD 绕点Р逆时针旋转,使点D 落在BA 延长线上的点Q 处,PQ PD ∴=, ABC 是等边三角形,,60AB BC AC BAC ABC ACB ∴==∠=∠=∠=︒,连接PB ,过点P 作PE CB ∥交AB 于点E ,PF ⊥AB 于点F ,则60,60APE ACB AEP ABC ∠=∠=︒∠=∠=︒,60APE BAC AEP ∴∠=∠=︒=∠,APE ∴是等边三角形,AP EP AE ∴==,PF AB ⊥,APF EPF ∴∠=∠,点B ,D 关于直线AC 对称,点P 在线段AC 上,∴PB = PD ,∠DP A =∠BP A ,∴PQ = PD ,PF AB ⊥,QPF BPF ∴∠=∠,∴∠QPF -∠APF =∠BPF -∠EPF ,即∠QP A = ∠BPE ,∴∠DPQ =∠DP A - ∠QP A =∠BP A -∠BPE = ∠APE = 60°;(3)AQ = CP ,证明如下:AC = AB ,AP = AE ,∴AC - AP = AB – AE ,即CP = BE ,AP = EP ,PF ⊥AB ,∴AF = FE ,PQ = PD ,PF ⊥AB ,∴QF = BF ,∴ QF - AF = BF – EF ,即AQ = BE ,∴AQ = CP . 【点睛】本题考查了图形的旋转,等边三角形的判定和性质,等腰三角形的性质,菱形的判定等,熟练掌握知识点是解题的关键.13.(2022·江西)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板()90,60PEF P F ∠=︒∠=︒的一个顶点放在正方形中心O 处,并绕点O 逆时针旋转,探究直角三角板PEF 与正方形ABCD 重叠部分的面积变化情况(已知正方形边长为2).(1)操作发现:如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,重叠部分的面积为__________;当OF 与BC 垂直时,重叠部分的面积为__________;一般地,若正方形面积为S ,在旋转过程中,重叠部分的面积1S 与S 的关系为__________;(2)类比探究:若将三角板的顶点F 放在点O 处,在旋转过程中,,OE OP 分别与正方形的边相交于点M ,N . ①如图2,当BM CN =时,试判断重叠部分OMN 的形状,并说明理由;②如图3,当CM CN =时,求重叠部分四边形OMCN 的面积(结果保留根号);(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O 处,该锐角记为GOH ∠(设GOH α∠=),将GOH ∠绕点O 逆时针旋转,在旋转过程中,GOH ∠的两边与正方形ABCD 的边所围成的图形的面积为2S ,请直接写出2S 的最小值与最大值(分别用含α的式子表示),(参考数据:sin15tan152︒=︒=︒= 【答案】(1)1,1,114S S =(2)①OMN 1 (3)tan ,1tan 4522αα⎛⎫-︒- ⎪⎝⎭ 【分析】(1)如图1,若将三角板的顶点P 放在点O 处,在旋转过程中,当OF 与OB 重合时,OE 与OC重合,此时重叠部分的面积=△OBC的面积=14正方形ABCD的面积=1;当OF与BC垂直时,OE⊥BC,重叠部分的面积=14正方形ABCD的面积=1;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=14S.利用全等三角形的性质证明即可;(2)①结论:△OMN是等边三角形.证明OM=ON,可得结论;②如图3中,连接OC,过点O作OJ⊥BC于点J.证明△OCM≌△OCN(SAS),推出∠COM=∠CON=30°,解直角三角形求出OJ,即可解决问题;(3)如图4-1中,过点O作OQ⊥BC于点Q,当BM=CN时,△OMN的面积最小,即S2最小.如图4-2中,当CM=CN时,S2最大.分别求解即可.(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,OE与OC重合,此时重叠部分的面积=△OBC的面积=14正方形ABCD的面积=1;当OF与BC垂直时,OE⊥BC,重叠部分的面积=14正方形ABCD的面积=1;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=14 S.理由:如图1中,设OF交AB于点J,OE交BC于点K,过点O作OM⊥AB于点M,ON⊥BC于点N.∵O是正方形ABCD的中心,∴OM=ON,∵∠OMB=∠ONB=∠B=90°,∴四边形OMBN是矩形,∵OM=ON,∴四边形OMBN是正方形,∴∠MON=∠EOF=90°,∴∠MOJ=∠NOK,∵∠OMJ=∠ONK=90°,∴△OMJ≌△ONK(AAS),∴S△PMJ=S△ONK,∴S四边形OKBJ=S正方形OMBN=14S正方形ABCD,∴S1=14 S.故答案为:1,1,S1=14 S.(2)①如图2中,结论:△OMN是等边三角形.理由:过点O作OT⊥BC,∵O是正方形ABCD的中心,∴BT=CT,∵BM=CN,∴MT=TN,∵OT⊥MN,∴OM=ON,∵∠MON=60°,∴△MON是等边三角形;②如图3中,连接OC,过点O作OJ⊥BC于点J.。
2022年中考数学挑战压轴题《解答题二》
中考数学冲刺挑战压轴题专题汇编(解答题二)1.(2019•江西)特例感知(1)如图1,对于抛物线y1=﹣x2﹣x+1,y2=﹣x2﹣2x+1,y3=﹣x2﹣3x+1,下列结论正确的序号是;①抛物线y1,y2,y3都经过点C(0,1);②抛物线y2,y3的对称轴由抛物线y1的对称轴依次向左平移个单位得到;③抛物线y1,y2,y3与直线y=1的交点中,相邻两点之间的距离相等.形成概念(2)把满足y n=﹣x2﹣nx+1(n为正整数)的抛物线称为“系列平移抛物线”.知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为P1,P2,P3,…,P n,用含n的代数式表示顶点P n的坐标,并写出该顶点纵坐标y与横坐标x之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:C1,C2,C3,…,∁n,其横坐标分别为﹣k﹣1,﹣k﹣2,﹣k﹣3,…,﹣k﹣n(k为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.③在②中,直线y=1分别交“系列平移抛物线”于点A1,A2,A3,…,A n,连接∁n A n,C n﹣1A n﹣1,判断∁n A n,C n﹣1A n﹣1是否平行?并说明理由.2.(2018•江西)小资与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b= ,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(1)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两个抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1;其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n;其顶点为A n…(n为正整数)求A n A n+1的长(用含n的式子表示).3.(2017•江西)已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C 2的顶点到x 轴的距离为2,求a 的值.1.定义:若两条抛物线在x 轴上经过两个相同点,那么我们称这两条抛物线是“同交点抛物线”,在x 轴上经过的两个相同点称为“同交点”,已知抛物线y =x 2 +bx +c 经过(﹣2,0)、( ﹣4,0),且一条与它是“同交点抛物线”的抛物线y =ax 2 +ex +f 经过点( ﹣3,3). (1)求b 、c 及a 的值;(2)已知抛物线y =﹣x 2 +2x +3与抛物线y n =3n x 2﹣23nx ﹣n (n 为正整数) ①抛物线y 和抛物线y n 是不是“同交点抛物线”?若是,请求出它们的“同交点”,并写出它们一条相同的图像性质;若不是,请说明理由.②当直线y =12x + m 与抛物线y 、y n ,相交共有4个交点时,求m 的取值范围. ③若直线y =k (k <0)与抛物线y =﹣x 2 +2x +3与抛物线y n =3n x 2﹣23nx ﹣n (n 为正整数)共有4个交点,从左至右依次标记为点A 、点B 、点C 、点D ,当AB =BC =CD 时,求出k 、n 之间的关系式2.已知抛物线C n :y n =12-x 2+(n -1)x +2n (其中n 为正整数)与x 轴交于A n ,B n .两点(点A n 在B n 的左边)与y 轴交于点D n .(1)填空:①当n =1时,点A 1的坐标为______,点B 1的坐标为______; ②当n =2时,点A 2的坐标为______,点B 2的坐标为______;(2)猜想抛物线C n 是否经过某一个定点,若经过请写出该定点坐标并给予证明:若不经过,请说明理由; (3)猜想2n n n A D B ∠的大小,并给予证明.3.如图,抛物线()2y a x h k =-+(0a ≠)的顶点为A ,对称轴与x 轴交于点C ,当以AC 为对角线的正方形ABCD 的另外两个顶点B 、D 恰好在抛物线上时,我们把这样的抛物线称为美丽抛物线,正方形ABCD 为它的内接正方形.(1)当抛物线21y ax =+是美丽抛物线时,则a =______;当抛物线212y x k =+是美丽抛物线时,则k =______;(2)若抛物线2y ax k =+是美丽抛物线时,则请直接写出a ,k 的数量关系; (3)若()2y a x h k =-+是美丽抛物线时,(2)a ,k 的数量关系成立吗?为什么?(4)系列美丽抛物线()2n n n y a x n k =-+(n 为小于7的正整数)顶点在直线16y x =上,且它们中恰有两条美丽抛物线内接正方形面积比为1:16.求它们二次项系数之和.1.已知二次函数y=ax2﹣2ax﹣2的图象(记为抛物线C1)顶点为M,直线l:y=2x﹣a与x轴,y轴分别交于A,B.(1)对于抛物线C1,以下结论正确的是;①对称轴是:直线x=1;②顶点坐标(1,﹣a﹣2);③抛物线一定经过两个定点.(2)当a>0时,设△ABM的面积为S,求S与a的函数关系;(3)将二次函数y=ax2﹣2ax﹣2的图象C1绕点P(t,﹣2)旋转180°得到二次函数的图象(记为抛物线C2),顶点为N.①当﹣2≤x≤1时,旋转前后的两个二次函数y的值都会随x的增大而减小,求t的取值范围;②当a=1时,点Q是抛物线C1上的一点,点Q在抛物线C2上的对应点为Q',试探究四边形QMQ'N能否为正方形?若能,求出t的值,若不能,请说明理由.2.在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+2mx+3m2与x轴相交于点B、C(点B在点C 的左侧),与y轴相交于点A,点D为抛物线的顶点,抛物线的对称轴交x轴于点E.(1)如图1,当AO+BC=7时,求抛物线的解析式;(2)如图2,点F是抛物线的对称轴右侧一点,连接BF、CF、DF,过点F作FH∥x轴交DE于点H,当∠BFC=∠DFB+∠BFH=90°时,求点H的纵坐标;(3)如图3,在(1)的条件下,点P 是抛物线上一点,点P 、点A 关于直线DE 对称,点Q 在线段AP 上,过点P 作PR ⊥AP ,连接BQ 、QR ,满足QB 平分∠AQR ,tan ∠QRP =512,点K 在抛物线的对称轴上且在x 轴下方,当CK =BQ 时,求线段DK 的长.3.定义:如图,把经过抛物线2y ax bx c =++ (0ab ≠,a , b ,c 为常数)与y 轴的交点C 和顶点M 的直线称为抛物线的“伴线”,若抛物线与x 轴交于A ,B 两点( B 在A 的右侧),经过点C 和点 B 的直线称为抛物线的“标线”.(1)已知抛物线223y x x =--,求伴线的解析式. (2)若伴线为23y x =-,标线为3y kx k =-, ①求抛物线的解析式;②设P 为“标线”上一动点,过P 作PQ 平行于“伴线”,交“标线”上方的抛物线于Q ,求线段PQ 长的最大值.4.在平面直角坐标系中,直线AB 与抛物线y =ax 2+bx +c 交于A ,B (点A 在点B 的左侧)两点,点C 是该抛物线上任意一点,过C 点作平行于y 轴的直线交AB 于D ,分别过点A ,B 作直线CD 的垂线,垂足分别为点E ,F .特例感悟:(1)已知:a =-2,b =4,c =6.①如图①,当点C 的横坐标为2,直线AB 与x 轴重合时,CD =____,|a |·AE ·BF =___.②如图②,当点C 的横坐标为1,直线AB //x 轴且过抛物线与y 轴的交点时,CD =_____,|a |·AE ·BF =_______. ③如图③,当点C 的横坐标为2,直线AB 的解析式为y =x -3时,CD =___,|a |·AE ·BF =___. 猜想论证:(2)由(1)中三种情况的结果,请你猜想在一般情况下CD 与|a |·AE ·BF 之间的数量关系,并证明你的猜想.拓展应用.(3)若a =-1,点A ,B 的横坐标分别为-4,2,点C 在直线AB 的上方的抛物线上运动(点C 不与点A ,B 重合),在点C 的运动过程中,利用(2)中的结论求出△ACB 的最大面积.5.如图1,抛物线C :y =x 2经过变换可得到抛物线C 1:y 1=a 1x (x ﹣b 1),C 1与x 轴的正半轴交于点A ,且其对称轴分别交抛物线C 、C 1于点B 1、D 1.此时四边形OB 1A 1D 1恰为正方形:按上述类似方法,如图2,抛物线C 1:y 1=a 1x (x ﹣b 1)经过变换可得到抛物线C 2:y 2=a 2x (x ﹣b 2),C 2与x 轴的正半轴交于点A 2,且其对称轴分别交抛物线C 1、C 2于点B 2、D 2.此时四边形OB 2A 2D 2也恰为正方形:按上述类似方法,如图3,可得到抛物线C 3:y 3=a 3x (x ﹣b 3)与正方形OB 3A 3D 3,请探究以下问题: (1)填空:a 1= ,b 1= ; (2)求出C 2与C 3的解析式;(3)按上述类似方法,可得到抛物线∁n :y n =a n x (x ﹣b n )与正方形OB n A n D n (n ≥1) ①请用含n 的代数式直接表示出∁n 的解析式;②当x 取任意不为0的实数时,试比较y 2018与y 2019的函数值的大小关系,并说明理由.6.已知点P 为抛物线21(0)2y x x =>上一动点,以P 为顶点,且经过原点O 的抛物线,记作“P y ”,设其与x 轴另一交点为A ,点P 的横坐标为m .(1)①当OPA 为直角三角形时,m =________; ②当OPA 为等边三角形时,求此时“P y ”的解析式;(2)若P 点的横坐标分别为1,2,3,……n (n 为正整数)时,抛物线“P y ”,分别记作“1P y ”,“2P y ”…“n P y ”,设其与x 轴另一交点分别为1A ,2A ,3A …n A ,过1P ,2P ,3P ,…,n P 作x 轴的垂线,垂足分别为1H ,2H ,3H ,…,n H .①n P 的坐标为________,n OA =________;(用含n 的代数式表示) ②当16n n n P H OA -=时,求n 的值;③是否存在这样的n A ,使得490n OP A ∠=︒?若存在,求n 的值;若不存在,说明理由.。
28道中考数学压轴题(解析版)
中考数学选填压轴题练习一.根的判别式(共1小题)1.(2023•广州)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【分析】首先根据关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,得判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,由此可得k≤1,据此可对进行化简.【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二.函数的图象(共1小题)2.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米B.4800米C.5200米D.5400米【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.三.动点问题的函数图象(共1小题)3.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.【分析】如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,结合图象可知,当点P在AO上运动时,PB=PC,AO=,易知∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,可知AO=OB=,过点O作OD⊥AB,解直角三角形可得AD=AO•cos30°,进而得出等边三角形ABC的边长.【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OD⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.四.反比例函数系数k的几何意义(共1小题)4.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x 轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC =2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为12,a的值为9.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D (﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.五.反比例函数图象上点的坐标特征(共2小题)5.(2023•德州)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式()A.y=﹣B.C.D.【分析】先根据函数图象经过点B和点E,求出a和b,再由所得函数解析式即可解决问题.【解答】解:由题知,A(6,0),B(6,3),C(0,3),令直线AC的函数表达式为y1=k1x+b1,则,解得,所以.又因为点D为OA的中点,所以D(3,0),同理可得,直线BD的函数解析式为y2=x﹣3,由得,x=4,则y=4﹣3=1,所以点E坐标为(4,1).将B,E两点坐标代入函数解析式得,,解得.所以,则,将此函数图象向左平移3个单位长度,再向下平移4个单位长度,所得图象的函数解析式为:.故选:D.6.如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=k1x+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,,当D的坐标为(2+3,)时,BD2==9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣3,)时,BD2=+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.六.反比例函数与一次函数的交点问题(共1小题)7.(2023•湖州)已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠﹣2),点C(t,m)和点D(t+2,n)在函数的图象上.当p﹣m与q﹣n的积为负数时,t的取值范围是()A.或B.或C.﹣3<t<﹣2或﹣1<t<0D.﹣3<t<﹣2或0<t<1【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得k1=k2.令k1=k2=k,代入两个函数表达式,并分别将点A、B的坐标和点C、D的坐标代入对应函数,进而分别求出p﹣m与q﹣n的表达式,代入解不等式(p﹣m)(q﹣n)<0并求出t的取值范围即可.【解答】解:∵y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,∴k1=k2.令k1=k2=k(k>0),则y=k1x=kx,=.将点A(t,p)和点B(t+2,q)代入y=kx,得;将点C(t,m)和点D(t+2,n)代入y=,得.∴p﹣m=kt﹣=k(t﹣),q n=k(t+2)﹣=k(t+2﹣),∴(p﹣m)(q﹣n)=k2(t﹣)(t+2﹣)<0,∴(t﹣)(t+2﹣)<0.∵(t﹣)(t+2﹣)=•=<0,∴<0,∴t(t﹣1)(t+2)(t+3)<0.①当t<﹣3时,t(t﹣1)(t+2)(t+3)>0,∴t<﹣3不符合要求,应舍去.②当﹣3<t<﹣2时,t(t﹣1)(t+2)(t+3)<0,∴﹣3<t<﹣2符合要求.③当﹣2<t<0时,t(t﹣1)(t+2)(t+3)>0,∴﹣2<t<0不符合要求,应舍去.④当0<t<1时,t(t﹣1)(t+2)(t+3)<0,∴0<t<1符合要求.⑤当t>1时,t(t﹣1)(t+2)(t+3)>0,∴t>1不符合要求,应舍去.综上,t的取值范围是﹣3<t<﹣2或0<t<1.故选:D.七.二次函数图象与系数的关系(共3小题)8.(2023•乐至县)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).现有以下结论:①abc<0;②5a+c=0;③对于任意实数m,都有2b+bm≤4a﹣am2;④若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,则y1<y2,其中正确的结论是()A.①②B.②③④C.①②④D.①②③④【分析】根据题意和函数图象,利用二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).∴﹣=﹣2,a+b+c=0,∴b=4a,∴a+b+c=a+4a+c=0,故5a+c=0,故②正确,∵当x=﹣2时,y=4a﹣2b+c取得最小值,∴am2+bm+c≥4a﹣2b+c,即2b+bm≥4a﹣am2(m为任意实数),故③错误,∵抛物线开口向上,对称轴为直线x=﹣2,若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,∴y1<y2,故④正确;故选:C.9.(2023•丹东)抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为A(﹣3,0),与y轴交于点C,点D是抛物线的顶点,对称轴为直线x=﹣1,其部分图象如图所示,则以下4个结论:①abc>0;②E(x1,y1),F(x2,y2)是抛物线y=ax2+bx(a≠0)上的两个点,若x1<x2,且x1+x2<﹣2,则y1<y2;③在x轴上有一动点P,当PC+PD的值最小时,则点P的坐标为;④若关于x的方程ax2+b(x﹣2)+c =﹣4(a≠0)无实数根,则b的取值范围是b<1.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:根据所给函数图象可知,a>0,b>0,c<0,所以abc<0,故①错误.因为抛物线y=ax2+bx的图象可由抛物线y=ax2+bx+c的图象沿y轴向上平移|c|个单位长度得到,所以抛物线y=ax2+bx的增减性与抛物线y=ax2+bx+c的增减性一致.则当x<﹣1时,y随x的增大而减小,又x1<x2,且x1+x2<﹣2,若x2<﹣1,则E,F两点都在对称轴的左侧,此时y1>y2.故②错误.作点C关于x轴的对称点C′,连接C′D与x轴交于点P,连接PC,此时PC+PD的值最小.将A(﹣3,0)代入二次函数解析式得,9a﹣3b+c=0,又,即b=2a,所以9a﹣6a+c=0,则c=﹣3a.又抛物线与y轴的交点坐标为C(0,c),则点C坐标为(0,﹣3a),所以点C′坐标为(0,3a).又当x=﹣1时,y=﹣4a,即D(﹣1,﹣4a).设直线C′D的函数表达式为y=kx+3a,将点D坐标代入得,﹣k+3a=﹣4a,则k=7a,所以直线C′D的函数表达式为y=7ax+3a.将y=0代入得,x=.所以点P的坐标为(,0).故③正确.将方程ax2+b(x﹣2)+c=﹣4整理得,ax2+bx+c=2b﹣4,因为方程没有实数根,所以抛物线y=ax2+bx+c与直线y=2b﹣4没有公共点,所以2b﹣4<﹣4a,则2b﹣4<﹣2b,解得b<1,又b>0,所以0<b<1.故④错误.所以正确的有③.故选:A.10.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴为直线x=0,抛物线y=﹣x2+m2x的对称轴为直线x=,∴这两个函数图象对称轴之间的距离==2.故选:A.八.二次函数图象上点的坐标特征(共1小题)11.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac 的值为()A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.九.二次函数与不等式(组)(共1小题)12.(2023•西宁)直线y1=ax+b和抛物线(a,b是常数,且a≠0)在同一平面直角坐标系中,直线y1=ax+b经过点(﹣4,0).下列结论:①抛物线的对称轴是直线x=﹣2;②抛物线与x轴一定有两个交点;③关于x的方程ax2+bx=ax+b有两个根x1=﹣4,x2=1;④若a >0,当x<﹣4或x>1时,y1>y2.其中正确的结论是()A.①②③④B.①②③C.②③D.①④【分析】根据直线y1=ax+b经过点(﹣4,0).得到b=4a,于是得到=ax2+4ax,求得抛物线的对称轴是直线x=﹣﹣=2;故①正确;根据Δ=16a2>0,得到抛物线与x轴一定有两个交点,故②正确;把b=4a,代入ax2+bx=ax+b得到x2+3x﹣4=0,求得x1=﹣4,x2=1;故③正确;根据a>0,得到抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,于是得到结论.【解答】解:∵直线y1=ax+b经过点(﹣4,0).∴﹣4a+b=0,∴b=4a,∴=ax2+4ax,∴抛物线的对称轴是直线x=﹣﹣=2;故①正确;∵=ax2+4ax,∴Δ=16a2>0,∴抛物线与x轴一定有两个交点,故②正确;∵b=4a,∴方程ax2+bx=ax+b为ax2+4ax=ax+4a得,整理得x2+3x﹣4=0,解得x1=﹣4,x2=1;故③正确;∵a>0,抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,∴当x<﹣4或x>1时,y1<y2.故④错误,故选:B.一十.三角形中位线定理(共1小题)13.(2023•广州)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3≤S≤4.【分析】依据题意,根据三角形中位线定理可得DE=AM=1.2;设AM=x,从而DE=x,由DE∥AM,且DE=AM,又FG∥AM,FG=AM,进而DE∥FG,DE=FG,从而四边形DEFG是平行四边形,结合题意可得DE边上的高为(4﹣x),故四边形DEFG面积S=4x﹣x2,进而利用二次函数的性质可得S的取值范围.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3≤S≤4.故答案为:1.2;3≤S≤4.一十一.矩形的性质(共2小题)14.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.15.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为2或1+.【分析】以点D,M,N为顶点的三角形是直角三角形时,分两种情况:如图1,当∠MND=90°时,如图2,当∠NMD=90°时,根据矩形的性质和等腰直角三角形的性质即可得到结论.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.一十二.正方形的性质(共2小题)16.如图,在边长为4的正方形ABCD中,点G是BC上的一点,且BG=3GC,DE⊥AG于点E,BF∥DE,且交AG于点F,则tan∠EDF的值为()A.B.C.D.【分析】由正方形ABCD的边长为4及BG=3CG,可求出BG的长,进而求出AG的长,证△ADE∽△GAB,利用相似三角形对应边成比例可求得AE、DE的长,证△ABF≌△DAE,得AF=DE,根据线段的和差求得EF的长即可.【解答】解:∵四边形ABCD是正方形,AB=4,∴BC=CD=DA=AB=4,∠BAD=∠ABC=90°,AD∥BC,∴∠DAE=∠AGB,∵BG=3CG,∴BG=3,∴在Rt△ABG中,AB2+BG2=AG2,∴AG=,∵DE⊥AG,∴∠DEA=∠DEF=∠ABC=90°,∴△ADE∽△GAB,∴AD:GA=AE:GB=DE:AB,∴4:5=AE:3=DE:4,∴AE=,DE=,又∵BF∥DE,∴∠AFB=∠DEF=90°,又∵AB=AD,∠DAE=∠ABF(同角的余角相等),∴△ABF≌△DAE,∴AF=DE=,∴EF=AF﹣AE=,∴tan∠EDF=,故选:A.17.(2023•湖州)如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是4cm.(2)若,则tan∠DAH的值是3.【分析】(1)将AE和FC用BE表示出来,再代入AE+FC=11cm,即可求出BE的长;(2)由已知条件可以证明∠DAH=∠CDG,从而得到tan∠DAH=tan∠CDG,设AH=x,DG=5k,GH =4k,用x和k的式子表示出CG,再利用tan∠DAH=tan∠CDG列方程,解出x,从而求出tan∠DAH 的值.【解答】解:(1)∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∵AE+FC=11cm,∴BE+BF=11cm,即BE+BE+EF=11cm,即2BE+EF=11cm,∵EF=3cm,∴2BE+3cm=11cm,∴BE=4cm,故答案为:4;(2)设AH=x,∵,∴可设DG=5k,GH=4k,∵四边形EFGH是正方形,∴HE=EF=FG=GH=4k,∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∠ABE=∠CBF=45°,∴CG=CF+GF=BF+4k=BE+8k=AH+12k=x+12k,∠ABC=∠ABE+∠CBF=45°+45°=90°,∵四边形ABCD对角互补,∴∠ADC=90°,∴∠ADH+∠CDG=90°,∵四边形EFGH是正方形,∴∠AHD=∠CGD=90°,∴∠ADH+∠DAH=90°,∴∠DAH=∠CDG,∴tan∠DAH=tan∠CDG,∴,即,整理得:x2+12kx﹣45k2=0,解得x1=3k,x2=﹣15k(舍去),∴tan∠DAH===3.故答案为:3.一十三.正多边形和圆(共1小题)18.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.一十四.扇形面积的计算(共1小题)19.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得r,连接OE,取ED的中点T,连接OT,在Rt△OET中,根据勾股定理即可求解.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.一十五.轴对称-最短路线问题(共1小题)20.(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM 是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB最小,即可得P A+PB 最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF 最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC =(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.一十六.翻折变换(折叠问题)(共2小题)21.(2023•乐至县)如图,在平面直角坐标系xOy中,边长为2的等边△ABC的顶点A、B分别在x轴、y 轴的正半轴上移动,将△ABC沿BC所在直线翻折得到△DBC,则OD的最大值为+1.【分析】过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,在Rt△ABO 中利用斜边中线性质求出OE,根据OE+DE≥OD确定当D、O、E三点共线时OD最大,最大值为OD =OE+DE.【解答】解:如图,过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,∵等边三角形ABC的边长为2,∴AB=2,∠ABC=60°,由翻折可知:∠DBC=∠ABC=60°,DB=AB=2,∴∠DBF=60°,∵DF⊥AB,∴∠DFB=90°,∴∠BDF=30°,∴BF=BD=1,∴DF=BF=,∵E是AB的中点,∴AE=BE=OE=AB=1,∴EF=BE+BF=2,∴DE===,∴OD≤DE+OE=+1,∴当D、E、O三点共线时OD最大,最大值为+1.故答案为:+1.22.(2023•南京)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD =90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE =5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.一十七.旋转的性质(共1小题)23.(2023•西宁)如图,在矩形ABCD中,点P在BC边上,连接P A,将P A绕点P顺时针旋转90°得到P A′,连接CA′,若AD=9,AB=5,CA′=2,则BP=2.【分析】过A′点作A′H⊥BC于H点,如图,根据旋转的性质得到P A=P A′,再证明△ABP≌△PHA′得到PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=4﹣x,然后在Rt△A′CH中利用勾股定理得到x2+(4﹣x)2=(2)2,于是解方程求出x即可.【解答】解:过A′点作A′H⊥BC于H点,如图,∵四边形ABCD为矩形,∴BC=AD=9,∠B=90°,∵将P A绕点P顺时针旋转90°得到P A′,∴P A=P A′,∵∠P AB+∠APB=90°,∠APB+∠A′PH=90°,∴∠P AB=∠A′PH,在△ABP和△PHA′中,,∴△ABP≌△PHA′(AAS),∴PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=9﹣x﹣5=4﹣x,在Rt△A′CH中,x2+(4﹣x)2=(2)2,解得x1=x2=2,即BP的长为2.故答案为:2.一十八.相似三角形的判定与性质(共2小题)24.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DF A,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DF A,∴∠FDE=∠DF A,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.25.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.一十九.相似三角形的应用(共1小题)26.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB 的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.二十.解直角三角形(共1小题)27.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x 轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为(﹣2,0);点D的坐标为(﹣1﹣2,2+)或(﹣1+2,2﹣).【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC =,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.二十一.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH 拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.。
中考数学解答题压轴题突破 重难点突破四 圆中的证明与计算
(1)求证:EF 是⊙O 的切线; 证明:连接 OE,∵AB 是⊙O 的直径,∴∠AEB=90°, 即∠AEO+∠OEB=90°, ∵AE 平分∠CAB,∴∠CAE=∠BAE, ∵∠BEF=∠CAE,∴∠BEF=∠BAE, ∵OA=OE,∴∠BAE=∠AEO, ∴∠BEF=∠AEO,∴∠BEF+∠OEB=90°, ∴∠OEF=90°,∴OE⊥EF, ∵OE 是⊙O 的半径,∴EF 是⊙O 的切线.
解:∵BD 为⊙O 的直径, ∴∠BCD=∠DCE=90°, ∵AC 平分∠BAD, ∴∠BAC=∠DAC, BC=DC=2 2, ∴BD=2 2× 2=4.
(2)若 BE=5 2,计算图中阴影部分的面积. 【分层分析】 ∵BC=DC,∴阴影的面积等于三角形 CDE 的面积. 解:∵BE=5 2,∴CE=3 2 ∵BC=DC,
2.(2022·宁波)如图①,⊙O 为锐角三角形 ABC 的外接圆,点 D 在B︵C上, AD 交 BC 于点 E,点 F 在 AE 上,满足∠AFB-∠BFD=∠ACB,FG∥AC 交 BC 于点 G,BE=FG,连接 BD,DG.设∠ACB=α.
(1)用含α的代数式表示∠BFD. 解:∵∠AFB-∠BFD=∠ACB=α,① 又∵∠AFB+∠BFD=180°,② ②-①,得 2∠BFD=180°-α,
1
1
∴S△ABC=2BC·AC=2×2×2 3=2 3,
∴阴影部分的面积是12π×A2B2-2 3=2π-2 3.
3.(2022·黔西南州第 23 题 14 分)如图,在△ABC 中,AB=AC,以 AB 为 直径作⊙O,分别交 BC 于点 D,交 AC 于点 E,DH⊥AC,垂足为 H,连接 DE 并延长交 BA 的延长线于点 F.
α ∴∠BFD=90°- 2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国各地中考数学解答题压轴题解析22011年全国各地中考数学解答题压轴题解析(2)1.(湖南长沙10分)如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。
当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。
【答案】解:(1)过点B作BC⊥y轴于点C,∵A(0,2),△AOB为等边三角形,∴AB=OB=2,∠BAO=60°,∴BC=3,OC=AC=1。
即B( 3 1,)。
(2)不失一般性,当点P在x轴上运动(P不与O重合)时,∵∠PAQ==∠OAB=60°,∴∠PAO=∠QAB,在△APO和△AQB中,∵AP=AQ,∠PAO=∠QAB,AO=AB,∴△APO≌△AQB总成立。
∴∠ABQ=∠AOP=90°总成立。
∴当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°。
(3)由(2)可知,点Q总在过点B且与AB垂直的直线上,∴AO与BQ不平行。
①当点P 在x 轴负半轴上时,点Q 在点B 的下方, 此时,若AB∥OQ ,四边形AOQB 即是梯形, 当AB∥OQ 时,∠BQO=90°,∠BOQ=∠ABO=60°。
又OB=OA=2,可求得BQ=3。
由(2)可知,△APO≌△AQB ,∴OP=BQ=3,∴此时P 的坐标为(3 0-,)。
②当点P 在x 轴正半轴上时,点Q 在点B 的上方, 此时,若AQ∥OB ,四边形AOQB 即是梯形, 当AQ∥OB 时,∠ABQ=90°,∠QAB=∠ABO=60°。
又AB= 2,可求得BQ=23,由(2)可知,△APO≌△AQB ,∴OP=BQ=23,∴此时P 的坐标为(23 0,)。
综上所述,P 的坐标为(3 0-,)或(23 0,)。
【考点】等边三角形的性质,坐标与图形性质;全等三角形的判定和性质,勾股定理,梯形的判定。
【分析】(1)根据题意作辅助线过点B 作BC⊥y 轴于点C ,根据等边三角形的性质即可求出点B 的坐标。
(2)根据∠PAQ═∠OAB=60°,可知∠PAO=∠QAB ,得出△APO≌△AQB 总成立,得出当点P 在x 轴上运动(P 不与Q 重合)时,∠ABQ 为定值90°。
(3)根据点P 在x 的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果。
2.(湖南永州10分)探究问题:⑴方法感悟:如图①,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的点,且满足∠EAF=45°,连接EF ,求证DE+BF=EF . 感悟解题方法,并完成下列填空:将△ADE 绕点A 顺时针旋转90°得到△ABG ,此时AB 与AD 重合,由旋转可得: AB=AD ,BG=DE, ∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G ,B ,F 在同一条直线上.∵∠EAF=45° ∴∠2+∠3=∠BAD -∠EAF=90°-45°=45°. ∵∠1=∠2, ∴∠1+∠3=45°.即∠GAF=∠_________. 又AG=AE ,AF=AF∴△GAF≌_______.∴_________=EF ,故DE +BF=EF . ⑵方法迁移:如图②,将Rt△ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF=21∠DAB .试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想.⑶问题拓展:如图③,在四边形ABCD 中,AB=AD ,E ,F 分别为DC,BC 上的点,满足∠EAF=21∠DAB,试猜想当∠B 与∠D 满足什么关系时,可使得DE+BF=EF .请直接写出你的猜想(不必说明理由). 【答案】解:(1)EAF 、△EAF 、GF 。
(2)DE +BF=EF 。
证明如下:假设∠BAD 的度数为m ,将△ADE 绕点A 顺时针旋转0m 得到△ABG ,此时AB与AD重合,由旋转可得:AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,∴点G,B,F在同一条直线上。
∵∠EAF=12m︒,∴∠2+∠3=∠BAD-∠EAF,即1122m m m︒-︒=︒。
∵∠1=∠2,∴∠1+∠3=12m︒,即∠GAF=∠EAF。
又∵AG=AE,AF=AF,∴△GAF≌△EAF(SAS)。
∴GF=EF。
又∵GF=BG+BF=DE+BF,∴DE+BF=EF。
(3)当∠B与∠D互补时,可使得DE+BF=EF。
【考点】正方形的性质,旋转的性质,全等三角形的判定和性质,翻折变换(折叠问题),等量代换。
【分析】(1)利用角之间的等量代换得出∠GAF=∠FAE,再利用SAS得出△GAF≌△EAF,得出答案。
(2)利用旋转的性质,由已知得出∠GAF=∠FAE,再证明△AGF≌△AEF,即可得出答案。
(3)根据角之间关系,只要满足∠B+∠D=180°时,就可以得出三角形全等,即可得出答案:如图,将△ADE绕点A顺时针旋转0m得到△ABG后,此时AB与AD重合,由旋转可得:∠ABG=∠D,∵∠ABF+∠D=180°,∴∠ABG+∠ABF=180°,∴点G ,B ,F 在同一条直线上。
∵∠EAF=12m ︒, ∴∠DAE +∠BAF=∠BAD -∠EAF ,即1122m m m ︒-︒=︒。
∵∠BAG =∠DAE ∴∠BAG +∠BAF =12m ︒,即∠GAF=∠EAF 。
又∵AG=AE ,AF=AF ,∴△GAF≌△EAF (SAS )。
∴GF=EF 。
又∵GF=BG +BF=DE +BF , ∴DE +BF=EF 。
3.(湖南常德10分)如图,已知抛物线过点A (0,6),B (2,0),C(7,52)。
(1)求抛物线的解析式;(2)若D 是抛物线的顶点,E 是抛物线的对称轴与直线AC 的交点,F 与E 关于D 对称,求证:∠CFE=∠AFE;(3)在y 轴上是否存在这样/的点P ,使△AFP 与△FDC 相似,若有,请求出所有符合条件的点P 的坐标;若没有,请说明理由。
【答案】解:(1)设抛物线解析式为2y ax bx c =++,将A 、B 、C 三点坐标代入,得642054972c a b c a b c ⎧⎪=⎪++=⎨⎪⎪++=⎩,解得1246a b c ⎧=⎪⎪=-⎨⎪=⎪⎩。
∴抛物线解析式为21462y x x=-+。
(2)证明:设直线AC的解析式为y kx b=+,将A、C两点坐标代入,得6572bk b=⎧⎪⎨+=⎪⎩,解得126kb⎧=-⎪⎨⎪=⎩。
∴直线AC的解析式为162y x=-+。
∵()2211464222y x x x=-+=--,∴D(4,﹣2),E(4,4)。
∵F与E关于D对称,∴F(4,﹣8)。
则直线AF的解析式为762y x=-+,CF的解析式为7222y x=-。
∴直线AF,CF与x轴的交点坐标分别为(127,0),(447,0)。
∵4﹣127=447﹣4,∴两个交点关于抛物线对称轴x=4对称。
∴∠CFE=∠AFE。
(3)解:存在.设P(0,d),则由点P在点A下方,得AP=6﹣d ,=FD=-2-(-8)=6,=。
当△AFP∽△FDC时,AP AFFCFD=,即6=﹣,解得d=412-;当△AFP∽△FCD时,AP AFFD FC=,即6d6=﹣,解得d=﹣2。
∴P 点坐标为(0,412-)或(0,﹣2)。
【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,解方程组,对称的性质,勾股定理,相似三角形的判定和性质。
【分析】(1)设抛物线解析式/为2y ax bx c =++,将A 、B 、C 三点坐标代入,列方程组求抛物线解析式。
(2)求直线AC 的解析式,确定E 点坐标,根据对称性求F 点坐标,分别求直线AF ,CF 的解析式,确定两直线与x 轴的交点坐标,判断两个交点关于抛物线对称轴对称即可。
(3)存在.由∠CFE=∠AFE=∠FAP ,△AFP 与△FDC 相似时,顶点A 与顶点F 对应,根据△AFP∽△FDC ,△AFP∽△FCD ,两种情况求P 点坐标。
4.(湖南郴州10分)如图,在平面直角坐标系中,A 、B 两点的坐标分别是(0,1)和(1,0),P 是线段AB 上的一动点(不与A 、B 重合),坐标为(m ,1﹣m )(m 为常数).(1)求经过O 、P 、B 三点的抛物线的解析式;(2)当P 点在线段AB 上移动时,过O 、P 、B 三点的抛物线的对称轴是否会随着P 的移动而改变;(3)当P 移动到点(12,12)时,请你在过O 、P 、B 三点的抛物线上至少找出两点,使每个点都能与P 、B 两点构成等腰三角形,并求出这两点的坐标.【答案】解:(1)设抛物线的解析式为2y ax bx c =++, ∵抛物线过原点O (0,0).∴c=0。
把B 、P 两点的坐标分别代入,得201a b m a mb m +=⎧⎨+=-⎩,解得11a m b m ⎧=-⎪⎪⎨⎪=⎪⎩。
∴211y x x m m =-+。
(2)由(1)可知抛物线的对称轴是11122m x m =-=⎛⎫- ⎪⎝⎭。
∴过O 、P 、B 三点的抛物线的对称轴是否会随着P 的移动而改变。
(3)设抛物线的对称轴与x 轴交于点K , 过点K 作PB 的垂直平分线交抛物线于Q1,Q2两点则△Q1PB ,△Q2PB 是等腰三角形。
∵P 点的坐标是(12,12),∴OP 的解析式是y x =,且Q1Q2∥OP ,点K (12,0),∴Q1Q2的解析式是:12y x =-,抛物线的解析式为:222y x x =-+。
联立,即得直线和抛物线的交点Q1,Q2两点的坐标是51511551+--+(,),(,-)。
【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,抛物线的对称轴,线段垂直平分线的性质,等腰三角形的判定,解方程组。
【分析】(1)设出抛物线的解析式,根据抛物线经过原点,B 点,P 点可列出方程求出a ,b 的值确定解析式。
(2)求出抛物线的对称轴,可知是个定值,故不变。
(3)作出对称轴与x 轴的交点为K ,过K 点作PB 的垂直平分线,交抛物线于两点,这两点就符合要求。