85SS777(四) 穿孔旋流反应斜管沉淀池
已废止的图集
图集号标准类别图集名称编制年份废止日期S151(一)标准图方形给水箱 1982 2003-05-01S161 标准图管道支架及吊架 1983 2003-05-01 S151(二)标准图圆形给水箱 1982 2003-05-0192SS177 试用图装配式给水箱选用安装图 1992 2003-05-0193S178 标准图冲压钢板给水箱安装、选用图 1993 2003-05-01 92S213(一)~(五)标准图砖砌化粪池 1992 2003-05-01 92S214(一)~(五)标准图钢筋混凝土化粪池 1992 2003-05-01 S231 标准图圆形排水检查井 1977 2003-05-01S232 标准图矩形排水检查井 1977 2003-05-01S233 标准图扇形排水检查井 1977 2003-05-01S234 标准图跌水井 1977 2003-05-01CS236 重复使用图耐腐蚀检查井及耐腐蚀管道接口 1978 2003-05-01S311 标准图钢制管道零件 1975 2003-05-01S312 标准图防水套管 1975 2003-05-0190S319 标准图水池通气管、吸水喇叭管及支架 1990 2003-05-01 CS345(四)重复使用图给水承插铸铁管道支墩(Dg400~1200) 1980 2003-05-01 CS345(一)重复使用图给水承插铸铁管道支墩(Dg400~1200) 1980 2003-05-01 CS345(五)重复使用图给水承插铸铁管道支墩(Dg400~1200) 1980 2003-05-01 CS345(二)重复使用图给水承插铸铁管道支墩(Dg400~1200) 1980 2003-05-01 CS345(六)重复使用图给水承插铸铁管道支墩(Dg400~1200) 1980 2003-05-01 CS345(三)重复使用图给水承插铸铁管道支墩(Dg400~1200) 1980 2003-05-01 S346 标准图投药、消毒设备 1980 2003-05-0190S436(一)标准图玻璃钢冷却塔选用安装图(逆流式) 1990 2003-05-01 91S436(二)标准图玻璃钢冷却塔选用安装图(横流式) 1991 2003-05-01 95SS437(1)试用100~2000m2钢筋混凝土自然通风冷却塔选用安装图 1996 2003-05-01 95S717~95S721 标准图机械搅拌澄清池20、40、60、80、120m3/h 1996 2003-05-01 S771(二)标准图 60m3/h水力循环澄清池 1975 2003-05-01 S771(六)标准图 200m3/h水力循环澄清池 1975 2003-05-01 S771(七)标准图 240m3/h水力循环澄清池 1975 2003-05-01 S771(三)标准图 80m3/h水力循环澄清池 1975 2003-05-01 S771(四)标准图 120m3/h水力循环澄清池 1975 2003-05-01 S771(五)标准图 160m3/h水力循环澄清池 1975 2003-05-01 S771(一)标准图 40m3/h水力循环澄清池 1975 2003-05-01 S771(八)标准图 320m3/h水力循环澄清池 1975 2003-05-01 S775(三)标准图重力式无阀滤池80立方米/时 1980 2003-05-01S775(四)标准图重力式无阀滤池120立方米/时 1980 2003-05-01 S775(五)标准图重力式无阀滤池160立方米/时 1980 2003-05-01 S775(一)标准图重力式无阀滤池40立方米/时 1980 2003-05-01S775(七)标准图重力式无阀滤池240立方米/时 1980 2003-05-01 S775(八)标准图重力式无阀滤池320立方米/时 1980 2003-05-01 S775(二)标准图重力式无阀滤池60立方米/时 1980 2003-05-01 S775(九)标准图重力式无阀滤池400立方米/时 1980 2003-05-01 S775(六)标准图重力式无阀滤池200立方米/时 1980 2003-05-01 85SS777(一)~(十一)试用图穿孔旋流反应斜管沉淀池 1985 2003-05-01 85S779(三)标准图快滤池 1985 2003-05-0185S779(一)标准图快滤池 1985 2003-05-0185S779(二)标准图快滤池 1985 2003-05-0185SS780(二)试用图地下水除铁滤池(产水量30立方米 /时) 1985 2003-05-01 85SS780(三)试用图地下水除铁滤池(产水量45立方米 /时) 1985 2003-05-01 85SS780(一)试用图地下水除铁滤池(产水量15立方米 /时) 1985 2003-05-01 88S810 标准图小型钢筋混凝土蓄水池 1988 2003-05-0195S845(四)~(五)标准图砖支筒不保温水塔(150、200m3) 1995 2003-05-01 95S845(一)~(三)标准图砖支筒不保温水塔(30、50、100m3) 1995 2003-05-01 90S846(二)标准图 50m3砖支筒保温水塔 1990 2003-05-01 90S846(六)标准图 200m3砖支筒保温水塔 1990 2003-05-01 90S846(一)标准图 30m3砖支筒保温水塔 1990 2003-05-01 90S846(三)标准图 80m3砖支筒保温水塔 1990 2003-05-01 90S846(四)标准图 100m3砖支筒保温水塔 1990 2003-05-01 90S846(五)标准图 150m3砖支筒保温水塔 1990 2003-05-01 89S152(一)标准图卧式贮水罐 1989 2002-04-0189S152(二)标准图卧式贮水罐 1989 2002-04-0189S152(三)标准图卧式贮水罐 1989 2002-04-0189S152(一)~(五)标准图卧式贮水罐 1989 2002-04-01 89S152(四)标准图卧式。
【完整版】矿井水净化系统穿孔旋流反应协管沉淀池施工组织设计
穿孔旋流反应斜管沉淀池施工组织设计一.工程概况大唐武安煤矸石发电项目郭二庄煤矿煤源、水源输送工程矿井水净化系统穿孔旋流反应协管沉淀池位于郭二庄煤矿二坑生产厂区内,结构形式为钢筋混凝土结构,基础垫层强度等级为C15,基础底板及池壁的强度等级为C25,抗渗等级为S6,平台板及斜壁的混凝土强度等级为C25。
二.施工组织2.1组织机构我公司已实行项目法施工,实行公司领导下的项目经理负责制,公司直接面对项目进行综合管理、协调。
鉴于该工程十分重要,所以我公司选派施工过类似工程,并有丰富施工经验的项目经理担任项目经理,建立由项目经理负责、项目工程师中间控制,质检员基层检查的三级管理系统,形成横向从整体工程到各分项工程,纵向从项目经理到作业班组的质量管理网络,现场项目班子主要成员及技术力量配备如下:项目经理1人负责项目全面管理,协调工作。
项目副经理1人,负责土建工程现场生产施工及管理。
项目工程师1人,负责土建工程技术、质量等工作。
施工、质量、安全、材料、预算、财务等各个职能管理小组,配备齐全,建立高效管理的管理部门,严格岗位责任,各司其职,各负其责,保证工程顺利进行。
2.2施工组织1、实行项目法管理,成立一级项目经理部,由一名项目经理与一名项目副经理和专业项目工程师及有关技术管理人员组成,按照公司服务控制,项目授权管理,专业施工保障,各方通力协作的模式,卓有成效地实施质量方针与目标。
2、施工人员实行专业化组织,按不同工种,不同施工部位划分作业班组,使各专业班组人员从事性质相同的工作,提高操作工人的熟练程度和劳动生产率。
3、专业班组实行物资消耗考核,定额计件工资管理,职能科室负责监督其施工方法、质量、进度、安全等,项目经理统筹安排项目的人力,物力的平衡调度。
2.3施工规划1、基础、池壁、斜板、平台板及附属结构采用商品混凝土,汽车泵浇灌。
混凝土采用商品混凝土,做好计量工作,钢筋集中配制,原位绑扎,模板采用胶合板早拆体系。
反应絮凝池及斜管沉淀池计算
反应絮凝池及斜管沉淀池计算1、栅条絮凝池设计计算1.1、栅条絮凝池设计通过前面的论述确定采用栅条絮凝池。
栅条絮凝池是应用紊流理论的絮凝池,网格絮凝池的平面布置由多格竖井串联而成。
絮凝池分成许多面积相等的方格,进水水流顺序从一格流向下一格,上下接错流动,直至出口,在全池三分之二的分格内,水平放置栅条,通过栅条的孔隙时,水流收缩,过孔后水流扩大,形成良好的絮凝条件。
1.1.1网格絮凝池设计要求:(1)絮凝时间一般为10-15min。
(2)絮凝池分格大小,按竖向流速确定。
(3)絮凝池分格数按絮凝时间计算,多数分成8-18格,可大致按分格数均匀成3段,其中前段3-5min,中段3-5min,未段4-5min。
(4)栅条数前段较多,中段较少,未段可不放。
但前段总数宜在16层以上,中段在8层以上,上下两层间距为60-70㎝。
(5)每格的竖向流速,前段和中段0.12-0.14m/s,未段0.22-0.25m/s。
(6)栅条的外框尺寸加安装间隙等于每格池的净尺寸。
前段栅条缝隙为50㎜,中段为80㎜。
(7)各格之间的过水孔洞应上下交错布置,孔洞计算流速:前段0.3-0.2 m/s,中段0.2-0.15 m/s,末段0.14-0.1 m/s,各过水孔面积从前段向末段逐步增大。
所有过水孔须经常处于淹没状态。
(8)栅孔流速,前段0.25-0.3 m/s ,中段0.22-0.25 m/s。
(9)一般排泥可用长度小于5m ,直径150-200mm 的穿孔排泥管或单斗底排泥,采用快开排泥阀。
1.1.2网格絮凝池计算公式 (1)池体积60QTV =( m 3) (3.1) 式中:V ——池体积( m 3); Q——流量(m 3/h );T——絮凝时间(min) (2)池面积1H VA =(㎡) (3.2) 式中:A——池面积(㎡);1H ——有效水深(m) (3)池高()m H H 3.01+=(3.3)(4)分格面积v Qf =(3.4)式中:f ——分格面积;0v ——竖井流速(m/s )(5)分格数fAn =(3.5) 式中:n ——分格格数; (6)竖井之间孔洞尺寸22v QA =(㎡) (3.6) 式中:2A ——竖井之间孔洞尺寸(㎡);2v ——各段过网格水头损失(m/s )(7)总水头损失∑∑+=21h h h (m ) (3.7)gv h 22111ε= (m ) (3.8)gv h 22222ε=(m ) (3.9)式中:h ——总水头损失(m ); 1h ——每层网格水头损失(m )2h ——每个孔洞水头损失(m ) 1v ——各段过网流速(m/s ) 2v ——各段孔洞流速(m/s )1ε——网格阻力系数,前段取1.0,中段取0.92ε——孔洞阻力系数,可取3.01.1.3网格絮凝池设计计算因为设计流量0.182m³/s ,流量比较小,只需采用一个反应池,设絮凝时间10min,得絮凝池的有效容积为:V =0.182×10×60=109.2 m³设平均水深为3.0m ,得池的面积为:34.360.32.109m A ==竖井流速取为0.12 m/s ,得单格面积:25.112.0182.0m f ==设每格为方形,边长采用1.23m ,因此每格面积1.5㎡,由此得分格数为:3.245.14.36==n 为配合沉淀尺寸采用25格 实际絮凝时间为:min4.10623182.0250.323.123.1==⨯⨯⨯=s t 池的平均有效水深为3.0m ,取超过0.45m ,泥斗深度0.65m ,得池的总高度为:m H 10.465.045.00.3=++=过水洞流速按进口0.3 m/s 递减到出口0.1 m/s 计算,得各过水孔洞的尺寸见表:表1.1 过水孔洞的尺寸图1.1 网格絮凝池布置图絮凝池布置中,图中已表示从进口到出口各格的水流方向,“上”、“下”表示隔墙上的开孔位置,上孔上缘在最高水位以下,下孔下缘与排泥槽口齐平。
13.水质工程学 I —沉淀与澄清 §3-4斜板与斜管沉淀池(ppt文档)
F —沉淀池的总平面面积;
F′—斜板(管)净出口面面积;
△F —沉淀池中的无效面积;
K —斜板(管)的结构系数。它表示斜板板材所占面积比 例(一般K=1.03~1.1)。
斜板(管)沉淀池的表面负荷率为:
q
Q F'
上向流和下向流斜板板间(管内)流速为:
v Q
F sin
—斜板板间(管内)流速; Q —沉淀池流量; —斜板倾角。
过渡段长度一般估计约200mm. 斜板过长会增加造价,而沉淀效率的提高有限,有分离段 上部出现一段较长的清水段,并未利用。 目前长度多采用800~1000mm。
5.斜板的板距,斜管的管径d及端面形状
d 斜板的板距从沉效率考虑,越小越高, 但从施工、安装、排泥考虑,不宜太小。 d=50~150mm, 常取100mm; 斜管管径 d=25~40mm,(多边形内切 圆直角),端面形状,多采用正六角形。 实际应用中,采用斜管较多。
上向流、平向流、下向流三种。
●
平向流
上向流
澄清水 强制集水装置
下向流泥渣
二、斜板斜管沉淀池设计计算
1.上向流斜板、斜管沉淀池 进水方向有三种:
第一种不理想,在转弯处直冲斜板中的沉泥, 不利沉泥下滑。第二、三种方向进水较好,在实 际中应用较多。
⊙
2.整流配水装置
为了能使水流均匀地进入斜管下的配水区,絮凝 池一般应考率整流措施。
H/4
变,则分层后的沉降迹现坡度不 H
变,从图上可以看出,沉淀池的
A=BL
v u0
长度可以缩小L/4。 如仍保持原来的沉淀效率,
L/4 L
则沉淀池的体积可以缩小1/4。
4Q A=BL H/4 H
反应絮凝池及斜管沉淀池计算讲解学习
反应絮凝池及斜管沉淀池计算反应絮凝池及斜管沉淀池计算1、栅条絮凝池设计计算1.1、栅条絮凝池设计通过前面的论述确定采用栅条絮凝池。
栅条絮凝池是应用紊流理论的絮凝池,网格絮凝池的平面布置由多格竖井串联而成。
絮凝池分成许多面积相等的方格,进水水流顺序从一格流向下一格,上下接错流动,直至出口,在全池三分之二的分格内,水平放置栅条,通过栅条的孔隙时,水流收缩,过孔后水流扩大,形成良好的絮凝条件。
1.1.1网格絮凝池设计要求:(1)絮凝时间一般为10-15min 。
(2)絮凝池分格大小,按竖向流速确定。
(3)絮凝池分格数按絮凝时间计算,多数分成8-18格,可大致按分格数均匀成3段,其中前段3-5min ,中段3-5min ,未段4-5min 。
(4)栅条数前段较多,中段较少,未段可不放。
但前段总数宜在16层以上,中段在8层以上,上下两层间距为60-70㎝。
(5)每格的竖向流速,前段和中段0.12-0.14m/s ,未段0.22-0.25m/s 。
(6)栅条的外框尺寸加安装间隙等于每格池的净尺寸。
前段栅条缝隙为50㎜,中段为80㎜。
(7)各格之间的过水孔洞应上下交错布置,孔洞计算流速:前段0.3-0.2 m/s ,中段0.2-0.15 m/s ,末段0.14-0.1 m/s ,各过水孔面积从前段向末段逐步增大。
所有过水孔须经常处于淹没状态。
(8)栅孔流速,前段0.25-0.3 m/s ,中段0.22-0.25 m/s 。
(9)一般排泥可用长度小于5m ,直径150-200mm 的穿孔排泥管或单斗底排泥,采用快开排泥阀。
1.1.2网格絮凝池计算公式 (1)池体积60QTV( m 3) (3.1) 式中:V ——池体积( m 3); Q ——流量(m 3/h );T ——絮凝时间(min) (2)池面积1H VA =(㎡) (3.2) 式中:A ——池面积(㎡); 1H ——有效水深(m) (3)池高()m H H 3.01+= (3.3) (4)分格面积v Qf =(3.4) 式中:f ——分格面积;0v ——竖井流速(m/s )(5)分格数fAn =(3.5) 式中:n ——分格格数; (6)竖井之间孔洞尺寸22v QA =(㎡) (3.6) 式中:2A ——竖井之间孔洞尺寸(㎡);2v ——各段过网格水头损失(m/s )(7)总水头损失∑∑+=21h h h (m ) (3.7)gv h 22111ε= (m ) (3.8)gv h 22222ε=(m ) (3.9)式中:h ——总水头损失(m );1h ——每层网格水头损失(m )2h ——每个孔洞水头损失(m ) 1v ——各段过网流速(m/s ) 2v ——各段孔洞流速(m/s )1ε——网格阻力系数,前段取1.0,中段取0.92ε——孔洞阻力系数,可取3.01.1.3网格絮凝池设计计算因为设计流量0.182m³/s ,流量比较小,只需采用一个反应池,设絮凝时间10min,得絮凝池的有效容积为:V =0.182×10×60=109.2 m³设平均水深为3.0m ,得池的面积为:34.360.32.109m A ==竖井流速取为0.12 m/s ,得单格面积:25.112.0182.0m f ==设每格为方形,边长采用1.23m ,因此每格面积1.5㎡,由此得分格数为:3.245.14.36==n为配合沉淀尺寸采用25格 实际絮凝时间为:min4.10623182.0250.323.123.1==⨯⨯⨯=s t 池的平均有效水深为3.0m ,取超过0.45m ,泥斗深度0.65m ,得池的总高度为:m H 10.465.045.00.3=++=过水洞流速按进口0.3 m/s 递减到出口0.1 m/s 计算,得各过水孔洞的尺寸见表:表1.1 过水孔洞的尺寸图1.1 网格絮凝池布置图絮凝池布置中,图中已表示从进口到出口各格的水流方向,“上”、“下”表示隔墙上的开孔位置,上孔上缘在最高水位以下,下孔下缘与排泥槽口齐平。
反应絮凝池及斜管沉淀池计算
反应絮凝池及斜管沉淀池计算1、栅条絮凝池设计计算1.1、栅条絮凝池设计通过前面的论述确定采用栅条絮凝池。
栅条絮凝池是应用紊流理论的絮凝池,网格絮凝池的平面布置由多格竖井串联而成。
絮凝池分成许多面积相等的方格,进水水流顺序从一格流向下一格,上下接错流动,直至出口,在全池三分之二的分格内,水平放置栅条,通过栅条的孔隙时,水流收缩,过孔后水流扩大,形成良好的絮凝条件。
1.1.1网格絮凝池设计要求:(1)絮凝时间一般为10-15min。
(2)絮凝池分格大小,按竖向流速确定。
(3)絮凝池分格数按絮凝时间计算,多数分成8-18格,可大致按分格数均匀成3段,其中前段3-5min,中段3-5min,未段4-5min。
(4)栅条数前段较多,中段较少,未段可不放。
但前段总数宜在16层以上,中段在8层以上,上下两层间距为60-70㎝。
(5)每格的竖向流速,前段和中段0.12-0.14m/s,未段0.22-0.25m/s。
(6)栅条的外框尺寸加安装间隙等于每格池的净尺寸。
前段栅条缝隙为50㎜,中段为80㎜。
(7)各格之间的过水孔洞应上下交错布置,孔洞计算流速:前段0.3-0.2 m/s,中段0.2-0.15 m/s,末段0.14-0.1 m/s,各过水孔面积从前段向末段逐步增大。
所有过水孔须经常处于淹没状态。
(8)栅孔流速,前段0.25-0.3 m/s ,中段0.22-0.25 m/s。
(9)一般排泥可用长度小于5m ,直径150-200mm 的穿孔排泥管或单斗底排泥,采用快开排泥阀。
1.1.2网格絮凝池计算公式 (1)池体积60QTV =( m 3) (3.1) 式中:V ——池体积( m 3); Q ——流量(m 3/h );T ——絮凝时间(min) (2)池面积1H VA =(㎡) (3.2) 式中:A ——池面积(㎡);1H ——有效水深(m) (3)池高()m H H 3.01+=(3.3)(4)分格面积v Qf =(3.4)式中:f ——分格面积;0v ——竖井流速(m/s )(5)分格数fAn =(3.5)式中:n ——分格格数; (6)竖井之间孔洞尺寸22v QA =(㎡) (3.6) 式中:2A ——竖井之间孔洞尺寸(㎡);2v ——各段过网格水头损失(m/s )(7)总水头损失∑∑+=21h h h (m ) (3.7)gv h 22111ε= (m ) (3.8)gv h 22222ε=(m ) (3.9)式中:h ——总水头损失(m ); 1h ——每层网格水头损失(m )2h ——每个孔洞水头损失(m ) 1v ——各段过网流速(m/s ) 2v ——各段孔洞流速(m/s )1ε——网格阻力系数,前段取1.0,中段取0.92ε——孔洞阻力系数,可取3.01.1.3网格絮凝池设计计算因为设计流量0.182m ³/s ,流量比较小,只需采用一个反应池,设絮凝时间10min,得絮凝池的有效容积为:V =0.182×10×60=109.2 m ³设平均水深为3.0m ,得池的面积为:34.360.32.109m A ==竖井流速取为0.12 m/s ,得单格面积:25.112.0182.0m f ==设每格为方形,边长采用1.23m ,因此每格面积1.5㎡,由此得分格数为:3.245.14.36==n 为配合沉淀尺寸采用25格 实际絮凝时间为:min4.10623182.0250.323.123.1==⨯⨯⨯=s t 池的平均有效水深为3.0m ,取超过0.45m ,泥斗深度0.65m ,得池的总高度为:m H 10.465.045.00.3=++=过水洞流速按进口0.3 m/s 递减到出口0.1 m/s 计算,得各过水孔洞的尺寸见表:表1.1 过水孔洞的尺寸图1.1 网格絮凝池布置图絮凝池布置中,图中已表示从进口到出口各格的水流方向,“上”、“下”表示隔墙上的开孔位置,上孔上缘在最高水位以下,下孔下缘与排泥槽口齐平。
反应絮凝池及斜管沉淀池计算
反应絮凝池及斜管沉淀池计算1、栅条絮凝池设计计算1。
1、栅条絮凝池设计通过前面的论述确定采用栅条絮凝池。
栅条絮凝池是应用紊流理论的絮凝池,网格絮凝池的平面布置由多格竖井串联而成。
絮凝池分成许多面积相等的方格,进水水流顺序从一格流向下一格,上下接错流动,直至出口,在全池三分之二的分格内,水平放置栅条,通过栅条的孔隙时,水流收缩,过孔后水流扩大,形成良好的絮凝条件。
1.1.1网格絮凝池设计要求:(1)絮凝时间一般为10-15min。
(2)絮凝池分格大小,按竖向流速确定。
(3)絮凝池分格数按絮凝时间计算,多数分成8-18格,可大致按分格数均匀成3段,其中前段3-5min,中段3—5min,未段4-5min。
(4)栅条数前段较多,中段较少,未段可不放.但前段总数宜在16层以上,中段在8层以上,上下两层间距为60—70㎝。
(5)每格的竖向流速,前段和中段0.12—0.14m/s,未段0.22—0.25m/s.(6)栅条的外框尺寸加安装间隙等于每格池的净尺寸。
前段栅条缝隙为50㎜,中段为80㎜。
(7)各格之间的过水孔洞应上下交错布置,孔洞计算流速:前段0。
3—0。
2 m/s,中段0.2—0。
15 m/s,末段0。
14—0。
1 m/s,各过水孔面积从前段向末段逐步增大.所有过水孔须经常处于淹没状态.(8)栅孔流速,前段0。
25-0.3 m/s ,中段0。
22—0.25 m/s.(9)一般排泥可用长度小于5m ,直径150-200mm 的穿孔排泥管或单斗底排泥,采用快开排泥阀。
1.1。
2网格絮凝池计算公式 (1)池体积60QTV =( m 3) (3。
1) 式中:V ——池体积( m 3); Q —-流量(m 3/h);T —-絮凝时间(min ) (2)池面积1H VA =(㎡) (3。
2) 式中:A ——池面积(㎡);1H ——有效水深(m) (3)池高()m H H 3.01+=(3.3)(4)分格面积v Qf =(3。
穿孔旋流反应池功能性计算
穿孔旋流反应池由若干方格(大于6格)组成,各格之间隔墙上沿池壁开孔,孔口上、下交错布置,水流沿池壁切线方向进入后形成旋流。
孔口起端流速0.6~1.0m/s ,末端0.2~0.3/s ,时间3 ( r 24-r 14)P -每根旋转轴全部浆板所耗功率,W n -同一旋转半径上浆板数 C D -阻力系数,C D =1.1ω-旋转角速度,rad/sr 2r 1-浆板外缘、内缘旋转半径,m T =15~25min 。
(1)适用条件:水量变化较小的中,小水厂。
其特点是构造简单,造价较低和施工方便。
缺点是水量变动较大时,效果不能保证,且各格的竖向流速低,底部可能会积泥,可与平流式沉淀池或斜管沉淀池合建。
(2)设计要求:穿孔旋流絮凝池的絮凝时间宜为15~25min 。
进口处流速:0.6~1.0m/s出口处流速:0.2~0.3m/s 每格孔口应上下交错布置,穿孔旋流絮凝池每组絮凝池分格数不宜少于6。
(3)各格直径约150~200mm 的穿孔排泥管,以便排泥和清洗。
(4)每格进、出水孔应靠近池壁布置,下孔应在积泥面以上,上孔应在最高水位以下0.05~0.1m ,孔口高度可取为宽度的2倍或1.5倍。
(5)孔口水头损失: h m/s ξ:局部阻力系数,进水管出口 ξ=1.0,孔口处ξ=1.06 h喷嘴= =0.06v 2 设计水量:60m3/h ,水厂自用水7% (6)每格孔口流速:v =v 1+v 2-vt :反应经历的时间; T :反应总时间; v 1、v 2:进、出口流速注意:共n 格,第一格t t 进水管管径为200mm ,为跌水混合,跌落高度0.8m ,混合槽0.6m 反应池型式为穿孔旋流反应池,分格数为6,絮凝时间T =20min ,进口流速v 1=1m/s(dg =150mm),出口流速v 2=0.2m/s 。
絮凝池的平面尺寸为:QT 60×1.07×20有效容积:W =—=——————=21.4m 360 60 单池容积:W ≈3.6m 3 池有效水深为H ′=2.5m测单池面积为:f 1.44m 2超高h =0.3m污泥斗底为棱行,斗底平面为一正方形,边长0.2m ,斗高h 3=0.7m ,则絮凝池总高度为:H =h 1+h 2+h 3=0.3+2.5+0.7=3.5m2、孔口尺寸 (1)孔口布置上部孔口顶距池顶0.5m ;下部孔口孔底距池顶2.4m 。
一种不会堵塞填料的斜管沉淀池[实用新型专利]
专利名称:一种不会堵塞填料的斜管沉淀池专利类型:实用新型专利
发明人:许振羽,唐国永
申请号:CN201520037525.2
申请日:20150120
公开号:CN204411789U
公开日:
20150624
专利内容由知识产权出版社提供
摘要:本实用新型涉及一种不会堵塞填料的斜管沉淀池,包括沉淀池本体,所述沉淀池本体内由下而上顺次包括污泥区、斜管沉降区和出水区,所述污泥区与斜管沉降区之间安装有穿孔曝气管,所述穿孔曝气管与进气管相连通,所述沉淀池本体一侧设有进水口,另一侧设有出水口,所述出水区与出水口相连通。
本实用新型结构简单,设计合理,穿孔曝气管的设置,可以有效避免填料的堵塞,本实用新型能够在保留斜管沉淀池优点的基础上,解决了其容易堵塞的问题,可长时间稳定运行,且无需过多的人工冲洗及干预。
申请人:杭州中环环保工程有限公司
地址:310000 浙江省杭州市江干区旺座中心1幢16层01室
国籍:CN
代理机构:杭州君度专利代理事务所(特殊普通合伙)
代理人:王桂名
更多信息请下载全文后查看。
(整理)斜管沉砂池的工作原理及作用
斜管沉砂池的工作原理及作用斜管沉砂池是通过斜管作用改变源水流态,降低流速,使体积大、密度大的大颗粒悬浮物在重力作用下部分去除大颗粒悬浮物,以达到降低药耗、保证持续工序的效率,达到初步净化水的作用。
斜管:使用寿命10-15年、斜管为正六边形蜂窝状结构,内切圆直径为35cm,斜管安装角度为与水平夹角60度。
排砂管应每次只排一根,排砂操作时应安排两人进行,一人在老制水车间内通过低压配电柜开关对阀门进行启闭,一人在现场观察排砂是否正常。
斜管沉淀池工作原理:反应池出水通过穿孔墙布水均匀后进入沉淀池,然后流经斜管,形成泥水分离,泥沙滑至集泥槽,清水流至双阀滤池。
排泥、排砂不能正常进行时可能有以下几种情况:1.高压水压力不足,不能开启角阀,高压水压力应大于0.16kpa。
开启时观察高压水出水流量,如果较少说明压力不足。
2.管道或积泥坑堵塞。
此时应依次打开高压水总管阀门以及对应管道高压水阀门,反冲2-3分钟后关闭,关闭时可以听到较大的水流声说明管道已疏通。
3.角阀故障:向技术办报修。
4.电磁阀故障、控制柜开关或自控设备故障。
向技术办报修。
机械加速澄清池工作原理机械加速澄清池是利用机械搅拌的提升作用来完成泥渣回流和接触反应。
加药混合后的原水进入第一反应室,与几倍于原水的循环泥渣在叶片的搅拌下进行接触反应,然后经叶轮提升至第二反应室继续反应,以结成较大的絮粒,再通过导流室进入分离室进行沉淀分离。
加氯系统:我厂加氯系统由气源、加热装置、称量装置、起重装置、气液分离器、真空调节器、加氯机、水射器、各种管线和阀门等组成。
下面从加氯系统工作流程进行讲述。
全厂加氯系统流程图如下所示: 原水原水1真空调节器气液分离器采样泵水射器余氯仪清水池清水池出水泵房澄清池移动罩沉砂池反应池沉淀池滤池气液分离器真空调节器23456加氯机1余氯仪余氯仪余氯仪氯瓶尾端上喷有氯气生产厂家、氯瓶自重、氯瓶编号、公司氯瓶编号及检验单位对氯瓶的强制检验时间。
絮凝沉淀池调试方案说明
山西三维絮凝沉淀池预处理工艺调试方案山西三维循环排污水项现在期预处理系统采取原水池+穿孔旋流絮凝池+斜管沉淀池处理工艺, 设计规模为350m3/h.设计处理能力要求为: 悬浮固体SS去除率为90%, 出水浊度满足后续过滤器进水要求。
一、关键预处理工艺步骤步骤说明: 原水进入穿孔旋流絮凝池, 经过上下交错方孔, 次序流出至布水槽。
再经过布水槽下部穿孔花墙均匀出水进入斜管区, 水流经过斜管缓慢上升, 絮凝杂质在斜管上沉淀下落进入排泥斗, 经过沉淀后水经过斜管进入清水区, 清水经过穿孔集水槽汇入集水总渠, 最终流入原水池。
二、关键构筑物及设计参数(1)穿孔旋流絮凝池钢筋混凝土结构, 设计进水量为350m3/h, 1座, 6格.长X宽X高: 4mx6mx5m,每格尺寸1.8mX1.9m,四个角填成三角形, 其直角边长为0.3m. 絮凝池孔口流速应按由大变小渐变流速计, 起端流速适宜为0.6~1.0 m/s, 末端流速宜为0.2~0.3 m/s。
絮凝时间按10min计。
(2)布水槽采取穿孔花墙均匀布水, 共上下2排, 每排9个方孔, 方孔尺寸200X200.(3)斜管沉淀池钢筋混凝土结构, 1座, 长X宽X高: 9.1mx6mx5m, 穿孔管排泥。
设计排泥量为42 m3/d.设计液面上升流速v=2mm/s, 颗粒沉降速度u0=0.3mm/s。
斜管沉淀时间5min。
初步设计排泥周期为1d/次。
每个沉淀池排泥斗容积为0.9 m3。
(4)原水池钢筋混凝土结构, 1座, 尺寸: 6.5mx6mx5m.有效容积: 183 m3。
有效水深4.7m.(5)设计排泥周期与沉淀池相比, 絮凝池及布水槽污泥量相对较少。
排泥周期相对较长。
就斜管沉淀池而言, 因为沉淀池较长, 沉淀池进水端积泥较多, 顺水流方向, 依次递减。
所以, 沿水流方向, 前两个排泥管排泥周期小于后面多个排泥管排泥周期。
依据水质汇报, 初步确定沉淀池排泥周期为0.5~2d,一次排泥时间10~15min.具体排泥时间由调试结果确定。