关于假设检验中检验统计量的选择及拒绝域的确定问题

合集下载

统计学中参数假设检验拒绝域的确定

统计学中参数假设检验拒绝域的确定

统计学中参数假设检验拒绝域的确定摘要:许多统计学教材关于假设检验中拒绝域和接受域的确定过程过于简洁而导致相关知识抽象、难懂,故对这个过程的深入研究很有必要。

首先展示了假设检验的基本思想,接着给出了关于一个总体参数的单侧检验、双侧检验过程中拒绝域和接受域确定的推理、推导过程,并展示了应用实例。

最后,对当前统计学教材中假设检验内容的组织提出了一点建议。

关键词:假设检验;拒绝域;接受域;推理1前言同数理统计教材相比,一般统计学教材中假设检验的方法和步骤常常显得十分简洁、直观,但这样做的缺点也很明显:一些数学推理过程被屏蔽起来,解题过程十分抽象、步骤间跨度较大,推理不清晰。

这样的教材对非统计学专业和非数学专业的教师、学生而言无疑大大加重了他们讲解、学习这门课程的难度,使他们感到假设检验的过程十分抽象,令人困惑。

区间估计和假设检验是统计推断中的重要内容,是两个不同的统计概念,但它们又有着密切的联系,在某种意义下是同一问题的两个方面。

这两种统计推断方法都是通过对具体问题的随机抽样所得到的样本观察值,用数理统计学的方法进行统计分析并做出判断。

深刻理解参数假设检验中的若干基本问题,了解统计推断中参数的假设检验与区间估计之间的关系、不同类型的假设检验适用范围及应注意的问题,对正确的掌握和应用统计推断方法是极为重要的。

因此在教学过程中,把这些被许多统计学教材没有涉及到的推理内容搞清楚是十分必要的。

2假设检验的定义与基本原理在假设检验中,常把一个被检验的假设称为原假设或者零假设,用H0表示。

通常将不应轻易加以否定的假设作为原假设,当H0被拒绝时而接受的假设称为备择假设,用H1表示,它们常常成对出现。

由样本(x1,x2,?,xn)对假设进行推断总是通过一个恰当的统计量T(x1,x2,?,xn)完成的,该统计量T(x1,x2,?,xn)称为检验统计量。

使原假设被拒绝的样本观测值所在区域称为拒绝域,一般它是样本空间Ω的子集,并用W表示,Wˉ称为接受域;统计量T(x1,x2,?,xn)的拒绝域记为T(W)。

构造拒绝域的步骤

构造拒绝域的步骤

构造拒绝域的步骤构造拒绝域是经济学、统计学和实用领域中的重要方法,它能够有效地控制犯错误的概率,保证分析结果的正确性和可靠性。

下面是构造拒绝域的步骤:1.确定研究假设研究假设是构造拒绝域的基础,通常包括零假设和备择假设。

零假设是基础假设,备择假设则是要验证的假设。

2.确定显著水平显著水平是指拒绝零假设的临界值。

通常使用的显著水平为0.01、0.05和0.1。

显著水平越小,拒绝零假设的要求越高。

3.选择检验统计量检验统计量是用于衡量样本数据与假设之间的差异的统计量。

通常选择符合正态分布的检验统计量,例如t检验、z检验等。

4.计算检验统计量的值根据样本数据和检验统计量的定义,计算检验统计量的值。

此时还需要计算检验统计量的抽样分布,然后从中确定拒绝域。

5.确定拒绝域拒绝域是指检验统计量的取值区间,当检验统计量的取值落在该区间内时,拒绝零假设并接受备择假设。

拒绝域的确定依赖于显著水平、检验统计量的定义以及抽样分布。

6.进行假设检验将计算得到的检验统计量的值与拒绝域进行比较,如果落在拒绝域内,则拒绝零假设并接受备择假设。

如果落在拒绝域外,则接受零假设。

这个过程称为假设检验。

7.得出结论根据假设检验的结果,得出关于研究假设的结论。

如果拒绝零假设,则可以认为备择假设是正确的;如果接受零假设,则可以认为研究假设不成立。

以上是构造拒绝域的基本步骤,需要注意的是,拒绝域的选择和假设检验的结论都需要符合科学严谨的原则,例如数据的采集和分析方法的选取等。

只有这样,才能得到准确可靠的研究结论。

方差拒绝域

方差拒绝域

方差拒绝域方差拒绝域是统计学中用于进行假设检验的重要概念之一。

在统计学中,我们经常需要对某些假设进行检验,以判断我们所观察到的样本数据是否支持或拒绝这些假设。

而方差拒绝域则是通过对样本数据的方差进行分析,来确定是否拒绝特定的假设。

方差拒绝域的定义是基于一个统计量的取值范围,当统计量的取值落在这个范围内时,我们拒绝原假设,否则我们接受原假设。

在方差拒绝域的确定中,我们需要设定一个显著性水平,通常表示为α,它代表了我们犯错误的概率。

一般来说,常见的显著性水平有0.05和0.01。

方差拒绝域的确定需要根据具体的问题和方法。

在一些常见的假设检验中,如单样本方差检验、双样本方差检验以及方差齐性检验等,我们可以根据问题的特点和已知条件来选择适合的方差拒绝域。

在进行具体计算时,我们可以利用统计分布的性质和已知的样本信息进行计算。

在进行方差拒绝域的计算时,我们需要先计算样本的方差,然后根据样本量和显著性水平,查表或计算得到拒绝域的范围。

当样本的方差落在拒绝域范围内时,我们可以得出结论拒绝原假设,即认为样本的方差与假设不一致;反之,如果样本方差不在拒绝域范围内,我们则不能拒绝原假设,即认为样本的方差与假设一致。

方差拒绝域的应用广泛,可以用于产品质量控制、医学试验、市场调研等诸多领域。

通过方差拒绝域的分析,我们可以对所研究的问题进行准确的判断和预测,为决策提供有力的依据。

总之,方差拒绝域在统计学中是一种重要的工具,用于进行假设检验。

通过对样本数据的方差进行分析,我们可以确定是否拒绝特定的假设。

这一概念在实际应用中具有广泛的意义,能够帮助我们准确评估问题并做出科学合理的决策。

在使用方差拒绝域时,我们需要注意选择适当的显著性水平和进行准确的计算,以保证检验结果的准确性和可靠性。

假设检验的逻辑框架

假设检验的逻辑框架

假设检验的逻辑框架假设检验是统计学中常用的一种方法,用于判断一个样本是否与总体存在显著差异。

它的逻辑框架包括以下几个步骤:确定原假设和备择假设、选择显著性水平、计算检验统计量、确定拒绝域、做出决策和给出结论。

一、确定原假设和备择假设在进行假设检验之前,首先需要明确研究问题,并根据问题确定原假设(H0)和备择假设(H1)。

原假设通常是对研究问题的一种默认假设,而备择假设则是对原假设的否定或者对研究问题的另一种假设。

二、选择显著性水平显著性水平(α)是在假设检验中用来判断是否拒绝原假设的标准。

通常情况下,显著性水平的选择是根据研究问题的重要性和实际需求来确定的。

常见的显著性水平有0.05和0.01两种。

三、计算检验统计量在假设检验中,需要根据样本数据计算一个检验统计量,用来衡量样本与原假设之间的差异程度。

检验统计量的选择通常是根据研究问题和数据类型来确定的,常见的检验统计量有t值、F值、卡方值等。

四、确定拒绝域拒绝域是在给定显著性水平下,根据检验统计量的分布确定的。

它是一组临界值,如果检验统计量的取值落在拒绝域内,则拒绝原假设;如果检验统计量的取值落在拒绝域外,则接受原假设。

五、做出决策和给出结论根据计算得到的检验统计量和拒绝域的判断,可以做出决策并给出结论。

如果检验统计量的取值落在拒绝域内,则拒绝原假设,认为样本与总体存在显著差异;如果检验统计量的取值落在拒绝域外,则接受原假设,认为样本与总体不存在显著差异。

总结:假设检验的逻辑框架包括确定原假设和备择假设、选择显著性水平、计算检验统计量、确定拒绝域、做出决策和给出结论。

通过这个逻辑框架,可以对样本与总体之间的差异进行判断,并得出相应的结论。

在实际应用中,需要根据具体问题和数据类型选择适当的假设检验方法,并合理设置显著性水平,以保证结果的可靠性和准确性。

假设检验的检验标准

假设检验的检验标准

假设检验的检验标准假设检验是统计学中一种常用的方法,用于判断样本数据与总体参数之间的关系是否显著。

在进行假设检验时,我们需要设定一些检验标准,以便进行正确的判断。

本文将就假设检验的检验标准进行详细介绍。

首先,假设检验的检验标准应包括原假设和备择假设。

原假设通常是研究者想要进行检验的假设,而备择假设则是与原假设相对立的假设。

在进行假设检验时,我们需要明确地提出原假设和备择假设,并根据样本数据进行判断,以确定哪一个假设更为合理。

其次,假设检验的检验标准应包括显著性水平。

显著性水平是指在进行假设检验时所允许的错误率,通常用α表示。

常见的显著性水平包括0.05和0.01,分别表示允许犯5%和1%的错误率。

选择适当的显著性水平对于判断假设检验的结果至关重要。

另外,假设检验的检验标准还应包括检验统计量和拒绝域。

检验统计量是根据样本数据计算得出的统计量,用于判断样本数据与原假设的一致性。

而拒绝域则是在给定显著性水平下,检验统计量落入拒绝域时所对应的判断结果。

确定适当的检验统计量和拒绝域对于进行假设检验至关重要。

最后,假设检验的检验标准还应包括p值。

p值是在原假设成立的条件下,观察到检验统计量或更极端数值的概率。

在进行假设检验时,我们可以根据p值与显著性水平的比较,来判断是否拒绝原假设。

通常情况下,当p值小于显著性水平时,我们会拒绝原假设。

综上所述,假设检验的检验标准包括原假设和备择假设、显著性水平、检验统计量和拒绝域、以及p值。

在进行假设检验时,我们需要根据这些检验标准来进行正确的判断,以确保得出准确的结论。

希望本文能够对假设检验的检验标准有所帮助。

统计学中的假设检验

统计学中的假设检验

统计学中的假设检验统计学是一门研究如何收集、整理、分析和解释数据的学科。

在统计学中,假设检验是一种常用的方法,用于验证对于某一总体的某一假设是否成立。

假设检验在科学研究、商业决策以及社会调查等领域都有广泛的应用。

本文将介绍假设检验的基本概念、步骤和常见的统计方法。

一、假设检验的基本概念假设检验是基于样本数据对总体参数进行推断的一种方法。

在进行假设检验时,我们需要提出一个原假设(H0)和一个备择假设(H1),然后根据样本数据来判断是否拒绝原假设。

原假设通常是我们希望证伪的假设,而备择假设则是我们希望支持的假设。

二、假设检验的步骤假设检验一般包括以下步骤:1. 提出假设:根据研究问题和背景,提出原假设和备择假设。

2. 选择显著性水平:显著性水平(α)是我们在进行假设检验时所允许的犯第一类错误的概率。

通常情况下,显著性水平取0.05或0.01。

3. 收集样本数据:根据研究设计和样本容量要求,收集样本数据。

4. 计算统计量:根据样本数据计算出相应的统计量,如均值、标准差、相关系数等。

5. 判断拒绝域:根据显著性水平和统计量的分布,确定拒绝域。

拒绝域是指当统计量的取值落在该区域内时,我们拒绝原假设。

6. 做出决策:根据样本数据计算出的统计量与拒绝域的关系,判断是否拒绝原假设。

7. 得出结论:根据决策结果,得出对原假设的结论。

三、常见的统计方法在假设检验中,常见的统计方法包括:1. 单样本t检验:用于检验一个样本的均值是否等于某个给定值。

2. 双样本t检验:用于检验两个样本的均值是否相等。

3. 方差分析:用于检验两个或多个样本的均值是否有显著差异。

4. 相关分析:用于检验两个变量之间是否存在线性相关关系。

5. 卡方检验:用于检验观察频数与期望频数之间的差异是否显著。

四、假设检验的局限性假设检验作为一种统计方法,也存在一定的局限性。

首先,假设检验只能提供关于原假设的拒绝与否的结论,并不能确定备择假设的真实性。

假设检验公式显著性水平与拒绝域的计算

假设检验公式显著性水平与拒绝域的计算

假设检验公式显著性水平与拒绝域的计算假设检验是统计学中常用的一种推断方法,用于判断在给定样本数据下,对总体参数的陈述是否成立。

在进行假设检验时,我们需要确定一个显著性水平以及对应的拒绝域,来判断是否接受或者拒绝原假设。

本文将介绍假设检验中显著性水平与拒绝域的计算方法。

1. 显著性水平的确定在假设检验中,显著性水平α通常被设置为0.05或0.01。

它代表了当原假设为真时,发生错误拒绝原假设的概率。

常见的显著性水平包括5%和1%。

2. 原假设与备择假设的设定在进行假设检验之前,需要明确原假设(H0)和备择假设(H1)。

原假设是我们想要进行推断的陈述,备择假设是对原假设的对立面进行的陈述。

3. 检验统计量的计算根据具体的问题和数据,确定适合的检验统计量。

常见的检验统计量包括Z检验、T检验、卡方检验等。

4. 拒绝域的计算根据显著性水平α、检验统计量和自由度等因素,计算拒绝域。

拒绝域是为了拒绝原假设而设置的一组区域,当检验统计量落入该区域时,我们就可以拒绝原假设。

5. 求出检验统计量的观测值根据给定的样本数据,计算检验统计量的观测值,并与拒绝域进行比较。

6. 做出决策根据观测值是否落在拒绝域内,来决定是接受还是拒绝原假设。

如果观测值落在拒绝域内,则拒绝原假设;反之,则接受原假设。

在实际应用中,可以利用统计软件或者查表的方式来计算显著性水平和拒绝域。

统计软件如SPSS、R、Python等都提供了相应的函数和工具来进行假设检验。

另外,也可以通过查找对应的统计分布表,根据自由度和显著性水平来确定拒绝域的临界值。

总结起来,假设检验中显著性水平与拒绝域的计算是进行统计推断的关键步骤之一。

通过确定显著性水平、设定原假设和备择假设、计算检验统计量和拒绝域,我们可以进行合理的推断,并做出相应的决策。

在实践中,可以利用统计软件或查表的方式来计算和判断,以提高工作效率和准确性。

(字数:487)。

报告中假设检验的方法和结果

报告中假设检验的方法和结果

报告中假设检验的方法和结果假设检验是统计学中一种常用的方法,用于对样本数据进行推断,从而对总体的特征进行判断和分析。

它可以帮助我们了解数据是否支持我们所提出的假设,并在实际问题中进行决策和判断。

本文将详细论述报告中假设检验的方法和结果,并从以下六个方面进行展开:1. 假设的建立与研究背景在进行假设检验前,需要先建立研究假设,并明确研究的背景和目的。

假设通常分为零假设和备择假设,零假设是指对总体参数或效应不存在差异的假设,备择假设则是指存在差异的假设。

研究背景可以是一个实际问题、一个理论假设或一个已有的研究结果。

2. 检验统计量的选择和计算假设检验的关键是选择适当的检验统计量来度量样本数据与假设之间的差异。

常见的检验统计量有t值、z值、卡方值等。

对于不同的假设和数据类型,选择合适的检验统计量非常重要。

计算检验统计量可以通过公式计算,也可以利用统计软件进行计算。

3. 显著性水平的设定在进行假设检验时,我们需要设定一个显著性水平,来决定是否拒绝零假设。

显著性水平通常设定为0.05或0.01,在实际应用中可以根据具体情况进行调整。

显著性水平的选择会影响到最终的结论,因此需要谨慎确定。

4. 拒绝域的确定和结果判断拒绝域是指当检验统计量落在一定范围内时,我们将拒绝零假设。

拒绝域的确定根据显著性水平和检验统计量的分布进行。

当检验统计量落在拒绝域内时,我们可以拒绝零假设,认为结果是显著的。

而当检验统计量落在拒绝域外时,我们接受零假设。

5. 假设检验的结果解读当完成假设检验后,我们可以得到一个判断结果,即是否拒绝零假设。

如果拒绝了零假设,说明样本数据与假设存在差异;如果没有拒绝零假设,说明样本数据与假设没有差异。

根据结果,我们可以对研究问题进行判断和分析,并对实际问题进行决策。

6. 结果的局限性和进一步研究假设检验的结果并不代表绝对的真实性,它只是基于样本数据对总体进行推断的一种方法。

因此,结果具有一定的局限性。

假设检验的一般步骤

假设检验的一般步骤

假设检验的一般步骤假设检验是统计学中一种重要的方法,用于检验研究者提出的关于总体参数的假设是否成立。

它的一般步骤如下:第一步:确定问题并建立假设在开始假设检验之前,需要确定所要研究的问题并建立相应的假设。

一般来说,假设分为原假设和备择假设两种。

原假设通常是指总体参数没有变化或存在某种规律性,备择假设则是指总体参数发生了变化或不存在任何规律性。

第二步:选择检验统计量在确定假设之后,需要选择检验统计量。

检验统计量是用来度量样本数据与假设的差异程度的统计量,通常是样本均值、样本比率、样本方差等。

第三步:设定显著性水平显著性水平是指在进行假设检验时所允许的犯错误的概率。

通常情况下,显著性水平设定为0.05或0.01。

第四步:计算检验统计量的值在进行假设检验时,需要计算出检验统计量的值。

具体计算方法根据所选择的检验统计量的不同而有所差异。

第五步:确定拒绝域拒绝域是指当检验统计量的值落在该区域内时,拒绝原假设。

拒绝域的确定需要根据所选的显著性水平和自由度来进行计算。

第六步:进行统计决策在计算出检验统计量的值并确定了拒绝域之后,需要进行统计决策,判断是拒绝原假设还是接受原假设。

具体决策方法根据所选的显著性水平和自由度而有所不同。

第七步:得出结论在进行统计决策之后,需要根据结果得出结论。

如果拒绝原假设,则表明样本数据与原假设存在显著差异,否则则表明样本数据与原假设不存在显著差异。

假设检验是一种重要的统计方法,它能够帮助研究者确定总体参数的真实情况,提高研究的可靠性和准确性。

熟练掌握假设检验的一般步骤和方法,对于科学研究和实践应用都具有重要的意义。

假设检验的基本步骤。

假设检验的基本步骤。

假设检验的基本步骤。

1.引言1.1 概述假设检验是统计学中一种重要的推断方法,它用来判断样本数据与某个假设是否一致。

在实际应用中,我们常常需要对某个特定的问题进行判断,比如判断一种新药是否有效,或者判断某种广告宣传方式是否能够提高销售额。

而假设检验就提供了一种可靠的方法来进行这些判断。

在进行假设检验时,我们首先需要提出两个相互排斥的假设,即原假设(H0)和备择假设(H1)。

原假设通常是我们想要证明的假设,而备择假设则是我们对原假设的反面假设。

例如,我们想要检验某种疾病的治疗方案是否有效,那么原假设可以是“治疗方案无效”,备择假设则是“治疗方案有效”。

根据样本数据,我们计算得到一个统计量(比如均值差异、比例差异等),然后我们根据这个统计量的大小,来判断样本数据是否支持原假设。

这其中就涉及到了假设检验的基本步骤。

假设检验的基本步骤可以概括为以下几个步骤:1. 确定假设:在开始假设检验之前,我们需要明确原假设和备择假设,并且将它们转化为数学形式。

这一步骤非常重要,因为它直接影响到后续的假设检验过程。

2. 确定显著性水平:显著性水平通常被设定为一个小于1的数值,代表了我们对错误拒绝原假设的容忍程度。

常见的显著性水平包括0.05和0.01,选择合适的显著性水平需要根据具体问题和实际需求来确定。

3. 计算统计量:根据样本数据,我们计算得到一个统计量,这个统计量可以用来反映样本数据与原假设的偏离程度。

常见的统计量包括t值、z值、卡方值等。

4. 确定拒绝域:拒绝域指的是一组统计量的取值范围,如果计算得到的统计量落在拒绝域内,则拒绝原假设,接受备择假设。

拒绝域的确定需要根据显著性水平和具体的统计方法进行。

5. 得出结论:根据样本数据计算得到的统计量和拒绝域的关系,我们可以得出对原假设的结论。

如果统计量在拒绝域内,我们拒绝原假设,否则我们无法拒绝原假设。

通过以上基本步骤,我们可以进行假设检验,并得出相应的结论。

这里需要注意的是,假设检验并不能直接判断某个假设的真实性,它只能提供一种基于样本数据的推断方法。

拒绝域公式深入了解拒绝域的数学公式

拒绝域公式深入了解拒绝域的数学公式

拒绝域公式深入了解拒绝域的数学公式拒绝域是统计假设检验中的一个重要概念,它用于决定在给定显著性水平下,是否拒绝原假设。

在进行假设检验时,通过计算统计量的取值是否落在拒绝域内,来确定是否拒绝原假设。

了解和掌握拒绝域的数学公式,对正确进行假设检验至关重要。

1. 单侧假设检验的拒绝域公式在单侧假设检验中,原假设可以是等于某个值,大于某个值或小于某个值。

根据方向性假设的不同,拒绝域的公式也会有所差异。

1.1 原假设为等于某个值时:对于总体均值的假设检验来说,拒绝域公式如下:拒绝域 = {x: |x - μ| ≥ zα/2 * σ/√n}其中,x为样本均值,μ为总体均值,zα/2为显著性水平α/2对应的标准正态分布的分位数,σ为总体标准差,n为样本容量。

1.2 原假设为大于某个值时:对于总体均值的假设检验来说,拒绝域的公式如下:拒绝域= {x: x ≥ μ + zα * σ/√n}1.3 原假设为小于某个值时:对于总体均值的假设检验来说,拒绝域的公式如下:拒绝域= {x: x ≤ μ - zα * σ/√n}2. 双侧假设检验的拒绝域公式在双侧假设检验中,原假设可以是两个值之间的关系,拒绝域的公式也需要根据不同的情况进行调整。

2.1 原假设为不等于某个值时:对于总体均值的假设检验来说,拒绝域的公式如下:拒绝域 = {x: |x - μ| ≥ zα/2 * σ/√n}2.2 原假设为区间时:对于总体均值的假设检验来说,拒绝域的公式如下:拒绝域= {x: x ≤ μ1 - zα/2 * σ/√n 或x ≥ μ2 + zα/2 * σ/√n}其中,μ1和μ2为原假设给定的两个值,zα/2为显著性水平α/2对应的标准正态分布的分位数,σ为总体标准差,n为样本容量。

总结:在进行假设检验时,通过理解和应用拒绝域的数学公式,我们可以更准确地判断是否拒绝原假设。

不同类型的假设对应着不同的拒绝域公式,通过灵活运用这些公式,我们能够更加准确地进行假设检验,得出可靠的统计结论。

数据分析中的假设检验方法

数据分析中的假设检验方法

数据分析中的假设检验方法在数据分析领域,假设检验是一种常用的统计方法,用于验证关于总体或总体参数的假设。

通过对样本数据进行分析和比较,我们可以得出对总体或总体参数的推断。

假设检验方法的应用广泛,可以用于医学研究、市场调研、财务分析等各个领域。

一、什么是假设检验假设检验是一种基于统计学原理的推断方法,用于验证关于总体或总体参数的假设。

假设检验的基本思想是,我们先提出一个关于总体或总体参数的假设(称为原假设),然后通过对样本数据进行分析和比较,得出对原假设的结论。

原假设通常是我们希望推翻的,而备择假设则是我们希望得到支持的。

二、假设检验的步骤假设检验通常包括以下几个步骤:1. 提出假设:首先要明确原假设和备择假设。

原假设通常是我们希望推翻的假设,而备择假设则是我们希望得到支持的假设。

2. 选择检验统计量:根据具体问题的特点,选择适合的检验统计量。

检验统计量是用来对样本数据进行计算和比较的指标,可以是均值、比例、方差等。

3. 确定显著性水平:显著性水平是指在假设检验中,我们所允许的犯第一类错误的概率。

常用的显著性水平有0.05和0.01两种。

4. 计算检验统计量的观察值:根据样本数据,计算得到检验统计量的观察值。

5. 判断拒绝域:根据显著性水平和检验统计量的分布,确定拒绝域。

拒绝域是指当检验统计量的观察值落在该范围内时,我们拒绝原假设。

6. 得出结论:根据样本数据的观察值是否落在拒绝域内,得出对原假设的结论。

如果观察值在拒绝域内,我们拒绝原假设;如果观察值在拒绝域外,我们接受原假设。

三、常见的假设检验方法1. 单样本均值检验:用于检验总体均值是否等于某个给定值。

常用的检验统计量是t统计量。

2. 双样本均值检验:用于检验两个总体均值是否相等。

常用的检验统计量有独立样本t统计量和配对样本t统计量。

3. 单样本比例检验:用于检验总体比例是否等于某个给定值。

常用的检验统计量是z统计量。

4. 双样本比例检验:用于检验两个总体比例是否相等。

关于假设检验的详细总结与典型例题

关于假设检验的详细总结与典型例题

关于假设检验的详细总结与典型例题假设检验是数一考生普遍反映非常头疼的一块内容,因为它入门较难,其思想在初次复习时理解起来较难。

虽然这一部分在历年真题中考查次数很少,但为了做到万无一失,我们也应该准备充分,何况相对来说这一部分内容的难度和变化并不大。

为了让各位考生对假设检验有一个全面深入的理解和掌握,我们给出如下总结与例题。

对于假设检验,首先要理解其基本原理,即小概率原理,假设检验的方法即是从此原理衍生而来;其次,要掌握其步骤,会根据显著性水平α,即第一类心理学考研错误,来求拒绝域与接收域,其求法要根据不同的条件来套用公式,能根据理解推导公式是上策,如果时间不够,可以选择记忆各种不同条件下的求拒绝域的公式。

最后,相比之下两个正态总体参数的假设检验的考查可能性要低于一个正态总体参数的假设检验。

假设检验的基本概念数理统计的基本任务是根据样本推断总体,对总体的分布律或者分布参数作某种假设,然后根据抽得的样本,运用统计分析的方法来检验这一假设是否正确,从而作出接受假设或者拒绝假设的决定,这就是假设检验.根据实际问题提出的假设0H 称为原假设,其对立假设1H 称为备择假设. 假设检验中推理的依据是小概率原理:小概率事件在一次试验中实际上不会发生. 假设检验中的小概率α称为显著性水平,通常取0.05α=或者0.01α=.假设检验中使用的推理方法是:为了检验原假设0H 是否成立,我医学考研论坛们先假定原假设0H 成立. 如果抽样的结果导致小概率事件在一次试验中发生了,根据小概率原理,有理由怀疑0H 的正确性,从而拒绝0H ,否则接受0H .假设检验的步骤⑴根据实际问题提出原假设0H 和备择假设1H ; ⑵确定检验统计量T ;⑶根据给定的显著水平α,查概率分布表,确定拒绝域W ;⑷利用样本值计算统计量T 的值t ,若t W ∈,则拒绝0H ,否则接受0H .假设检验中可能犯的两类错误由于小概率事件还是可能发生的,根据小概率作出的判断可能是错误的. 事件0H 真而拒绝0H ,称为第一类(弃真)错误,犯第一类错误的概率为{}0P t W H α∈≤,因此显著性水平α是用来控制犯第一类错误的概率的. 0H 假而接受0H ,称为第二类(纳伪)错误,犯第二类错误的概率为{}1P t W H ∉,记作β.典型例题1.136,,X X 是取自正态总体(,0.04)N μ的简单随机样本,检验假设0:0.5H μ=,备择假设11:0.5H μμ=>,检验的显著水平0.05α=,取否医学考研论坛定域为X c >,则c = ,若10.65μ=,则犯第二类错误的概率β= .解 ⑴0H 成立时,0.04~(0.5,)36X N , {}00.50.051()0.1/3c P X c H αΦ-==>=-,0.5()0.95(1.645)0.1/3c ΦΦ-==,0.51.6450.1/3c -=,得0.5548c =.⑵1H 成立时,0.04~(0.65,)36X N{}10.55480.65()( 2.856)0.1/3P X c H βΦΦ-=≤==-.1(2.856)10.99790.0021Φ=-=-=2.设总体20~(,)X N μσ,20σ已知,检验假设00:H μμ=,备择假设10:H μμ>,取否定域为X c >,则对固定的样本容量n ,犯第一类错误的概率α随c 的增大而 .(减小)解 0H 成立时,200~(,)X N nσμ,犯第一类(弃真)错误的概率{}001(/P X c H nαΦσ=>=-,故犯第一类错误的概率α随c 的增大而减小.一个正态总体2(,)N μσ参数的假设检验 ⑴ 2σ已知,关于μ的检海文考研验(u 检验) 检验假设00:H μμ= 统计量X U =拒绝域2U u α>检验假设00:H μμ>统计量X U =拒绝域U u α<-检验假设00:H μμ<统计量X U =拒绝域U u α>⑵2σ未知,关于μ的检验(t 检验) 检验假设00:H μμ=统计量X t =拒绝域2(1)t t n α>-检验假设00:H μμ> 统计量0/X t S n = 拒绝域(1)t t n α<--检验假设00:H μμ< 统计量0/X t S n=拒绝域(1)t t n α>-⑶μ未知,关于2σ的检验(2χ检验) 检验假设2200:H σσ=统计量2220(1)n S χσ-=拒绝域222(1)n αχχ>-或者2212(1)n αχχ-<-检验假设2200:H σσ>统计量2220(1)n S χσ-=拒绝域221(1)n αχχ-<-检验假设2200:H σσ< 统计量2220(1)n S χσ-= 拒绝域22(1)n αχχ>-▲拒绝域均采用上侧分位数.两个正态总体21(,)N μσ、22(,)N μσ参数的假设检验.⑴两个正态总体21(,)N μσ、22(,)N μσ均值的假设检验(t 检验) 检验假设012:H μμ=统计量X Yt =拒绝域122(2)t t n n α>+-检验假设012:H μμ>统计量X Yt =拒绝域12(2)t t n n α<-+-检验假设012:H μμ<统计量X Yt =拒绝域12(2)t t n n α>+-⑵两个正态总体211(,)N μσ、222(,)N μσ方差的假设检验(F 检验) 检验假设22012:H σσ=统计量2122S F S = 拒绝域122(1,1)F F n n α>--或者1212(1,1)F F n n α-<--检验假设22012:H σσ>统计量2122S F S = 拒绝域112(1,1)F F n n α-<--检验假设22012:H σσ< 统计量2122S F S = 拒绝域12(1,1)F F n n α>--▲拒绝域均采用上侧分位数. 典型例题1.设n X X X ,,,21 是来自正态总海文考研体2(,)N μσ的简单随机样本,其中参数2,μσ未知,记22111,(),n ni i i i X X Q X X n ====-∑∑则假设0:0H μ=的t 检验使用统计量t = .解 统计量2(1)//(1)n n XX nXt S n Q n -===-2.某酒厂用自动装瓶机装酒,每瓶规定重500克,标准差不超过10克,每天定时检查,某天抽取9瓶,测得平均重X =499克,标准差S =16.03克. 假设瓶装酒的重量X 服从正态分布.问这台机器是否工作正常?(05.0=α).解 先检验0H :500μ=,统计量X t =, 拒绝域0.025(8) 2.3060t t >=,4995000.18716.03/3X t -===-,接受0H ;再检验0H ':2210σ≤,统计量222(1)10n S χ-=, 拒绝域220.05(8)15.507χχ>=, 22222(1)816.0320.5571010n S χ-⨯===,拒绝220:10H σ'≤, 故该机器工作无系统误差,但不稳定3.设127,,,X X X 是来自正态总体211(,)N μσ的简单随机样本,设128,,,Y Y Y 是来自正态总体222(,)N μσ的简单随机样本,且两个样本相互独立,它们的样本均值分别为13.8,17.8X Y ==,样本标准差123.9, 4.7S S ==,问在显著性水平0.05下,是否可以认为12μμ<?解 先检验0H :2212σσ=,检验统计量2122S F S =,拒绝域0.025(6,7) 5.12F F >=或者0.9750.02511(6,7)(7,6) 5.70F F F <==,221222 3.90.68854.7S F S ===,接受0H ; 再检验0H ':12μμ<,统计量1211w X Yt S n n =+, 拒绝域0.05(13) 1.7709t t >=,1.7773X Yt ==-,接受0H ',即可以认为12μμ<. ▲检验两个正态总体均值相等时,应先检验它们的方差相等.。

统计学中的假设检验与置信区间

统计学中的假设检验与置信区间

在统计学中,假设检验和置信区间是两个常用的方法,用于对样本数据进行推断和判断。

假设检验是通过对样本数据进行假设,然后利用统计方法对这一假设进行检验的过程。

而置信区间是用于估计总体参数的范围,通过构建一个区间来包含总体参数的真值。

假设检验是统计学的重要方法之一,它用于判断一个关于总体特征的假设是否成立。

在假设检验过程中,我们首先提出一个关于总体参数或总体分布的假设,即原假设(H0)和备选假设(H1)。

然后,我们根据样本数据计算出一个检验统计量,并通过比较检验统计量的值与特定的临界值来决定是否拒绝原假设。

在假设检验中,我们通常关心的是拒绝原假设的概率,即显著性水平。

假设检验通常包括以下步骤:确定原假设和备选假设,选择适当的检验统计量,计算检验统计量的值,确定拒绝域,计算拒绝域的临界值,进行统计决策和做出推断。

如果检验统计量的值落在拒绝域内,则拒绝原假设,否则则不拒绝原假设。

与假设检验相对应的是置信区间。

置信区间是用于估计总体参数的范围,通过构建一个区间来估计总体参数的真值。

置信区间通常由样本数据计算得到,其上界和下界反映了总体参数估计的不确定性范围。

在置信区间中,我们可以设定一个置信水平,并通过样本数据计算出一个置信区间,使得总体参数落在该区间内的概率等于设定的置信水平。

置信区间的计算一般遵循正态分布或t分布的原理。

对于大样本的情况,可以使用正态分布来计算置信区间;而对于小样本的情况,由于样本方差的不确定性,需要使用t分布来计算置信区间。

在计算置信区间时,我们通常要求该区间的宽度尽可能小,从而提高估计的精确性。

假设检验和置信区间在实际应用中都具有重要的意义。

假设检验可以帮助我们判断样本数据是否支持某一假设,从而做出相应的决策。

例如,在药物临床试验中,我们可以利用假设检验来判断新药的疗效是否显著,从而决定是否推出市场。

而置信区间可以提供总体参数的估计范围,帮助我们理解样本数据中的不确定性,并对总体特征进行推断。

假设检验的习题及详解包括典型考研真题

假设检验的习题及详解包括典型考研真题

§假设检验基本题型Ⅰ 有关检验统计量和两类错误的题型【例8.1】u 检验、t 检验都是关于 的假设检验.当 已知时,用u 检验;当 未知时,用t 检验.【分析】 由u 检验、t 检验的概念可知,u 检验、t 检验都是关于均值的假设检验,当方差2σ为已知时,用u 检验;当方差2σ为未知时,用t 检验. 【例8.2】设总体2(,)XN u σ,2,u σ未知,12,,,n x x x 是来自该总体的样本,记11ni i x x n ==∑,21()ni i Q x x ==-∑,则对假设检验0010::H u u H u u =↔≠使用的t 统计量t = (用,x Q 表示);其拒绝域w = . 【分析】2σ未知,对u 的检验使用t 检验,检验统计量为(1)x t t n ==-对双边检验0010::H u u H u u =↔≠,其拒绝域为2{||(1)}w t t n α=>-.【例8.3】设总体211(,)XN u σ,总体222(,)Y N u σ,其中2212,σσ未知,设112,,,n x x x 是来自总体X 的样本,212,,,n y y y 是来自总体Y 的样本,两样本独立,则对于假设检验012112::H u u H u u =↔≠,使用的统计量为 ,它服从的分布为 .【分析】记1111n i i x x n ==∑,2121n i i y y n ==∑,因两样本独立,故,x y 相互独立,从而在0H 成立下,()0E x y -=,221212()()()D x y D x D y n n σσ+=+=+,故构造检验统计量(0,1)x yu N =.【例8.4】设总体2(,)XN u σ,u 未知,12,,,n x x x 是来自该总体的样本,样本方差为2S ,对2201:16:16H H σσ≥↔<,其检验统计量为 ,拒绝域为 .【分析】u 未知,对2σ的检验使用2χ检验,又由题设知,假设为单边检验,故统计量为222(1)(1)16n S n χχ-=-,从而拒绝域为221{(1)}n αχχ-<-.【例8.5】某青工以往的记录是:平均每加工100个零件,由60个是一等品,今年考核他,在他加工零件中随机抽取100件,发现有70个是一等品,这个成绩是否说明该青工的技术水平有了显著性的提高(取0.05α=)?对此问题,假设检验问题应设为 【 】()A 01:0.6:0.6H p H p ≥↔<. ()B 01:0.6:0.6H p H p ≤↔>. ()C 01:0.6:0.6H p H p =↔≠. ()D 01:0.6:0.6H p H p ≠↔=.【分析】一般地,选取问题的对立事件为原假设.在本题中,需考察青工的技术水平是否有了显著性的提高,故选取原假设为0:0.6H p ≤,相应的,对立假设为1:0.6H p >,故选()B .【例8.6】某厂生产一种螺钉,标准要求长度是68mm ,实际生产的产品,其长度服从2(,3.6)N u ,考察假设检验问题01:68:68H u H u =↔≠.设x 为样本均值,按下列方式进行假设检验:当|68|1x ->时,拒绝原假设0H ;当|68|1x -≤时,接受原假设0H . (1)当样本容量36n =时,求犯第一类错误的概率α; (2)当样本容量64n =时,求犯第一类错误的概率α;(3)当0H 不成立时(设70u =),又64n =时,按上述检验法,求犯第二类错误的概率β. 【解】(1)当36n =时,223.6(,)(,0.6)36xN u N u =,000{|68|1|}{67|}{69|}P x H P x H P x H α=->=<+>成立成立成立67686968()[1()]( 1.67)[1(1.67)]0.60.6--=Φ+-Φ=Φ-+-Φ 2[1(1.67)]2[10.99575]0.095=-Φ=-=.(2)当64n =时,223.6(,)(,0.45)64xN u N u =000{|68|1|}{67|}{69|}P x H P x H P x H α=->=<+>成立成立成立67686968()[1()]0.450.45--=Φ+-Φ 2[1(2.22)]2[10.9868]0.0264=-Φ=-=.(3)当64n =,又70u =时,2(70,0.45)xN ,这时犯第二类错误的概率(70){|68|1|70}{6769|70}P x u P x u β=-≤==≤≤=69706770()()( 2.22)( 6.67)0.450.45--=Φ-Φ=Φ--Φ- (6.67)(2.22)10.98680.0132=Φ-Φ=-=.【评注】01(1)(2)的计算结果表明:当n 增大时,可减小犯第一类错误的概率α;02 当64n =,66u =时,同样可计算得到(66)0.0132β=.03 当64n =,68.5u =时,2(68.5,0.45)xN ,则(68.5){6769|68.5}P x u β=≤≤= 6968.56768.5()()(1.11)( 3.33)0.450.45--=Φ-Φ=Φ-Φ-0.8665[10.9995]0.8660=--=.这表明:当原假设0H 不成立时,参数真值越接近于原假设下的值时,β的值就越大. 【例8.7】设总体2(,)XN u σ,12,,,n x x x 是来自该总体的样本,对于检验01:0:0H u H u ≤↔>,取显著性水平α,拒绝域为:{}w u u α=>,其中u =,求:(1)当0H 成立时,求犯第一类错误的概率()u α; (2)当0H 不成立时,求犯第二类错误的概率()u β. 【解】(1)当0H 成立时,0u ≤,则(){|0}|0}u P u u u P u u ααα=>≤=>≤()|0}1()(0)P x u u u u u αα=->≤=-Φ≤因0u ≤,故()()1u u αααΦ≥Φ=-,从而()1()1(1)u u αααα≤-Φ=--=,即犯第一类错误的概率不大于α.(2)(){|0}()|0}u P u u u P x u u u ααβ=≤>=-≤>()(0)u u α=Φ>因0u >,故当u →+∞时,()0u β→,即u 与假设0H 偏离越大,犯第二类错误的概率越小;而当0u +→时,()1u βα→-,即当u 为正值且接近0时,犯第二类错误的概率接近1α-.基本题型Ⅱ 单个正态总体的假设检验【例8.8】某天开工时,需检验自动包装机工作是否正常,根据以往的经验,其包装的质量在正常情况下服从正态分布2(100,1.5)N (单位:kg ),先抽测了9包,其质量为: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5 问这天包装机工作是否正常?【分析】 关键是将这一问题转化为假设检验问题.因检验包装机工作是否正常,化为数学问题应为双边检验01:100:100H u H u =↔≠.【解】由题意,提出假设检验问题:01:100:100H u H u =↔≠, 选取检验统计量(0,1)x u N =当0.05α=时,0.02521.96u u α==,又20.04 1.96u u α==<=,即接受原假设0H ,认为包装机工作正常.【例8.9】已知某种元件的寿命服从正态分布,要求该元件的平均寿命不低于1000h ,现从这批元件中随机抽取25知,测得平均寿命980X h =,标准差65S h =,试在水平0.05α=下,确定这批元件是否合格.【解】由题意,2σ未知,在水平0.05α=下检验假设0010:1000:1000H u u H u u ==↔<=属于单边(左边)t 检验.构造检验统计量 (1)x t t n =-,其中25,65,980n S X h ===,查t 分布表可得:0.05(1)(251) 1.7109t n t α-=-=,又0.05|| 1.538(24) 1.7109x t t ===<=.即接受原假设0H ,认为这批元件是合格的.【例8.10】某厂生产的一中电池,其寿命长期以来服从方差225000()σ=小时的正态分布,现有一批这种电池,从生产的情况来看,寿命的波动性有所改变,现随机地抽取26只电池,测得寿命的样本方差229200()S =小时,问根据这一数据能否推断这批电池寿命的波动性较以往有显著性的变化(取0.02α=).【解】 检验假设2201:5000:5000H H σσ=↔≠,选取统计量2222(1)(1)n S n χχσ-=-,由0.02α=,26n =,查2χ分布表可得220.012(1)(25)44.314n αχχ-==,220.0912(1)(25)11.524n αχχ--==, 又统计量2220.012(1)46(25)44.314n S χχσ-==>=,故拒绝原假设0H ,即认为这批电池寿命的波动性较以往有显著性的变化.【例8.11】 某种导线,要求其电阻的标准不得超过0.005(欧姆),今在生产的一批导线中取样品9根,测得0.007S =(欧姆),设总体为正态分布,问在水平0.05α=下,能否认为这批导线的标准差显著性地偏大?【解】本题属于总体均值未知,正态总体方差的单边检验问题0010:0.005:0.005H H σσσσ==↔>=选取统计量2222(1)(1)n S n χχσ-=-当0.05α=,9n =时,查2χ分布表可得:220.05(1)(8)15.507n αχχ-==,又题设0.007S =,则统计量22220.0522(1)80.00715.68(8)15.5070.005n S χχσ-⨯===>=. 故拒绝原假设0H ,认为这批导线的标准差显著性地偏大.【例8.12】 机器自动包装食盐,设每袋盐的净重服从正态分布,规定每袋盐的标准重量为500克,标准差不超过10克.某天开工以后,为了检查机器工作是否正常,从已包装好的食盐中随机抽取9袋,测得其重量(克)为:497,507,510,475,484,488,524,491,515问这天自动包装机工作是否正常(显著性水平0.05α=)? 【解】 设每袋盐重量为随机变量X ,则2(,)XN u σ,为了检查机器是否工作正常,需检验假设:01:500H u =及202:100H σ≤.下面现检验假设0111:500:500H u H u =↔≠ 由于2σ未知,故构造统计量(1)x t t n =-由于0.05α=,查t 分布表可得0.0252(1)(8) 2.306t n t α-==,又由题设计算可得499,16.03X S ==,故统计量取值0.025||0.187(8) 2.306x t t ===<=即接受原假设01H ,认为机器包装食盐的均值为500克,没产生系统误差.下面在检验假设220212:100:100H H σσ≤↔>选取统计量2222(1)(1)n S n χχσ-=-,由于0.05α=,查2χ分布表可得220.05(1)(8)15.5n αχχ-==,而统计量2220.052(1)20.56(8)15.5n S χχσ-==>=,故拒绝原假设02H ,接受12H ,即认为其标准差超过了10克.由上可知,这天机器自动包装食盐,虽没有产生系统误差,但生产不够稳定(方差偏大),从而认为这天自动包装机工作不正常.基本题型Ⅲ 两个正态总体的假设检验【例8.13】 下表给出了两个文学家马克·吐温(Mark Twain )的8偏小品文以及斯诺·特格拉斯(Snodgrass )的10偏小品文中由3格字母组成的词比例.马克·吐温: 0.225,0.262,0.217,0.240,0.230,0.229,0.235,0.217斯诺·特格拉斯:0.209,0.205,0.196,0.210,0.202,0.207,0.224,0.223,0.220,0.201 设两组数据分别来自正态分布,且两总体方差相等,两样本相互独立,问两个作家所写的小品文中包含由3格字母组成的词的比例是否有显著性的差异(0.05α=)?【分析】首先应注意题中的“比例”即“均值”的含义,因而本题应属于未知方差,却知其相等的两正态母体,考虑它们的均值是否相等的问题.【解】设题中两正态母体分别记为,X Y ,其均值分别为12,u u ,因而检验问题如下:012112::H u u H u u =↔≠选取统计量(2)X Y T t n m =+-,其中8,10n m ==,()()22122112wn S m S Sn m -+-=+-,在0.05α=时,查t 分布表可得()()/20.025216 2.1199t n m t α+-==由题设样本数据计算可得22120.2319,0.2097,0.00021,0.00009X Y S S ====,0.119w S ===.从而t统计量值为()0.025|| 3.964316 2.1199X Y T t ===>=,因而拒绝原假设0H ,认为两个作家所写的小品文中包含由3格字母组成的词的比例有显著性的差异.【例8.14】据专家推测:矮个子的人比高个子的人的寿命要长一些,下面给出了美国31个自然死亡的总统的寿命.矮个子(身高小于5英尺8英寸)总统 Modison Van Buren B.Harrison J.Adams J.Q.Adams 身高 5’4” 5’6” 5’6” 5’7” 5’7” 寿命 85 79 67 90 80高个子(身高大于5英尺8英寸)总统 W.Harrison Plok Tayler Crant Hayes Truman Fillmore Pierce A.Johson 身高 5’8” 5’8” 5’8”5’8.5” 5’8.5” 5’9” 5’9” 5’10” 5’10” 寿命 68 53 65 63 70 88 74 64 66 总统 T.Roosevelt Coolidge Eisenhower Cleveland Wilson Hoover Monroe Tyler 身高 5’10” 5’10” 5’10” 5’11” 5’11” 5’11” 6’ 6’ 寿命 60 60 78 71 67 90 73 71 总统 Buchanan Taft Harding Jaskon Washington Arthur F.Roosevelt 身高 6’ 6’ 6’ 6’1” 6’2” 6’2” 6’2” 寿命77 72 57 78 67 56 63设两个寿命总体均为正态分布且方差相等,试问以上数据是否符合上述推测(0.05α=)? 【解】设矮个子总统寿命为X ,高个子总统寿命为Y ,需检验012112::H u u H u u =↔>.由于22212σσσ==未知,故选用统计量(2)X Y T t n m =+-,其中5,26n m ==,()()22122112wn S m S Sn m -+-=+-.由题设样本数据可得80.2,69.15,X Y ==22124294.8,252183.215S S ==,故()()221221185.4492wn S m S Sn m -+-==+-,从而统计量|| 2.448X Y T ==,又当0.05α=时,查t 分布表可得()()0.05229 1.6991t n m t α+-==,即()0.05|| 2.44829 1.6991T t =>=,故拒绝原假设0H ,即推测是正确的,认为矮个子的人比高个子的人的寿命要长一些 【例8.15】总体21(,)XN u σ,22(,)Y N u σ,112,,,n x x x 与212,,,n y y y 分别时来自总体,X Y 的样本,试讨论检验问题012112::H u u H u u δδ-≤↔->.【解】取统计量12(2)X Y T t n n =+-,其中()()221122212112wn S n S S n n -+-=+-, 则检验统计量为X Y T =,当1H 成立时,t 有偏大的趋势,故取拒绝域为12{(2)}w t t n n α=>+-.【例8.16】甲乙相邻地段各取了50块和25块岩心进行磁化率测定,算出两样本标准差分别是210.0139S =,220.0053S =,问甲乙两段的标准差是否有显著性差异(0.05α=)?【解】作假设001:H σσ=,由题设有250211501500.0139()0.01425014949i i S X X =⨯⨯-===-∑, 252221521520.0053()0.00545215151ii S Y Y =⨯⨯-===-∑ 从而统计量21112222(1)0.01422.630.0054(1)n S n F n S n -===-,当0.05α=,查F 分布表可得0.0252(501,521)(501,521) 1.7494F F α--=--=,0.97512(501,521)(501,521)0.5698FF α---=--=,因为0.0252.63(49,51) 1.7494F F =>=,故拒绝原假设0H ,即认为甲乙两段的标准差有显著性差异.【例8.17】在集中教育开课前对学员进行了测试,过来一段时间后,又对学员进行了与前一次同样程度的考查,目的是了解上次的学员与这次学员的考试分类是否有显著性差别(0.05α=),从上次与这次学员的考试中随机抽取12份考试成绩,如下表考试次数 考分 合计平均分 (1) 80.5,91.0,81.0,85.0,70.0,86.0,69.5,74.0,72.5,83.0,69.0,78.5940 78.5 (2)76.0,90.0,91.5,73.0,64.5,77.5,81.0,83.5,86.0,78.5,85.0,96080.073.5【解】此为双正态总体的假设检验,两总体均值未知,先检验假设2222012112::H H σσσσ=↔≠.选取统计量211222(1,1)S F F n n S =--,由题设可计算得221253.15,60.23S S ==,则统计量212253.150.882560.23S F S ===,取0.05α=,查F 分布表可得0.0252(11,11)(11,11) 3.43F F α==,0.97510.02521(11,11)(11,11)0.2915(11,11)FF F α-===.由于122(11,11)0.8825(11,11) 3.43FF F αα-<=<=,故在0.05α=下,接受0H ,即认为两次考试中学员的成绩的方差相等. 再假设012112::H u u H u u =↔≠.构造统计量12(2)X YT t n n =+-,其中()()221122212112wn S n S S n n -+-=+-,1212,12n n ==.由样本数据可得78.5,80.0,X Y ==221253.1515,60.2273S S ==,故()()2211222121156.68942wn S n S Sn n -+-==+-,从而统计量||0.488X Y T ==,在0.05α=下,查t 分布表可得()()120.0252222 2.0739t n n t α+-==.由于()0.025||0.48822 2.0739T t =<=,即认为两次考试中学员的平均成绩相等,从而认为两次考试中学员的成绩无显著性差异.基本题型Ⅳ 非正态总体参数假设检验【例8.18】某产品的次品率为0.17,现对此产品进行了新工艺试验,从中抽取400件检查,发现次品56间,能否认为这项新工艺显著性地影响产品质量(0.05α=)? 【解】检验问题01:0.17:0.17H p H p =↔≠由题设可知56ˆ0.14400m pn ===,构造统计量 1.597u ===-,当0.05α=时,查正态分布表可得0.025 1.96u =,因为0.025|| 1.96u u <=,故接受原假设0H ,认为新工艺显著性地影响产品质量.【评注】本题的理论依据时中心极限定理:当n 充分大时,在0H 成立时,u =(0,1)N 分布.【例8.19】 已知某种电子元件的使用寿命X 服从指数分布()E λ,现抽查100个元件,得样本均值950()x h =,能否认为参数0.01λ=(0.05α=)? 【解】由题设()XE λ,故211,EX DX λλ==,当n 充分大时,1((0,1)1x u x N λλ-==-,现在检验问题01:0.001:0.001H H λλ=↔≠,则((0.0019501)0.5u x λ=-=⨯-=,当0.05α=时,查正态分布表可得0.025 1.96u =,因为0.025|| 1.96u u <=,故接受原假设0H ,认为参数0.01λ=.【评注】总体()X F x ,2,EX u DX σ==,则当n充分大时,u =从(0,1)N 分布.【例8.20】对某干洗公司去除污点的比例做下列假设检验01:0.7:0.9H p H p =↔=,选出100个污点,设其中去除的污点数为x ,拒绝域为{82}w x =>. (1)当0.7p =时,求犯第一类错误的概率α; (2)当0.9p =时,求犯第二类错误的概率β. 【解】(1)由题设有{82|0.7}1P x p α=>==-Φ1(2.62)10.99560.0044=-Φ=-=.(2){82|0.9}P x p β=≤==Φ( 2.67)1(2.67)10.99620.0038=Φ-=-Φ=-=.【评注】从计算分析,这一检验法的α,β皆很小,是较好的检验.§历年考研真题评析1、【98.1.4】设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,计算得到平均成绩为66.5,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生平均成绩为70分?并给出检验过程.【解】设该次考试的考生成绩为X ,则2(,)XN ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,根据题意建立假设001:70;:70H H .选取统计量 07036X X TnSS在70时,2(70,),(35)X T t .选取拒绝域{||}R T ,其中满足{||}0.05P T ,即{||}0.95P T .即0.975(35) 2.0301t . 由036,66.5,70,15n xs 可以计算得统计量T 的值|66.570|||361.42.030115T .因此不能拒绝0H ,即在显著性水平0.05下可以认为全体考生的平均成绩为70分.§习题全解1、在正常情况下,某炼钢厂的铁水含碳量(%)2(4.55,)XN σ.一日测得5炉铁水含碳量如下:4.48,4.40,4.42,4.45,4.47在显著性水平0.05α=下,试问该日铁水含碳量得均值是否有明显变化. 【解】设铁水含碳量作为总体X ,则2(4.55,)XN σ,从中选取容量为5的样本,测得24.444,0.0011X S ==.由题意,设原假设为0: 4.55H u = 构造检验统计量 ||(4)X u t t S -=,则7.051t ==在显著性水平0.05α=下,查表可得0.97512(4)(4) 2.77647.051tt α-==<,拒绝原假设0H ,即认为有显著性变化.2、根据某地环境保护法规定,倾入河流的废物中某种有毒化学物质含量不得超过3ppm.该地区环保组织对某厂连日倾入河流的废物中该物质的含量的记录为:115,,x x .经计算得15148ii x==∑, 1521156.26i i x ==∑.试判断该厂是否符合环保法的规定.(该有毒化学物质含量X 服从正态分布)【解】设有毒化学物质含量作为总体X ,则2(,)XN u σ,从中选取容量为15的样本,测得1511 3.215i i X x ===∑,22221111()()0.1911n ni i i i S x x x nx n n ===-=-=--∑∑.由题意,设原假设为0:3H u <,备择假设为1:3H u >.构造检验统计量(14)X t t =,则 1.777t ==,在显著性水平0.05α=下,查表可得10.95(14)(14) 1.7613 1.777t t α-==<,即拒绝原假设0H ,接受备择假设1H ,认为该厂不符合环保的规定.3、某厂生产需用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率不应低于65.已知该指标服从正态分布2(,)N μσ, 5.5σ=.从近期来货中抽查了100个样品,得样本均值55.06x =,试问在0.05α=水平上能否接受这批玻璃纸? 【解】设玻璃纸的横向延伸率为总体X ,则2(,5.5)XN u ,从中选取容量为100的样本,测得55.06x =.由题意,设原假设为0:65H u >,备择假设为1:65H u <.构造检验统计量||(0,1)X u U N σ-=,则|55.0665|18.07275.5U -==在显著性水平0.05α=下,查表可得10.95 1.644918.0727U U α-==<,即拒绝原假设0H ,接受备择假设1H ,不能接受该批玻璃纸..4、某纺织厂进行轻浆试验,根据长期正常生产的累积资料,知道该厂单台布机的经纱断头率(每小时平均断经根数)的数学期望为9.73根,标准差为1.60根.现在把经纱上浆率降低20%,抽取200台布机进行试验,结果平均每台布机的经纱断头率为9.89根,如果认为上浆率降低后均方差不变,问断头率是否受到显著影响(显著水平α=0.05)?【解】设经纱断头率为总体X ,则9.73u EX ==, 1.6σ==,从中选取容量为200的样本,测得9.89x =.由题意,设原假设为0:9.73H u =,备择假设为1:9.73H u ≠. 构造检验统计量(0,1)X U N =,则 1.4142U ==在显著性水平0.05α=下,查表可得0.975121.96 1.4142UU α-==>,即接受原假设0H ,认为断头率没有受到显著影响.5、某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布2(100,)N σ.某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9.问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(显著性水平α=0.05) 【解】设每箱重量为总体X ,则2(100,)XN σ,从中选取容量为10的样本,测得99.9x =,20.34S =.由题意,设原假设为0:100H u =,备择假设为1:100H u ≠.构造检验统计量||(9)X u t t S -=,则0.5423t ==,在显著性水平0.05α=下,查表可得0.97512(9)(9) 2.26220.5423tt α-==>,即接受原假设0H ,认为每箱重量无显著差异.6、某自动机床加工套筒的直径X 服从正态分布.现从加工的这批套筒中任取5个,测得直径分别为15,,x x (单位m μ:),经计算得到51124ii x==∑, 5213139i i x ==∑.试问这批套筒直径的方差与规定的27σ=有无显著差别?(显著性水平0.01α=) 【解】设这批套筒直径为总体X ,则2(,)XN u σ,从中选取容量为5的样本,测得151124.815i i X x ===∑,22221111()()15.9511n ni i i i S x x x nx n n ===-=-=--∑∑. 由题意,设原假设为20:7H σ=,备择假设为21:7H σ≠.构造检验统计量2222(1)(4)n S χχσ-=,则2415.959.11437χ⨯==,在显著性水平0.01α=下,查表可得220.99512(4)(4)14.86αχχ-==,220.0052(4)(4)0.2070αχχ==,从而222122(4)(4)ααχχχ-<<. 即接受原假设0H ,认为这批套筒直径的方差与规定的27σ=无显著差别.7、甲、乙两台机床同时独立地加工某种轴,轴的直径分别服从正态分布211(,)N μσ、222(,)N μσ(12,μμ未知).今从甲机床加工的轴中随机地任取6根,测量它们的直径为16,,x x ,从乙机床加工的轴中随机地任取9根,测量它们的直径为19,,y y ,经计算得知:61204.6ii x==∑, 6216978.9i i x ==∑,91370.8i i y ==∑,92115280.2i i y ==∑.问在显著性水平0.05α=下,两台机床加工的轴的直径方差是否有显著差异? 【解】设两台机床加工的轴的直径分别为总体,X Y ,则211(,)XN μσ、222(,)YN μσ,从总体X 中选取容量为6的样本,测得61134.16i i X x ===∑222211111()()0.40811n ni i i i S x x x nx n n ===-=-=--∑∑. 从总体Y 中选取容量为9的样本,测得91141.29i i Y y ===∑222221111()()0.40511n ni i i i S y y y ny n n ===-=-=--∑∑ 由题意,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,8)S F F S =,则0.4081.0070.405F ==,在显著性水平0.05α=下,查表可得0.97512(5,8)(5,8) 6.76FF α-==,0.0252(5,8)(5,8)0.1479F F α==,从而122(5,8)(5,8)F F Fαα-<<.即接受原假设0H ,认为两台机床加工的轴的直径方差无显著差异.8、某维尼龙厂根据长期正常生产积累的资料知道所生产的维尼龙纤度服从正态分布,它的标准差为0.048.某日随机抽取5根纤维,测得其纤度为1.32,1.55,1.36,1.40,1.44.问该日所生产得维尼龙纤度的均方差是否有显著变化(显著性水平α=0.1)? 【解】设维尼龙纤度为总体X ,则2(,0.048)XN u ,从中选取容量为5的样本,测得511 1.4145i i X x ===∑,2211()0.00781n i i S x x n ==-=-∑.由题意,设原假设为0:0.048H σ=,备择假设为1:0.048H σ≠.构造检验统计量2222(1)(4)n S χχσ-=,则2240.007813.542(0.048)χ⨯==在显著性水平0.1α=下,查表可得220.9512(4)(4)9.487713.542αχχ-==<.即拒绝原假设0H ,认为维尼龙纤度的均方差有显著变化.9、某项考试要求成绩的标准差为12,先从考试成绩单中任意抽出15份,计算样本标准差为16,设成绩服从正态分布,问此次考试的标准差是否符合要求(显著性水平α=0.05)? 【解】 设考试成绩为总体X ,则2(,12)XN u ,从中选取容量为15的样本,测得16S =.由题意,设原假设为0:12H σ=,备择假设为1:12H σ≠. 构造检验统计量2222(1)(14)n S χχσ-=,则222141619.055612χ⨯==.在显著性水平0.05α=下,查表可得220.97512(14)(14)26.1189αχχ-==,220.0252(14)(14) 5.6287αχχ==,从而222122(14)(14)ααχχχ-<<.即接受原假设0H ,认为此次考试的标准差符合要求.10、某卷烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位:毫克)作了六次测定,获得样本观察值为:甲:25,28,23,26,29,22; 乙:28,23,30,25,21,27.假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种香烟的尼古丁平均含量有无显著差异(显著性水平α=0.05,)?对这两种香烟的尼古丁含量,检验它们的方差有无显著差异(显著性水平α=0.1)?【解】设这两种烟的尼古丁含量分别为总体,X Y ,则211(,)X N μσ、222(,)Y N μσ,从中均选取容量为6的样本,测得61125.56i i X x ===∑,22111()7.51n i i S x x n ==-=-∑, 61125.66676i i Y y ===∑,22211()11.06671n i i S y y n ==-=-∑, 由题意,在方差相等时,设原假设为012:H u u =,备择假设为112:H u u ≠.构造检验统计量12(2)X Y t t n n =+-,其中222112212(1)(1)9.2834(2)wn S n S S n n -+-==+-.则0.0948t ==,在显著性水平0.05α=下,查表可得120.97512(2)(10) 2.22810.0948tn n t α-+-==>.即接受原假设0H ,认为这两种香烟的尼古丁平均含量无显著差异.由题意,在方差待定时,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,5)S F F S =,则7.50.677711.0667F ==,在显著性水平0.1α=下,查表可得0.9512(5,8)(5,5) 5.0503FF α-==,0.052(5,8)(5,5)0.1980F F α==,由122(5,5)(5,5)F F Fαα-<<.即接受原假设0H ,认为它们的方差无显著差异.§同步自测题及参考答案一、选择题1、关于检验水平α的设定,下列叙述错误的是 【 】()A α的选取本质上是个实际问题,而非数学问题. ()B 在检验实施之前, α应是事先给定的,不可擅自改动.()C α即为检验结果犯第一类错误的最大概率. ()D 为了得到所希望的结论,可随时对α的值进行修正.2、关于检验的拒绝域W,置信水平a ,及所谓的“小概率事件”,下列叙述错误的是 【 】()A a 的值即是对究竟多大概率才算“小”概率的量化描述. ()B 事件021|),,,{(H W X X X n ∈ 为真}即为一个小概率事件.()C 设W 是样本空间的某个子集,指事件}|),,,{(021为真H W X X X n ∈ . ()D 确定恰当的W 是任何检验的本质问题.3、设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,此问题拒绝域形式为 【 】()A }C >. ()B }/100{C n S X <-. ()C }10/100{C S X >- . ()D }{C X >.4、设n X X X ,,,21 为来自总体2(,)N μσ的样本,若μ未知, 100:20≤σH ,21:100,H 0.05a ,关于此检验问题,下列不正确的是 【 】()A 检验统计量为100)(12∑=-ni iX X. ()B 在0H 成立时,)1(~100)1(22--n x S n . ()C 拒绝域不是双边的. ()D 拒绝域可以形如})({12∑=>-ni i k X X .5、设总体服从正态分布2(,3)XN μ,12,,,n x x x 是X 的一组样本,在显著性水平0.05α=下,假设“总体均值等于75”拒绝域为12{,,,:74.0275.98}n w x x x x x =<⋃>,则样本容量n = 【 】()A 36. ()B 64. ()C 25. ()D 81.二、填空题1、为了校正试用的普通天平,把在该天平上称量为100克的10个试样在计量标准天平上进行称量,得如下结果:99.3, 98.7, 100.5, 101,2, 98.399.7 99.5 102.1 100.5, 99.2 假设在天平上称量的结果服从正态分布,为检验普通天平与标准天平有无显著差异,0H为 .2、设样本2521,,,X X X 来自总体μμ),9,(N 未知,对于检验0010::H H μμμμ=↔= 取拒绝域形如k X ≥-0μ,若取05.0=a ,则k 值为 .3、设12,,,n x x x 是正态总体2(,)XN μσ的一组样本.现在需要在显著性水平0.05α=下检验假设2200:H σσ=.如果已知常数u ,则0H 的拒绝域1w =______________;如果未知常数u ,则0H 的拒绝域2w =______________.4、在一个假设检验问题中令0H 是原假设,1H 时备择假设,则犯第一类错误的概率{______________}P ,犯第二类错误的概率{______________}P .三、解答题1、某批矿砂的5个样本中的镍含量,经测定为(%)3.25,3.27,3.24,3.26,3.24设测定值总体服从正态分布,问在0.01α=下,能否接受假设:这批矿砂的含量的均值为3.25.2、已知精料养鸡时,经若干天鸡的平均重量为4公斤.今对一批鸡改用粗料饲养,同时改善饲养方法,经同样长的饲养期后随机抽取10只,的其数据如下:3.7,3.8,4.1,3.9,4.6,4.7,5.0,4.5,4.3,3.8已知同一批鸡的重量X 服从正态分布,试推断:这一批鸡的平均重量是否显著性提高.试就0.01α=和0.05α=分别推断.3、测定某种溶液中的水份,它的10个测定值给出0.037%S =,设测定值总体为正态分布,2σ为总体方差,试在水平0.05α=下检验假设01:0.04%:0.04%H H σσ=↔<.4、在70年代后期,人们发现在酿造啤酒时,在麦芽干燥过程中形成致癌物质亚硝基二甲胺(NDMA ).到了80年代初期开发了一种新的麦芽干燥过程,下面给出了在新老两种干燥过程中形成的NDMA 的含量(以10亿份中的份数计)老过程 6,4,5,5,6,5,5,6,4,6,7,4 新过程2,1,2,2,1,0,3,2,1,0,1,3设两样本分别来自正态总体,且两总体的方差相等,两样本独立,分别以12,u u 记对应于老、新过程的总体均值,试检验假设(0.05α=)0111:2:2H u u H u u -=↔->.5、检验了26匹马,测得每100毫升的血清中,所含的无机磷平均为3.29毫升,标准差为0.27毫升;又检验了18头羊,每100毫升血清中汗无机磷平均值为3.96毫升,标准差为0.40毫升.设马和羊的血清中含无机磷的量均服从正态分布,试问在显著性水平0.05α=条件下,马和羊的血清中无机磷的含量有无显著性差异?6、某种产品的次品率原为0.1,对这种产品进行新工艺试验,抽取200件发现了13件次品,能否认为这项新工艺显著性地降低了产品的次品率(0.05α=)?7、设n X X X ,,,21 为总体(,4)XN a 的样本,已知对假设01:1: 2.5H a H a =↔=,0H 的拒绝域为{2}w X =>.(1)当9u =时,求犯两类错误的概率α和β; (2)证明:当n →∞时,0α→,0β→.同步自测题参考答案 一、选择题1.()D .2. ()C .3. ()C .4. ()B .5. ()A . 二、填空题1.100=μ.2. 1.176.3. 222210.0250.97522110011{()()()()}nniii i w x u n x u n χχσσ===->⋃-<∑∑;222220.0250.975220(1)(1){(1)(1)}n S n S w n n χχσσ--=>-⋃<- .4.10{|}P H H 接受成立,01{|}P H H 接受成立.三、解答题 1、接受0H .2、0.01α=时,显著性提高;0.05α=时,没有显著性提高 .3、 接受0H .4、拒绝0H ,接受1H .5、方差无显著性差异,均值有显著性差异,故有显著性差异.6、 拒绝0H .7、(1)0.0668α=,0.2266β=,(2)102α=-Φ→,(04β=Φ-→()n →∞.。

概率统计中的假设检验与拒绝域

概率统计中的假设检验与拒绝域

概率统计中的假设检验与拒绝域概率统计是一门研究随机现象的学科,其核心之一是假设检验。

假设检验是根据样本数据对某个关于总体参数的假设进行推断和判断的方法。

在进行假设检验时,我们需要设定一个拒绝域,用来判断样本数据是否支持或反对原假设。

本文将介绍概率统计中的假设检验与拒绝域的相关概念与应用。

一、假设检验的基本原理假设检验的基本原理是通过样本数据对总体参数的假设进行推断。

在进行假设检验时,我们需要提出原假设(H0)和备择假设(H1),并使用样本数据来判断是否拒绝原假设。

原假设通常是关于总体参数的某种等式或不等式的假设,备择假设则是对原假设的补充或对立假设。

二、拒绝域的定义与应用拒绝域是在假设检验中用来判断是否拒绝原假设的区域。

拒绝域的定义基于显著性水平(α),它表示我们在假设检验中允许犯第一类错误的概率。

通常情况下,我们希望将第一类错误的概率控制在一个较小的范围内,常见的显著性水平有0.05和0.01。

在进行假设检验时,我们计算得到一个检验统计量(test statistic),然后根据拒绝域的定义来判断是否拒绝原假设。

如果检验统计量的取值落在拒绝域内,则拒绝原假设;如果检验统计量的取值落在拒绝域外,则接受原假设。

三、单样本假设检验单样本假设检验是假设检验中最简单的一种情形,适用于只有一个样本的情况。

在单样本假设检验中,我们通常对总体均值进行推断。

举个例子,假设我们想要检验某个产品的平均寿命是否达到了某个标准值。

我们收集了一批产品的寿命数据,并计算得到样本均值和标准差。

然后,我们提出原假设H0:产品的平均寿命等于标准值,备择假设H1:产品的平均寿命不等于标准值。

接下来,我们计算得到检验统计量,并根据拒绝域的定义来判断是否拒绝原假设。

四、双样本假设检验双样本假设检验适用于比较两个相互独立的样本的情况。

在双样本假设检验中,我们通常关注两个总体的均值之间是否存在差异。

举个例子,假设我们想要比较两种不同的治疗方法对疾病的疗效是否有差异。

假设检验法的步骤

假设检验法的步骤

假设检验法的步骤
假设检验法是一种统计学上的方法,用于评估统计样本数据是否支持或反驳特定假设。

以下是假设检验的一般步骤:
1. 提出原假设(H0)和备择假设(H1):原假设通常是关于总体参数的陈述,备择假设则是对原假设的完全或部分否定。

2. 选择合适的检验统计量:根据问题的特点,选择与该问题相关的适当的检验统计量。

3. 确定显著性水平(α):显著性水平是在假设检验中所允许的错误接受原假设的概率。

通常选择0.05或0.01作为显著性水平。

4. 收集样本数据并计算检验统计量的值:从总体中收集样本数据,并使用所选择的统计量计算出其值。

5. 设置拒绝域:根据原假设和适当的检验统计量的抽样分布,确定在显著性水平下,拒绝原假设的统计量取值范围。

6. 做出决策:将计算出的检验统计量的值与拒绝域进行比较,如果检验统计量的值在拒绝域内,则拒绝原假设,否则接受原假设。

7. 得出结论:根据做出的决策,得出关于原假设的结论,通常包括接受或拒绝原假设,并解释所得出的结论的统计学意义。

需要注意的是,以上步骤是一种常见的假设检验方法的一般步骤,具体的步骤可能会因为问题的不同而有所变化。

多元回归统计量的分布和拒绝域

多元回归统计量的分布和拒绝域

多元回归分析是一种多变量统计分析方法,它在多个自变量和一个因变量之间建立线性关系模型,用来分析自变量对因变量的影响程度。

在多元回归分析中,我们通常关注于回归系数的显著性检验,以确定自变量之间的线性关系是否显著。

在进行多元回归分析时,我们需要对回归系数进行显著性检验。

为了进行显著性检验,我们需要了解多元回归统计量的分布和拒绝域。

多元回归统计量的分布和拒绝域是多元回归分析中重要的概念,它们决定了我们在假设检验中应该拒绝还是接受原假设。

1. 多元回归统计量的分布在多元回归分析中,我们通常使用F统计量来进行回归系数的显著性检验。

F统计量的分布服从F分布,而F分布的形状取决于回归模型的自变量个数和样本量。

F分布的自由度分为两部分,分子自由度和分母自由度。

分子自由度等于自变量个数,分母自由度等于样本量减去自变量个数减1。

F分布是一个非对称且右偏的分布,其密度函数为f(x; d1, d2) =(d1/d2)^(d1/2) * x^(d1/2-1) * (1 + (d1/d2) * x)^(-(d1+d2)/2) / B(d1/2,d2/2),其中d1和d2为分子和分母自由度,B为贝塔函数。

F分布的形状会随着分子和分母自由度的变化而变化,通常情况下,F 分布在右侧尾部较长,而在左侧尾部较短。

2. 拒绝域的确定在进行回归系数显著性检验时,我们需要确定一个拒绝域来拒绝或接受原假设。

通常情况下,我们选择一个显著性水平(α)作为判断标准,比如0.05或0.01。

然后根据F分布的分子和分母自由度以及显著性水平确定相应的临界值。

在确定拒绝域时,我们通常会使用F分布的分位点来确定临界值。

以α=0.05为例,我们需要找到F分布的临界值,使得观察到的F统计量落在右侧尾部的概率小于0.05。

这个临界值就是我们的拒绝域的边界,如果观察到的F统计量落在拒绝域之外,我们就可以拒绝原假设,认为回归系数是显著的。

3. 实际应用在实际应用中,确定多元回归统计量的分布和拒绝域是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于假设检验中检验统计量的选择及拒绝域的确定问题
假设检验是根据样本所提供的信息检验假设是否成立的一种统计推断方法。

在检验之前总体参数未知,先对总体参数提出一个假设的值,然后根据样本所提供的信息检验假设是否成立。

在假设检验中,如何根据已知条件选择检验统计量,并确定拒绝域和临界值,是非常重要的两个环节。

学员在理解时容易出现混淆。

一、 根据已知条件选择检验统计量
这里要注意,样本均值x 的分布与根据样本均值及总体方差(或样本方差)构造的检验统计量的分布是两个不同的概念。

根据抽样分布的理论,只要总体服从正态分布,那么,无论是大样本,还是小样本,其样本均值的分布均服从正态分布;如果总体的分布是非正态分布,在大样本情况下,其样本均值的分布仍服从正态分布,小样本的样本均值的分布则服从非正态分布。

但是,检验统计量的分布则不然。

(一) 对于小样本量
分两种情况:
1、在总体是正态分布的情况下,如果总体方差未知、小样本(n<30),检验统计量n
s x /0
μ-的分布服从t 分布;
2、在总体服从非正态分布、小样本的情况下,检验统计量的分布也服从t 分布。

由于一般情况下总体方差未知,需要用样本方差来代替,所以,一般准则是:小样本量时用t 检验。

(二) 对于大样本量
在大样本量( 30≥n )的情况下,检验统计量的分布与样本均值的分布相同,服从正态分布,这一点比较容易理解。

所以,概括来说,大样本量时用Z 检验。

选择用t 检验还是Z 检验,直接关系到选择t 临界值还是Z 临界值。

二、 拒绝域和临界值的确定
应结合分布的图形来理解接受域、拒绝域以及临界值。

(一)对于双侧检验 一般在双侧检验时,使用正态分布对总体均值进行检验,拒绝域为:2αZ Z >或
2αZ Z -<(或2αZ Z >)
;使用t 分布进行检验,拒绝域为:2αt t >或2αt t -<,(或2αt t >)
;使用2χ分布进行检验时(对总体方差的检验),若检验的统计量222αχ>χ或2122αχχ-<时,拒绝原假设。

注意,这里使用的是
2α,因为双侧检验中有两个拒绝域,各占2
α。

只要满足其中一个拒绝域,即可拒绝原假设。

在双侧检验的情况下,拒绝域在接受域的两侧,或分布图形的两端。

(二)对于单侧检验
在进行单侧检验时,使用正态分布或t 分布对总体均值进行检验,拒绝域与备择假设“大于”或“小于”的方向相同。

如,μ≥1.40 H 1:μ<1.40,则拒绝域为Z 或t 值<临界值。

这里只有一个拒绝域,所以不需要将α除以2。

特别要注意,如果计算得到的检验统计量的值为负,则要取临界值的负值来进行比较。

因为从数轴上看,临界值的正值在另一侧,将它与为负数的检验统计量的值进行比较是没有意义的。

即:只有在数轴的同一侧才能进行比较。

例如,在左侧备择假设情况下,如,μ≥1.40 H 1:μ<1.40,假设t=-1.87,临界值应该为7291.1)19(-=-αt ,由于t=-1.87<7291.1)19(-=-αt ,则拒绝原假设。

在右侧备择假设的情况下,μ<1.40 H 1:μ>1.40,仍使用上述数据,由于t=-1.87<7291.1)19(-=-αt ,结论是接受原假设。

还应注意,在单侧检验中,即使检验统计量的值为负数,也不能取绝对值进行比较,因为绝对值意味着两个拒绝域,而单侧检验中只有一个拒绝域。

从图形上看,单侧检验的情况下,拒绝域在接受域的一侧,或图形的一端。

如果是左侧备择假设,则拒绝域在接受域的左侧或图形的左端,此时,t 值小于临界值;如果是右侧备择假设,则拒绝域在接受域的右侧或图形的右侧。

此时,t 值大于临界值。

相关文档
最新文档