假设检验
假设检验一般概念
x 400 k 时接受原假设H0;
(1)
x 400 k 时拒绝原假设H0接受备择假设H1
(2)
进一步,由于当H0为真时,有
u x400 ~N(0,1) 25/ n
1 |u|要构x造一40个0具有明确k分布的统计量,可将(1)、(2)式转化为
25/ n 25/ n
2 |u|时接x受原40假0设H0 k
2. 拒绝域与接受域 称是检验水平或显著性水平,它是我们
制定检验标准的重要依据。常数u/2把标准正态分布密度曲线下
的区域分成了两大部分,其中一部分
(x1,x2, ,xn)uu/2
称为H0的拒绝域或否定域, 当样本点落入拒绝域时,我们便拒 绝原假设H0(同前述(6)式),另一部分
(x1,x2, ,xn)uu/2
(1)根据问题的要求提出假设,写明原假设H0和备择假设H1的
具体内容。
(2)根据H0的内容,建立(或选取)检验统计量并确定其分布。 (3)对给定(或选定)的显著性水平 ,由统计量的分布查表 或计算确定出临界值,进而得到H0的拒绝域和接受域。
(4)由样本观察值计算出统计量的值。
(5)做出推断:当统计量的值满足“接受H0的条件”时就接受 H0,否则就拒绝H0接受H1 。
u
2
时接受原假设H0 (5)
时拒绝原假设H0,接受备择假设 H1 (6)
分析(5)、(6)两式,可以这 样认为:
拒绝H0,是因为以H0成立 为出发点进行推理时,得到 了不合情理的结论,使小概 率事件在一次试验中发生了。
接受H0,是因为以H0成立 为出发点进行推理时,未发 现异常。
这就是带有概率特征的反证 法,认为小概率事件在一次 试验中不可能发生。
H0:X服从泊松分布;H1:X不服从泊松分布.
假设检验名词解释
假设检验名词解释假设检验是统计学中一种重要的推断方法,用于判断针对总体参数的某个假设是否成立。
在进行假设检验时,我们首先提出一个关于总体参数的虚无假设(null hypothesis)和一个备择假设(alternative hypothesis),然后通过收集样本数据来进行推断和决策。
虚无假设是我们想要拒绝或证伪的假设,通常是基于无效、无差异或不相关等假设。
备择假设是我们希望接受的假设,即我们认为总体参数存在某种特定的差异或关联性。
假设检验的步骤可以分为以下几个阶段:1. 确定假设:根据问题的要求和研究的目标,明确虚无假设和备择假设。
2. 选择显著性水平:显著性水平(significance level)决定了拒绝虚无假设的标准。
常见的显著性水平有5%和1%。
3. 收集样本数据:从总体中抽取样本,并得到所需的统计指标。
4. 计算检验统计量:根据样本数据计算出与虚无假设相关的检验统计量。
常见的检验统计量有t检验、F检验和卡方检验等。
5. 确定拒绝域:通过设定显著性水平和计算的检验统计量,确定拒绝域(rejection region)。
如果检验统计量的计算值落在拒绝域内,就拒绝虚无假设。
6. 进行假设检验:将计算得到的检验统计量与拒绝域进行比较,根据比较结果得出对虚无假设的结论。
7. 给出结论:根据对虚无假设的判断,得出是否拒绝虚无假设,并给出相应的推断结论。
需要注意的是,假设检验并不能直接证明备择假设的正确性,只是提供了一种基于样本数据的推断方法。
假设检验面临两种错误,即第一类错误和第二类错误。
第一类错误是拒绝了真实的虚无假设,即误认为有差异存在;第二类错误是接受了虚无假设,即认为两个总体没有差异,而实际上有差异存在。
在实际应用中,假设检验广泛应用于医学、生物学、商业和社会科学等领域。
通过假设检验,我们能够在一定程度上验证假设、支持决策,并为进一步研究提供可靠的数据分析方法。
第七章 假设检验
第七章假设检验第一节假设检验的基本知识一、假设陈述1、原假设/虚无假设:用H表示,常常是根据已有资料得出的,稳定、保守的经验性看法,没有充分根据是不会被推翻的。
2、备选假设/研究假设:与原假设对立的假设,用H1表示,经过抽样调查后,获得证据希望予以支持的假设。
二、假设检验的基本原理——小概率原理小概率原理:一次观察中小概率事件被认为不可能发生;如果一次观察出现了小概率事件,合理的想法应该是否定原有事件具有小概率的说法。
小概率原理在假设检验中的运用:抽取一个样本并计算出检验统计量,如果在原假设成立的条件下这个统计量几乎不可能发生,则拒绝原假设而接受备选假设。
反之,如果计算出的统计量发生的可能性不太小,则接受原假设。
即在原假设下,检验统计量是小概率事件则拒绝原假设。
例1:某市场有100位摊贩,根据以往统计,其中非本地居民占10%,现随机抽取10人调查,发现5个都不是本地人,则原有统计结果是否成立?解:H:100人中10个是非本地人。
计算在原假设成立的情况下,抽取5人都是非本地人的概率:P= C105 C905/C10010<10-4可见,出现5名非本地人的结果概率极其小,但一次实验就出现了,所以怀疑原假设的真实性,拒绝原假设。
三、拒绝域与显著性水平1、显著性水平α,在原假设成立条件下,统计检验中规定的小概率的数量界限,常用的有α=0.10,0.05,0.01。
2、接受域和拒绝域根据原假设画出统计量的分布,以Z分布为例。
如果把拒绝原假设的小概率α事件定在分布的右侧尾部,则右侧面积代表的概率即显著性水平,Zα是临界值。
如果检验统计量值Z>Zα,则应拒绝原假设;如Z<Zα,则接受原假设。
以Zα为临界值,左边为接受域,右边为拒绝域。
也可把α定在左边或两边。
α1、双边检验如果拒绝域放在抽样分布的两侧,每侧拒绝域的概率分别为α/2,假设抽样本分布以0为对称,则P(|Z|>Z α/2)= α;双边检验的假设如下:H 0: μ=μ0H 1: μ≠-Z α/2 Z α/2如果检验统计量|Z|>Z α/2,则拒绝原假设,否则接受。
统计学中的假设检验
统计学中的假设检验统计学是一门研究如何收集、整理、分析和解释数据的学科。
在统计学中,假设检验是一种常用的方法,用于验证对于某一总体的某一假设是否成立。
假设检验在科学研究、商业决策以及社会调查等领域都有广泛的应用。
本文将介绍假设检验的基本概念、步骤和常见的统计方法。
一、假设检验的基本概念假设检验是基于样本数据对总体参数进行推断的一种方法。
在进行假设检验时,我们需要提出一个原假设(H0)和一个备择假设(H1),然后根据样本数据来判断是否拒绝原假设。
原假设通常是我们希望证伪的假设,而备择假设则是我们希望支持的假设。
二、假设检验的步骤假设检验一般包括以下步骤:1. 提出假设:根据研究问题和背景,提出原假设和备择假设。
2. 选择显著性水平:显著性水平(α)是我们在进行假设检验时所允许的犯第一类错误的概率。
通常情况下,显著性水平取0.05或0.01。
3. 收集样本数据:根据研究设计和样本容量要求,收集样本数据。
4. 计算统计量:根据样本数据计算出相应的统计量,如均值、标准差、相关系数等。
5. 判断拒绝域:根据显著性水平和统计量的分布,确定拒绝域。
拒绝域是指当统计量的取值落在该区域内时,我们拒绝原假设。
6. 做出决策:根据样本数据计算出的统计量与拒绝域的关系,判断是否拒绝原假设。
7. 得出结论:根据决策结果,得出对原假设的结论。
三、常见的统计方法在假设检验中,常见的统计方法包括:1. 单样本t检验:用于检验一个样本的均值是否等于某个给定值。
2. 双样本t检验:用于检验两个样本的均值是否相等。
3. 方差分析:用于检验两个或多个样本的均值是否有显著差异。
4. 相关分析:用于检验两个变量之间是否存在线性相关关系。
5. 卡方检验:用于检验观察频数与期望频数之间的差异是否显著。
四、假设检验的局限性假设检验作为一种统计方法,也存在一定的局限性。
首先,假设检验只能提供关于原假设的拒绝与否的结论,并不能确定备择假设的真实性。
什么是假设检验?
减少主观臆断
假设检验基于客观数据和事实, 而非主观臆断,从而能够减少决 策过程中的主观性和不确定性。
提高决策科学性
假设检验能够提供一种相对可靠 的决策依据,提高决策的科学性 和准确性。
假设检验的未来发展
不断扩展应用领域
方法的改进和完善
随着科学技术的发展,假设检验的应 用领域将会越来越广泛,如人工智能 、生物技术、医学、社会科学等领域 。
随着数据的复杂性和规模的增加,假 设检验的方法也需要不断改进和完善 ,以适应不同场景和需求。
提高可解释性和透明 度
为了更好地理解和解释假设检验的结 果,需要提高其可解释性和透明度, 以便更多的人能够理解和应用。
正确理解和运用假设检验
01
理解基本概念
正确理解和运用假设检验需要深入理解其基本概念和方法,包括如何
社会学研究
社会调查
利用假设检验对社会现象进行调查研究,以揭示社会现象之间的内在联系和 规律。
行为研究
通过假设检验探讨人类行为和社会影响之间的相互作用,为政策制定和社会 干预提供依据。
06
结论
假设检验的意义
科学探究的基础
假设检验是科学探究中最为核心 的方法之一,它能够通过严谨的 逻辑和数学推理来验证或否定一 个特定的假设。
假设检验是统计分析的一部分,它是 一种方法论,用于根据样本数据推断 总体参数。
统计分析包括多种方法和技术,如描 述性统计、推断性统计和回归分析等 ,它们都是为了帮助我们更好地理解 和解释数据。
在进行假设检验时,需要使用统计分 析方法来对数据进行处理和分析,从 而得出结论。
02
假设检验的基本原理
假设的设定与分类
病因研究
通过对暴露因素与疾病之间关系的假设检验,探讨病因和预防策 略的有效性。
假设检验
U | X 0 | ~ N (0,1)
/ n
3° 在假设 H0成立的条件下,由样本判断 y 小概率事件是否发生。 y pU ( x )
P{| U | u / 2 }
2
2
当 0很小时 ,
uα / 2
O uα / 2
x
{| U | u / 2 }是个小概率事件 (如上图) .
第一节
假设检验的 基本概念
一、假设检验的基本原理 二、假设检验的基本概念 三、两类错误
回
四、假设检验的一般步骤
停 下
实验设计 数理统计 统计推断
参数估计 假设检验 (回归分析)
统计推断: 研究如何加工、处理数据,从而 对所考察对象的性质做出尽可能精确和可靠的 推断.
很难发生. 但“很难发生”不等于“不发生”, 因而 假设检验所作出的结论有可能是错误的. 这种错误 有两类: (1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称为第Ⅰ类错误, 又叫弃真 错误, 这类错误是“以真为假”. 犯第Ⅰ类错误的概 率就是显著性水平 .
= P { 拒绝原假设H0 | H0为真 }
H0称为原假设或零假设, H1称为备择假设.
4. 拒绝域与临界点样本值x=(x1, x2, · · · , xn)所组成的集合. W1 = { x x 且使H0不成立}
W1 W1 : 拒绝原假设H0的检验统计量的取值范围.
W1 x x , U U
根据小概率原理, 如果H 0为真,则 | x 0 | 不应太大,则由一次试验得到
满足不等式
| u |
| x 0 |
/ n
假设检验的名词解释
假设检验的名词解释在统计学中,假设检验是一种通过收集和分析样本数据,用以对总体参数做出统计推断的方法。
简而言之,它帮助我们判断一个统计假设是否在给定的数据中是有效的。
一、什么是假设检验?假设检验是一种从样本推断总体特征的方法,它基于两个互补的假设:原假设(H0)和备择假设(H1或Ha)。
原假设通常是我们要进行推断的现象不存在或没有关联,而备择假设则相反。
通过收集样本数据并使用适当的统计方法,我们根据样本数据对两个假设进行比较,并得出结论。
二、假设检验的基本步骤假设检验通常分为以下几个基本步骤:1. 陈述原假设和备择假设:在开始假设检验之前,我们需要明确原假设和备择假设。
原假设通常是表达无关联或无效果的假设,备择假设则相反。
2. 选择适当的显著性水平:显著性水平代表了我们作出拒绝原假设的临界值。
通常使用的显著性水平是0.05或0.01,表示我们愿意在5%或1%的概率下犯出错误的可能性。
3. 收集样本数据并进行统计分析:根据采样设计,收集足够数量的样本数据。
然后使用适当的统计方法,如t检验、方差分析或卡方检验等,分析样本数据。
4. 计算检验统计量:根据样本数据和所选择的统计方法,计算出相应的检验统计量。
检验统计量是一个数值,用于度量样本数据与原假设之间的偏差程度。
5. 判断拒绝域:根据所选择的显著性水平和计算的检验统计量,确定拒绝域的范围。
拒绝域是样本数据落在其中,我们将拒绝原假设并接受备择假设的区域。
6. 做出判断和推断:比较计算得到的检验统计量与拒绝域的位置。
如果检验统计量落在拒绝域内,我们拒绝原假设并接受备择假设;否则,我们无法拒绝原假设。
7. 做出结论:根据判断和推断结果,给出对原假设的结论。
结论可以是关于总体参数是否存在、是否有效或是否有差异的。
三、常见的假设检验在实际应用中,有许多不同类型的假设检验方法,以下是其中一些常见的假设检验示例:1. 单样本t检验:用于比较一个样本平均值与一个已知或预期的总体平均值是否存在显著差异。
假设检验
假设检验假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。
具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。
常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。
中文名假设检验外文名 hypothesis test提出者 K.Pearson 提出时间 20世纪初1、简介假设检验又称统计假设检验(注:显著性检验只是假设检验中最常用的一种方法),是一种基本的统计推断形式,也是数理统计学的一个重要的分支,用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。
其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。
[1]2、基本思想假设检验的基本思想是小概率反证法思想。
小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。
反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为假设成立。
[2] 假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。
设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合h0,称为原假设(常简称假设)。
使命题A不成立的所有总体分布构成另一个集合h1,称为备择假设。
如果h0可以通过有限个实参数来描述,则称为参数假设,否则称为非参数假设(见非参数统计)。
如果h0(或h1)只包含一个分布,则称原假设(或备择假设)为简单假设,否则为复合假设。
对一个假设h0进行检验,就是要制定一个规则,使得有了样本以后,根据这规则可以决定是接受它(承认命题A正确),还是拒绝它(否认命题A正确)。
假设检验
产品检验: ■全数检验 ■抽样检验
能最真实、完整的反映所有产品的特性结果 GB/T2828.1-2003 存在抽样误差
总体与样本
判断
总体
随机抽取
样本
测量
数据
根据样本的信息推断总体
2. 假设检验的基本原理:小概率反证法 小概率原理:指小概率事件(通常概率 α≤0.05称为“小概率事件)在一次试 验中基本不会发生,反证法思想是先提 出某项假设(H0 ),用统计方法确定假 设的可能性(即检验假设是否正确): 可能性小,即假设不成立,应拒绝原假 设;如果可能性大,则接受假设,则假 设成立。
⑹根据显著性水平α 及统计量、样本自由 度查概率分布表。获取在此显著性水平α 下的置信区间,即临界值。 双侧检验:根据α/2或(1-α/2)确定临界值 单侧检验:根据α或(1 -α) 确定临界值
⑺做出判断:将计算出的统计量与查表得 出的临界值进行比较,作出拒绝或接受H0 的判断。
五、应用实例
1.单个正态总体的均值检验——t 检验
s12 0.0955 F 2 3.66 s2 0.0261 计算统计量:
n1=8,则样本的自由度 1 n1 1 7 n2=9,则样本的自由度 2 n2 1 8 α =0.05,查F检验临界值(F2)表,P(F >F2)= α 得到:F0.05(7、8)= 3.50 F在拒绝域内 结论:原假设H0不成立,即甲机床的精度比乙机床低。
因此,可用计算确定均值µ及1—α 置信区间的 方法来检验上述假设是否成立。 如果计算出来的置信区间包括µ 0 ,则接受H0 ; 如果计算出来的置信区间不包括µ 0 ,则拒绝H0
三、假设检验类型
• 参数假设:总体分布类型已知,对未知参数 的统计假设。检验参数假设问题称为参数假 设检验。当总体分布类型为正态分布时,则 为正态总体参数检验。 • 非参数假设:总体分布类型不明确,对参数 的各种统计假设。检验非参数假设问题称为 非参数假设检验,也称分布检验。参数假设 检验和非正态总体参数检验都比较复杂,在 QC小组活动中很少应用。
假设检验的八种情况的公式
假设检验的八种情况的公式假设检验是统计学中常用的一种方法,用于判断样本数据与总体参数的关系是否具有显著性差异。
在进行假设检验时,我们需要根据实际问题和已知条件确定相应的假设检验公式。
以下是八种常见的假设检验情况及相应的公式。
1.单样本均值检验:在这种情况下,研究者想要判断一个样本的均值是否与一个已知的总体均值有显著性差异。
假设检验的公式为:其中,x̄为样本均值,μ为总体均值,s为样本标准差,n为样本容量,t为t分布的临界值。
2.双样本均值检验(方差已知):在这种情况下,研究者想要判断两个样本的均值是否有显著性差异,且已知两个样本的方差相等。
假设检验的公式为:其中,x̄1和x̄2分别为样本1和样本2的均值,μ1和μ2分别为总体1和总体2的均值,s为样本标准差,n1和n2分别为样本1和样本2的容量,z为标准正态分布的临界值。
3.双样本均值检验(方差未知):在这种情况下,研究者想要判断两个样本的均值是否有显著性差异,且两个样本的方差未知且不相等。
假设检验的公式为:其中,x̄1和x̄2分别为样本1和样本2的均值,μ1和μ2分别为总体1和总体2的均值,s1和s2分别为样本1和样本2的标准差,n1和n2分别为样本1和样本2的容量,t为t分布的临界值。
4.单样本比例检验:在这种情况下,研究者想要判断一个样本的比例是否与一个已知的总体比例有显著性差异。
假设检验的公式为:其中,p̄为样本比例,p为总体比例,n为样本容量,z为标准正态分布的临界值。
5.双样本比例检验:在这种情况下,研究者想要判断两个样本的比例是否有显著性差异。
假设检验的公式为:其中,p̄1和p̄2分别为样本1和样本2的比例,p1和p2分别为总体1和总体2的比例,n1和n2分别为样本1和样本2的容量,z为标准正态分布的临界值。
6.简单线性回归检验:在这种情况下,研究者想要判断自变量与因变量之间的线性关系是否显著。
假设检验的公式为:其中,β1为回归系数,se(β1)为标准误差,t为t分布的临界值。
统计学中的假设检验
统计学中的假设检验是一种重要的统计推断方法,用于对数据进行推断和决策。
它帮助我们确定数据中的差异是否具有统计学意义,从而帮助我们做出合理的决策。
假设检验的基本原理是:根据样本数据对总体的参数进行推断。
根据现有的理论和经验,我们提出一个关于总体参数的假设,然后收集样本数据,通过统计方法来验证这个假设的可靠性。
假设检验的过程可以归纳为以下几个步骤:1.建立假设:假设检验首先需要提出一个原假设(H0)和一个备择假设(H1)。
原假设通常是默认情况下我们认为成立的假设,而备择假设则是我们想要证明的假设。
例如,原假设可能是“某个药物对疾病的治疗效果无显著影响”,备择假设则是“某个药物对疾病的治疗效果有显著影响”。
2.收集样本数据:在假设检验中,我们需要从总体中随机抽取一定数量的样本数据,并进行测量和观察。
3.计算检验统计量:根据样本数据计算出一个检验统计量,它是样本数据与假设之间的差异的度量。
检验统计量的计算方法根据不同的问题有所不同。
常见的检验统计量包括t值、z值、F值等。
4.设定显著性水平:显著性水平(significance level)是我们预先设定的一个概率阈值,用于判断检验统计量的结果是否具有统计学意义。
常见的显著性水平有0.05和0.01等。
5.判断统计显著性:根据检验统计量的计算结果和显著性水平,我们可以进行统计显著性的判断。
如果计算得到的检验统计量的值小于设定的显著水平,我们将拒绝原假设,认为结果是统计显著的;如果计算得到的检验统计量的值大于设定的显著水平,我们无法拒绝原假设,认为结果不具有统计学意义。
6.得出结论:根据统计显著性的判断结果,我们可以得出假设检验的结论。
如果拒绝原假设,则接受备择假设;如果无法拒绝原假设,则无法支持备择假设。
假设检验是统计学的重要工具,它可以帮助我们在实际问题中进行决策和推断。
通过对假设检验的使用,我们可以证明或者否定一些关于总体的假设,从而为我们的决策提供一臂之力。
假设检验
例2:某种零件的尺寸,要求其平均长度为4厘米,大于或小于4 厘米均属于不合格。该企业生产的零件平均长度是4厘米吗?
提出原假设 H0: = 4厘米
提出备择假设 H1: 4厘米
单边检验
例1:某灯泡制造商声称,该企业所生产的灯泡的平均使用 寿命在1000小时以上。该批产品的平均使用寿命超过1000小 时吗?
x 0 t ~ t (n 1) s n
正态总体、方差未知、小样本情况下,样本统计量的抽样分布
t
正态 分布
X S n
~ t (n 1)
正态分布 t (df = 13) t (df = 5)
t 分布
Z
X
t 分布与正态分布的比较
不同自由度的t分布
t
总体均值的检验—— t 检验(双边)
提出原假设H0: 1000 选择备择假设 H1: < 1000
例2:学生中通宵上网的人数超过25%吗?
提出原假设H0: 25%
选择备择假设 H1: 25%
例3:消费者协会接到消费者投诉,指控某品牌纸包装饮料 容量不足,有欺骗消费者之嫌。消费者协会从市场上随机抽 取50盒该品牌纸包装饮品,包装上标明的容量为250毫升, 但测试发现平均含量为248毫升,小于250毫升。这是生产中 正常的波动,还是厂商的有意行为?消费者协会能否根据该 样本数据,判定饮料厂商欺骗了消费者呢?
2 2
Z 1.96
2
决策准则
当 Z Z ,即Z Z 或Z Z 时 拒绝H 0
2 2 2
当 Z Z ,即 Z Z Z 时 接受H 0
什么是假设检验
什么是假设检验
假设检验(hypothesis testing)是指从对总体参数所做的一个假设开始,然后搜集样本数据,计算出样本统计量,进而运用这些数据测定假设的总体参数在多大程度上是可靠的,并做出承认还是拒绝该假设的判断。
如果进行假设检验时总体的分布形式已知,需要对总体的未知参数进行假设检验,称其为参数假设检验;若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称之为非参数假设检验。
此外,根据研究者感兴趣的备择假设的内容不同,假设检验还可分为单侧检验(单尾检验)和双侧检验(双尾检验),而单侧检验又分为左侧检验和右侧检验。
假设检验的基本思想是反证法思想和小概率事件原理。
反证法的思想是首先提出假设(由于未经检验是否成立,所以称为零假设、原假设或无效假设),然后用适当的统计方法确定假设成立的可能性大小,如果可能性小,则认为假设不成立,拒绝它;如果可能性大,还不能认为它不成立。
小概率事件原理,是指小概率事件在一次随机试验中几乎不可能发生,小概率事件发生的概率一般称之为“显著性水平”或“检验水平”,用表示,而概率小于多少算小概率是相对的,在进行统计分析时要事先规定,通常取=0.01、0.05、0.10等。
假设检验
四 假设检验一 基本内容1.假设检验对总体分布或分布中的某些参数作出假设,然后利用样本的观测值所提供的信息,检验这种假设是否成立,这一统计推断过程,称为假设检验。
(1) 待检验假设或零假设记为0H ,正在被检验的与0H 相对立的假设1H 称为备选假设或对立假设。
(2) 假设检验的依据——小概率原理:小概率事件在一次试验中实际上不会发生。
(3) 假设检验的思路是概率性质的反证法。
即首先假设成立,然后根据一次抽样所得的样本值得信息,若导致小概率事件发生,则拒绝原假设,否则接受原假设。
(4) 假设检验可能犯的两类错误:① 第一类错误(弃真错误):即假设0H 为真而被拒绝,记为α,即00{|}P H H α=拒绝为真。
② 第二类错误(存伪错误):假设0H 不真而被接受,记为β,即00{|}P H H β=接受不真。
③ 当样本容量n 一定时,,αβ不可能同时减少,在实际工作中总是控制α适当的小。
2.假设检验的程序对任何实际问题进行假设检验,其程序一般为五步,即: ⑴ 根据题意提出零假设0H (或相应备选假设1H )。
⑵构造样本统计量并确定其分布;⑶给定显著性水平α,查表确定临界值,从而得出接受域和拒绝域; ⑷由样本观测值计算出统计量的值;⑸作出判断:若统计量的值落入拒绝域则拒绝0H ,若统计量的值落入接受域则接受0H 。
3.假设检验的主要方法Z 检验法、t 检验法、2λ检验法、F 检验法。
4.关于一个正态总体的假设检验⑴2200(,),H X N μδδμμ 已知,检验假设:=Z 检验法:①001000H H μμμμμμμμ≠><:= (:或或)②统计量0(0,1)()Z N H -=成立时。
③给出1122{}P Z ZZαααα--<=,,查正表定④ 由样本值12n x x x (,,,) 计算Z 的值 ⑤ 判断:若1122Z ZZαα--∈∞∈∞0(-,-)或Z (-,+),则拒绝H(这是对双侧检验提出的Z 检验法步骤,若是单侧可仿比) (2)2200(,),H X N μδδμμ 未知,检验假设:=t 检验法:①001000H H μμμμμμμμ≠><:= (:或或)②0(1)()t t n H -=- 成立时。
假设检验
2
2 0
2 0
H0:
,H1:
.
其中
为已知常数.检验统计量
T
1
2 0
n
(Xi )2
i 1
~ 2 (n) .
对于给定的显著性水平 ,拒绝域为
t 12 / 2 (n) 或
t
2
/
2
(n)
.
上述检验的统计量服从 2 分布,称此种检
验为 2 检验,类似地可以进行单边检验(见表
一、方差已知时,两个正态总体均值差的假设检验—u 检验
设
2 1
,
2 2
为已知,要检验的假设为
也可以写成
H0:1 2 ,H1:1 2 ,
H0:1 2 0 ,H1:1 2 0 .
检验统计量为
u X Y ~ N (0, 1) .
2 1
2 2
mn
对于给定的显著性水平 , 查表得 u / 2, 使得
t 12 / 2 (n 1) 或 t 2 / 2 (n 1) .
这里
2 1
/
2
(n
1)
2 0.95
(4)
0.711
,
2 /2
(n
1)
2 0.05
(4)
9.488
,
x =1.414,s 2 =0.00778,
t
(5
1) 0.00778 0.0482
例2 某车间加工一种零件,要求长度为150mm, 今从一批加工后的这种零件中抽取 9 个,测得长度如 下:
假设检验
σ 22
n2
例:已知同年龄组男生50米跑成绩服从正态分 布。根据以往的资料得知A、B两校男生50 米跑成绩的标准差分别为0.4秒和0.2秒。今 从两校中分别抽测了25名和28名男生,其 50米跑平均成绩分别为8.1秒和7.9秒。问两 校男生50米跑水平是否相同?
练习: 练习 已知甲地某 年龄组男生身 高的 标准差为
西班牙队的比赛中发动93次进攻,成功率为53.8﹪。
是否可以认为该场比赛的进攻成功率高于以往?
练习:某排球队根据近期大量资料统计出比赛扣 球成功率为30%。该队今年参加排球联赛 6场,共扣球326次,成功112次,问今年 扣球成功率是否比以前有提高?
二、两样本率的差异显著性检验(π1=π2) 两样本率的差异显著性检验(
一、样本率与总体率差异显著性检验( P =π) 样本率与总体率差异显著性检验( ) 已知总体率为πo ,样本率为 P。要检验样本率P 所 属总体率π与已知总体率πo是否相同,当 n>30,且 n P>5,统计量为u =p −π π o (1 − π o ) n
例:中国男篮进攻成功率为46.3﹪,第12届世锦赛与
未知, (三)两总体为正态分布,σ1 、σ2 未知,且为小样本的假设检验 两总体为正态分布
当两总体服从正态分布, σ1 、σ2未知,但σ12 = σ22 (方差齐性,即方差间差异不具显著性),n1、 n2均小于 30,则统计量为
t= x1 − x2 (n1 − 1) S1 + (n2 − 1) S 2 1 1 ( + ) n1 + n2 − 2 n1 n2
例: 已知某县14岁女生50米跑成绩服从正态分布, 且 µ o = 8 .8 s。现从某中学随机抽取29名同龄女生 测验50米跑,其成绩 , = 8.5s x
计量经济学假设检验
否定 H 0
第Ⅰ类错误 犯第Ⅰ类错误 概率=α 正确决策 把握度=1 –β
第二节 平均数的假设检验
一、样本平均数与总体平均数的比较 ( 0 的假设检验) (一)总体服从正态分布,σ已知 适用条件:某总体服从正态分布,其总体平均 数 0 、标准差 0 已知,现抽取一个含量为n的
( x1, x2,, xn ),经计算得到样本平均数 x 、s。
检验目的:样本所属的总体平均数与已知的 总体平均数是否相同。 统计假设 H 0 : 0
统计量
t x 0
s n
统计表 附表2 t值表
n n 1
确定概率判定
t t0.05(n) P>0.05 接受 差异无显著性意义. H 0
t t0.05(n) P≤0.05 否定 t t0.01(n) P≤0.01 否定
H1 或 H A
㈡选择假设检验用的统计量并计算统计量的值
根据假设检验的目的及已知条件选用适当
的统计量,然后将观测数据代入求出统计量的
值。
㈢确定显著性水平,查表求出临界值
显著性水平α 一般取0.05 或0.01,α确
定后,根据统计量的分布,按自由度 查不同的
分布表求临界值。
(四)确定概率,作出统计结论 H0 P>0.05 接受 差异无显著性意义 H0 P≤0.05 否定 差异有显著性意义 H0 P≤0.01 否定 差异有高度显著性意义
㈠ 产生差异的两种可能原因 1、可能主要是由抽样误差造成的
由抽样而引起的样本与总体、样本与样本 之间的差异叫抽样误差。 2 、差异可能主要是由条件误差造成的
由实验条件的不同或施加的处理的不同而 引起的差异叫条件误差。
㈡ 小概率原理及实际推理方法 1、小概率事件
假设检验
一.基本概念:(1)对总体参数的数值所作的陈述,称为统计假设。
(2)对总体参数的数值提出某种假设,然后利用样本所提供的信息检验假设是否成立的过程,称为假设检验。
(3)通常将研究者想收集证据予以支持的假设称为备(选)择假设,记作Hα或H1。
(4)通常将研究者想收集证据予以反对的假设称为原假设,或零假设,用H0表示。
(5)能够作出拒绝原假设这一结论的所有可能样本取值范围,称为拒绝域。
(6)根据样本数据计算出来的,并据以对原假设和备择假设作出决策的某种统计量,称为检验统计量。
(7)当原假设为真时拒绝原假设,称所犯错误为第一类错误,犯第一类错误的概率通常记为α。
(8)当原假设为假时没有拒绝原假设,称为所犯错误为第二类错误,犯第二类错误的概率通常记为β。
(9)假设检验中犯第一类错误的概率,称为显著性水平,通常用α表示。
二.确定检验类型:观察备择假设的符号:如果是“<”就是左侧检验(原假设的拒绝域在左边);如果是“>”就是右侧检验(原假设的拒绝域在右边);如果是“≠”就是双侧检验(原假设的拒绝域在两侧)。
三.常见数值:1. α=0.1(置信水平是90%)(1)左侧检验:Z=-1.28(2)右侧检验:Z=1.28(3)双侧检验(区间估计):Z=+1.645 Z=-1.6452. α=0.05(置信水平是95%)(1)左侧检验:Z=-1.645(2)右侧检验:Z=1.645(3)双侧检验(区间估计):Z=+1.96 Z=-1.963. α=0.01(置信水平是99%)(1)左侧检验:Z=-2.33(2)右侧检验:Z=2.33(3)双侧检验(区间估计):Z=+2.58 Z=-2.58四.计算时采用的分布:(1)均值检验:阅读题目,看看是大样本还是小样本(30)。
如果是大样本,就用标准正态分布分位数表;如果是小样本,再看总体方差是否已知,如果知道,仍然用标准正态分布分位数表;如果是小样本,而且总体方差还不知道,就用t分布临界值表。
统计学中的假设检验
统计学中的假设检验在统计学中,假设检验是一种重要的数据分析方法,用于确定一个统计推断是否支持或拒绝一个关于总体或总体参数的假设。
通过对样本数据进行分析,我们可以评估样本数据中的统计显著性,并作出关于总体的推断。
1. 假设检验的基本概念假设检验的基本思想是基于样本数据对总体特征做出推断。
通常,我们设置一个零假设(null hypothesis)H0,表示无效或无差异的假设,以及一个备择假设(alternative hypothesis)H1,表示有差异或有效的假设。
通过对样本数据进行分析,我们可以判断是否拒绝H0,并支持H1。
2. 假设检验的步骤(1)确定假设:明确零假设H0和备择假设H1。
(2)选择显著性水平:通常设定为0.05或0.01。
显著性水平表示我们拒绝H0的概率阈值,通常称为α。
(3)确定检验统计量:选择适当的统计量来检验H0和H1之间的差异。
(4)计算检验统计量:基于样本数据计算检验统计量的值。
(5)确定拒绝域:根据显著性水平,确定检验统计量的分布并确定拒绝域。
(6)做出结论:将计算得到的检验统计量与拒绝域进行比较,得出是否拒绝H0的结论。
3. 常见的假设检验方法(1)单样本假设检验:用于对一个总体的平均值或比例进行推断。
常用的方法有单样本t检验和单样本比例检验。
(2)两独立样本假设检验:用于比较两个独立样本的均值或比例是否有显著差异。
常用的方法有独立样本t检验和独立样本比例检验。
(3)配对样本假设检验:用于比较同一个样本在两个不同条件下的均值或比例是否有显著差异。
常用的方法有配对样本t检验和配对样本比例检验。
(4)方差分析:用于比较三个或三个以上样本的均值是否有显著差异。
常用的方法有单因素方差分析和多因素方差分析。
4. 结论的解释与结果分析当假设检验的结果显示拒绝了H0时,我们可以解释为拒绝了无效的假设,即我们对总体的推断得到了支持。
反之,如果结果不能拒绝H0,则无法得出对总体的有力推断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设检验
单个正态总体参数的检验
检验法
条件
原假设0H 备择假设1H
检验统计量
拒绝域
u 检验 2
σ已知
0μμ≤
0μμ> 0
x u n
μσ-=
1{}u u α-≥
0μμ≥ 0μμ< {}u u α≤ 0μμ= 0μμ≠ 1/2{||}u u α-≥ t 检验 2
σ未知
0μμ≤
0μμ> 0
x t s n
μ-=
1{(1)}t t n α-≥-
0μμ≥ 0μμ< {(1)}t t n α≤- 0μμ= 0μμ≠ 1/2{||(1)}t t n α-≥- 2
χ检验
μ未
知
220σσ≤
220σσ> 2
22
(1)n s
χσ
-=
221{(1)}n αχχ-≥-
220σσ≥
220σσ<
22
{(1)}n αχχ≤-
220σσ= 220σσ≠
2
22
{(1)}
n αχχ≤-
2
221{(1)}n αχχ-≥-U
5 两个正态总体参数的假设检验
设1
x 、2
x 、…、m
x 是来自2
1
1
(,)N μσ的样本,1y 、2
y 、…、
n
y 是来自22
2
(,)N μσ的样本,记2
)1()1(2
22-+-+-=
n m s n s m s
y
x w
.
两个正态总体参数的检验
检验
法
条件
原假设
0H
备择假设
1H
检验统计量 拒绝域
u 检验
21σ、22
σ
已知
12μμ≤
12μμ> 221
2
()
x y u m
n
σ
σ
-=
+
1{}u u α-≥
12μμ≥ 12μμ< {}u u α≤ 12μμ=
12μμ≠ 1/2{||}u u α-≥ t 检验
22
12σσ=12μμ≤
12μμ>
()
11w x y t s m n
-=
+
1{(2)}t t m n α-≥+-
未知
12μμ≥ 12μμ< {(2)}t t m n α≤+- 12μμ=
12μμ≠
1/2{||(2)}t t m n α-≥+- F
检
验 1
μ、
2
μ未知
22
12
σσ≤ 22
12σσ> 22x
y
s F s =
1{(1,1)}F F m n α-≥--
22
12σσ≥ 22
12
σσ< {(1,1)}F F m n α≤--
2212
σσ
=
2212
σσ
≠
2
{(1,1)}
F F m n α≤--
2
1{(1,1)}F F m n α-≥--U
正态总体参数假设检验例子
例1从甲地发送一个讯号到乙地。
设乙地接受到的讯号值服从正态分布
2(,0.2)N μ,其中μ为甲地发送的真实讯号值。
现甲地重复发送同一讯号5次,
8.05 8.15 8.2 8.1 8.25
0.05α=。
分析:(1)单正态总体;
(2)总体方差已知22=0.2σ; (3)参数μ的双边检验问题。
解:依题意建立假设:
0:8H μ=vs 1:8H μ≠
检验水平0.05α=时,拒绝域为:
1/20.975{||}={||}{|| 1.96}u u u u u α-≥≥=≥
用观测值可计算得
8.15x =、0
058)0.2 1.6771x u n
σ=
=-= 从而0||=1.6771<1.96u 值未落入拒绝域内,故不能拒绝原假设,即接受原假设,可认为猜测成立。
例2某厂生产的某种铝材的长度服从正态分布,其均值设定为240厘米。
239.7 239.6 239 240 239.2
分析:(1)单正态总体; (2)总体方差未知;
(3)参数μ的双边检验问题。
解:依题意建立假设:
0:240H μ=vs 1:240H μ≠
检验水平0.05α=时,拒绝域为:
1/20.975{||(1)}{||(4)}{|| 2.776)}t t n t t t α-≥-=≥=≥
由样本计算得到:
239.5x =、0.4s = 故005(239.5240)
2.7951x t s
n
-=
=
=-
由于0||=t 2.7951 2.776>,故拒绝原假设,即认为该厂生产的铝材的长度不满足设定要求。
例3某厂铸造车间为提高铸件的耐磨性而试制了一种镍合金铸件以取代铜合金铸件,为此,从两种铸件中各抽取一个容量分别为8和9的样本,测得其镍合金 76.43 76.21 73.58 69.69 65.29 70.83 82.75 72.34 铜合金 73.66 64.27 69.34 71.37 69.77 68.12 67.27 68.07 62.61 断镍合金的硬度是否有明显提高。
分析:(1)双正态总体;
(2)总体方差未知,但是2212σσ=;
(3)参数12,μμ比较的单边检验问题。
解:用X 表示镍合金的硬度,Y 表示铜合金的硬度,
依题意有21~(,)X N μσ、22~(,)Y N μσ,建立假设:
012:H μμ≤vs 112
:H μμ>
检验统计量11w x y
t s m n
=
⋅+
检验水平0.05α=时,拒绝域为:
10.95{(2)}={(892)}={ 1.7531}t t m n t t t α-≥+-≥+-≥
经计算得:
73.39x =、68.2756y =、82
1
()205.7958i i x x =-=∑、9
21
()91.1552i i y y =-=∑
从而1
(205.795891.1552) 4.4494892
w s =
+=+-
0 2.365611
4.449498
t =
=⋅+
由于00.952.3656(15)=1.7531t t =>
故拒绝原假设,可判断镍合金硬度有显著提高。
例4某类钢板每块的重量X 服从正态分布,其一项质量指标是钢板重量的方差不得超过20.016()kg 。
现从某天生产的钢板中随机抽取25块,得其样本方差220.025()s kg =,问该天生产的钢板重量的方差是否满足要求。
分析:(1)单正态总体; (2)总体均值未知;
(3)参数2σ的单边检验问题。
解:依题意建立假设:
20:0.016H σ≤vs 21:0.016H σ>,
检验水平0.05α=时,拒绝域为:
222210.95{(1)}={(24)}={36.415}n t αχχχχ-≥-≥≥
计算可得:
2
20
20
(1)240.025
37.536.4150.016
n s χσ-⨯=
=
=>
由此,在显著性水平0.05下,我们拒绝原假设,认为该天生产的钢板重量不符合要求。
例5甲、乙两台机床加工某种零件,零件的直径服从正态分布,总体方差反映了加工精度,为比较两台机床的加工精度有无差别,现从各自加工的零件X (机床甲) 16.2 16.4 15.8 15.5 16.7 15.6 15.8
Y (机床乙) 15.9 16.0 16.4 16.1 16.5 15.8 15.7 15.0 分析:(1)双正态总体;
(2)总体均值12,μμ均未知; (3)参数21σ,2
2σ比较的双边检验问题。
解:依题意建立假设:
22012:H σσ=vs 22
112:H σσ≠,
检验水平0.05α=时,拒绝域为:
12
2
{(1,1)}{(1,1)}F F m n F F m n αα-≥--≤--U
0.9750.025{(71,81)}{(71,81)}
F F F F =≥--≤--U
{ 5.12}{0.175}F F =≥≤U
经计算得20.2729x s =、20.2164y s =
于是2020.2729
1.2610.2164
x y s F s ===
样本未落入拒绝域,即在0.05水平下可以认为两台机床的加工精度一致。