假设检验例题与习题40页
假设检验习题及答案
第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
{}0100001:1000, H :1000X u=950 100 n=25 1000950-1000u= 2.510025 V=u 0.05H nx u αμμμσσμα-≥<-====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为01011020: 3.25 H :t X t=13.252, S=0.0117, n=53.252-3.25t= 0.34190.011751H S n x μμμμσμ==≠--==-提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴ 本题中,接受认为这批矿砂的镍含量为。
3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}00.95()10.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t S n X n ασμα--==-==1-构造统计量:本文中未知,可用检验。
概率统计第八章假设检验参考答案
概率论与数理统计作业班级 姓名 学号 任课教师第八章 假设检验教学要求:一、理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误;二、了解一个正态总体均值与方差的假设检验,了解两个正态总体均值差与方差比的假设检验;三、了解总体分布假设的2χ检验法,会应用该方法进行分布拟合优度检验(选学).重点:假设检验的基本思想、假设检验的基本步骤、单个正态总体均值和方差的假设检验. 难点:正态总体均值和方差的假设检验.一、基本计算题1.某灯泡厂生产一种节能灯泡,其使用寿命(单位:小时)长期以来服从正态分布)(2150,1600N .现从一批灯泡中随意抽取25只,测得它们的平均寿命为1636小时.假定灯泡寿命的标准差稳定不变,问这批灯泡的平均寿命是否等于1600小时(取显著性水平05.0=α)?解:(1) 依题意,检验假设1600:00==μμH ,(1600:01=≠μμH ); (2) 由于标准差σ已知,在0H 成立时,采用U 检验法.选择统计量:nX U σμ0-=~()1,0N(3) 对于给定的显著性水平05.0=α,当25=n 时,查正态分布表得临界点96.1025.02==z z α(4)由25=n ,,1636=x ,150=σ,计算统计值:2.125150160016360=-=-=nx u σμ(5) 由于96.12.1025.02==<=z z u α落在拒绝域⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥-==20ασμz n x u W之外,所以在显著性水平05.0=α下,接受1600:0=μH .即认为这批灯泡的平均寿命等于1600.2.正常人的脉搏平均为72(次/min ),检查10例四乙基铅中毒患者,测的他们的脉搏(次/min )为: 54 67 68 78 70 66 67 70 65 69已知脉搏服从正态分布,在显著性水平05.0=α下,问四乙基铅中毒患者与正常人的脉搏有无显著差异?解:(1) 依题意,检验假设72:00==μμH ,(72:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,采用T 检验法.选择统计量:nS X T 0μ-=~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α,(4) 由10=n ,,4.67=x ,9292.5=s 计算统计值:4534.2109292.5724.670=-=-=n s x t μ (5) 由于>=4534.2t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域 :)}1(/{2-≥-==n t ns x t W αμ之内,故拒绝72:00==μμH ,即四乙基铅中毒患者与正常人的脉搏有显著差异.3.某食品厂生产一种食品罐头,每罐食品的标准重量为500克.今从刚生产的一批罐头中随机抽取10罐,称得其重量为(单位:克)495 510 505 498 503 492 502 512 497 506假定罐头重量服从正态分布,问这批罐头的平均重量是否合乎标准(取05.0=α)?解:(1) 依题意,检验假设500:00==μμH ,(500:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,T 检验法.选择统计量:nS X T 0μ-=~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α,(4) 由10=n ,,502101101==∑=i ix x ,∑==--=1012225.6)(1101i i x x s ,计算统计值: 9730.0105.65005020=-=-=n s x t μ (5) 由于<=9730.0t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域 :)}1(/{2-≥-==n t ns x t W αμ之外,故接受500:00==μμH ,即认为这批罐头的平均重量合乎标准.4.在10块田地上同时试种,A B 两种谷物,根据亩产量(单位:kg )算得30.97A x =,79.21=B y ,26.7As =,21.1B s =.问这两种谷物的平均亩产量有无显著差异(05.0=α)? 假定两种谷物的亩产量都服从正态分布,且方差相等.解:(1)设A X ~()211,σμN ,BY~()222,σμN,依题意,检验假设210:μμ=H,(211:μμ≠H );(2)由于2221,σσ未知但2221σσ=,在0H 成立时,选择统计量:2111n n S Y X T w+-=~()221-+n n t其中 ()()2112122212-+-+-=n n S n S n S BA w;(3) 对于给定的显著性水平05.0=α,当1021==n n 时,查t 分布表得临界点()1009.2)18(2025.0212==-+t n n t α,(4)由1021==n n , 97.30=x ,7.26=A s ,79.21=B y ,1.21=B s 计算统计值:8465.01011010635.2479.2197.301121=+-=+-=n n s y x t wB A其中 ()()05.5792112122212=-+-+-=n n s n s n s BA w,0635.24=w s ;(5)由于<=8465.0t ()1009.2)18(2025.0212==-+t n n t α,t 没有落在接受域中,故应接受210:μμ=H ,即这两种谷物的平均亩产没有明显差异.5.按两种不同配方生产橡胶,测的伸长率(%)如下:配方Ⅰ: 540 533 525 520 544 531 536 529 534配方Ⅱ: 565 577 580 575 556 542 560 532 570 561 设橡胶伸长率服从正态分布,检验按两种配方生产的橡胶伸长率的方差是否相同(取05.0=α)?解:(1) 设Y X ,分别表示配方Ⅰ、配方Ⅱ的总体,则X ~()211,σμN,Y ~()222,σμN . 依题意,检验假设22210:σσ=H ,22211:σσ≠H ;(2)在0H 成立时,选择统计量:222122212221S S S S F ==σσ~()1,121--n n F (3)对于给定的显著性水平05.0=α,当10,921==n n 时,查F 分布的双侧临界值: ()()10.49,82,1025.0212==--F n n F α,()()()2294.036.418,919,81,1025.0975.02121≈===---F F n n Fα (4) 由于4444.5329191==∑=i i x x ,()778.5319129121=--=∑=i i x x s ,8.561101101∑-==i i y y ,()8444.2381101101222∑==--=i i y y s ;得统计值:2271.08444.2367778.532221≈==s s F(5) 由于()2294.09,82271.0975.0=<≈F F .则F 落在拒绝域中,故应拒绝22210:σσ=H (或接受22211:σσ≠H )。
最新假设检验习题及答案
第三章假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
0101:1000, H :1000Xu=950 100 n=251000950-1000 u= 2.510025 V=u 0.05H nxu 提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u0.0u H 即,拒绝原假设认为在置信水平5下这批元件不合格。
3.4某批矿砂的五个样品中镍含量经测定为(%):3.25 3.27 3.24 3.26 3.24 设测定值服从正态分布,问在0.01下能否接受假设,这批矿砂的镍含量为011102:3.25 H :t X t=13.252, S=0.0117, n=53.252-3.25 t= 0.34190.011751H Sn x提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t(1)0.01,(4)4.6041, 3.25n t ttH Q 本题中,接受认为这批矿砂的镍含量为。
3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,XS 2N(,),设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii 00.95()10.452% S=0.035%-4.1143(1)0.05 n=10t (9) 1.833i t Sn Xn 1-构造统计量:本文中未知,可用检验。
取检验统计量为X t=本题中,代入上式得:0.452%-0.5% t=0.035%10-1拒绝域为: V=t >t 本题中,14.1143H t拒绝2220222212210.952()nSS 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919ii n n Q2构造统计量:未知,可选择统计量本题中,代入上式得:()()否定域为:本题中,21(1)n H 接受3.9设总体116(,4),,,X N X X :K 为样本,考虑如下检验问题:01123:0 H :1() =0.05V ={2X -1.645} V = 1.502X2.125V =2X1.962X1.96(ii) H i 试证下述三个检验(否定域)犯第一类错误的概率同为或通过计算他们犯第二类错误的概率,说明哪个检验最好?解:0.97512012()0.050.05:02*1.960.052 1.6452 1.645 1.645( 1.645)1(1.645)=1-0.95=0.05V 1.502 2.i P x V H X UU H X V XX P X PnX 即,P U 这里P 203301110125 1.50 2.120(2.215)(1.50)0.980.930.052 1.962 1.962 1.961.96P(V H )=1-P 2 1.962(1(1.96))0.05ii :2 1.645XnP V H X V XXX nX H V X或()犯第二类错误的概率=P -V =P 1223310.3551(0.355)0.36:1 1.502 2.125114.125:2 1.96110.04 3.96nV P XnV P X n X =PX =1-P 3.50=1-(4.125)+(3.50)=1X =P11 =(3.96)-(0.04)=0.99996092-0.516=0.48396092V 出现第二类错误的概率最小,即V 最好。
假设检验习题及答案
假设检验习题及答案第8章假设检验一、填空题1、对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。
2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。
3、设总体),(N ~X 2σμ,样本n 21X ,X ,X Λ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0--<-n t nS X αμ,其中显著性水平为α。
4、设n 21X ,X ,X Λ是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记∑==n 1i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Q n n X )1(- .二、计算题1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?解:设重量),(~2σμN X 05.016==αn 4252==S X(1)检验假设250:0=μH 250:1≠μH ,因为2σ未知,在0H 成立下,)15(~/250t n S X T -=拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t由样本值算得1315.22<=T ,故接受0H(2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量2022)1(σS n x -= 在0H 成立条件下,2x 服从)15(2x 分布,拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x ,现算得966.24667.26916152>=?=x ?拒绝0H ,综合(1)和(2)得,以为机器工作不正常2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25 件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=σ小时正态分布,试在显著性水平0.05下确定这批产品是否合格.解:设元件寿命),(~2σμN X ,2σ已知10002=σ,05.0,950,25===αX n检验假设1000:0=μH 1000:1<μH在2σ已知条件下,设统计量)1,0(~/1000N n X σμ-=拒绝域为}{05.0μμ<,查表得645.195.005.0-=-=μμ 而645.15.2205025/1001000950-<-=-=-=μ 拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.3. 对显著水平 a ,检验假设 H 0 ; m = m 0,H 1 ; m ≠ m 0,问当 m 0, m , a一定时,增大样本量 n 必能使犯第二类错误概率 b 减少对吗?并说明理由。
教育统计学第五章 假设检验
Exercise
第五章 假设检验
一、假设检验的一般步骤 二、单侧检验与双侧检验 三、两类错误 四、关于样本平均数差异的显著性检验
(两个样本的“t”检验) 五、相关系数的显著性检验 六、方差差异的显著性检验
精品文档
假设检验的一般步骤
(1)建立虚无假设和备择假设 双侧检验为:H0:µ=µ0 H1:µ‡µ0 单侧检验为:H0:µ<=µ0 或 H0:µ>=µ0 H1:µ>µ0 或 H1:µ<µ0 (2)寻找合适的统计量及其抽样分布,并计算统计量的
得Z a 。
精品文档
单侧检验的例子
有人调查早期教育对儿童智力发展的影响,从受过良 好早期教育的儿童中随机抽取70人进行韦氏儿童智力 测验(µ0=100, Ô 0=15),结果平均数为103.3,能否 认为受过良好早期教育的儿童智力高于一般水平?
Z1.84;SE1.793
精品文档
两类错误
H0为真
某心理学家认为一般司机的视反应时平均175毫秒 ,有人随机抽取36名汽车司机作为研究样本进行了 测定,结果平均值为180毫秒,标准差25毫秒.能否根 据测试结果否定该心理学家的结论.(假定人的视 反应时符合正态分布)
精品文档
X
总体平均数的假设检验例题3
某省进行数学竞赛,结果分数的分布不是正态, 总平均分43.5.其中某县参加竞赛的学生168 人,平均分45.1,标准差18.7,该县平均分与全省 平均分有否显著差异?
完整版假设检验习题及答案
第二章假设检验3.2 —种元件,要求其使用寿命不低于1000 (小时),现在从一批这种元件中随机 抽取25件,测得其寿命平均值为950 (小时)。
已知这种元件寿命服从标准差100(小时)的正态分布,试在显著水平 0.05下确定这批元件是否合格。
提出假设:H 0: 1000, H 1: 1000构造统计量:此问题情形属于u 检验,故用统计量:V= u U 1本题中:0.05 u 0.95 1.64即, u u 0.95拒绝原假设H 0认为在置信水平0.05下这批元件不合格。
3.4某批矿砂的五个样品中镍含量经测定为(%):3.25 3.27 3.24 3.26 3.24 设测定值服从正态分布,问在 0.01下能否接受假设,这批矿砂的镍含量为提出假设: H° :13.25 H 1 :1 0构造统计量:本题属于 2未知的情形,可用t 检验,即取检验统计量为:t=—S .n 1本题中,x 3.252, S=0.0117, n=5代入上式得:t =3.252-3.25 0.0117 .5 1否定域为:V= t>^_(n 1)2本题中, 0.01,t 0.995(4) 4.6041Qt t12接受H 0,认为这批矿砂的镍含量为 3.25。
Xu=—— 00 此题中:x 950 代入上式得:950-1000 u= 2.5 100 25拒绝域:0 100 n=25 0 10000.34193.5确定某种溶液中的水分,它的10个测定值X 0.452%, S 0.035%,0.452%-0.5% t= -4.1143 0.035%拒绝域为: V 二t >t i. (n 1)本题中, 0.05 n=10t °.95(9)1.8331 t 4.1143拒绝H 0 (ii)构造统计量: 未知,可选择统计量2nS 22"本题中,S 0.035% n=100.04%代入上式得:否定域为:接受H 。
4-第8章假设检验练习题统计学
4-第8章假设检验练习题统计学第⼋章假设检验练习题⼀、填空1、在做假设检验时容易犯的两类错误是和2、如果提出的原假设是总体参数等于某⼀数值,这种假设检验称为,若提出的原假设是总体参数⼤于或⼩于某⼀数值,这种假设检验称为3、假设检验有两类错误,分别是也叫第⼀类错误,它是指原假设H0是的,却由于样本缘故做出了H0的错误;和叫第⼆类错误,它是指原假设H0是的, 却由于样本缘故做出H0的错误。
4、在统计假设检验中,控制犯第⼀类错误的概率不超过某个规定值α,则α称为。
5、假设检验的统计思想是⼩概率事件在⼀次试验中可以认为基本上是不会发⽣的,该原理称为。
6、从⼀批零件中抽取100个测其直径,测得平均直径为5.2cm,标准差为1.6cm,在显著性⽔平α=0.05下,这批零件的直径是否服从标准直径5cm?(是,否)7、有⼀批电⼦零件,质量检查员必须判断是否合格,假设此电⼦零件的使⽤时间⼤于或等于1000,则为合格,⼩于1000⼩时,则为不合格,那么可以提出的假设为。
(⽤H0,H1表⽰)8、⼀般在样本的容量被确定后,犯第⼀类错误的概率为α,犯第⼆类错误的概率为β,若减少α,则β9、某⼚家想要调查职⼯的⼯作效率,⼯⼚预计的⼯作效率为⾄少制作零件20个/⼩时,随机抽样36位职⼯进⾏调查,得到样本均值为19,样本标准差为6,试在显著⽔平为0.05的要求下,问该⼯⼚的职⼯的⼯作效率(有,没有)达到该标准。
10、刚到⼀批货物,质量检验员必须决定是否接受这批货物,如不符合要求,将退还给货物供应商,假定合同规定的货物单件尺⼨为6,请据此建⽴原假设_ _ 和备择假设。
σ已知,应采⽤统计量检验总体均值。
11、总体为正态总体,且2σ未知,应采⽤统计量检验总体均值。
12、总体为正态总体,且2⼆、选择1、假设检验中,犯了原假设H0实际是不真实的,却由于样本的缘故⽽做出的接受H 0的错误,此类错误是()A 、α类错误B 、第⼀类错误C 、取伪错误D 、弃真错误2、⼀种零件的标准长度5cm ,要检验某天⽣产的零件是否符合标准要求,建⽴的原假设和备选假设就为()A 、0:5H µ=,1:5H µ≠ B 、0:5H µ≠,1:5H µ> C 、0:5H µ≤,1:5H µ> D 、0:5H µ≥,1:5H µ<3、⼀个95%的置信区间是指()A 、总体参数有95%的概率落在这⼀区间内B 、总体参数有5%的概率未落在这⼀区间内C 、在⽤同样⽅法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在⽤同样⽅法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增⼤样本容量,则犯两类错误的概率()A 、都增⼤B 、都减⼩C 、都不变D 、⼀个增⼤⼀个减⼩5、⼀家汽车⽣产企业在⼴告中宣称“该公司的汽车可以保证在2年或24000公⾥内⽆事故”,但该汽车的⼀个经销商认为保证“2年”这⼀项是不必要的,因为汽车车主在2年内⾏驶的平均⾥程超过24000公⾥。
假设检验习题及答案
第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为0101102: 3.25 H :t 3.252, S=0.0117, n=5 0.3419H x μμμμσ==≠==提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴本题中,接受认为这批矿砂的镍含量为。
3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}0.95()0.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t X n ασα==-==1-构造统计量:本文中未知,可用检验。
取检验统计量为X 本题中,代入上式得: 0.452%-0.5%拒绝域为:V=t >t 本题中,01 4.1143H <=∴t 拒绝{}22200222212210.952()nS S 0.035% n=10 0.04%100.035%7.65630.04% V=(1)(1)(9)16.919ii n n ααμχσσχχχχχχ--===*==>--==2构造统计量:未知,可选择统计量本题中,代入上式得:()()否定域为:本题中, 210(1)n H αχ-<-∴接受3.9设总体116(,4),,,XN X X μ为样本,考虑如下检验问题:{}{}01123:0 H :1() =0.05 V ={2X -1.645}V = 1.502X 2.125V =2X 1.962X 1.96(ii)H i μμα==-≤≤≤≤-≥试证下述三个检验(否定域)犯第一类错误的概率同为或通过计算他们犯第二类错误的概率,说明哪个检验最好?解:{}{}{}{}00.97512012()0.050.05:02*1.960.052 1.64502 1.645 1.645( 1.645)1(1.645)=1-0.95=0.05V 1.502 2.i P x V H X U U H X V X X P X P X ααμσμσ-=∈=⎧⎫-⎪⎪=>==⎨⎬⎪⎪⎩⎭=∴>==≤-⎧⎫⎪⎪-⎪⎪≤-=≤-=Φ-=-Φ⎨⎬⎪⎪⎪⎪⎩⎭=≤≤即,P U 这里P {}{}{}{}{}{}203301110125 1.50 2.120(2.215)(1.50)0.980.930.052 1.962 1.962 1.96 1.96P(V H )=1-P 2 1.962(1(1.96))0.05ii :2 1.645X P V H V X X X X H V X σββ⎧⎫⎪⎪-⎪⎪=≤≤⎨⎬⎪⎪⎪⎪⎩⎭=Φ-Φ=-=⎫⎪⎪=≤-≥=≥=≥⎬⎪⎪⎭<=-Φ=X ≥-或()犯第二类错误的概率 =P -V =P {}1μ=-{}{}223310.3551(0.355)0.36:1 1.502 2.12511 4.125:2 1.96110.04 3.96V P X V P X σβμσβμσ⎧⎫⎪⎪+⎪⎪≥=-Φ=⎨⎬⎪⎪⎪⎪⎩⎭=-≤≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎪⎩⎭ΦΦ=≤=-⎧⎫⎪⎪+⎪⎪≤≤⎨⎬⎪⎪⎪⎩⎭X =P X =1-P 3.50 =1-(4.125)+(3.50) =1X =P ⎪ΦΦ∴11 =(3.96)-(0.04)=0.99996092-0.516=0.48396092V 出现第二类错误的概率最小,即V 最好。
假设检验习题及答案.doc
_950-1000 _100/V25 = —2.50.3419第三章假设检验3.2 一种元件,要求其使用寿命不低于1000 (小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950 (小时)。
已知这种元件寿命服从标准差6 = 100(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
提出假设:H o-.ju> 1000, H]:〃<1000构造统计量:此问题情形属于u检验,故用统计量:u=^ —此题中= 950 cr0 =100 n=25 用=1000代入上式得:拒绝域:V={|u| > "胡本题中:a = 0.05 u 0 95 = 1.64即,|u|>"°.95拒绝原假设%认为在置信水平0.05下这批元件不合格。
3.4某批矿砂的五个样品中镣含量经测定为(%):3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在a = 0.01下能否接受假设,这批矿砂的镣含量为提出假设:气:〃]=为=3.25构造统计量:本题属于W未知的情形,可用t检验,即取检验统计量为:t= X")本题中二= 3.252, S=0.0117, n=5代入上式得:_ 3.252-3.25—0.0117/7^1否定域为:V=< t>t >本题中,a = 0.01 角.995(4) = 4.6041••• V «1--2接受丑0,认为这批矿砂的镣含量为3.25。
0.035%,= -4.114310*(0.035% 尸=7.6563 否定域v={z 2>zL(»-i)}本题中,%”1)=就5 ⑼= 16.919接受也3.9设总体X N(〃,4),X I ,...,X]6为样本,考虑如下检验问题:3.5确定某种溶液中的水分,它的10个测定值X = 0.452%,S设总体为正态分布试在水平5%检验假设:(z)H 。
假设检验例题.
总体均值的检验(σ2未知(例题分析
【例】某一小麦品种的平均产量为5200kg/hm2。一家研究机构对小麦品种进行了改良以期提高产量。为检验改良后的新品种产量是否有显著提高,随机抽取了36个地块进行试种,得到的样本平均产量为5275kg/hm2,标准差为120/hm2。试检验改良后的新品种产量是否有显著提高? (α=0.05
假设检验
总体均值的检验(σ2已知(例题分析
【例】一种罐装饮料采用自动生产线生产,每罐的容量是255ml ,标准差为5ml。为检验每罐容量是否符合要求,质检人员在某天生产的饮料中随机抽取了40罐进行检验,测得每罐平均容量为255.8ml。取显著性水平α=0.05 ,检验该天生产的饮料容量是否符合标准要求?
H 0 : π = 80% H 1 : π ≠ 80% α = 0.05 n = 200检验统计量:
H 0 : π = 80%
H 1 : π ≠ 80%
α = 0.01
n = 200
检验统计量:
7035. 0. 01289. 11-=-7035. 0. 01289. 11-=-=t决策:不拒绝H 0结论:该供货商提供的零件符合要求
475. 2200 80. 01(80. 0-=--475. 220080. 073. 0-=-=z 475. 2200 80. 01(80. 080. 0-=-⨯-475. 220080. 073. 0-=-=z决策:拒绝H 0 (P = 0.013328 < α = 0.05结论:该杂志的说法并不属实决策:拒绝H 0 (P = 0.013328 < α = 0.05结论:该杂志的说法并不属实
H 0 :μ≤ 5200
H 1 :μ > 5200
α = 0.05 n = 36临界值(c :检验统计量:决策:
假设检验例题与习题40页PPT
8 -6
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
某灯泡制造商声称,该企业所生产的灯泡 的平均使用寿命在1000小时以上。如果 你准备进一批货,怎样进行检验
▪ 检验权在销售商一方
▪ 作为销售商,你总是想收集证据证明生产商 的说法(寿命在1000小时以上)是不是正确的
统计学 假设检验在统计方法中的地位
(第二版)
统计方法
描述统计
பைடு நூலகம்推断统计
参数估计
假设检验
8 -1
统计学
(第二版)
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 对实际问题作假设检验 4. 利用置信区间进行假设检验 5. 利用P - 值进行假设检验
8 -2
统计学
(第二版)
双侧检验
H0: 1500 H1: 1500
8 -5
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
一项研究表明,改进生产工艺后,会使 产品的废品率降低到2%以下。检验这一 结论是否成立
研究者总是想证明自己的研究结论(废品率 降低)是正确的
备择假设的方向为“<”(废品率降低) 建立的原假设与备择假设应为
3. 先确立备择假设H1
8 -4
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
一项研究表明,采用新技术生产后,将 会使产品的使用寿命明显延长到1500小 时以上。检验这一结论是否成立
研究者总是想证明自己的研究结论(寿命延 长)是正确的
备择假设的方向为“>”(寿命延长) 建立的原假设与备择假设应为
假设检验练习题 -答案
假设检验练习题1. 简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设(通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。
根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1:W为双边H1:W为单边H1:W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。
例如:对于=0.05有的双边W为的右单边W为的右单边W为第五步根据样本观测值,计算和判断计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝,否则接受(计算P值227页p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1.计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝,否则接受2.计算P值227页p值由统计软件直接得出时拒绝,否则接受3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么?答:连续型(测量的数据):单样本t检验-----比较目标均值双样本t检验-----比较两个均值方差分析-----比较两个以上均值等方差检验-----比较多个方差离散型(区分或数的数据):卡方检验-----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。
第九章 假设检验习题
第九章 假设检验习题一、填空题1.假设检验的统计思想是概率很小的事件在一次试验中可以认为基本上是不会发生的,该原理称为 。
2.在作假设检验时容易犯的两类错误是3. 设n X X X ,,,21 是来自总体),(~2σμN X 的样本,样本均值为X ,(无偏)样本方差为2S ,要检验假设.:;:20212020σσσσ≠=H H 则要用检验统计量为 ,给定显著性水平α,则检验的拒绝域为4.设两正态总体),(~211σμN X 和),(~222σμN Y 有两组相互独立的样本n n Y Y Y X X X ,,,,,,2121 及,均值为Y X ,,(无偏)样本方差为2221,S S 。
21μμ及未知,要对2221σσ=作检验假设,统计假设为.:;:20212020σσσσ≠=H H 则要用检验统计量为 ,给定显著性水平α,则检验的拒绝域为 。
二、选择题1.假设检验中,显著水平α表示( )(A )0H 为假,但接受0H 的假设的概率;(B )0H 为真,但拒绝0H 的假设的概率;(C )0H 为假,但拒绝0H 的假设的概率;(D )可信度2.假设检验时,若增大样本容量,则犯两类错误的概率( )(A )都增大 (B )都减少 (C )都不变 (D )一个增大一个减少3. 设n X X X ,,,21 是来自总体),(~2σμN X 的一个样本,设∑==ni i X n X 11 212)(1∑=-=n i i X X n S ,其中参数σμ和未知 ,则下面结论正确的是( )(A ) 若提出假设检验00:μμ=H ,则选用统计量nSX 0μ-; (B ) 若提出假设检验00:μμ=H ,则选用统计量n S X 0μ-(C ) 若提出假设检验00:μμ=H ,则选用统计量10--n SX μ; (D ) 若提出假设检验00:μμ=H ,则选用统计量10--n S X μ4. 某工厂所生产的某种细纱支数服从正态分布200200,),,(σμσμN 为已知,现从某日生产的一批产品中,随机抽16缕进行支数测量,求得样本均值及方差为2,S X ,要检验纱的均匀度是否优劣,则提出假设( )(A );:;:010μμμμ≠=H H (B );:;:010μμμμ>=H H(C )20212020:;:σσσσ>=H H (D )20212020:;:σσσσ≠=H H 三、计算题1. 某种零件的尺寸方差为2σ=1.21,对一批这类零件检查6件得尺寸数据(毫米):32.56,29.66,31.64,30.00,21.87,31.03。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8-3
统计学
(第二版)
双侧检验
(原假设与备择假设的确定)
1. 属于决策中的假设检验
2. 不相应论的是行拒动绝措H施0还是不拒绝H0,都必需采取 3. 例如,某种零件的尺寸,要求其平均长度为
10cm,大于或小于10cm均属于不合格
我们想要证明(检验)大于或小于这两种可能性 中的任何一种是否成立
4. 建立的原假设与备择假设应为 H0: = 10 H1: 10
H0: 2% H1: < 2%
8-7
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
某灯泡制造商声称,该企业所生产的灯泡 的平均使用寿命在1000小时以上。如果 你准备进一批货,怎样进行检验
检验权在销售商一方
作为销售商,你总是想收集证据证明生产商 的说法(寿命在1000小时以上)是不是正确的
8 - 12
双侧检验
统计学
(第二版)
H0: = 0.081
H1: 0.081
= 0.05
n = 200
临界值(s):
拒绝 H0
拒绝 H0
.025
.025
-1.96 0 1.96 Z
8 - 13
检验统计量:
z=x0 =0.0760.08=12.83 n 0.025200
决策:
8-4
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
1. 将研究者想收集证据予以支持的假设作为备择 假设H1
例如,一个研究者总是想证明自己的研究结论是正 确的
一个销售商总是想正确供货商的说法是不正确的 备择假设的方向与想要证明其正确性的方向一致
2. 将研究者想收集证据证明其不正确的假设作为 原假设H0
3. 先确立备择假设H1
8-5
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
一项研究表明,采用新技术生产后,将 会使产品的使用寿命明显延长到1500小 时以上。检验这一结论是否成立
研究者总是想证明自己的研究结论(寿命延 长)是正确的
备择假设的方向为“>”(寿命延长) 建立的原假设与备择假设应为
有证据表明这批灯泡的使用 寿命有显著提高
统计学
(第二版)
【例】某电子元件批量生产的 质量标准为平均使用寿命1200 小时。某厂宣称他们采用一种 新工艺生产的元件质量大大超 过规定标准。为了进行验证, 随 机 抽 取 了 100 件 作 为 样 本 , 测得平均使用寿命1245小时, 标 准 差 300 小 时 。 能 否 说 该 厂 生产的电子元件质量显著地高 于规定标准? (=0.05)
统计学
(第二版)
第 7章
假设检验例题与习题
8-1
统计学 假设检验在统计方法中的地位
(第二版)
统计方法
描述统计
推断统计
参数估计
假设检验
8-2
统计学
(第二版)
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 对实际问题作假设检验 4. 利用置信区间进行假设检验 5. 利用P - 值进行假设检验
结论:
不能认为该厂生产的元件寿命 显著地高于1200小时
统计学
(第二版)
【例】某机器制造出的肥
备择假设的方向为“<”(寿命不足1000小 时)
建立的原假设与备择假设应为
8-8
H0: 1000 H1: < 1000
统计学
(第二版)
一个正态总体参数的检验
一. 检验统计量的确定 二. 总体均值的检验 三. 总体比例的检验 四. 总体方差的检验
8-9
统计学
(第二版)
一个总体参数的检验
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
统计学
(第二版)
2 已知均值的检验
(P 值的计算与应用)
第1步:进入Excel表格界面,选择“插入”下拉菜 单
第2步:选择“函数”点击
第3步:在函数分类中点击“统计”,在函数名的 菜
单下选择字符“NORMSDIST”然后确定
H0: 1500 H1: 1500
8-6
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
一项研究表明,改进生产工艺后,会使 产品的废品率降低到2%以下。检验这一 结论是否成立
研究者总是想证明自己的研究结论(废品率 降低)是正确的
备择假设的方向为“<”(废品率降低) 建立的原假设与备择假设应为
8 - 17
单侧检验
统计学
(第二版)
H0: 1200 H1: >1200 = 0.05 n = 100 临界值(s):
拒绝域
0.05
8 - 18
0 1.645 Z
检验统计量:
z=x0 =1241520=10.5 n 300100
决策:
在 = 0.05的水平上不拒绝H0
一个总体
均值
比例
方差
Z 检验
t 检验
Z 检验
(单尾和双尾) (单尾和双尾) (单尾和双尾)
2检验
(单尾和双尾)
8 - 10
统计学
(第二版)
总体均值检验
8 - 11
统计学
(第二版)
【例】某机床厂加工一种零件,根 据经验知道,该厂加工零件的椭圆 度近似服从正态分布,其总体均值 为0=0.081mm,总体标准差为 = 0.025 。今换一种新机床进行加工, 抽取n=200个零件进行检验,得到的 椭圆度为0.076mm。试问新机床加 工零件的椭圆度的均值与以前有无 显著差异?(=0.05)
第4步:将Z的绝对值2.83录入,得到的函数值为
0.997672537
Байду номын сангаас
P值=2(1-0.997672537)=0.004654
8 - 14
P值远远小于2,故拒绝H0
统计学
(第二版)
【例】根据过去大量资料,
某厂生产的灯泡的使用寿命 服 从 正 态 分 布 N~(1020 , 1002)。现从最近生产的一批 产 品 中 随 机 抽 取 16 只 , 测 得 样 本 平 均 寿 命 为 1080 小 时 。 试 在 0.05 的 显 著 性 水 平 下 判 断这批产品的使用寿命是否 有显著提高?(=0.05)
8 - 15
单侧检验
统计学
(第二版)
H0: 1020 H1: > 1020 = 0.05 n = 16 临界值(s):
拒绝域
0.05
8 - 16
0 1.645 Z
检验统计量:
z=x0 =108 1002=20.4 n 10014
决策:
在 = 0.05的水平上拒绝H0
结论: