假设检验例题讲解(20210110065140)
假设检验的习题及详解包括典型考研真题
§假设检验基本题型Ⅰ 有关检验统计量和两类错误的题型【例8.1】u 检验、t 检验都是关于 的假设检验.当 已知时,用u 检验;当 未知时,用t 检验.【分析】 由u 检验、t 检验的概念可知,u 检验、t 检验都是关于均值的假设检验,当方差2σ为已知时,用u 检验;当方差2σ为未知时,用t 检验. 【例8.2】设总体2(,)XN u σ,2,u σ未知,12,,,n x x x 是来自该总体的样本,记11ni i x x n ==∑,21()ni i Q x x ==-∑,则对假设检验0010::H u u H u u =↔≠使用的t 统计量t = (用,x Q 表示);其拒绝域w = . 【分析】2σ未知,对u 的检验使用t 检验,检验统计量为(1)x t t n ==-对双边检验0010::H u u H u u =↔≠,其拒绝域为2{||(1)}w t t n α=>-.【例8.3】设总体211(,)XN u σ,总体222(,)Y N u σ,其中2212,σσ未知,设112,,,n x x x 是来自总体X 的样本,212,,,n y y y 是来自总体Y 的样本,两样本独立,则对于假设检验012112::H u u H u u =↔≠,使用的统计量为 ,它服从的分布为 .【分析】记1111n i i x x n ==∑,2121n i i y y n ==∑,因两样本独立,故,x y 相互独立,从而在0H 成立下,()0E x y -=,221212()()()D x y D x D y n n σσ+=+=+,故构造检验统计量(0,1)x yu N =.【例8.4】设总体2(,)XN u σ,u 未知,12,,,n x x x 是来自该总体的样本,样本方差为2S ,对2201:16:16H H σσ≥↔<,其检验统计量为 ,拒绝域为 .【分析】u 未知,对2σ的检验使用2χ检验,又由题设知,假设为单边检验,故统计量为222(1)(1)16n S n χχ-=-,从而拒绝域为221{(1)}n αχχ-<-.【例8.5】某青工以往的记录是:平均每加工100个零件,由60个是一等品,今年考核他,在他加工零件中随机抽取100件,发现有70个是一等品,这个成绩是否说明该青工的技术水平有了显著性的提高(取0.05α=)?对此问题,假设检验问题应设为 【 】()A 01:0.6:0.6H p H p ≥↔<. ()B 01:0.6:0.6H p H p ≤↔>. ()C 01:0.6:0.6H p H p =↔≠. ()D 01:0.6:0.6H p H p ≠↔=.【分析】一般地,选取问题的对立事件为原假设.在本题中,需考察青工的技术水平是否有了显著性的提高,故选取原假设为0:0.6H p ≤,相应的,对立假设为1:0.6H p >,故选()B .【例8.6】某厂生产一种螺钉,标准要求长度是68mm ,实际生产的产品,其长度服从2(,3.6)N u ,考察假设检验问题01:68:68H u H u =↔≠.设x 为样本均值,按下列方式进行假设检验:当|68|1x ->时,拒绝原假设0H ;当|68|1x -≤时,接受原假设0H . (1)当样本容量36n =时,求犯第一类错误的概率α; (2)当样本容量64n =时,求犯第一类错误的概率α;(3)当0H 不成立时(设70u =),又64n =时,按上述检验法,求犯第二类错误的概率β. 【解】(1)当36n =时,223.6(,)(,0.6)36xN u N u =,000{|68|1|}{67|}{69|}P x H P x H P x H α=->=<+>成立成立成立67686968()[1()]( 1.67)[1(1.67)]0.60.6--=Φ+-Φ=Φ-+-Φ 2[1(1.67)]2[10.99575]0.095=-Φ=-=.(2)当64n =时,223.6(,)(,0.45)64xN u N u =000{|68|1|}{67|}{69|}P x H P x H P x H α=->=<+>成立成立成立67686968()[1()]0.450.45--=Φ+-Φ 2[1(2.22)]2[10.9868]0.0264=-Φ=-=.(3)当64n =,又70u =时,2(70,0.45)xN ,这时犯第二类错误的概率(70){|68|1|70}{6769|70}P x u P x u β=-≤==≤≤=69706770()()( 2.22)( 6.67)0.450.45--=Φ-Φ=Φ--Φ- (6.67)(2.22)10.98680.0132=Φ-Φ=-=.【评注】01(1)(2)的计算结果表明:当n 增大时,可减小犯第一类错误的概率α;02 当64n =,66u =时,同样可计算得到(66)0.0132β=.03 当64n =,68.5u =时,2(68.5,0.45)xN ,则(68.5){6769|68.5}P x u β=≤≤= 6968.56768.5()()(1.11)( 3.33)0.450.45--=Φ-Φ=Φ-Φ-0.8665[10.9995]0.8660=--=.这表明:当原假设0H 不成立时,参数真值越接近于原假设下的值时,β的值就越大. 【例8.7】设总体2(,)XN u σ,12,,,n x x x 是来自该总体的样本,对于检验01:0:0H u H u ≤↔>,取显著性水平α,拒绝域为:{}w u u α=>,其中u =,求:(1)当0H 成立时,求犯第一类错误的概率()u α; (2)当0H 不成立时,求犯第二类错误的概率()u β. 【解】(1)当0H 成立时,0u ≤,则(){|0}|0}u P u u u P u u ααα=>≤=>≤()|0}1()(0)P x u u u u u αα=->≤=-Φ≤因0u ≤,故()()1u u αααΦ≥Φ=-,从而()1()1(1)u u αααα≤-Φ=--=,即犯第一类错误的概率不大于α.(2)(){|0}()|0}u P u u u P x u u u ααβ=≤>=-≤>()(0)u u α=Φ>因0u >,故当u →+∞时,()0u β→,即u 与假设0H 偏离越大,犯第二类错误的概率越小;而当0u +→时,()1u βα→-,即当u 为正值且接近0时,犯第二类错误的概率接近1α-.基本题型Ⅱ 单个正态总体的假设检验【例8.8】某天开工时,需检验自动包装机工作是否正常,根据以往的经验,其包装的质量在正常情况下服从正态分布2(100,1.5)N (单位:kg ),先抽测了9包,其质量为: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5 问这天包装机工作是否正常?【分析】 关键是将这一问题转化为假设检验问题.因检验包装机工作是否正常,化为数学问题应为双边检验01:100:100H u H u =↔≠.【解】由题意,提出假设检验问题:01:100:100H u H u =↔≠, 选取检验统计量(0,1)x u N =当0.05α=时,0.02521.96u u α==,又20.04 1.96u u α==<=,即接受原假设0H ,认为包装机工作正常.【例8.9】已知某种元件的寿命服从正态分布,要求该元件的平均寿命不低于1000h ,现从这批元件中随机抽取25知,测得平均寿命980X h =,标准差65S h =,试在水平0.05α=下,确定这批元件是否合格.【解】由题意,2σ未知,在水平0.05α=下检验假设0010:1000:1000H u u H u u ==↔<=属于单边(左边)t 检验.构造检验统计量 (1)x t t n =-,其中25,65,980n S X h ===,查t 分布表可得:0.05(1)(251) 1.7109t n t α-=-=,又0.05|| 1.538(24) 1.7109x t t ===<=.即接受原假设0H ,认为这批元件是合格的.【例8.10】某厂生产的一中电池,其寿命长期以来服从方差225000()σ=小时的正态分布,现有一批这种电池,从生产的情况来看,寿命的波动性有所改变,现随机地抽取26只电池,测得寿命的样本方差229200()S =小时,问根据这一数据能否推断这批电池寿命的波动性较以往有显著性的变化(取0.02α=).【解】 检验假设2201:5000:5000H H σσ=↔≠,选取统计量2222(1)(1)n S n χχσ-=-,由0.02α=,26n =,查2χ分布表可得220.012(1)(25)44.314n αχχ-==,220.0912(1)(25)11.524n αχχ--==, 又统计量2220.012(1)46(25)44.314n S χχσ-==>=,故拒绝原假设0H ,即认为这批电池寿命的波动性较以往有显著性的变化.【例8.11】 某种导线,要求其电阻的标准不得超过0.005(欧姆),今在生产的一批导线中取样品9根,测得0.007S =(欧姆),设总体为正态分布,问在水平0.05α=下,能否认为这批导线的标准差显著性地偏大?【解】本题属于总体均值未知,正态总体方差的单边检验问题0010:0.005:0.005H H σσσσ==↔>=选取统计量2222(1)(1)n S n χχσ-=-当0.05α=,9n =时,查2χ分布表可得:220.05(1)(8)15.507n αχχ-==,又题设0.007S =,则统计量22220.0522(1)80.00715.68(8)15.5070.005n S χχσ-⨯===>=. 故拒绝原假设0H ,认为这批导线的标准差显著性地偏大.【例8.12】 机器自动包装食盐,设每袋盐的净重服从正态分布,规定每袋盐的标准重量为500克,标准差不超过10克.某天开工以后,为了检查机器工作是否正常,从已包装好的食盐中随机抽取9袋,测得其重量(克)为:497,507,510,475,484,488,524,491,515问这天自动包装机工作是否正常(显著性水平0.05α=)? 【解】 设每袋盐重量为随机变量X ,则2(,)XN u σ,为了检查机器是否工作正常,需检验假设:01:500H u =及202:100H σ≤.下面现检验假设0111:500:500H u H u =↔≠ 由于2σ未知,故构造统计量(1)x t t n =-由于0.05α=,查t 分布表可得0.0252(1)(8) 2.306t n t α-==,又由题设计算可得499,16.03X S ==,故统计量取值0.025||0.187(8) 2.306x t t ===<=即接受原假设01H ,认为机器包装食盐的均值为500克,没产生系统误差.下面在检验假设220212:100:100H H σσ≤↔>选取统计量2222(1)(1)n S n χχσ-=-,由于0.05α=,查2χ分布表可得220.05(1)(8)15.5n αχχ-==,而统计量2220.052(1)20.56(8)15.5n S χχσ-==>=,故拒绝原假设02H ,接受12H ,即认为其标准差超过了10克.由上可知,这天机器自动包装食盐,虽没有产生系统误差,但生产不够稳定(方差偏大),从而认为这天自动包装机工作不正常.基本题型Ⅲ 两个正态总体的假设检验【例8.13】 下表给出了两个文学家马克·吐温(Mark Twain )的8偏小品文以及斯诺·特格拉斯(Snodgrass )的10偏小品文中由3格字母组成的词比例.马克·吐温: 0.225,0.262,0.217,0.240,0.230,0.229,0.235,0.217斯诺·特格拉斯:0.209,0.205,0.196,0.210,0.202,0.207,0.224,0.223,0.220,0.201 设两组数据分别来自正态分布,且两总体方差相等,两样本相互独立,问两个作家所写的小品文中包含由3格字母组成的词的比例是否有显著性的差异(0.05α=)?【分析】首先应注意题中的“比例”即“均值”的含义,因而本题应属于未知方差,却知其相等的两正态母体,考虑它们的均值是否相等的问题.【解】设题中两正态母体分别记为,X Y ,其均值分别为12,u u ,因而检验问题如下:012112::H u u H u u =↔≠选取统计量(2)X Y T t n m =+-,其中8,10n m ==,()()22122112wn S m S Sn m -+-=+-,在0.05α=时,查t 分布表可得()()/20.025216 2.1199t n m t α+-==由题设样本数据计算可得22120.2319,0.2097,0.00021,0.00009X Y S S ====,0.119w S ===.从而t统计量值为()0.025|| 3.964316 2.1199X Y T t ===>=,因而拒绝原假设0H ,认为两个作家所写的小品文中包含由3格字母组成的词的比例有显著性的差异.【例8.14】据专家推测:矮个子的人比高个子的人的寿命要长一些,下面给出了美国31个自然死亡的总统的寿命.矮个子(身高小于5英尺8英寸)总统 Modison Van Buren B.Harrison J.Adams J.Q.Adams 身高 5’4” 5’6” 5’6” 5’7” 5’7” 寿命 85 79 67 90 80高个子(身高大于5英尺8英寸)总统 W.Harrison Plok Tayler Crant Hayes Truman Fillmore Pierce A.Johson 身高 5’8” 5’8” 5’8”5’8.5” 5’8.5” 5’9” 5’9” 5’10” 5’10” 寿命 68 53 65 63 70 88 74 64 66 总统 T.Roosevelt Coolidge Eisenhower Cleveland Wilson Hoover Monroe Tyler 身高 5’10” 5’10” 5’10” 5’11” 5’11” 5’11” 6’ 6’ 寿命 60 60 78 71 67 90 73 71 总统 Buchanan Taft Harding Jaskon Washington Arthur F.Roosevelt 身高 6’ 6’ 6’ 6’1” 6’2” 6’2” 6’2” 寿命77 72 57 78 67 56 63设两个寿命总体均为正态分布且方差相等,试问以上数据是否符合上述推测(0.05α=)? 【解】设矮个子总统寿命为X ,高个子总统寿命为Y ,需检验012112::H u u H u u =↔>.由于22212σσσ==未知,故选用统计量(2)X Y T t n m =+-,其中5,26n m ==,()()22122112wn S m S Sn m -+-=+-.由题设样本数据可得80.2,69.15,X Y ==22124294.8,252183.215S S ==,故()()221221185.4492wn S m S Sn m -+-==+-,从而统计量|| 2.448X Y T ==,又当0.05α=时,查t 分布表可得()()0.05229 1.6991t n m t α+-==,即()0.05|| 2.44829 1.6991T t =>=,故拒绝原假设0H ,即推测是正确的,认为矮个子的人比高个子的人的寿命要长一些 【例8.15】总体21(,)XN u σ,22(,)Y N u σ,112,,,n x x x 与212,,,n y y y 分别时来自总体,X Y 的样本,试讨论检验问题012112::H u u H u u δδ-≤↔->.【解】取统计量12(2)X Y T t n n =+-,其中()()221122212112wn S n S S n n -+-=+-, 则检验统计量为X Y T =,当1H 成立时,t 有偏大的趋势,故取拒绝域为12{(2)}w t t n n α=>+-.【例8.16】甲乙相邻地段各取了50块和25块岩心进行磁化率测定,算出两样本标准差分别是210.0139S =,220.0053S =,问甲乙两段的标准差是否有显著性差异(0.05α=)?【解】作假设001:H σσ=,由题设有250211501500.0139()0.01425014949i i S X X =⨯⨯-===-∑, 252221521520.0053()0.00545215151ii S Y Y =⨯⨯-===-∑ 从而统计量21112222(1)0.01422.630.0054(1)n S n F n S n -===-,当0.05α=,查F 分布表可得0.0252(501,521)(501,521) 1.7494F F α--=--=,0.97512(501,521)(501,521)0.5698FF α---=--=,因为0.0252.63(49,51) 1.7494F F =>=,故拒绝原假设0H ,即认为甲乙两段的标准差有显著性差异.【例8.17】在集中教育开课前对学员进行了测试,过来一段时间后,又对学员进行了与前一次同样程度的考查,目的是了解上次的学员与这次学员的考试分类是否有显著性差别(0.05α=),从上次与这次学员的考试中随机抽取12份考试成绩,如下表考试次数 考分 合计平均分 (1) 80.5,91.0,81.0,85.0,70.0,86.0,69.5,74.0,72.5,83.0,69.0,78.5940 78.5 (2)76.0,90.0,91.5,73.0,64.5,77.5,81.0,83.5,86.0,78.5,85.0,96080.073.5【解】此为双正态总体的假设检验,两总体均值未知,先检验假设2222012112::H H σσσσ=↔≠.选取统计量211222(1,1)S F F n n S =--,由题设可计算得221253.15,60.23S S ==,则统计量212253.150.882560.23S F S ===,取0.05α=,查F 分布表可得0.0252(11,11)(11,11) 3.43F F α==,0.97510.02521(11,11)(11,11)0.2915(11,11)FF F α-===.由于122(11,11)0.8825(11,11) 3.43FF F αα-<=<=,故在0.05α=下,接受0H ,即认为两次考试中学员的成绩的方差相等. 再假设012112::H u u H u u =↔≠.构造统计量12(2)X YT t n n =+-,其中()()221122212112wn S n S S n n -+-=+-,1212,12n n ==.由样本数据可得78.5,80.0,X Y ==221253.1515,60.2273S S ==,故()()2211222121156.68942wn S n S Sn n -+-==+-,从而统计量||0.488X Y T ==,在0.05α=下,查t 分布表可得()()120.0252222 2.0739t n n t α+-==.由于()0.025||0.48822 2.0739T t =<=,即认为两次考试中学员的平均成绩相等,从而认为两次考试中学员的成绩无显著性差异.基本题型Ⅳ 非正态总体参数假设检验【例8.18】某产品的次品率为0.17,现对此产品进行了新工艺试验,从中抽取400件检查,发现次品56间,能否认为这项新工艺显著性地影响产品质量(0.05α=)? 【解】检验问题01:0.17:0.17H p H p =↔≠由题设可知56ˆ0.14400m pn ===,构造统计量 1.597u ===-,当0.05α=时,查正态分布表可得0.025 1.96u =,因为0.025|| 1.96u u <=,故接受原假设0H ,认为新工艺显著性地影响产品质量.【评注】本题的理论依据时中心极限定理:当n 充分大时,在0H 成立时,u =(0,1)N 分布.【例8.19】 已知某种电子元件的使用寿命X 服从指数分布()E λ,现抽查100个元件,得样本均值950()x h =,能否认为参数0.01λ=(0.05α=)? 【解】由题设()XE λ,故211,EX DX λλ==,当n 充分大时,1((0,1)1x u x N λλ-==-,现在检验问题01:0.001:0.001H H λλ=↔≠,则((0.0019501)0.5u x λ=-=⨯-=,当0.05α=时,查正态分布表可得0.025 1.96u =,因为0.025|| 1.96u u <=,故接受原假设0H ,认为参数0.01λ=.【评注】总体()X F x ,2,EX u DX σ==,则当n充分大时,u =从(0,1)N 分布.【例8.20】对某干洗公司去除污点的比例做下列假设检验01:0.7:0.9H p H p =↔=,选出100个污点,设其中去除的污点数为x ,拒绝域为{82}w x =>. (1)当0.7p =时,求犯第一类错误的概率α; (2)当0.9p =时,求犯第二类错误的概率β. 【解】(1)由题设有{82|0.7}1P x p α=>==-Φ1(2.62)10.99560.0044=-Φ=-=.(2){82|0.9}P x p β=≤==Φ( 2.67)1(2.67)10.99620.0038=Φ-=-Φ=-=.【评注】从计算分析,这一检验法的α,β皆很小,是较好的检验.§历年考研真题评析1、【98.1.4】设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,计算得到平均成绩为66.5,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生平均成绩为70分?并给出检验过程.【解】设该次考试的考生成绩为X ,则2(,)XN ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,根据题意建立假设001:70;:70H H .选取统计量 07036X X TnSS在70时,2(70,),(35)X T t .选取拒绝域{||}R T ,其中满足{||}0.05P T ,即{||}0.95P T .即0.975(35) 2.0301t . 由036,66.5,70,15n xs 可以计算得统计量T 的值|66.570|||361.42.030115T .因此不能拒绝0H ,即在显著性水平0.05下可以认为全体考生的平均成绩为70分.§习题全解1、在正常情况下,某炼钢厂的铁水含碳量(%)2(4.55,)XN σ.一日测得5炉铁水含碳量如下:4.48,4.40,4.42,4.45,4.47在显著性水平0.05α=下,试问该日铁水含碳量得均值是否有明显变化. 【解】设铁水含碳量作为总体X ,则2(4.55,)XN σ,从中选取容量为5的样本,测得24.444,0.0011X S ==.由题意,设原假设为0: 4.55H u = 构造检验统计量 ||(4)X u t t S -=,则7.051t ==在显著性水平0.05α=下,查表可得0.97512(4)(4) 2.77647.051tt α-==<,拒绝原假设0H ,即认为有显著性变化.2、根据某地环境保护法规定,倾入河流的废物中某种有毒化学物质含量不得超过3ppm.该地区环保组织对某厂连日倾入河流的废物中该物质的含量的记录为:115,,x x .经计算得15148ii x==∑, 1521156.26i i x ==∑.试判断该厂是否符合环保法的规定.(该有毒化学物质含量X 服从正态分布)【解】设有毒化学物质含量作为总体X ,则2(,)XN u σ,从中选取容量为15的样本,测得1511 3.215i i X x ===∑,22221111()()0.1911n ni i i i S x x x nx n n ===-=-=--∑∑.由题意,设原假设为0:3H u <,备择假设为1:3H u >.构造检验统计量(14)X t t =,则 1.777t ==,在显著性水平0.05α=下,查表可得10.95(14)(14) 1.7613 1.777t t α-==<,即拒绝原假设0H ,接受备择假设1H ,认为该厂不符合环保的规定.3、某厂生产需用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率不应低于65.已知该指标服从正态分布2(,)N μσ, 5.5σ=.从近期来货中抽查了100个样品,得样本均值55.06x =,试问在0.05α=水平上能否接受这批玻璃纸? 【解】设玻璃纸的横向延伸率为总体X ,则2(,5.5)XN u ,从中选取容量为100的样本,测得55.06x =.由题意,设原假设为0:65H u >,备择假设为1:65H u <.构造检验统计量||(0,1)X u U N σ-=,则|55.0665|18.07275.5U -==在显著性水平0.05α=下,查表可得10.95 1.644918.0727U U α-==<,即拒绝原假设0H ,接受备择假设1H ,不能接受该批玻璃纸..4、某纺织厂进行轻浆试验,根据长期正常生产的累积资料,知道该厂单台布机的经纱断头率(每小时平均断经根数)的数学期望为9.73根,标准差为1.60根.现在把经纱上浆率降低20%,抽取200台布机进行试验,结果平均每台布机的经纱断头率为9.89根,如果认为上浆率降低后均方差不变,问断头率是否受到显著影响(显著水平α=0.05)?【解】设经纱断头率为总体X ,则9.73u EX ==, 1.6σ==,从中选取容量为200的样本,测得9.89x =.由题意,设原假设为0:9.73H u =,备择假设为1:9.73H u ≠. 构造检验统计量(0,1)X U N =,则 1.4142U ==在显著性水平0.05α=下,查表可得0.975121.96 1.4142UU α-==>,即接受原假设0H ,认为断头率没有受到显著影响.5、某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布2(100,)N σ.某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9.问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(显著性水平α=0.05) 【解】设每箱重量为总体X ,则2(100,)XN σ,从中选取容量为10的样本,测得99.9x =,20.34S =.由题意,设原假设为0:100H u =,备择假设为1:100H u ≠.构造检验统计量||(9)X u t t S -=,则0.5423t ==,在显著性水平0.05α=下,查表可得0.97512(9)(9) 2.26220.5423tt α-==>,即接受原假设0H ,认为每箱重量无显著差异.6、某自动机床加工套筒的直径X 服从正态分布.现从加工的这批套筒中任取5个,测得直径分别为15,,x x (单位m μ:),经计算得到51124ii x==∑, 5213139i i x ==∑.试问这批套筒直径的方差与规定的27σ=有无显著差别?(显著性水平0.01α=) 【解】设这批套筒直径为总体X ,则2(,)XN u σ,从中选取容量为5的样本,测得151124.815i i X x ===∑,22221111()()15.9511n ni i i i S x x x nx n n ===-=-=--∑∑. 由题意,设原假设为20:7H σ=,备择假设为21:7H σ≠.构造检验统计量2222(1)(4)n S χχσ-=,则2415.959.11437χ⨯==,在显著性水平0.01α=下,查表可得220.99512(4)(4)14.86αχχ-==,220.0052(4)(4)0.2070αχχ==,从而222122(4)(4)ααχχχ-<<. 即接受原假设0H ,认为这批套筒直径的方差与规定的27σ=无显著差别.7、甲、乙两台机床同时独立地加工某种轴,轴的直径分别服从正态分布211(,)N μσ、222(,)N μσ(12,μμ未知).今从甲机床加工的轴中随机地任取6根,测量它们的直径为16,,x x ,从乙机床加工的轴中随机地任取9根,测量它们的直径为19,,y y ,经计算得知:61204.6ii x==∑, 6216978.9i i x ==∑,91370.8i i y ==∑,92115280.2i i y ==∑.问在显著性水平0.05α=下,两台机床加工的轴的直径方差是否有显著差异? 【解】设两台机床加工的轴的直径分别为总体,X Y ,则211(,)XN μσ、222(,)YN μσ,从总体X 中选取容量为6的样本,测得61134.16i i X x ===∑222211111()()0.40811n ni i i i S x x x nx n n ===-=-=--∑∑. 从总体Y 中选取容量为9的样本,测得91141.29i i Y y ===∑222221111()()0.40511n ni i i i S y y y ny n n ===-=-=--∑∑ 由题意,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,8)S F F S =,则0.4081.0070.405F ==,在显著性水平0.05α=下,查表可得0.97512(5,8)(5,8) 6.76FF α-==,0.0252(5,8)(5,8)0.1479F F α==,从而122(5,8)(5,8)F F Fαα-<<.即接受原假设0H ,认为两台机床加工的轴的直径方差无显著差异.8、某维尼龙厂根据长期正常生产积累的资料知道所生产的维尼龙纤度服从正态分布,它的标准差为0.048.某日随机抽取5根纤维,测得其纤度为1.32,1.55,1.36,1.40,1.44.问该日所生产得维尼龙纤度的均方差是否有显著变化(显著性水平α=0.1)? 【解】设维尼龙纤度为总体X ,则2(,0.048)XN u ,从中选取容量为5的样本,测得511 1.4145i i X x ===∑,2211()0.00781n i i S x x n ==-=-∑.由题意,设原假设为0:0.048H σ=,备择假设为1:0.048H σ≠.构造检验统计量2222(1)(4)n S χχσ-=,则2240.007813.542(0.048)χ⨯==在显著性水平0.1α=下,查表可得220.9512(4)(4)9.487713.542αχχ-==<.即拒绝原假设0H ,认为维尼龙纤度的均方差有显著变化.9、某项考试要求成绩的标准差为12,先从考试成绩单中任意抽出15份,计算样本标准差为16,设成绩服从正态分布,问此次考试的标准差是否符合要求(显著性水平α=0.05)? 【解】 设考试成绩为总体X ,则2(,12)XN u ,从中选取容量为15的样本,测得16S =.由题意,设原假设为0:12H σ=,备择假设为1:12H σ≠. 构造检验统计量2222(1)(14)n S χχσ-=,则222141619.055612χ⨯==.在显著性水平0.05α=下,查表可得220.97512(14)(14)26.1189αχχ-==,220.0252(14)(14) 5.6287αχχ==,从而222122(14)(14)ααχχχ-<<.即接受原假设0H ,认为此次考试的标准差符合要求.10、某卷烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位:毫克)作了六次测定,获得样本观察值为:甲:25,28,23,26,29,22; 乙:28,23,30,25,21,27.假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种香烟的尼古丁平均含量有无显著差异(显著性水平α=0.05,)?对这两种香烟的尼古丁含量,检验它们的方差有无显著差异(显著性水平α=0.1)?【解】设这两种烟的尼古丁含量分别为总体,X Y ,则211(,)X N μσ、222(,)Y N μσ,从中均选取容量为6的样本,测得61125.56i i X x ===∑,22111()7.51n i i S x x n ==-=-∑, 61125.66676i i Y y ===∑,22211()11.06671n i i S y y n ==-=-∑, 由题意,在方差相等时,设原假设为012:H u u =,备择假设为112:H u u ≠.构造检验统计量12(2)X Y t t n n =+-,其中222112212(1)(1)9.2834(2)wn S n S S n n -+-==+-.则0.0948t ==,在显著性水平0.05α=下,查表可得120.97512(2)(10) 2.22810.0948tn n t α-+-==>.即接受原假设0H ,认为这两种香烟的尼古丁平均含量无显著差异.由题意,在方差待定时,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,5)S F F S =,则7.50.677711.0667F ==,在显著性水平0.1α=下,查表可得0.9512(5,8)(5,5) 5.0503FF α-==,0.052(5,8)(5,5)0.1980F F α==,由122(5,5)(5,5)F F Fαα-<<.即接受原假设0H ,认为它们的方差无显著差异.§同步自测题及参考答案一、选择题1、关于检验水平α的设定,下列叙述错误的是 【 】()A α的选取本质上是个实际问题,而非数学问题. ()B 在检验实施之前, α应是事先给定的,不可擅自改动.()C α即为检验结果犯第一类错误的最大概率. ()D 为了得到所希望的结论,可随时对α的值进行修正.2、关于检验的拒绝域W,置信水平a ,及所谓的“小概率事件”,下列叙述错误的是 【 】()A a 的值即是对究竟多大概率才算“小”概率的量化描述. ()B 事件021|),,,{(H W X X X n ∈ 为真}即为一个小概率事件.()C 设W 是样本空间的某个子集,指事件}|),,,{(021为真H W X X X n ∈ . ()D 确定恰当的W 是任何检验的本质问题.3、设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,此问题拒绝域形式为 【 】()A }C >. ()B }/100{C n S X <-. ()C }10/100{C S X >- . ()D }{C X >.4、设n X X X ,,,21 为来自总体2(,)N μσ的样本,若μ未知, 100:20≤σH ,21:100,H 0.05a ,关于此检验问题,下列不正确的是 【 】()A 检验统计量为100)(12∑=-ni iX X. ()B 在0H 成立时,)1(~100)1(22--n x S n . ()C 拒绝域不是双边的. ()D 拒绝域可以形如})({12∑=>-ni i k X X .5、设总体服从正态分布2(,3)XN μ,12,,,n x x x 是X 的一组样本,在显著性水平0.05α=下,假设“总体均值等于75”拒绝域为12{,,,:74.0275.98}n w x x x x x =<⋃>,则样本容量n = 【 】()A 36. ()B 64. ()C 25. ()D 81.二、填空题1、为了校正试用的普通天平,把在该天平上称量为100克的10个试样在计量标准天平上进行称量,得如下结果:99.3, 98.7, 100.5, 101,2, 98.399.7 99.5 102.1 100.5, 99.2 假设在天平上称量的结果服从正态分布,为检验普通天平与标准天平有无显著差异,0H为 .2、设样本2521,,,X X X 来自总体μμ),9,(N 未知,对于检验0010::H H μμμμ=↔= 取拒绝域形如k X ≥-0μ,若取05.0=a ,则k 值为 .3、设12,,,n x x x 是正态总体2(,)XN μσ的一组样本.现在需要在显著性水平0.05α=下检验假设2200:H σσ=.如果已知常数u ,则0H 的拒绝域1w =______________;如果未知常数u ,则0H 的拒绝域2w =______________.4、在一个假设检验问题中令0H 是原假设,1H 时备择假设,则犯第一类错误的概率{______________}P ,犯第二类错误的概率{______________}P .三、解答题1、某批矿砂的5个样本中的镍含量,经测定为(%)3.25,3.27,3.24,3.26,3.24设测定值总体服从正态分布,问在0.01α=下,能否接受假设:这批矿砂的含量的均值为3.25.2、已知精料养鸡时,经若干天鸡的平均重量为4公斤.今对一批鸡改用粗料饲养,同时改善饲养方法,经同样长的饲养期后随机抽取10只,的其数据如下:3.7,3.8,4.1,3.9,4.6,4.7,5.0,4.5,4.3,3.8已知同一批鸡的重量X 服从正态分布,试推断:这一批鸡的平均重量是否显著性提高.试就0.01α=和0.05α=分别推断.3、测定某种溶液中的水份,它的10个测定值给出0.037%S =,设测定值总体为正态分布,2σ为总体方差,试在水平0.05α=下检验假设01:0.04%:0.04%H H σσ=↔<.4、在70年代后期,人们发现在酿造啤酒时,在麦芽干燥过程中形成致癌物质亚硝基二甲胺(NDMA ).到了80年代初期开发了一种新的麦芽干燥过程,下面给出了在新老两种干燥过程中形成的NDMA 的含量(以10亿份中的份数计)老过程 6,4,5,5,6,5,5,6,4,6,7,4 新过程2,1,2,2,1,0,3,2,1,0,1,3设两样本分别来自正态总体,且两总体的方差相等,两样本独立,分别以12,u u 记对应于老、新过程的总体均值,试检验假设(0.05α=)0111:2:2H u u H u u -=↔->.5、检验了26匹马,测得每100毫升的血清中,所含的无机磷平均为3.29毫升,标准差为0.27毫升;又检验了18头羊,每100毫升血清中汗无机磷平均值为3.96毫升,标准差为0.40毫升.设马和羊的血清中含无机磷的量均服从正态分布,试问在显著性水平0.05α=条件下,马和羊的血清中无机磷的含量有无显著性差异?6、某种产品的次品率原为0.1,对这种产品进行新工艺试验,抽取200件发现了13件次品,能否认为这项新工艺显著性地降低了产品的次品率(0.05α=)?7、设n X X X ,,,21 为总体(,4)XN a 的样本,已知对假设01:1: 2.5H a H a =↔=,0H 的拒绝域为{2}w X =>.(1)当9u =时,求犯两类错误的概率α和β; (2)证明:当n →∞时,0α→,0β→.同步自测题参考答案 一、选择题1.()D .2. ()C .3. ()C .4. ()B .5. ()A . 二、填空题1.100=μ.2. 1.176.3. 222210.0250.97522110011{()()()()}nniii i w x u n x u n χχσσ===->⋃-<∑∑;222220.0250.975220(1)(1){(1)(1)}n S n S w n n χχσσ--=>-⋃<- .4.10{|}P H H 接受成立,01{|}P H H 接受成立.三、解答题 1、接受0H .2、0.01α=时,显著性提高;0.05α=时,没有显著性提高 .3、 接受0H .4、拒绝0H ,接受1H .5、方差无显著性差异,均值有显著性差异,故有显著性差异.6、 拒绝0H .7、(1)0.0668α=,0.2266β=,(2)102α=-Φ→,(04β=Φ-→()n →∞.。
假设检验举例通俗
假设检验举例通俗以假设检验举例通俗为题,列举一下如下:1. 假设检验是统计学中一种重要的推断方法,用于判断某个假设是否具有统计显著性。
例如,我们可以通过假设检验来判断一种新药物对于治疗某种疾病是否有效。
我们先提出一个原假设,即新药物对于治疗该疾病没有效果,然后进行一系列实验,收集数据并进行统计分析,最后得出结论,判断该药物是否具有统计显著性。
2. 假设检验也可以用于判断两组数据之间是否存在显著差异。
例如,我们可以通过假设检验来判断男性和女性在某个指标上是否存在差异。
我们先提出一个原假设,即男性和女性在该指标上没有差异,然后收集两组数据进行统计分析,最后得出结论,判断两组数据是否具有统计显著性差异。
3. 假设检验还可以用于判断某个事件是否具有统计显著性。
例如,我们可以通过假设检验来判断某个广告对于销售额的提升是否具有统计显著性。
我们先提出一个原假设,即该广告对于销售额没有影响,然后进行实验,收集数据并进行统计分析,最后得出结论,判断该广告是否具有统计显著性影响。
4. 假设检验还可以用于判断某个样本是否符合某个分布。
例如,我们可以通过假设检验来判断某个样本是否符合正态分布。
我们先提出一个原假设,即该样本符合正态分布,然后进行统计分析,最后得出结论,判断该样本是否具有统计显著性符合正态分布。
5. 假设检验还可以用于判断某个变量之间是否存在相关性。
例如,我们可以通过假设检验来判断收入水平和教育水平之间是否存在相关性。
我们先提出一个原假设,即收入水平和教育水平之间没有相关性,然后进行统计分析,最后得出结论,判断两个变量是否具有统计显著性相关性。
6. 假设检验还可以用于判断某个样本是否具有统计显著性特征。
例如,我们可以通过假设检验来判断某个样本的均值是否具有统计显著性差异。
我们先提出一个原假设,即该样本的均值没有差异,然后进行统计分析,最后得出结论,判断该样本的均值是否具有统计显著性差异。
7. 假设检验还可以用于判断某个事件的发生概率是否符合某个理论值。
假设检验的案例与应用
假设检验的案例与应用
案例1:一家电商网站新上线了一个广告推广功能,想要测试该功能是否能够有效提升用户成交率。
他们将5000个随机选取的用户分成两组,其中一组只看到常规的广告,另外一组则看到常规广告和新推出的广告。
在一个月的时间内,两组用户的成交率分别为5.7%和6.2%。
经过计算和分析,得到的假设检验结果为t值为2.56,p值为0.011,意味着该网站可以拒绝0.05的显著性水平,即可以认为新广告推广功能确实可以有效提升用户成交率。
应用:电商网站可以通过假设检验来验证其新产品或功能是否有助于提升或改善客户的体验。
案例2:一位医生想要测试药物对于一种病毒的治疗效果,他们将100名患者随机分成两组,其中一组接受药物治疗,另外一组则接受安慰剂治疗。
在4周后,两组患者的病情好转率分别为65%和40%。
经过计算和分析,得到的假设检验结果为t值为3.12,p值为0.002,说明该医生可以拒绝0.05的显著性水平,即认为药物确实具有能够提高患者病情好转率的治疗效果。
应用:医生和药物制造商可以通过假设检验来验证药物是否有效,以及在何种程度上有效治疗疾病。
案例3:一家公司想要测试早上和下午两个时间段对于员工工作效率的影响。
他们选择了同一组员工,在早上和下午分别工作了8小时,工作时长和任务的性质
是相同的。
经过计算和分析,得到的假设检验结果为t值为1.27,p值为0.21,无法拒绝0.05的显著性水平,说明该公司无法判断早上和下午对员工工作效率的影响是否显著不同。
应用:公司可以通过假设检验来验证员工是否对特定因素有敏感性,以得出更好的工作时间和任务分配方案。
假设检验例题 (5)
假设检验例题引言假设检验是统计学中常用的一种推断方法,用于判断一个统计推断的结论是否可靠。
通常,假设检验的过程包括假设的设定、对样本数据的收集和分析、推断的结论以及结果的解释。
本文将通过一个具体的例子,详细介绍假设检验的步骤和方法。
例题背景假设某家电公司声称他们生产的电视机平均使用寿命超过5年。
我们对该公司的50台电视进行了检测,并记录下每台电视使用的寿命。
现在我们的任务是根据样本数据,判断该公司声称的平均使用寿命是否可信。
假设的设定在进行假设检验之前,我们需要先设定原假设(H0)和备择假设(H1)。
原假设通常是我们需要验证的观点,备择假设则是对原假设的否定。
对于本例,我们的原假设是:该家电公司生产的电视机平均使用寿命超过5年。
备择假设是:该家电公司生产的电视机平均使用寿命不超过5年。
数据收集与分析现在我们已经有了50台电视机的使用寿命数据,下面是样本数据的统计信息:•样本均值(x̄): 5.2年•样本标准差(s): 0.8年接下来,我们需要选择一个适当的假设检验方法。
根据样本数量和总体标准差是否已知,我们可以选择使用t检验或者z检验。
由于总体标准差未知,我们将选择使用t检验。
在进行t检验前,我们还需要设定显著性水平(α),它表示我们能够接受原假设的风险。
常用的显著性水平有0.05和0.01。
在本例中,我们选择α为0.05,意味着我们能够接受5%的错误率。
推断的结论现在我们可以进行假设检验了。
根据样本数据和设定的假设,我们可以计算出t值。
根据t值和t分布的临界值,我们可以判断是否拒绝原假设。
首先,我们计算出t值的公式如下:t值公式t值公式其中,x̄表示样本均值,μ表示总体均值,s表示样本标准差,n表示样本数量。
我们将通过计算得到的t值与t分布的临界值进行比较。
根据t检验的临界值表,当自由度为49(即n-1=50-1)时,对应的双侧检验的临界值约为2.01。
假设计算得到的t值为3.0,显著性水平为0.05。
假设检验问题讲解(ppt 47页)
其样本均值为2.8965,样本标准为0.148440135,
你可以拒绝原假设吗?
拒绝域为:
x3
s
t0.05(n1)
H0: 3 H1: > 3
H0: 3 H1: 3
Rejection Regions
0 0
Critical Value(s)
/2
0
P-值的应用
p=Pr(t<-3.118)=0.0028
0.45
0.4
0.35 比它小的概率 0.3 是多少?P-值
0.25
0.2
0.15
比它小的概率是0.05
0.15
0.1
0.05
0
-1
0
31-c0 2
3
4
5
6
7
8
大样本下的解决方案(3)
如果2未知,则
x ~ N (0 , 1) s n
选择拒绝域为
x3
s
z 0 . 05
n
假定由36听罐头所组成的一个样本的样 本均值 x 2.92 磅,样本标准差 s=0.18 ,你能拒绝原假设吗?
x
s
3
2.92 0.18
影响 b 的因素
True Value of Population Parameter
Increases When Difference Between Hypothesized Parameter & True Value Decreases
假设检验的应用实例
假设检验的应用实例
嘿,你知道不?假设检验这玩意儿,在咱生活里那可老有用啦!就说前段时间我去菜市场买菜的事儿吧。
那天我寻思着买点儿苹果,走到一个水果摊前,看着那红彤彤的苹果,可诱人了。
我就心里犯起了嘀咕:这苹果甜不甜呢?这时候,假设检验就派上用场啦。
我先假设这苹果是甜的,然后开始找证据。
我拿起一个苹果,看看颜色,红彤彤的,嗯,一般来说颜色红的苹果可能会比较甜。
接着我又捏了捏,有点硬,感觉应该水分挺足。
这时候我就有点倾向于我的假设是正确的了。
但光看外表可不行啊,我得再找点别的证据。
我就跟老板说:“老板,能尝尝不?”老板很大方地说:“行,尝尝。
” 我咬了一口,哇,那甜味一下子在嘴里散开了。
这下子证据确凿了,我的假设成立,这苹果是甜的。
于是我就高高兴兴地买了几斤。
在生活中,咱经常会遇到这样那样的情况,都可以用假设检验的方法来判断。
比如说你去一家新的餐厅吃饭,你可以先假设这家餐厅的菜好吃,然后看看餐厅的环境干不干净呀,人多不多呀。
如果环境不错,人也挺多,那你就会觉得你的假设可能是对的。
等菜上来尝一尝,要是味道真不错,那假设就完全成立啦。
假设检验其实就是这么个道理,先有个想法,然后去找证据来验证这个想法对不对。
它可不是啥高深莫测的东西,咱平时生活里都能用得上。
下次你遇到啥事儿拿不准的时候,也可以试试假设检验的方
法,说不定会有惊喜哦!。
关于假设检验的详细总结与典型例题
关于假设检验的详细总结与典型例题假设检验是数一考生普遍反映非常头疼的一块内容,因为它入门较难,其思想在初次复习时理解起来较难。
虽然这一部分在历年真题中考查次数很少,但为了做到万无一失,我们也应该准备充分,何况相对来说这一部分内容的难度和变化并不大。
为了让各位考生对假设检验有一个全面深入的理解和掌握,我们给出如下总结与例题。
对于假设检验,首先要理解其基本原理,即小概率原理,假设检验的方法即是从此原理衍生而来;其次,要掌握其步骤,会根据显著性水平α,即第一类心理学考研错误,来求拒绝域与接收域,其求法要根据不同的条件来套用公式,能根据理解推导公式是上策,如果时间不够,可以选择记忆各种不同条件下的求拒绝域的公式。
最后,相比之下两个正态总体参数的假设检验的考查可能性要低于一个正态总体参数的假设检验。
假设检验的基本概念数理统计的基本任务是根据样本推断总体,对总体的分布律或者分布参数作某种假设,然后根据抽得的样本,运用统计分析的方法来检验这一假设是否正确,从而作出接受假设或者拒绝假设的决定,这就是假设检验.根据实际问题提出的假设0H 称为原假设,其对立假设1H 称为备择假设. 假设检验中推理的依据是小概率原理:小概率事件在一次试验中实际上不会发生. 假设检验中的小概率α称为显著性水平,通常取0.05α=或者0.01α=.假设检验中使用的推理方法是:为了检验原假设0H 是否成立,我医学考研论坛们先假定原假设0H 成立. 如果抽样的结果导致小概率事件在一次试验中发生了,根据小概率原理,有理由怀疑0H 的正确性,从而拒绝0H ,否则接受0H .假设检验的步骤⑴根据实际问题提出原假设0H 和备择假设1H ; ⑵确定检验统计量T ;⑶根据给定的显著水平α,查概率分布表,确定拒绝域W ;⑷利用样本值计算统计量T 的值t ,若t W ∈,则拒绝0H ,否则接受0H .假设检验中可能犯的两类错误由于小概率事件还是可能发生的,根据小概率作出的判断可能是错误的. 事件0H 真而拒绝0H ,称为第一类(弃真)错误,犯第一类错误的概率为{}0P t W H α∈≤,因此显著性水平α是用来控制犯第一类错误的概率的. 0H 假而接受0H ,称为第二类(纳伪)错误,犯第二类错误的概率为{}1P t W H ∉,记作β.典型例题1.136,,X X 是取自正态总体(,0.04)N μ的简单随机样本,检验假设0:0.5H μ=,备择假设11:0.5H μμ=>,检验的显著水平0.05α=,取否医学考研论坛定域为X c >,则c = ,若10.65μ=,则犯第二类错误的概率β= .解 ⑴0H 成立时,0.04~(0.5,)36X N , {}00.50.051()0.1/3c P X c H αΦ-==>=-,0.5()0.95(1.645)0.1/3c ΦΦ-==,0.51.6450.1/3c -=,得0.5548c =.⑵1H 成立时,0.04~(0.65,)36X N{}10.55480.65()( 2.856)0.1/3P X c H βΦΦ-=≤==-.1(2.856)10.99790.0021Φ=-=-=2.设总体20~(,)X N μσ,20σ已知,检验假设00:H μμ=,备择假设10:H μμ>,取否定域为X c >,则对固定的样本容量n ,犯第一类错误的概率α随c 的增大而 .(减小)解 0H 成立时,200~(,)X N nσμ,犯第一类(弃真)错误的概率{}001(/P X c H nαΦσ=>=-,故犯第一类错误的概率α随c 的增大而减小.一个正态总体2(,)N μσ参数的假设检验 ⑴ 2σ已知,关于μ的检海文考研验(u 检验) 检验假设00:H μμ= 统计量X U =拒绝域2U u α>检验假设00:H μμ>统计量X U =拒绝域U u α<-检验假设00:H μμ<统计量X U =拒绝域U u α>⑵2σ未知,关于μ的检验(t 检验) 检验假设00:H μμ=统计量X t =拒绝域2(1)t t n α>-检验假设00:H μμ> 统计量0/X t S n = 拒绝域(1)t t n α<--检验假设00:H μμ< 统计量0/X t S n=拒绝域(1)t t n α>-⑶μ未知,关于2σ的检验(2χ检验) 检验假设2200:H σσ=统计量2220(1)n S χσ-=拒绝域222(1)n αχχ>-或者2212(1)n αχχ-<-检验假设2200:H σσ>统计量2220(1)n S χσ-=拒绝域221(1)n αχχ-<-检验假设2200:H σσ< 统计量2220(1)n S χσ-= 拒绝域22(1)n αχχ>-▲拒绝域均采用上侧分位数.两个正态总体21(,)N μσ、22(,)N μσ参数的假设检验.⑴两个正态总体21(,)N μσ、22(,)N μσ均值的假设检验(t 检验) 检验假设012:H μμ=统计量X Yt =拒绝域122(2)t t n n α>+-检验假设012:H μμ>统计量X Yt =拒绝域12(2)t t n n α<-+-检验假设012:H μμ<统计量X Yt =拒绝域12(2)t t n n α>+-⑵两个正态总体211(,)N μσ、222(,)N μσ方差的假设检验(F 检验) 检验假设22012:H σσ=统计量2122S F S = 拒绝域122(1,1)F F n n α>--或者1212(1,1)F F n n α-<--检验假设22012:H σσ>统计量2122S F S = 拒绝域112(1,1)F F n n α-<--检验假设22012:H σσ< 统计量2122S F S = 拒绝域12(1,1)F F n n α>--▲拒绝域均采用上侧分位数. 典型例题1.设n X X X ,,,21 是来自正态总海文考研体2(,)N μσ的简单随机样本,其中参数2,μσ未知,记22111,(),n ni i i i X X Q X X n ====-∑∑则假设0:0H μ=的t 检验使用统计量t = .解 统计量2(1)//(1)n n XX nXt S n Q n -===-2.某酒厂用自动装瓶机装酒,每瓶规定重500克,标准差不超过10克,每天定时检查,某天抽取9瓶,测得平均重X =499克,标准差S =16.03克. 假设瓶装酒的重量X 服从正态分布.问这台机器是否工作正常?(05.0=α).解 先检验0H :500μ=,统计量X t =, 拒绝域0.025(8) 2.3060t t >=,4995000.18716.03/3X t -===-,接受0H ;再检验0H ':2210σ≤,统计量222(1)10n S χ-=, 拒绝域220.05(8)15.507χχ>=, 22222(1)816.0320.5571010n S χ-⨯===,拒绝220:10H σ'≤, 故该机器工作无系统误差,但不稳定3.设127,,,X X X 是来自正态总体211(,)N μσ的简单随机样本,设128,,,Y Y Y 是来自正态总体222(,)N μσ的简单随机样本,且两个样本相互独立,它们的样本均值分别为13.8,17.8X Y ==,样本标准差123.9, 4.7S S ==,问在显著性水平0.05下,是否可以认为12μμ<?解 先检验0H :2212σσ=,检验统计量2122S F S =,拒绝域0.025(6,7) 5.12F F >=或者0.9750.02511(6,7)(7,6) 5.70F F F <==,221222 3.90.68854.7S F S ===,接受0H ; 再检验0H ':12μμ<,统计量1211w X Yt S n n =+, 拒绝域0.05(13) 1.7709t t >=,1.7773X Yt ==-,接受0H ',即可以认为12μμ<. ▲检验两个正态总体均值相等时,应先检验它们的方差相等.。
假设检验例题讲解
假设检验例题讲解引言假设检验是统计学中一种重要的推断方法,用于根据样本数据对总体参数进行推断。
在实际应用中,我们经常需要对某个总体参数是否满足某个假设进行检验,以此来判断某种情况的发生是否是偶然的还是具有统计学意义的。
在本文中,我们将通过一个具体的例子来详细讲解假设检验的步骤和方法。
例题描述某公司通过市场调研,推出了一种新的产品,并声称该产品的平均寿命超过了现有市场上的同类产品。
为了验证这一声称,该公司随机选取了30台该产品进行了测试,并记录了它们的寿命(以小时为单位)。
假设该产品的寿命服从正态分布,现在我们想要对该声称进行检验。
步骤1:建立假设在进行假设检验之前,首先需要明确我们的原假设和备择假设。
原假设(H0):该产品的平均寿命不超过现有市场上同类产品的平均寿命,即μ ≤ μ0(μ0为现有产品的平均寿命)。
备择假设(H1):该产品的平均寿命超过现有市场上同类产品的平均寿命,即μ> μ0。
在本例中,我们要采用单侧检验,因为我们关心的是新产品平均寿命是否超过现有产品的平均寿命。
步骤2:选择显著性水平显著性水平(α)是在进行假设检验时事先设定的一个值,它规定了我们对收集到的样本数据作出判断的临界点。
常用的显著性水平有0.05和0.01两种。
在本例中,我们选择α = 0.05作为显著性水平。
步骤3:计算样本统计量根据收集到的样本数据,我们需要计算出一个样本统计量,用来对总体参数进行估计。
在本例中,我们要计算平均寿命的样本均值和样本标准差。
假设样本的平均寿命为x̄,样本标准差为s。
步骤4:计算检验统计量在假设检验中,我们需要计算一个检验统计量来判断样本数据和原假设是否一致。
在本例中,我们要计算t检验统计量,其公式为: t统计量其中,x̄为样本均值,μ0为原假设的参数值,s为样本标准差,n为样本容量。
步骤5:计算P值在假设检验中,P值是一个重要的指标,用于评估样本数据在原假设为真时出现的概率。
在本例中,我们要计算P值,即检验统计量大于等于观察到的t检验统计量的概率。
假设检验例题与习题课件
比例
方差
Z 检验
t 检验
Z 检验
(单尾和双尾) (单尾和双尾) (单尾和双尾)
2检验
(单尾和双尾)
学习交流PPT
10
总体均值检验
学习交流PPT
11
•【例】某机床厂加工一种零件,根 据经验知道,该厂加工零件的椭圆 度近似服从正态分布,其总体均值 为 0=0.081mm , 总 体 标 准 差 为 = 0.025 。今换一种新机床进行加工,
第 7章 假设检验例题与习题
学习交流PPT
1
假设检验在统计方法中的地位
统计方法
描述统计
推断统计
参数估计
假设检验
学习交流PPT
2
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 对实际问题作假设检验 4. 利用置信区间进行假设检验
5. 利用P - 值进行假设检验
学习交流PPT
3
拒绝 H0
.025
-1.96 0 1.96 Z
检验统计量:
z=x0 =0.0760.08=12.83 n 0.025200
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
学习交流PPT
13
2 已知均值的检验
(P 值的计算与应用)
•第1步:进入Excel表格界面,选择“插入”下拉菜单
显著地高于1200小时
学习交流PPT
18
•【 例 】 某 机 器 制 造 出 的 肥 皂厚度为5cm,今欲了解机 器性能是否良好,随机抽 取 10 块 肥 皂 为 样 本 , 测 得 平均厚度为5.3cm,标准差 为0.3cm,试以0.05的显著 性水平检验机器性能良好 的假设。
假设检验-例题讲解
假设检验一、单样本总体均值的假设检验 .................................................... 1 二、独立样本两总体均值差的检验 ................................................ 2 三、两匹配样本均值差的检验 ........................................................ 4 四、单一总体比率的检验 ................................................................ 5 五、两总体比率差的假设检验 .. (7)一、单样本总体均值的假设检验例题:某公司生产化妆品,需要严格控制装瓶重量。
标准规格为每瓶250 克,标准差为1 克,企业的质检部门每日对此进行抽样检验。
某日从生产线上随机抽取16 瓶测重,以95%的保证程度进行总体均值的假设检验。
x t μ-=data6_01 样本化妆品重量 SPSS 操作:(1)打开数据文件,依次选择Analyze (分析)→Compare Means (比较均值)→One Sample T Test (单样本t 检验),将要检验的变量置入Test Variable(s)(检验变量);(2)在Test Value (检验值)框中输入250;点击Options (选项)按钮,在Confidence Interval(置信区间百分比)后面的框中,输入置信度(系统默认为95%,对应的显著性水平设定为5%,即0.05,若需要改变显著性水平如改为0.01,则在框中输入99 即可);(3)点击Continue(继续)→OK(确定),即可得到如图所示的输出结果。
图中的第2~5 列分别为:计算的检验统计量t 、自由度、双尾检验p-值和样本均值与待检验总体均值的差值。
使用SPSS 软件做假设检验的判断规则是:p-值小于设定的显著性水平Ɑ时,要拒绝原假设(与教材不同,教材的判断标准是p<Ɑ/2)。
假设检验习题答案
单击此处添加副标题
汇报人姓名 汇报日期
目 录CATALOGUE
1 假设检验的基本概念 2 参数假设检验 3 非参数假设检验 4 习题答案与解析
ONE
1
假设检验的基本概念
定义与目的
判断该假设是否成 立,从而做出接受 或拒绝该假设的决 策。
假设检验是一种统计方法,用于根据样本数据对 某一假设进行评估。
假设检验的类型
单侧检验 只关注某一方向的假设是否成立。
参数检验 对总体参数进行假设检验。
双侧检验 同时关注两个方向的假设是否成立。
非参数检验 不涉及总体参数的假设检验。
ONE
2
参数假ቤተ መጻሕፍቲ ባይዱ检验
单参数假设检验
在单参数假设检验 中,我们通常会对 一个总体参数提出 假设,然后使用样 本数据来检验这个 假设。例如,我们 可能会假设一组数 据的平均值等于某 个值,然后使用样 本数据来检验这个 假设是否成立。
据是否符合正态分布、泊松分布等。
ONE
4
习题答案与解析
习题一答案与解析
答案:D
logo
解析:根据题目给出的数据,我们首先计 算出平均值和标准差。然后,利用假设检 验的方法,我们计算出Z统计量并确定其所 属的临界区间。根据临界区间的结果,我 们判断原假设是否被拒绝,并选择相应的 答案。
习题一答案与解析
秩次检验
详细描述
秩次检验将数据按照大小排序,并赋予每个数据 一个秩次值。然后比较两组数据的秩次分布是否 相同,以判断它们的相对大小关系。如果两组数 据的秩次分布相似,则可以认为它们的相对大小 关系相同;如果秩次分布不同,则可以认为它们 的相对大小关系不同。
秩次检验是一种非参数统计方法,用于比较两组 数据的相对大小关系。
假设检验的例子及解析
假设检验的例子及解析以下是 9 条关于假设检验的例子及解析:1. 咱就说,你觉得每天喝一杯牛奶能长高,这是不是一个假设呀,就像你觉得学习一门新语言能让你更聪明一样。
那咱们怎么检验呢?那就得观察长期喝牛奶的人是不是真的普遍比不喝的高呀!要是真这样,那这假设可能就有点靠谱呢!2. 比如说你假设经常锻炼的人身体更好,这可不是凭空说的吧!就好像你说经常笑的人运气不会差一样。
那怎么知道对不对呢?那就去看看那些健身达人,他们是不是真的很少生病,身体倍儿棒!3. 你说多吃水果皮肤会变好,这咋检验呀?好比你说早睡早起精神好一样。
那就找一群人,一部分多吃水果,一部分不多吃,过段时间看看他们皮肤状态的差别不就行了嘛!4. 假设下雨天心情会不好,哎呀,这可真太常见了!就像你说考试前会紧张一样。
那咱们去问问周围的人,下雨天的时候是不是大多都有点小情绪低落呀!5. 要是说努力工作就会升职加薪,这是真理吗?这就如同说长得帅就一定有女朋友一样。
那得看看那些努力了很久的同事,是不是真的得到了相应的回报呀!6. 有人假设听音乐能提高工作效率,哇,这有点意思哦!好比说吃巧克力能让人开心一样。
那咱们自己试试呗,边工作边听听音乐,看看效率是高了还是低了!7. 假设玩游戏能锻炼思维能力,这能是真的吗?就像有人说逛街能减肥一样。
那找些爱玩游戏的人,看看他们的思维是不是真的很敏捷呀!8. 你觉得看小说能增长知识,这到底对不对呢?这就好比说发呆能放松身心一样。
拿自己做个实验呗,看看看完一本小说后知识量有没有增加呀!9. 说吃辣能让人性格开朗,这可太神奇了吧!就仿佛说跑步能让人更有毅力一样。
那到底是不是这样呢?去观察那些无辣不欢的人呀!我的观点结论就是:假设检验真是个有意思的事儿,能让我们知道好多事情到底是不是真的像我们想的那样,通过观察和对比来验证,真的很有趣!。
假设检验(完整)
抽样分布
置信水平
1 -
拒绝H0
0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1 -
拒绝H0
0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
• 1. 第Ⅰ类错误(弃真错误)
x
~ N (0,1) s/ n
x ~ t(n 1)
s/ n
非正态分布 大样本 x ~ N (0,1) / n
x ~ N (0,1)
s/ n
非正态小样本情形不讨论。
3、拒绝域和接受域的确定
(双侧检验 )
抽样分布
拒绝H0
/2
1 -
置信水平 拒绝H0
/2
拒绝域
临界值
临界值
0 接受域
样本统计量 拒绝域
关统计) 6、《红楼梦》后40回作者的鉴定(文学统计)。 7、民间借贷的利率为多少?(金融统计) 8、兴奋剂检测(体育统计)
1、假设检验的基本思想
为研究某山区的成年男子的脉搏均数是否高于一般 成年男子脉搏均数,某医生在一山区随机抽查了25名 健康成年男子,得其脉搏均数x为74.2次/分,标准差 为6.0次/分。根据大量调查已知一般健康成年男子脉 搏均数为72次/分,能否据此认为该山区成年的脉搏 均数μ高于一般成年男子的脉搏均数μ0?
– 原假设为真时拒绝原假设
– 第Ⅰ类错误的概率记为
• 被称为显著性水平
• 2. 第Ⅱ类错误(取伪错误)
– 原假设为假时未拒绝原假设
第六讲假设检验文稿演示
会计师
财务计划人员
平均 标准误差 中值 模式 标准偏差 样本方差 峰值 偏斜度 区域 最小值 最大值 求和 计数
30.51667 平均 0.966314 标准误差
30.8 中值 #N/A 模式 3.34741 标准偏差 11.20515 样本方差 0.139288 峰值 -0.46508 偏斜度
两总体均值之差的估计(独立样本)
来自总体
N
(
1
,
2 1
)的样本,容量为
n1 , 样本均值为 x1;
来自总体
N
(
2
,
2 2
)的样本,容量为
( x1 x 2 ) ( 1 2 ) ~ N (0,1)
2 1
2 2
n1 n2
1
的置信区间:
2
n2 , 样本均值为 x2 ;
( x1 x2 ) z / 2
所以,拒绝原假设。即 该培训提高了消
费者 服务评级。
双样本成对比较 (均值)
例:
平均Байду номын сангаас言,丈夫比妻子赚的钱多吗? 增加营销预算会改进销售吗? 平均而言,一个消费者愿意为新产品比原产品多花多
少钱? 平均而言,电视广告A比B更有效吗? 促销手段A是否比手段B在同一家店产生了更多的销售
额?
针对匹配样本的解决方案:化成一个样本解决。
10.9 区域 24.4 最小值 35.3 最大值 366.2 求和
12 计数
27 0.705862
26.25 25.5
2.641095 6.975385 0.869936 1.243047
9 23.9 32.9
378 14
假设检验案例
案例在单个总体参数的检验中,用到的检验统计量主要有3个:Z统计量、t统计量和x2统计量。
Z统计量、t统计量常用于均值的检验。
x2统计量常用于方差的检验。
例1某地区20户家庭年收入数据为例进行均值的检验,20户家庭的年收入的原始数据见excel(第八章案例)。
(1)提出原假设和备择假设H 0:μ=15(2)计算样本个数count 。
单元格D2=“COUNT(A2:A21)”(3)计算样本均值average 。
单元格D3=“AVERAGE(A2:A21)”D4单元格输入公式“=(D3-15)/SQRT(16)/SQRT(D2)”,相当于z 值的计算公式nx /_σµ−Z<-1.96或Z>1.96rs,P值来判断是否接受原假设P=2*(1-D5)总体方差未知的情况下,对均值进行检验计算样本方差。
在D4单元格中输入函数“=VAR(A2:A21)例2一家百货公司的管理者打算为公司的信用卡客户安装一套新的账单系统。
在进行了全面的财务分析后,她发现只有当平均每人每月的账单上的消费超过170元时,安装这个新系统才可以收回成本。
抽取了400个人的每月账单构成随机样本,它们的平均数是178元。
这个管理者知道账单大致服从标准差为65元的正态分布。
H0:μ≤170(不安装新系统)H1:μ>170(安装新系统)α1 1 --αμ=170 拒绝域α1 1 --α的值:=175.62L x −μ=170 拒绝域α1 1 --αμ=0 拒绝域α1 1 --α因为2.46>1.645,所以拒绝原假设,我们有足够的证据可推断每月账单均值大于170元。
近年来,很多公司在长途电话业务上和A公司竞争。
这些公司在广告上的费率明显低于A公司,从而有人认为客户账单上的花费也要少。
然后他抽取了100个客户的随机样本,用竞争对手在广告中所引用的费率重新计算了这些客户的话费账单。
假定总体的标准差和A公司的一样,在5%的置信水平下,我们能否认为A公司与其他竞争者的账单有区别。
假设检验案例集
案例一:假设检验设备判断中的应用[1]例如:某公司想从国外引进一种自动加工装置。
这种装置的工作温度X服从正态分布(μ,52),厂方说它的平均工作温度是80度。
从该装置试运转中随机测试16次,得到的平均工作温度是83度。
该公司考虑,样本结果与厂方所说的是否有显著差异?厂方的说法是否可以接受?类似这种根据样本观测值来判断一个有关总体的假设是否成立的问题,就是假设检验的问题。
我们把任一关于单体分布的假设,统称为统计假设,简称假设。
上例中,可以提出两个假设:一个称为原假设或零假设,记为H0:μ=80(度);另一个称为备择假设或对立假设,记为H1 :μ≠80(度)这样,上述假设检验问题可以表示为:H0:μ=80H1:μ≠80原假设与备择假设相互对立,两者有且只有一个正确,备择假设的含义是,一旦否定原假设H0,备择假设H1备你选择。
所谓假设检验问题就是要判断原假设H0是否正确,决定接受还是拒绝原假设,若拒绝原假设,就接受备择假设。
应该如何作出判断呢?如果样本测定的结果是100度甚至更高(或很低),我们从直观上能感到原假设可疑而否定它,因为原假设是真实时,在一次试验中出现了与80度相距甚远的小概率事件几乎是不可能的,而现在竟然出现了,当然要拒绝原假设H0。
现在的问题是样本平均工作温度为83度,结果虽然与厂方说的80度有差异,但样本具有随机性,80度与83度之间的差异很可能是样本的随机性造成的。
在这种情况下,要对原假设作出接受还是拒绝的抉择,就必须根据研究的问题和决策条件,对样本值与原假设的差异进行分析。
若有充分理由认为这种差异并非是由偶然的随机因素造成的,也即认为差异是显著的,才能拒绝原假设,否则就不能拒绝原假设。
假设检验实质上是对原假设是否正确进行检验,因此,检验过程中要使原假设得到维护,使之不轻易被否定,否定原假设必须有充分的理由;同时,当原假设被接受时,也只能认为否定它的根据不充分,而不是认为它绝对正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设检验
一、............................... 单样本总体均值得假设检验
1
二、............................. 独立样本两总体均值差得检验
2
三、................................. 两匹配样本均值差得检验
3
四、..................................... 单一总体比率得检验
5
五、................................. 两总体比率差得假设检验
6
、单样本总体均值得假设检验
例题:
某公司生产化妆品,需要严格控制装瓶重量。
标准规格为每瓶250 克,标准差为1克,企业得质检部门每日对此进行抽样检验。
某日从生产线上随机抽取16瓶测重,以95%得保证程度进行总体均值得假设检验。
SPSS操作:
(1)打开数据文件,依次选择Analyze(分析)f pare Means(比较均值)f One Sample T Test单样本t检验),将要检验得变量置入Test Variable(s)检验变量);
⑵在Test Value脸验值)框中输入250;点击Options(选项)按钮,在
Confidenee
Interval(置信区间百分比)后面得框中,输入置信度(系统默认为95%,对应得显著性水平设定为5%,即0、05,若需要改变显著性水平如改为0、01则在框中输入99即可);
(3)点击Continue(继续)f OK(确定),即可得到如图所示得输出结果。
单样本检验
检验值=250
图中得第2~5列分别为:计算得检验统计量t、自由度、双尾检验p-值与样本均值与待检验总体均值得差值。
使用SPSS软件做假设检验得判断规则就是:p- 值小于设定得显著性水平?时,要拒绝原假设(与教材不同,教材得判断标准就是pv?/2)。
从图中可以瞧到,p-值为0、01,小于0、05,故检验结论就是拒绝原假设、接受备择假设,认为当天生产得全部产品平均装瓶重量与250克有显著差异(拒
绝原假设),不符合规定得标准。
图中表格得最后两列,就是样本均值与待检验总体均值差值(xi-250)1-?置信区间得下限与上限,待检验得总体均值Test Value加上这两个值,就构成了总体均值得1-?置信区间。
通过这个置信区间也可以做假设检验:若这个区间不包含待
检验得总体均值,就要在?水平上拒绝原假设。
本例中样本均值与待检验总体均值差值95%置信区间得下限与上限均为负值,因此所构造得总体均值得95%置信区间不可能包含待检验得总体均值250,因此要在0、05得水平上拒绝原假设、
接受备择假设,与依据p-值得出得检验结论一致。
注意:除非给出明确结果,SPSS没有单侧检验,SPSS^得p值均为双侧检验得概率p 值,如果要进行要单侧检验,将软件给出得p值与2倍得显著性水平进行比较即可,如要求?=0、05,单侧比较时,p值与2? =0、1进行比较、
二、独立样本两总体均值差得检验
例题:
某品牌时装公司在城市中心商业街得专卖店中只销售新款产品且价格不打折,打折得旧款产品则统一在城郊购物中心得折扣店销售。
公司销售部门为制订更合理得销售价格及折扣方法,对购买该品牌时装得顾客做了抽样调查。
分别从光顾城中心专卖店得顾客中随机抽取了36人,从光顾折扣店得顾客中随机抽取
了25人。
调查发现,光顾专卖店得顾客样本平均月收入水平为1、35万元,而光
顾折扣店得顾客样本平均月收入水平为1、24万元。
现在需要判断:光顾这两种
店得顾客得总体收入水平就是否也存在明显得差异?
SPSS操作:
⑴打开数据文件,依次选择Analyze(分析)—pare Means(比较均值)—IndependentSample T Test(独立样本t检验),将要检验得变量置入Test Variable (s)检验变量),将分组变量置入Grouping Variable(分组变量),并点击Define Groups(定义组)输入两个组对应得变量值;
(2)点击Optio ns(选项)按钮,在Con fide nee In terval(置信区间百分比)后面得框中,输入置信度(系统默认为95%,对应得显著性水平为5%即0、05,若需要改变显著性水平如改为0、01,则在框中输入99即可);
(3)点击Continue(继续)—OK确定)。
得到如图所示得输出结果。
三、两匹配样本均值差得检验
例题:
中学生慢跑试验得例子。
表6-3就是30名学生慢跑锻炼前后脉搏恢复时间及差值数据,试以0、05得显著性水平检验:学生慢跑锻炼前后脉搏恢复时间就是否具有显著差异。
(“ data6_0样本顾客月收入水
平”)
表6-3 学主慢跑锄炼前后脉搏恢亘时间及差值
data6_04学生慢跑锻炼前后脉搏恢复时间及差值
SPSS操作:
⑴打开数据文件,依次选择Analyze(分析)—pare Means(比较均值)—Paired-Sample T Test(匹配样本t检验),将要检验得两个变量分别置入Paired Variables(成对变量)下面得Variable1(变量1)与Variable2(变量2);
(2)点击Optio ns(选项)按钮,在Con fide nee In terval(置信区间百分比)后面得框中输入置信度(系统默认为95%,对应得显著性水平为5%,即0、05,若需要改变显著性水平如改为0、01,则在框中输入99即可);
(3)点击Con ti nue(继续)—OK(确定),即得到如图所示得输出内容。
拒绝原假设、接受备择假设
方法二:
对进行单样本t检验,原假设:检验值为0
拒绝原假设、接受备择假设
四、单一总体比率得检验
例题:
甲企业产品中使用得微型电动机采购自专门制造这种电动机得乙企业。
合同
规定,若一批电动机得次品率不高于5%,甲企业应当接收;若次品率高于5%,则产品要退回,乙企业同时还要承担相应得运输、检验费用与损失。
现有一批电动机到货,抽取100件进行检验,发现有6件次品,样本次品率为6%。
试以0、05得显著性水平检验:该批产品得次品率就是否明显地高于规定得标准。
SPSS操作:
比率属于二项分布,使用SPSS软件做单一总体比率得检验时,可以选择非参数检验(Nonparametric Tests)中得二项分布检验(Binomial Test)或卡方检验(Chi-Square Test)来做。
下面给出利用SPSS实现中单一总体比率得二项分布检验过程。
注意:数据文件需要整理为图6-12所示得形式(见所附数据集“data6_06^品合格率检验”检验结
果1代表合格品、2代表次品。
(1)打"数据丈件,依次选拧Analyze (分析〉-Nonpara metticT C<TS(非畚数检验)-
*B iumiiialTest (二刚分摘检验).将舉檢验的变量"检瞳结果** JEA Test Vanable List (检齡变址列衣):(2){i.resxProfwnion < 验比例)肿I「输入Q戲〔花此必須输人数抑文件中第一个观测的童駅值,朮例中第f 观测的检验结JR为I,代表合格&,而卢品总休合格的枭件为仟格率不低J 95%,汴恳不能输入钻h
⑶点击OK (确定人即可得到如图6-13 的输出结果。
接受原假设
五、两总体比率差得假设检验
例题:
某省一项针对女性社会地位得调查结果显示:被调查得1200名20至30岁
青年女性中,拥有大专及以上学历者为390人,占32、5%;被调查得1000名20至30岁青年男性中,拥有大专及以上学历者为306人,占30、6%。
试以0、05得显著性水平检验:该省30岁以下青年女性中,拥有大专及以上学历得比率就是否显著地高于青年男性得这一比率。
data6_07样本得性别及学历情况
SPSS操作:
:丨〕2. + Kt 141^ Ail al we ■■:、卡)■* Nonpa lametnc Tesis (很参数柿验)
—2 Independent-Samples Tests〔曲独立样布检鲨h斷妥检聲的变量“学历"SATest X^iiable List〔两个独立桦本检塹〉.将井组燮St *性别” BA Groining Vnirablt I分组曼鱼)■点击Define Groups {定义殂)输人件别的两的比
(2)怯川杀编默认的Mami-Wlnniey U (吴•蛊特尼I;)检验方沬‘虫击0K (阴定九即可得到如
闺5-15所示的输岀结果°
a、分组变量性别
不能拒绝原假设。