三年级奥数第6次课:找规律(二)(教师版)

合集下载

小学三年级奥数-找规律-知识点与习题

小学三年级奥数-找规律-知识点与习题

第5讲找规律(一)这一讲我们先介绍什么是“数列”,然后讲如何发现和寻找“数列”的规律。

按一定次序排列的一列数就叫数列。

例如,(1) 1,2,3,4,5,6,…(2) 1,2,4,8,16,32;(3) 1,0,0,1,0,0,1,…(4) 1,1,2,3,5,8,13。

一个数列中从左至右的第n个数,称为这个数列的第n项。

如,数列(1)的第3项是3,数列(2)的第3项是4。

一般地,我们将数列的第n项记作an。

数列中的数可以是有限多个,如数列(2)(4),也可以是无限多个,如数列(1)(3)。

许多数列中的数是按一定规律排列的,我们这一讲就是讲如何发现这些规律。

数列(1)是按照自然数从小到大的次序排列的,也叫做自然数数列,其规律是:后项=前项+1,或第n项an=n。

数列(2)的规律是:后项=前项×2,或第n项数列(3)的规律是:“1,0,0”周而复始地出现。

数列(4)的规律是:从第三项起,每项等于它前面两项的和,即a 3=1+1=2,a4=1+2=3,a5=2+3=5,a 6=3+5=8,a7=5+8=13。

常见的较简单的数列规律有这样几类:第一类是数列各项只与它的项数有关,或只与它的前一项有关。

例如数列(1)(2)。

第二类是前后几项为一组,以组为单元找关系才可找到规律。

例如数列(3)(4)。

第三类是数列本身要与其他数列对比才能发现其规律。

这类情形稍为复杂些,我们用后面的例3、例4来作一些说明。

例1找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)4,7,10,13,( ),…(2)84,72,60,( ),( );(3)2,6,18,( ),( ),…(4)625,125,25,( ),( );(5)1,4,9,16,( ),…(6)2,6,12,20,( ),( ),…解:通过对已知的几个数的前后两项的观察、分析,可发现(1)的规律是:前项+3=后项。

所以应填16。

(2)的规律是:前项-12=后项。

小学奥数:8-6 操作找规律.教师版

小学奥数:8-6 操作找规律.教师版

操作找规律知识点拨知识点说明在奥数中有一类“不讲道理”的题目,我们称之为“简单操作找规律”。

有一些对小学生来说很难证明的,但与证明相比,发现却是比较容易的。

这也是数学中的一种重要的思想,在以后的数学学习中会有一种先猜后证的解题方法。

这类题主要考查孩子们的发现能力。

例题精讲模块一,周期规律【例 1】四个小动物换座位.一开始,小鼠坐在第1号位子,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子.第一次上下两排交换.第二次是在第一次交换后再左右两排交换.第三次再上下两排交换.第四次再左右两排交换……这样一直换下去.问:第十次交换位子后,小兔坐在第几号位子上?(参看下图)【考点】操作找规律【难度】2星【题型】解答【关键词】华杯赛,初赛【解析】根据题意将小兔座位变化的规律找出来.可以看出:每一次交换座位,小兔的座位按顺时针方向转动一格,每4次交换座位,小兔的座位又转回原处.知道了这个规律,答案就不难得到了.第十次交换座位后,小兔的座位应该是第2号位子。

【答案】第2号【例 2】在1989后面写一串数字。

从第5个数字开始,每个数字都是它前面两个数字乘积的个位数字。

这样得到一串数字:1 9 8 9 2 8 6 8 8 4 2 ……那么这串数字中,前2005个数字的和是____________。

【考点】操作找规律【难度】2星【题型】填空【关键词】迎春杯,中年级,初试【解析】由题意知,这串数字从第5个数字开始,只要后面的连续两个数字与前面的连续两个数字相同,后面的数字将会循环出现。

1989︱286884︱28……由上图知,从第5个数字开始,按2,8,6,8,8,4循环出现。

()-÷=⋯,前2005个数字和是2005463333()()()+++++++++⨯+++271198816120311989286884333286=++=。

【答案】12031【例 3】先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:628101123…,则这个整数的数字之和是。

三年级奥数找规律

三年级奥数找规律

斐波那契的兔子(数列)知识图谱斐波那契的兔子知识精讲一.数列1.定义:按一定顺序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,……,第n项(末项).二.常见的数列1.兔子数列(斐波那契数列):从第3项开始,每一项都等于前两项之和的数列.2.等差数列:从第二项起,每一项与它的前一项的差等于同一个数的数列.3.等比数列:从第二项起,每一项除以它的前一项的商等于同一个数的数列.三点剖析本讲主要培养学生的综合创新能力,其次还会注重培养学生的运算能力、观察推理能力和实践应用能力.本讲内容是在整数基本计算与找规律的基础上,进一步了解一列数中数与数之间的关系和规律.后续课程还会学习一些简单数列的计算.课堂引入例题1、 最近,唐小果在家附近的小公园里,总能看见好多小兔子,唐小果就想了解一下兔子繁殖.在上网浏览时遇到了这样一个问题:假设每生产一对兔子必须是一雌兔一雄兔,并且所有的兔子都能进行相互交配,所生下来的兔子都能保证成活.那么有一对兔子,每一个月可以生下一对小兔子,而且假定小兔子在出生的第二个月就可以再生小兔子,那么过三个月后,有多少对兔子?过半年后?9个月呢?带着这个问题,小果就去找她的小伙伴了……聪明的你,知道半年后有多少兔子吗?例题2、 写出课堂引入中每个月的兔子数量组成的这列数,观察有什么特点?兔子数列等例题1、 斐波那契数列(Fibonacci sequence ),又称黄金分割数列、因数学家列昂那多·斐波那契(Leonardoda Fibonacci )以兔子繁殖为例子而引入,故又称为“兔子数列”.一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对兔子.如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对;两个月后,生下一对小兔子的对数共有两对;三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对.……以此类推我们利用表格找一找规律:这个是可以用枚举数出来的吧~第一个月,会新出生一对小兔子,所以总共有2对兔子.第二个月,原来的兔子会再生产一对小兔子,而第一个月出生的小兔子还不能生产,所以总共有3对小兔子.那第三个月,原来的兔子会再生产一对小兔子,第一个月出生的小兔子也可以再生产一对小兔子,但第二个月出生的小兔子,还不能生产,所以总共有5对兔子. 这不就是“斐波那契的兔子问题”吗?经过月数 0 1 2 3 4 5 6 7 … 幼崽对数 1 0 1 1 2 3 5 8 … 成兔对数 0 1 1 2 3 5 813… 总体对数11235813 21…幼崽对数=前一个月成年兔子对数;成年兔子对数=前一个月成年兔子对数+前一个月幼崽对数;总体对数=本月成年兔子对数+本月幼崽对数;我们不难发现幼崽对数、成兔对数、总体对数都构成一个数列.(1)一年后,幼崽对数、成兔对数、总体对数各是多少个?15个月之后呢?(2)相邻两个月之间兔子对数的差是多少呢?(3)兔子对数有什么规律吗?试着自己总结一下.例题2、一定数目的点或圆在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数.古希腊著名科学家毕达哥拉斯把数1,3,6,10,15,21……这些数量的(石子),都可以排成三角形,像这样的数称为三角形数.……仔细观察哦~13610(1)第8个图形中有多少个石子?第15个呢?(2)相邻两个图形的石子数有什么关系吗?这列数有什么规律吗?例题3、中国古代数学家在数学的许多重要领域中处于遥遥领先的地位.中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页.杨辉,字谦光,北宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1…………(1)第10行有几个数?分别是多少?(2)杨辉三角有什么特点?相邻两行有什么关系吗?随练1、斐波那契数列在自然科学的其他分支,有许多应用.例如:树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝.所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”.这个规律,就是生物学上著名的“鲁德维格定律”.观察下图,第一年、第二年、第三年、第四年……第八年各有多少分枝?这些数之间有什么规律?等差等比数列例题1、根据历史传说记载,国际象棋起源于古印度,至今见诸于文献最早的记录是在萨珊王朝时期用波斯文写的.据说,有位印度教宗师见国王自负虚浮,决定给他一个教训.他向国王推荐了一种在当时尚无人知晓的游戏.国王当时整天被一群溜须拍马的大臣们包围,百无聊赖,很需要通过游戏方式来排遣郁闷的心情.国王对这种新奇的游戏很快就产生了浓厚的兴趣,高兴之余,他便问那位宗师,作为对他忠心的奖赏,他需要得到什么赏赐.宗师开口说道:请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒……(1)第8个格子上放了几粒麦子?第10个格子呢?(2)前5个格子一共放了多少粒麦子?前8个格子呢?(3)这组数列中,相邻两个数有什么规律吗?例题2、数列在生活中也有很多的应用,被用于解决实际问题.如:(1)一百零八塔是中国现存的大型古塔群之一,位于银川市南60公里的青铜峡水库西岸崖壁下,塔群坐西面东,依山临水,塔基下曾出土西夏文题记的帛书和佛祯,可能建于西夏时期是喇嘛式实心塔群.佛塔依山势自上而下,按1、3、3、5、5、7、9、11、13、15、17、19的奇数排列成十二行,总计一百零八座,形成总体平面呈三角形的巨大塔群,因塔数而得名.那么,按照这样的规律,第15行有多少个佛塔?第20行呢?(2)在校技能节比赛中,值周班的同学负责收集同学们喝完水的矿泉水瓶.学校8点开场比赛,每一个小时清点一次收集到的矿泉水瓶,9点钟共收到了120个,10点钟收到了240个,11点钟收到了480个,按这个规律,到下午1点钟,共收到了多少个矿泉水瓶?(3)学校礼堂共有25排座位,后一排比前一排多两个座位,最后一排有70个座位,问第20排有多少个座位?第10排呢?第1排呢?数列在生活中的应用真不少呢!例题3、二分裂一般指生殖方式,无丝分裂、有丝分裂、减数分裂是真核有性生殖的细胞的分裂方式,原核生物如细菌以无性或者遗传重组二种方式繁殖,最主要的方式是以二分裂这种无性繁殖的方式:一个细菌细胞壁横向分裂,形成两个子代细胞.(1)开始有一个细菌,假设一个细菌分裂成两个子代细胞需要30秒,3分钟后有多少个细胞?(2)一个生物瓶中装有1个细菌,假设一个细菌分裂成两个子代细胞需要10秒,半小时后,整个瓶中都是细菌,那么什么时候生物瓶中有半瓶的细菌细胞?仔细观察题目,看清要求哦~随练1、下图是用火柴棒拼出的一列图形,依次类推,则第十个图形中的火柴棒的根数有________根,第n个图形中的火柴棒的根数有________根.随练2、如图一个堆放钢管的V形架的最下面一层放一根钢管,往上每一层都比它下面一层多放一个,最上面一层放30根钢管,求这个V形架上共放着多少根钢管?易错纠改例题1、将一条长方形的纸条对折一次可以得到1条折痕,保持折痕平行时对折两次可以得到3条折痕,对折三次可以得到7条折痕,对折四次可以得到15条折痕,对折十次可以得到多少条折痕?我拿张纸来试一试不就知道了吗?我还是找找它们之间的规律吧?1、3、7、15……下一个是不是29呢?聪明的你知道是多少吗?拓展1、分析并口述题目的做题思路及方法.找规律填数:0,3,8,15,24,(),48,63.2、一根绳子弯成如图形状,当用剪刀沿一条虚线剪断时,绳子被剪成5段;沿两条虚线剪断时,绳子被剪成9段;沿三条虚线剪断时,绳子被剪成13段;以此方法,沿10条虚线剪断时,绳子被剪成多少段?(1)(2)(3)3、下面是由大小相同的小正方体木块叠放而成的图形,第一个图中有1个木块,第二个图中有6个木块,第三个图中有15个木块,第四个图中有28个木块,按照这样的规律摆放下去,则第七个图中小木块的个数是多少?4、下面是按规律排成的一列数,从左向右数第九个数是多少?3,5,9,17,33,65,……5、观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)2,5,8,11,(),17,20.(2)19,17,15,13,(),9,7.(3)1,3,9,27,(),243.(4)64,32,16,8,(),2.(5)1,1,2,3,5,8,()21,34.(6)1,3,4,7,11,18,(),47.(7)1,3,6,10,(),21,28,36,().(8)1,2,6,24,120,(),5040.6、小明上楼梯,每次走一个台阶或两个台阶现在他要上一段楼梯,有12个台阶,有多少种方法呢?(可以先看台阶有1、2、3、4个……会有多少种方法)7、一条直线上一个点可以构成0条线段,两个点可以构成1条线段,三个点可以构成3条线段,四个点可以构成6条线段,以此类推15个不同的点可以构成多少条线段?。

新概念思维训练-小学三年级第讲找规律-教师版

新概念思维训练-小学三年级第讲找规律-教师版

新概念思维训练-⼩学三年级第讲找规律-教师版第5讲找规律内容概述通过观察已知项,找出所给数列、数表或图形的变化规律,并根据规律对其进⾏补填,解题中注意多重规律的叠加。

典型问题兴趣篇1.找规律,填空:(1)2,6,10,14,18,22,__________,__________,34;(2)1,3,9,27,81,__________,729;(3)l,l,2,3,5,8,13,21,__________,__________,89;(4)1,4,9,16,25,__________,__________,64.答案:(1)26,30; (2)243; (3)34,55 (4)36,49分析:(1)后⼀个数⽐前⼀个数⼤4(2)前⼀个数乘3得后⼀个数,3×81=243(3)兔⼦数列,前两个数的和等于后⼀个数(4)第1个数是1×1=1,第2个数是2×2=4,第3个数是3×3=9…第6个数是6×6=36,第7个数是7×7=492.找规律,填空:(1)97,88,79,70,6l;__________,__________,34;(2) __________,__________,15,24,35,48,63,80,99;(3) __________,__________,12,19,31,50,81,131,212.答案:(1)52,43 (2)3,8 (3)5,7分析:(1)后⼀个数⽐前⼀个数⼩9(2)题中已有的数从左⾄右:15+9=24,24+11=35,35+13=48,48+15=63…,所以15前边的数应是15-7=8,8-5=3(3)前两个数的和等于第三个数3.找规律,填空:(1)40,2,37,4,34,6,31,8,__________,__________,25,12;(2)l,2,2,4,3,8,4,16,5,__________,__________,64,7.答案:(1)28,10 (2)32,6分析:(1)把⼀列数分两列看:40,37,34,31,31-3=282,4,6,8,8+2=10(2)分成两列看:1,2,3,4,5,5+1=62,4,8,16,2×16=324. 找规律,请在图5-1的空格中填⼊适当的数。

找规律 (教案)三年级下册数学北师大版

找规律 (教案)三年级下册数学北师大版

找规律教学目标通过本节课的学习,学生可以掌握以下几个方面的技能:•理解和运用自然数的概念及其基本性质;•通过观察数字序列的规律,了解规律的本质和寻找规律的方法;•运用找规律的方法解决实际问题;•丰富数的计数和数的观念,培养想象力和逻辑思维能力;•发现数学之美,激发对数学的兴趣。

教学重点让学生理解数字序列找规律的方法。

教学难点提高学生找规律能力并将其应用于实际问题。

教学过程Step 1 让学生观察数字序列1.在黑板或者白板上列出一组数字序列:2, 4, 6, 8, 10, ...2.让学生观察这组数字的规律,看他们是否能找到其中的奥妙。

3.让学生有序,有条理地把自己站在的位置和他们观察到的数字写在黑板或白板上。

例如:序号: 1 2 3 4 5数字: 2 4 6 8 10观察点: +2 +2 +2 +24.然后再让学生试着找出第 50 个、第 100 个数字是多少。

Step 2 教授寻找数字序列规律的方法1.让学生仔细思考每个数字之间的关系,倘若没有找到规律,就换一组数字。

2.可以用画图的方式来进行辅助,并且也可以使用计算器自行验证结果是否恰当。

Step 3 练习让学生试着通过上一节课学到的方法,理解并找出下列数字序列的规律:1, 3, 6, 10, 15, ...3, 6, 10, 15, 21, ...1, 4, 9, 16, 25, ...Step 4 运用数字序列找规律的方法解决实际问题1.A 学生和 B 学生各自计算下面的数字张数:A 学生: 1, 2, 4, 7, 11, ...B 学生: 3, 6, 10, 15, 21, ...两个人在比赛,谁最先算出数 99 的位置?2.写出下面的数列,分别输出各序号的数值:序号: 1 2 3 4 5 6 ...数字: 1 4 9 16 25 36 ...3.假设你拥有一些多边形的一些顶点数,你可以得出规律吗?例如:三角形:3四边形:4五边形:5六边形:6七边形:7你可以用找规律的方法推导出 n 边形的顶点数吗?教学总结在本节课的学习中,学生应当通过观察数字序列的规律,钻研出寻找规律的方法,以及将其应用于实际问题的技巧。

三年级奥数第02讲寻找规律(教师版)

三年级奥数第02讲寻找规律(教师版)

三年级奥数第02讲寻找规律(教师版)教学目标发现排列规律,并依据规律填写数字或算式。

知识梳理按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

对于较复杂的按规律填数的问题,我们可以从以下几个方面来思考:1.对于几列数组成的一组数变化规律的分析,需要我们灵活地思考,没有一成不变的方法,有时需要综合运用其他知识,一种方法不行,就要及时调整思路,换一种方法再分析;2.对于那些分布在某些图中的数,它们之间的变化规律往往与这些数在图形中的特殊位置有关,这是我们解这类题的突破口。

3.对于找到的规律,应该适合这组数中的所有数或这组算式中的所有算式。

典例分析考点一:发现数列规律例1、填上合适的数。

(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()【解析】(1)前一个数加上3就等于后一个数,也就是相邻两个数的差都是 3.根据这一规律,可以后推知括号里填15和18.(2)第一个数增加1等于第二个数,第二个数增加2等于第三个数,也就是每相邻两个数的差依次是1,2,3,4....,这样下一个数应比11大5,填16;再下一个数应比16大6,填22.(3)后一个数是前一个数的3倍,162和486例2、找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()(3)3,4,7,3,4,10 , 3 , 4 ,13,(),()(4)187,286,385,(),()【解析】(1)第一个数减3是第三个数,第三个数减3是第5个数,第二、第四、第六个数不变。

三年级小学数学奥数基础教程(全)

三年级小学数学奥数基础教程(全)

小学奥数基础教程(三年级)- 1 - 小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目.解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数.根据“加数=和—另一个加数"知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A —1=3知,A=3+1=4.解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

由它们推演还可以得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。

例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28—○=15+7;(3)3×△=54; (4)☆÷3=87;(5)56÷*=7。

小学奥数图形找规律题库教师版

小学奥数图形找规律题库教师版

【解析】这组图形的共同特征是,连接各边上一点,组成一个复合图形•所不同的是,第四个图形是形,而其它几个都是四边形,这样,只有(4)与其它不一样【例2】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?个六边O O O OO O O△△△△△△【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。

•因为圆形【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?△△△△△△△□△?□□△□□□【解析】(方法一)横着看,每行三角形的个数依次减少,而形的个数依次增加,但每行图形的总个数不变因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△•(方法二)竖着看,三角形由左而右依次减少,而形由左而右依次增加,三角形按照4、?、顺序变化,也可以看出“?”处应是三角形△2、1的找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题•板块一数量规律【例1】请找出下面哪个图形与其他图形不一样•【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】(方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变•因为圆形的个数是按5、4、3、?、1的顺序变化的,显然“?”处应填一个圆形•(方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5、4、?、2、1的顺序变化,也可以看出“?”处应是圆形•【例3】观察下面的图形,按规律在“?”处填上适当的图形(1)(2)(3)(4)(5)【解析】本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起, 每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形•【例4】观察图形变化规律,在右边补上一幅,使它成为一个完整系列。

三年级奥数-找规律填数

三年级奥数-找规律填数

三年级奥数-找规律填数(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除三年级找规律填数例1、找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)4,7,10,13,( ),()(2)84,72,60,( ),( );(3)2,6,18,( ),( );(4)625,125,25,( ),( );(5)1,2,4,8,16,(),()(6)1,3,9,27,(),243(7)35,(),21,14,(),()(8)64,32,16,8,(),2例2、找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)15, 2, 12, 2, 9, 2,(),()(2)21, 4,18, 5, 15,6,(),()(3)10,5,12,6,14,7,( ),( )(4)1,1,2,1,1,4,1,1,6,( ),( ),( )例3、找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)18,20,24,30,( ),();(2)11,12,14,18,26,( );(3)1,3,6,10,(),21,28,36,().(4)1,2,6,24,120,(),5040。

(5)252, 124,60,28,(),4。

(6)1, 4,9, 16,25, 36,()。

例4、找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)1, 2, 2, 4, 8, ( )(2)1, 3, 3, 9, ( )(3)2, 3, 5, 8, 13, ( ),( )(4)3,7,10,17,27,( );(5)1,2,2,4,8,32,( )。

例52(2)例65),(2,6,10),(3,9,15)……问:第100个数组内3个数的和是多少?例7、找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)37037×3=111111(2)37037×6=222222(3)37037×9=333333(4)37037×( )=444444(5)37037×( )=666666(6)37037×( )=999999综合练习:1、找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)2,5,8,11,(),17,20。

三年级奥数讲义-图形找规律二

三年级奥数讲义-图形找规律二

数学学科教师辅导教案知识精讲知识点一(【例2】 下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.(1)(2)(3)【例 3】 观察下图的变化规律,画出丙图.【例 4】 有六种不同图案的瓷砖,每种各6块.将它们砌在如下图那样的地面上,使每一横行和每一竖行都没有相同图案的瓷砖.你会怎样设计??第3组第2组第1组?第3组第2组第1组★★★★★?第3组第2组第1组DC BA丙乙甲DCB A【例 5】 下面各种各样的娃娃头好看吗?认真观察你能找到它们排列的规律吗?根据规律把最后一个画出来.【例 6】 观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.【例 7】 琪琪特别喜欢蝴蝶,她用直尺和圆规在纸上画了9幅蝴蝶图,并用剪刀将它们一一剪下来.她将这9只纸蝴蝶摆在桌上,见下图1,她发现这些纸蝴蝶排列挺有规律,突然一阵风来,吹走了3只纸蝴蝶,见下图2.你能找出蝴蝶的排列规律,将图2的3只蝴蝶放入图1的空缺处吗?图1987654321图2B CA【巩固练习】根据前三个方格表中阴影部分的变化规律,填上第(10)个方格表中阴影部分的小正方形内的几个数之和。

【例 11】按照下列图形的变化规律,空白处应是什么样的图形?【巩固练习】按照下列图形的变化规律,空白处应是什么样的图形?【例 12】 请你认真仔细观察,按照下面图形的变化规律,在“?”处画出合适的图形。

【例 13】观察下图的变化规律,在“?”处填入适当的图形.698754321......(10)(3)(2)(1)??【例 14】下图中的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.【巩固练习】下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形。

【例 15】按照变化规律在“?”处填上合适的图形. (1)(2)【例 16】观察下列各组图的变化规律,并在“?”处画出相关的图形.???ihgfedcba(d )(c )(b )(a )【例 17】仔细观察下列图形的变化,请先回答:(1)在方框(4)中应画出怎样的图形?(2)再按(1)、(2)、(3)……的顺序数下去,第(10)个方框是怎样的图形?【巩固练习】仔细观察下列图形的变化,请先回答:(1)在方框(4)中应画出怎样的图形?(2)再按(1)、(2)、(3)、……的顺序数下去,第(10)个方框是怎样的图形?【例18】顺序观察下面图形,并按其变化规律在“?”处填上合适的图形.(1)(2)(3)(4)11。

三年级数学奥数讲义-图形规律(讲师版)

三年级数学奥数讲义-图形规律(讲师版)

学科培优数学“图形规律”学生姓名授课日期教师姓名授课时长知识定位找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.知识梳理一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:(1)图形数量的变化;(2)图形形状的变化;(3)图形大小的变化;(4)图形颜色的变化;(5)图形位置的变化;(6)图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.关于解决图形规律问题的常用方法:1、从图形数量、位置变化出发观察思考几何图形的规律2、从图形形状、大小变化发现寻找图形的变化规律3、掌握寻找复杂图形变化规律的方法图形规律问题的分类:1、从图形形状、大小、颜色变化发现寻找图形的变化规律2、从图形数量、位置变化出发观察思考几何图形的规律3、复杂图形变化规律竞赛考点挖掘1.从图形形状、大小、颜色变化发现寻找图形的变化规律题目2.从图形数量、位置变化出发观察思考几何图形的规律题目3.复杂图形变化规律题目例题精讲【试题来源】【题目】请找出下面哪个图形与其他图形不一样.【答案】4【解析】这组图形的共同特征是,连接各边上一点,组成一个复合图形.所不同的是,第四个图形是一个六边形,而其它几个都是四边形,这样,只有(4)与其它不一样【知识点】图形规律【适用场合】当堂例题【难度系数】1【试题来源】【题目】根据左边图形的关系,画出右边图形的另一半.(1)(2)(3)【答案】见解析【解析】由左边图形的变化,即阴影部分从内环变为外环,可得“?”处应填:(2)已知图形是两层圆形对应两层方形,三层圆形对应三层方形,阴影部分变为非阴影部分,所以“?”应填:(3)图形都是△和□,阴影部分两个图形的位置正好相反,△的阴影部分在上面,即“?”处□的阴影应该在下方:【知识点】图形规律 【适用场合】当堂例题 【难度系数】1【试题来源】【题目】在下面图形中找出一个与众不同的.【答案】4【解析】很容易从图中看出,(1)、(3)、(4)的形状相同,只是位置和颜色不同. (1)(3),而且三角形与圆的颜色互换了一下. (1)(4),颜色没有发生变化.(2)(5),(2)和(5)是一组图形,图形的形状相同,位置和颜色发生了变化,大小两个长方形的颜色互换了.根据上面的分析,(2)与(5)配对,(1)与(3)配对,因此与众不同的图形是图10中的(4),如图:【知识点】图形规律 【适用场合】当堂例题 【难度系数】2【试题来源】【题目】按照下列图形的变化规律,空白处应是什么样的图形??【答案】见解析【解析】先看图中不变的部分.在整个变化过程中,图形中大小两个正方形没有变化,因此可以肯定空白处的图形一定是大小两个正方形,位置是一里一外.变化的部分可以分为两部分:(1)图形中的直线段部分,其变化规律是每次顺时针旋转90°,因此空白处图中的直线段应是如图的形状.(2)图中的阴影部分,是在小正方形的对角线的左右两边交替出现的,因此空白处图中的阴影部分应在小正方形对角线的右边.根据上面的分析,可画出空白处的图形,如图所示:【知识点】图形规律【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,根据图中已知3个方格表中阴影的规律,在空白的方格表中也填上相应的阴影.【答案】见解析【解析】通过观察前三个方格表中阴影部分的规律,可以得出:把前3个方格表一列一列的看,阴影部分在一格一格的向下移动,当移到最下方时,便重新从最上面的一格重新开始循环,不难看出第4个方格表的第一列应该把最下面一个格染黑,依此可以判断出其他的3个方格,所以,答案为:【知识点】图形规律【适用场合】当堂例题【难度系数】2【试题来源】【题目】观察图形变化规律,在右边补上一幅,使它成为一个完整系列【答案】见解析【解析】观察发现,乌龟的顺序是:头、身→一只脚、背上一个点→两只脚、背上两个点→两只脚、一条尾、背上三个点→三只脚、一条尾、背上四个点,根据这个规律,最后一幅图应该是:→四只脚、一条尾、背上五个点.即:【知识点】图形规律【适用场合】当堂例题【难度系数】【试题来源】【题目】观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.【答案】见解析【解析】给出图形的变化体现在四个方面:头、胡须、身子和尾巴.(1)头:第一行中三个图形的头部分别为三角形、圆形和正方形,因此第二行空白处的图形其头为三角形,第三行中空白处的图形其头为正方形.(2)胡须:第一行中三个图形的胡须分别为每边一根、两根、三根,因此,第二行中空白处的图形的胡须每边有两根,第三行中空白处的图形的胡须每边有两根.(3)身子:第一行中三个图形的身子分别为圆形、正方形和三角形,因此,第二行中空白处的图形的身子为圆形,第三行中空白处的图形的身子为三角形.(4)尾巴:第一行中三个图形的尾巴分别为向右、向左和向上,因此,第二行中空白处的图形的尾巴向左,第三行中空白处的图形的尾巴向左.所以,空缺的图形分别是:【知识点】图形规律【适用场合】当堂例题【难度系数】3【试题来源】【题目】请观察下图中已有的几个图形,并按规律填出空白处的图形.【答案】在第二行的空格中应填一个三角形,而第三行的空格中应填一个正方形.【解析】首先可以看出图形的第一行、第二列都是由一个圆、一个三角形和一个正方形所组成的;其次,在所给出的图形中,我们发现各行、各列均没有重复的图形,而且所给出的图形中,只有圆、三角形和正方形三种图形.由此,我们知道这个图的特点是:(1)仅由圆、三角形、正方形组成;(2)各行各列中,都只有一个圆、一个三角形和一个正方形.因此,根据不重不漏的原则,在第二行的空格中应填一个三角形,而第三行的空格中应填一个正方形.【知识点】图形规律【适用场合】当堂例题【难度系数】3【试题来源】【题目】下图中的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.【答案】见解析【解析】本题中,首先可以注意到每个图形都由大、小两部分组成,而且,大、小图形都是由正方形、三角形和圆形组成, 图中的任意两个图形均不相同.因此,我们不妨试着把大、小图形分开来考虑,再一次观察后我们可以发现:对于大图形来说,每行每列的图形决不重复.因此,每行每列都只有一个大正方形,一个大三角形和一个大圆,对于小图形也是如此,这样,“?”处的图形就不难得出.图中,(b )、(f )、(h )处的图形分别应填下面的三个图形【知识点】图形规律 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】观察下列各组图的变化规律,并在“?”处画出相关的图形. (1) (2)【答案】见解析【解析】(1)四个图形的位置是按顺时针方向旋转的.因此第四幅图右上角为三角形,右下角为半圆形,左下角为圆形,左上角是正方形.正方形的阴影部分是按逆时针方向依次旋转90°.得到的,因此第四幅图中正方形的阴影部分应在它的上方.三角形的方向是按逆时针???ihgfedcba方向依次旋转90°.得到的,所以第四幅图中三角形应向右.半圆形的方向与三角形的方向相同,第四幅图中半圆形也应向右.圆形的阴影部分是按顺时针方向依次旋转90°.得到的,因此第四幅图中圆形阴影部分应在圆形的左上角.因此,第四幅图应为:(2)观察前三幅图可以看出两个规律“一是四个小图形是按顺时针方向转动的,而且△、方形和*都没有变化,根据这条规律,可以先把这两个图形位置定下来;二是圆中间横线的方向,根据观察可以得到答案:【知识点】图形规律【适用场合】当堂例题【难度系数】3【试题来源】【题目】观察下图中的点群,请回答:(1)方框内的点群包含多少个点?(2)推测第10个点群中包含多少个点?(3)前10个点群中,所有点的总数是多少?【答案】25 100 385【解析】(1)数一数,前4个点群包含的点数分别是:1,4,9,16.不难发现,1=1×1,4=2×2,9=3×3,16=4×4,按照这个规律,第5个点群(即方框中的点群)包含的点数是:5×5=25(个).(2)按发现的规律推出,第十个点群的点数是:10×10=100(个).(3)前十个点群,所有的点数是:【知识点】图形规律 【适用场合】当堂例题 【难度系数】2【试题来源】【题目】仔细观察下图中图形的变化规律,并在“?”处填入合适的图形.【答案】见解析【解析】显然,图(a )、(b )的变化规律对应于图(c )的变化规律;图(d )、(e )的变化规律也对应于图(f )的变化规律,我们先来观察(a )、(b )两组图形,发现在形状、位置方面都发生了变化,即把圆变为它的一半——半圆,把三角形也变为它的一半——直角三角形;同时,变化后图形的位置相当于把原图形沿顺时针方向旋转90°而得到.因此,我们很容易地就把图(c )中的直角梯形还原为等腰梯形并通过逆时针旋转而得到图(c )“?”处的图形.当我们从左到右来观察图(d )、(e )的变化规律时,我们发现,图(d )、(e )的变化规律有与图(a )、(b )相同的一面,即都是把一个图形变为自身的一半,但也有与图(a )、(b )不同的一面,即图(d )、(e )中右半部分的图形无法通过旋转原图来得到,只能通过上下翻转而获得.这样,我们就得到了这些图形的变化规律.所以图(c )中“?”处的图形应是下面甲图,图(f )中“?”处的图形应是乙图.【知识点】图形规律 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】将“猫”“狗”“兔”“鸡”“猴”“虎”六个动物名称分别写在六个正方体的六个面edca?上,从下面三种不同摆法中,判断这个正方体上哪些动物名名称分别写在相对面上.【答案】见解析【解析】本题给的是一组立方图形,在这三幅图中,“兔”所在的一面始终不改变位置,因此,这三个图的转化只能是前后转动.把第一幅图向后反转一次得到第二幅图,由此可知,“猫”的对面是“鸡”;把第一幅图向前翻转一次得到第三幅图,所以“狗”的对面是“猴”,那么剩下的只有“兔”和“虎”相对.【知识点】图形规律【适用场合】当堂例题【难度系数】3【试题来源】【题目】图10—1是由9个小人排列的方阵,但有一个小人没有到位,请你从下面图10—2中的6个小人中,选一位小人放到问号的位置,你认为最合适的人选是几号?【答案】6【解析】从图10—1中可以发现小人的排列规律:即每行每列小人的“手臂”有向上、水平、向下;“身腰”有三角形、长方形;“脚”有圆脚、方脚、平脚.因此可以知道问号处的小人应该是向上仲臂、圆脚的小人,所以最合适的人选是6号.【知识点】图形规律【适用场合】当堂例题【难度系数】3【试题来源】【题目】四个小动物排座位,一开始,小鼠坐在第1号位子上,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子,第一次上下两排交换.第二次是在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换…这样一直换下去.问:第十次交换位子后,小兔坐在第几号位子上?【答案】【解析】(方法1)因为题目中问的只是第十次交换位子后,小兔的位子是几.因此,我们只需考虑小兔的位子变化规律,小兔刚开始时在3号位子,记为③,则变化过程为:③一次→①二次→②三次→④四次→③→…容易看出每一次交换座位,小兔的座位按顺时针方向转动一格,每四次交换座位后,小兔又回到原处,知道了这个规律,就不难得出答案.即10次后,小兔到了第2号位子.(方法2)仔细观察示意图时会发现,开始的图沿顺时针方向旋转两格(即180°)时,恰得到第二次交换位子后的图,由此可以知道,每一次上下交换后再一次左右交换的结果就相当于把原图沿顺时针方向旋转180°,第十次交换位子后,相当于是这些小动物沿顺时针方向转了4圈半,这样,我们就得到了小兔的位子及它们的整体变化规律.但其中需注意一点的是:单独一次上下(或左右)的交换与旋转90°得到的结果是不同的.小猫、小鼠的位子变化规律是沿逆时针方向,而小猴的位子变化规律与小兔相似.所以,第十次交换位子后,小兔到了2号位子.【知识点】图形规律【适用场合】当堂例题【难度系数】3习题演练【试题来源】【题目】顺序观察给出图形的变化,按照这种变化规律,在空格中填上应有的图形【答案】见解析【解析】本题与刚刚前埔中所讲题目相似但不一样,需要仔细观察,发现本题不只是箭方向上有变化,箭尾数量上也有变化,在同一行中,每旋转90°,箭尾上的“羽毛”将减少一对,依照这个规律,空格中的箭,其尾部的“羽毛”没有了,成了光秃秃的一支箭,所以空格中应填:【知识点】图形规律【适用场合】随堂课后练习【难度系数】1【试题来源】【题目】根据下列图形的变化规律,接着画下去.【答案】见解析【解析】观察得知,每幅图只有四个小图形,注意因为图形是由旋转而得到的,所以其中三角形、菱形的方向随旋转而变化,作图的时候要注意到这一点,丁图中应填:【知识点】图形规律【适用场合】随堂课后练习【难度系数】2【试题来源】【题目】请找出下面哪个图形与其他图形不一样【答案】3【解析】(1)这组图形主要是构图上的差异,几个图形都是大图形的内部有一个同一类型的小图形.但是(1)、(2)、(4)、(5)中的小图形都位于大图形的一个拐角上,只有(3)中的小图形位于达图形的中间,因此,第(3)个图形与其它图形不一样.【知识点】图形规律【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【答案】见解析【解析】第一格有8个圆圈,第二格有4个圆圈,第三格有2个圆圈,第四格有1个圆圈,第五格有半个圆圈.由此发现,前一格中的图减少一般,正好是后一格的图.所以第六格的图应该是第五格图的一半,即:【知识点】图形规律【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】仔细观察下列图形的变化,请先回答:(1)在方框(4)中应画出怎样的图形?(2)再按(1)、(2)、(3)、……的顺序数下去,第(10)个方框是怎样的图形?【答案】见解析【解析】(1)观察阴影部分可得这组图形的规律,它在沿逆时针方向转动.所以第(4)个方框中的图形的样子:【知识点】图形规律【适用场合】随堂课后练习【难度系数】3。

奥数图形找规律教师版

奥数图形找规律教师版

图形找规律找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:⑴图形数量的变化;⑵图形形状的变化;⑶图形大小的变化;⑷图形颜色的变化;⑸图形位置的变化;⑹图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.板块一数量规律【例 1】请找出下面哪个图形与其他图形不一样.【解析】这组图形的共同特征是,连接各边上一点,组成一个复合图形.所不同的是,第四个图形是一个六边形,而其它几个都是四边形,这样,只有(4)与其它不一样【例 2】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个圆形。

【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】(方法一)横着看,每行三角形的个数依次减少,而正方形的个数依次增加,但每行图形的总个数不变.因为三角形的个数是按4、3、?、1的顺序变化的,显然“?”处应填一个三角形△.(方法二)竖着看,三角形由左而右依次减少,而正方形由左而右依次增加,三角形按照4、?、2、1的顺序变化,也可以看出“?”处应是三角形△.【巩固】观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?【解析】 (方法一)横着看,每行圆形的个数一次减少,而三角形的个数依次增加,但每行图形的总个数不变.因为圆形的个数是按5、4、3、?、1的顺序变化的,显然“?”处应填一个圆形.(方法二)竖着看,圆形由左而右依次减少,而三角形由左而右依次增加,圆形按照5、4、?、2、1的顺序变化,也可以看出 “?”处应是圆形.【例 3】 观察下面的图形,按规律在“?”处填上适当的图形.(5)(4)(3)(2)(1)【解析】 本题中,几何图形的变化表现在数量关系上,图中黑三角形的个数从左到右依次增多,从(2)起,每一个格比前面一个格多两个黑三角形,所以,第(4)个方框中应填七个黑三角形.【例 4】 观察图形变化规律,在右边补上一幅,使它成为一个完整系列。

三年级 第6讲 找规律填数(二)

三年级 第6讲 找规律填数(二)

●●●● 随 堂 练 习 5
(1)图中第21个拐弯的数是多少?
➢ 题型拓展
➢ 下面每组图形中的数字都有它的规律,先把规律找出来,再 把空缺的数字填进去.
2
3
ቤተ መጻሕፍቲ ባይዱ120
4
5
1
3
90
5
6
2
3

5
7
➢ 拓展练习
➢ 下面每组图形中的数字都有它的规律,先把规律找出来,再 把空缺的数字填进去.
6
12
100
15
第二个,已知末项,求项数: 项数=(末项-首项)÷ 公差+1
第三个: 和=(首项+末项)× 项数 ÷ 2
【例 3】
【例3】 已知算式: 1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15, 1+17,···问:第几个算式的得数是1992 ?
●●●● 随 堂 练 习 3
➢ 发现规律,在括号内填入适当的数: (1) 2,5,8,11,10,13,16,19,18,( ),( ) (2)0,2,2,4,6,10,( ),( )
(3)75,3,74,3,73,3,( ),( )
【例 2】
【例2】 找出数列的规律,并在括号内填入适当的数: 25,3,22,3,19,3,( ),( )
●●●● 随 堂 练 习 2
➢ 发现规律,在括号中填人适当的数: (1) 15、6、13、7、11、8、( ) 、( ) (2) 2,3,4,5,8,7,( ) 、( ) (3) 76,2,75,2,74,4,( ),( )
➢ 知识拓展
➢ 知识拓展
等差数列 如果一个数列,从第 2 项起,每项与前一项的差是一个固定数,这

小学三年级奥数--数字找规律

小学三年级奥数--数字找规律

三年级奥数--数字找规律知识定位在今天这节课中,我们将来研究数列问题.正确认识数列,并且掌握研究数列、发现数列规律的方法,以及获得利用规律解决问题的能力.知识梳理一、日常生活中,我们经常接触到许多按一定顺序排列的数,如:自然数:1,2,3,4,5,6,7, (1)年份:1990,1991,1992,1993,1994,1995,1996 (2)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45 (3)像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45。

根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。

研究数列的目的是为了发现其中的内在规律性,以作为解决问题的依据,本讲将从简单数列出发,来找出数列的规律。

注:从日常生活中找出例子来举例说明,数列在生活中处处相关,例如日期,时间,年龄等等二、重点难点解析1、掌握一些常见的数列的规律.2、掌握一些特殊数列的规律,并熟练应用规律解决问题.3、理解掌握运用数列规律解决数阵问题.三、竞赛考点挖掘1.数列规律的发现2.综合数列的区分和解答例题精讲【题目】观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.①2,5,8,11,(),17,20②19,17,15,13,(),9,7③1,3,9,27,(),243④64,32,16,8,(),2【题目】(1) 1,1,2,3,5,8,(),21,34…(2) 1,3,4,7,11,18,(),47…(3) 1,3,6,10,(),21,28,36,().(4) 1,2,6,24,120,(),5040。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。

学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。

谢谢使用!!!】
找规律(二)
一、考点、热点回顾
1、发现和寻找图形、数表的变化规律。

2、小结:对于较复杂的图形来说,有时候需要把图形分开几部分来单独考虑其变化规律,从而把复杂问题简单化。

3、一般地说,在观察图形变化的规律时,应抓住以下几点来考虑问题:
(1)图形数量的变化;
(2)图形形状的变化;
(3)图形大小的变化;
(4)图形颜色的变化;
(5)图形位置的变化;
(6)图形繁简的变化等。

二、典型例题
例1 、观察下列图形的变化规律,并按照这个规律将第四个图形补充完整。

分析与解:观察前三个图,从左至右,黑点数依次为4,3,2个,并且每个图形依次按逆时针方向旋转90°,所以第四个图如右图所示。

观察图形的变化,主要从各图形的形状、方向、数量、大小及各组成部分的相对位置入手,从中找出变化规律。

例2、在下列各组图形中寻找规律,并按此规律在“?”处填上合适的数:
解:(1)观察前两个图形中的数可知,大圆圈内的数等于三个小圆圈内的数的乘积的一半,故
第三个图形中的“?”=5×3×8÷2=60;
第四个图形中的“?”=(21×2)÷3÷2=7。

(2)观察前两个图形中的已知数,发现有
10=8+5-3, 8=7+4-3,
即三角形里面的数的和减去三角形外面的数就是中间小圆圈内的数。


第三个图形中的“?”=12+1-5=8;
第四个图形中的“?”=7+1-5=3。

例3、寻找规律填数:
解:(1)考察上、下两数的差。

32-16=16,31-15=16,33-17=16,可知,上面那个“?”=35-16=19,下面那个“?”=18+16=34。

(2)从左至右,一上一下地看,由1,3,5,?,9,…知,12下面的“?”=7;一下一上看,由6,8,10,12,?,…知,9下面的“?”=14。

例4、寻找规律在空格内填数:
解:(1)因为前两图中的三个数满足:
256=4×64,72=6×12,
所以,第三图中空格应填12×15=180;第四图中空格应填169÷13=13。

第五图中空格应填224÷7=32。

(2)图中下面一行的数都是上一行对应数的3倍,故43下面应填43×3=129;87上面应填87÷3=29。

例5、在下列表格中寻找规律,并求出“?”:
解:(1)观察每行中两边的数与中间的数的关系,发现3+8=11,4+2=6,所以,?=5+7=12。

(2)观察每列中三数的关系,发现1+3×2=7,7+2×2=11,所以,?=4+5×2=14。

例6 寻找规律填数:
解:观察其规律知:观察比较图形、图表、数列的变化,并能从图形、数量间的关系中发现规律,这种能力对于同学们今后的学习将大有益处。

三、习题巩固
寻找规律填数:
5。

提示:中间数=两腰数之和÷底边数。

45;1。

提示:中间数= 周围三数之和×3。

(1)13。

提示:中间数等于两边数之和。

(2)20。

提示:每行的三个数都成等差数列。

横行依次为60,65,70,75,325;
竖行依次为40, 65, 90, 115, 325。

14。

提示:(23+ 5) ÷ 2=14。

6、下图中第50个图形是△还是○?
○△○○○△○○○△○…
答案:△
7、按顺序观察图5—1与图5—2中图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?
8、请观察右图中已有的几个图形,并按规律填出空白处的图形。

四、习题练习
1、按顺序观察下图中图形的变化规律,并在“?”处填上合适的图形.
2、下图中的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.
小结:对于较复杂的图形来说,有时候需要把图形分开几部分来单独考虑其变化规律,从而把复杂问题简单化。

3、观察下列各组图的变化规律,并在“?”处画出相关的图形.
4、仔细观察下图中图形的变化规律,并在“?”处填入合适的图形.
小结:本题是一道较为复杂的题,观察的出发点主要有3点:①形状变化;②位置变化;
③颜色变化。

5、四个小动物排座位,一开始,小鼠坐在第1号位子上,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子,第一次上下两排交换.第二次是在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换…这样一直换下去.问:第十次交换位子后,小兔坐在第几号位子上?(参看下图)
6、将A、B、C、D、E、F六个字母分别写在正方体的六个面上,从下面三种不同摆法中判断这个正方体中,哪些字母分别写在相对的面上。

总结:对较复杂的图形,也可分成几部分来分别考虑.总而言之,只要全面观察,勤于思考,就一定能抓住规律、解决问题。

7、顺序观察下面图形,并按其变化规律在“?”处填上合适的图形。

8、一个正方体的小木块,1与6、2与5、3与4分别是相对面,如照下图那样放置,并按图中箭头指示的方向翻动,则木块翻动到第5格时,木块正上方那一面的数字是多少?。

相关文档
最新文档