2019-2020学年北京市通州区九年级上期末数学试卷

合集下载

2019-2020学年人教A版北京市通州区高三(上)期末数学试卷 含解析

2019-2020学年人教A版北京市通州区高三(上)期末数学试卷 含解析

2019-2020学年高三上学期期末数学试卷一、选择题1.已知集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B=()A.{x|﹣2<x<3} B.{x|﹣1<x<1} C.{x|1<x<3} D.{x|﹣2<x<﹣1} 2.在复平面内,复数(其中i是虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点A(2,a)为抛物线y2=4x图象上一点,点F为抛物线的焦点,则|AF|等于()A.4 B.3 C.D.24.若x>y>0,则下列各式中一定正确的是()A.B.tan x>tan yC.D.lnx>lny5.某三棱锥的三视图如图所示,则该三棱锥最长棱的长度为()A.B.C.D.6.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.若老师站在正中间,甲同学不与老师相邻,乙同学与老师相邻,则不同站法种数为()A.24 B.12 C.8 D.67.对于向量,,“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.关于函数f(x)=(x2+ax﹣1)e x﹣1有以下三个判断①函数恒有两个零点且两个零点之积为﹣1;②函数恒有两个极值点且两个极值点之积为﹣1;③若x=﹣2是函数的一个极值点,则函数极小值为﹣1.其中正确判断的个数有()A.0个B.1个C.2个D.3个二、填空题:本大题共6小题,每小题5分,共30分.9.已知向量=(3,﹣2),=(1,m),若⊥(),则m=.10.在公差不为零的等差数列{a n}中,a1=2,且a1,a3,a7依次成等比数列,那么数列{a n}的前n项和S n等于.11.已知中心在原点的双曲线的右焦点坐标为,且两条渐近线互相垂直,则此双曲线的标准方程为.12.在△ABC中,a=3,,∠B=2∠A,则cos B=.13.已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题.14.如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知OC⊥l,BD ⊥l(C、D为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m 元/千米.在规划要求下,修建道路总费用的最小值为元.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.16.为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如表:学校A学校B学校C学校D学校E学校F学校G学校H 学校比例等级优秀8% 3% 2% 9% 1% 22% 2% 3%良好37% 50% 23% 30% 45% 46% 37% 35%及格22% 30% 33% 26% 22% 17% 23% 38%不及格33% 17% 42% 35% 32% 15% 38% 24% (Ⅰ)从8所学校中随机选出一所学校,求该校为先进校的概率;(Ⅱ)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;(Ⅲ)设8所学校优秀比例的方差为S12,良好及其以下比例之和的方差为S22,比较S12与S22的大小.(只写出结果)17.如图,在四棱锥S﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠SAD=∠DAB=90°,SA=3,SB=5,AB=4,BC=2,AD=1.(Ⅰ)求证:AB⊥平面SAD;(Ⅱ)求平面SCD与平面SAB所成的锐二面角的余弦值;(Ⅲ)点E,F分别为线段BC,SB上的一点,若平面AEF∥平面SCD,求三棱锥B﹣AEF 的体积.18.已知椭圆C :(a>b>0)的长轴长为4,离心率为,点P在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点M(4,0),点N(0,n),若以PM为直径的圆恰好经过线段PN的中点,求n的取值范围.19.已知函数f(x)=x sin x+cos x.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数g(x)=f(x)﹣零点的个数.20.已知项数为m(m∈N*,m≥2)的数列{a n}满足如下条件:①a n∈N*(n=1,2,…,m);②a1<a2<…<a m.若数列{b n}满足b n=,其中n=1,2,…,m,则称{b n}为{a n}的“伴随数列”.(Ⅰ)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(Ⅱ)若{b n}为{a n}的“伴随数列”,证明:b1>b2>…>b m;(Ⅲ)已知数列{a n}存在“伴随数列”{b n},且a1=1,a m=2049,求m的最大值.参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B=()A.{x|﹣2<x<3} B.{x|﹣1<x<1} C.{x|1<x<3} D.{x|﹣2<x<﹣1} 【分析】根据题意,由并集的定义分析可得答案.解:根据题意,集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B={x|﹣2<x<3};故选:A.2.在复平面内,复数(其中i是虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分母变成一个实数,分子进行复数的乘法运算,整理成复数的标准形式,写出对应点的坐标,看出所在的象限.解:∵复数===,∴复数对应的点的坐标是(,)∴复数在复平面内对应的点位于第一象限,故选:A.3.已知点A(2,a)为抛物线y2=4x图象上一点,点F为抛物线的焦点,则|AF|等于()A.4 B.3 C.D.2【分析】由题意可得抛物线的焦点和准线,而|AF|等于点A到准线的距离d=|2﹣(﹣1)|,计算可得.解:由题意可得抛物线y2=4x的焦点为F(1,0),准线的方程为x=﹣1,由抛物线的定义可知|AF|等于点A到准线的距离d,而d=|2﹣(﹣1)|=3,故|AF|=3,故选:B.4.若x>y>0,则下列各式中一定正确的是()A.B.tan x>tan yC.D.lnx>lny【分析】A.利用不等式的基本性质即可判断出正误.B.利用三角函数的单调性周期性即可判断出正误.C.利用指数函数的单调性即可判断出正误.D.利用对数函数的单调性即可判断出正误.解:A.∵x>y>0,∴>,因此不正确;B.取x=π+,y=,满足x>y>0,但是tan x<tan y,因此不正确;C.由x>y>0,∴<,因此不正确;D.由x>y>0,∴lnx>lny,因此正确.故选:D.5.某三棱锥的三视图如图所示,则该三棱锥最长棱的长度为()A.B.C.D.【分析】首先把三视图转换为几何体,进一步利用公式的应用求出结果解:根据几何体的三视图转换为几何体为:所以:AB=.故选:C.6.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.若老师站在正中间,甲同学不与老师相邻,乙同学与老师相邻,则不同站法种数为()A.24 B.12 C.8 D.6【分析】根据题意,分3步依次分析甲、乙和其他2人的站法数目,由分步计数原理计算可得答案.解:根据题意,分3步进行分析:①,老师站在正中间,甲同学不与老师相邻,则甲的站法有2种,乙的站法有2种,②,乙同学与老师相邻,则乙的站法有2种,③,将剩下的2人全排列,安排在剩下的2个位置,有A22=2种情况,则不同站法有2×2×2=8种;故选:C.7.对于向量,,“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】举例说明由不能得到;反之成立.再由充分必要条件的判定得答案.解:当,且与的夹角为120°时,有,故由,不能得到;反之,由,能够得到.∴“”是“”的必要不充分条件.故选:B.8.关于函数f(x)=(x2+ax﹣1)e x﹣1有以下三个判断①函数恒有两个零点且两个零点之积为﹣1;②函数恒有两个极值点且两个极值点之积为﹣1;③若x=﹣2是函数的一个极值点,则函数极小值为﹣1.其中正确判断的个数有()A.0个B.1个C.2个D.3个【分析】函数f(x)=(x2+ax﹣1)e x﹣1,e x﹣1>0.①令f(x)=0,可得x2+ax﹣1=0,△>0,函数恒有两个零点,可得两个零点之积,即可判断出正误;②f′(x)=[x2+(2+a)x+a﹣1]e x﹣1.令g(x)=x2+(2+a)x+a﹣1,△>0.可得方程x2+(2+a)x+a﹣1=0,有两个不相等的实数根.可得其单调性极值,函数恒有两个极值点且两个极值点之积为a﹣1,即可判断出正误;③若x=﹣2是函数的一个极值点,可得4﹣2(2+a)+a﹣1=0,解得a,即可判断出正误.解:函数f(x)=(x2+ax﹣1)e x﹣1,e x﹣1>0.①令f(x)=0,则x2+ax﹣1=0,△=a2+4>0,则函数恒有两个零点且两个零点之积为﹣1,正确;②f′(x)=[x2+(2+a)x+a﹣1]e x﹣1.令g(x)=x2+(2+a)x+a﹣1,△=(2+a)2﹣4(a﹣1)=a2+8>0.∴方程x2+(2+a)x+a﹣1=0,有两个不相等的实数根.又e x﹣1>0,∴函数f(x)有两个极值点x1,x2,不妨设x1<x2,则函数f(x)在(﹣∞,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.∴函数恒有两个极值点且两个极值点之积为a﹣1,因此②不正确;③若x=﹣2是函数的一个极值点,则4﹣2(2+a)+a﹣1=0,解得a=﹣1.∴f′(x)=(x2+x﹣2)e x﹣1=(x+2)(x﹣1)e x﹣1.可得x=1时函数f(x)取得极小值,f(1)=(1﹣1﹣1)e0=﹣1.则函数极小值为﹣1.其中正确判断的个数有2个.故选:C.二、填空题:本大题共6小题,每小题5分,共30分.9.已知向量=(3,﹣2),=(1,m),若⊥(),则m=﹣5 .【分析】根据平面向量的坐标运算与数量积的定义,列方程求出m的值.解:向量=(3,﹣2),=(1,m),则﹣=(2,﹣m﹣2),又⊥(),所以•(﹣)=0,即3×2﹣2×(﹣m﹣2)=0,解得m=﹣5.故答案为:﹣5.10.在公差不为零的等差数列{a n}中,a1=2,且a1,a3,a7依次成等比数列,那么数列{a n}的前n项和S n等于.【分析】设公差d不为零的等差数列{a n},运用等比数列的中项性质和等差数列的通项公式,可得公差d,由等差数列的求和公式,计算可得所求和.解:在公差d不为零的等差数列{a n}中,a1=2,且a1,a3,a7依次成等比数列,可得a32=a1a7,即(2+2d)2=2(2+6d),解得d=1,(0舍去),则数列{a n}的前n项和S n=2n+n(n﹣1)=n2+n.故答案为:n2+n.11.已知中心在原点的双曲线的右焦点坐标为,且两条渐近线互相垂直,则此双曲线的标准方程为x2﹣y2=1 .【分析】设双曲线的标准方程为﹣=1(a>0,b>0),由题意可得c,结合渐近线方程和两直线垂直的条件:斜率之积为﹣1,解方程可得a,b,进而得到所求双曲线的标准方程.解:设双曲线的标准方程为﹣=1(a>0,b>0),由题意可得c==,双曲线的渐近线方程为y=±x,两条渐近线互相垂直,可得﹣=﹣1,解得a=b=1,则双曲线的标准方程为x2﹣y2=1,故答案为:x2﹣y2=1.12.在△ABC中,a=3,,∠B=2∠A,则cos B=.【分析】由已知利用正弦定理,二倍角的正弦函数公式可求cos A的值,进而利用二倍角的余弦函数公式即可求解cos B的值.解:∵a=3,,∠B=2∠A,∴由正弦定理,可得==,∴解得cos A=,∴cos B=cos2A=2cos2A﹣1=.故答案为:.13.已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题①③推出⑤(答案不唯一还可以①⑤推出③等).【分析】利用不等式的基本性质可得由①③⇒⑤.(答案不唯一).解:因为:若a,b满足a>b,b>0,则a>b,m>0,⇒﹣==>0;即由①③⇒⑤.(答案不唯一).故答案为:①③推出⑤(答案不唯一还可以①⑤推出③等)14.如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知OC⊥l,BD ⊥l(C、D为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m 元/千米.在规划要求下,修建道路总费用的最小值为 2.1m元.【分析】根据题意找到对应的点P,Q,利用三角形相似计算即可解:根据题意,因为道路PB,QA不穿过花园,所以作AQ⊥l,垂足为Q,此时AQ最短,过B作圆O的切线BP交l于P,此时PB最短,如图:根据平行线段成比例可得AQ=0.6,即有AQ为△BMD的中位线,所以BM=2AB=2,则在Rt△BMD中,DM=1.6,又因为△PBD∽△BMD,所以PB===1.5,故修建道路总费用的最小值为1.5m+0.6m=2.1m,故答案为:2.1m.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.【分析】(I)先化简f(x),根据周期计算公式即可得出T.(II)利用三角函数的单调性即可得出.解:=,(Ⅰ)f(x)的最小正周期T=,(Ⅱ)因为,所以,所以当,即x=0时,f(x)取得最小值0;当,即时,f(x)取得最大值.16.为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如表:学校A学校B学校C学校D学校E学校F学校G学校H 学校比例等级优秀8% 3% 2% 9% 1% 22% 2% 3%良好37% 50% 23% 30% 45% 46% 37% 35%及格22% 30% 33% 26% 22% 17% 23% 38%不及格33% 17% 42% 35% 32% 15% 38% 24% (Ⅰ)从8所学校中随机选出一所学校,求该校为先进校的概率;(Ⅱ)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;(Ⅲ)设8所学校优秀比例的方差为S12,良好及其以下比例之和的方差为S22,比较S12与S22的大小.(只写出结果)【分析】(Ⅰ)8所学校中有四所学校学生的体质健康测试成绩达到良好及其以上的比例超过40%,即可得出从8所学校中随机取出一所学校,该校为先进校的概率.(Ⅱ)8所学校中,学生不及格率低于30%的学校有学校B、F、H三所,所以X的取值为0,1,2.利用超几何分布列即可得出随机变量X的分布列.(Ⅲ)经过计算即可得出S12与S22的关系.解:(Ⅰ)8所学校中有四所学校学生的体质健康测试成绩达到良好及其以上的比例超过40%,所以从8所学校中随机取出一所学校,该校为先进校的概率为.(Ⅱ)8所学校中,学生不及格率低于30%的学校有学校B、F、H三所,所以X的取值为0,1,2.,所以随机变量X的分布列为:X0 1 2P(Ⅲ)S12=S22.17.如图,在四棱锥S﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠SAD=∠DAB=90°,SA=3,SB=5,AB=4,BC=2,AD=1.(Ⅰ)求证:AB⊥平面SAD;(Ⅱ)求平面SCD与平面SAB所成的锐二面角的余弦值;(Ⅲ)点E,F分别为线段BC,SB上的一点,若平面AEF∥平面SCD,求三棱锥B﹣AEF 的体积.【分析】(Ⅰ)证明AB⊥SA,AB⊥AD,然后证明AB⊥平面SAD.(Ⅱ)建立如图直角坐标系,求出平面SAB的法向量,平面SDC的法向量,通过向量的数量积求解即可.(Ⅲ)利用V B﹣AEF=V F﹣ABE,转化求解即可.【解答】(Ⅰ)证明:在△SAB中,因为SA=3,AB=4,SB=5,所以AB⊥SA.又因为∠DAB=90°所以AB⊥AD,因为SA∩AD=A所以AB⊥平面SAD.(Ⅱ)解:因为SA⊥AD,AB⊥SA,AB⊥AD.建立如图直角坐标系则A(0,0,0)B(0,4,0),C(2,4,0),D(1,0,0),S(0,0,3).平面SAB的法向量为.设平面SDC的法向量为所以有即,令x=1所以平面SDC的法向量为,所以.(Ⅲ)解:因为平面AEF∥平面SCD,平面AEF∩平面ABCD=AE,平面SCD∩平面ABCD=CD,所以AE∥CD,平面AEF∩平面SBC=EF,平面SCD∩平面SBC=SC,所以FE∥SC,由AE∥CD,AD∥BC得四边形AEDC为平行四边形.所以E为BC中点.又FE∥SC,所以F为SB中点,所以F到平面ABE的距离为,又△ABE的面积为2,所以V B﹣AEF=V F﹣ABE=1.18.已知椭圆C:(a>b>0)的长轴长为4,离心率为,点P在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点M(4,0),点N(0,n),若以PM为直径的圆恰好经过线段PN的中点,求n的取值范围.【分析】(Ⅰ)由椭圆的长轴长,结合离心率求出a,b,然后求解椭圆C的方程.(Ⅱ)法一:设点P(x0,y0),则,PN的中点,通过,结合函数的值域为[﹣12,20],求解n的范围即可.法二:设点P(x0,y0),则.设PN的中点为Q,利用|MP|=|MN|,通过函数的值域为[﹣12,20],求解即可.解:(Ⅰ)由椭圆的长轴长2a=4,得a=2又离心率,所以所以b2=a2﹣c2=2.所以椭圆C的方程为;.(Ⅱ)法一:设点P(x0,y0),则所以PN的中点,,.因为以PM为直径的圆恰好经过线段PN的中点所以MQ⊥NP,则,即.又因为,所以所以.函数的值域为[﹣12,20]所以0≤n2≤20所以.法二:设点P(x0,y0),则.设PN的中点为Q因为以PM为直径的圆恰好经过线段PN的中点所以MQ是线段PN的垂直平分线,所以|MP|=|MN|,即,所以.函数的值域为[﹣12,20],所以0≤n2≤20.所以.19.已知函数f(x)=x sin x+cos x.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数g(x)=f(x)﹣零点的个数.【分析】(Ⅰ)求出原函数的导函数,得到函数在x=0处的导数,再求出f(0),利用直线方程的点斜式得答案;(Ⅱ)由为偶函数,g(0)=1,把求g(x)在x∈R上零点个数,转化为求g(x)在x∈(0,+∞)上零点个数即可.利用导数研究函数单调性,再由函数零点存在性定理判定.解:(Ⅰ)f'(x)=x cos x,∴f'(0)=0.又f(0)=1,∴曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(Ⅱ)∵为偶函数,g(0)=1,∴要求g(x)在x∈R上零点个数,只需求g(x)在x∈(0,+∞)上零点个数即可.,令g'(x)=0,得,k ∈N,∴g(x )在单调递增,在单调递减,在单调递增,在单调递减,在单调递增k∈N*,列表得:x 0 …g'(x)0 + 0 ﹣0 + 0 ﹣0 …g (x )1 ↗极大值↘极小值↗极大值↘极小值…由上表可以看出g(x )在(k∈N )处取得极大值,在(k∈N)处取得极小值,又;.当k∈N*且k≥1时,,(或,).∴g(x)在x∈(0,+∞)上只有一个零点.故函数零点的个数为2.20.已知项数为m(m∈N*,m≥2)的数列{a n}满足如下条件:①a n∈N*(n=1,2,…,m);②a1<a2<…<a m.若数列{b n}满足b n=,其中n=1,2,…,m,则称{b n}为{a n}的“伴随数列”.(Ⅰ)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(Ⅱ)若{b n}为{a n}的“伴随数列”,证明:b1>b2>…>b m;(Ⅲ)已知数列{a n}存在“伴随数列”{b n},且a1=1,a m=2049,求m的最大值.【分析】(Ⅰ)根据题目中“伴随数列”的定义得,所以数列1,3,5,7,9不存在“伴随数列”.(Ⅱ)只要用作差法证明{b n}的单调性即可,(Ⅲ)∀1≤i<j≤m,都有,因为,b1>b2>…>b m.因为,所以a n﹣a n﹣1≥m﹣1,又a m﹣a1=(a m﹣a m﹣1)+(a m﹣1﹣a m﹣2)+…+(a2﹣a1)≥(m﹣1)+(m﹣1)+…+(m﹣1)=(m﹣1)2.所以2049﹣1≥(m﹣1)2,即可解得m的最大值.解:(Ⅰ)数列1,3,5,7,9不存在“伴随数列”.因为,所以数列1,3,5,7,9不存在“伴随数列”.(Ⅱ)证明:因为,1≤n≤m﹣1,n∈N*,又因为a1<a2<…<a m,所以有a n﹣a n+1<0,所以,所以b1>b2>…>b m成立.(Ⅲ)∀1≤i<j≤m,都有,因为,b1>b2>…>b m.所以,所以,所以,因为,所以a n﹣a n﹣1≥m﹣1,又a m﹣a1=(a m﹣a m﹣1)+(a m﹣1﹣a m﹣2)+…+(a2﹣a1)≥(m﹣1)+(m﹣1)+…+(m﹣1)=(m﹣1)2.所以2049﹣1≥(m﹣1)2所以(m﹣1)2≤2048,所以m≤46,又,所以m≤33,例如:a n=64n﹣63(1≤n≤33),满足题意,所以,m的最大值是33.。

2019-2020学年北京市海淀区九年级(上)期末数学试卷

2019-2020学年北京市海淀区九年级(上)期末数学试卷
A. B. C. D.
6.如图, 交 于点 , 切 于点 ,点 在 上.若 = ,则 为()
A. B. C. D.
7.在同一平面直角坐标系 中,函数 = 与 的图象可能是()
A. B.
C. D.
8.在平面直角坐标系 中,将横纵坐标之积为 的点称为“好点”,则函数 = 的图象上的“好点”共有()
A. 个B. 个C. 个D. 个
①若点 在直线 上,则点 的 倍相关圆的半径为________.
②点 在直线 上,点 的 倍相关圆的半径为 ,若点 在运动过程中,以点 为圆心, 为半径的圆与反比例函数 的图象最多有两个公共点,直接写出 的最大值.
参考答案与试题解析
2019-2020学年北京市海淀区九年级(上)期末数学试卷
如图,在 与 中, ,且 = .求证: .
某司机驾驶汽车从甲地去乙地,他以 的平均速度用 到达目的地.
(1)当他按原路匀速返回时,汽车的速度 与时间 有怎样的函数关系?
(2)如果该司机返回到甲地的时间不超过 ,那么返程时的平均速度不能小于多少?
如图,在 中, , 于点 , 于点 .
(1)求证: = ;
(1)在点 , 中,存在 倍相关圆的点是________,该点的 倍相关圆半径为________.
(2)如图 ,若 是 轴正半轴上的动点,点 在第一象限内,且满足 = ,判断直线 与点 的 倍相关圆的位置关系,并证明.
(3)如图 ,已知点 的 , ,反比例函数 的图象经过点 ,直线 与直线 关于 轴对称.
二、填空题(本题共16分,每小题2分)
反比例函数 的图象经过 , 两点,则 .(填“ ”,“=”或“ ”)
如果关于 的一元二次方程 = 的一个解是 = ,则 =________.

2019-2020学年北京市朝阳区九年级上学期期末数学试卷 (解析版)

2019-2020学年北京市朝阳区九年级上学期期末数学试卷 (解析版)

2019-2020学年北京市朝阳区九年级(上)期末数学试卷一、选择题1.下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水结冰B.随意翻到一本书的某页,这页的页码是偶数C.明天太阳从东方升起D.三角形的内角和是360°2.抛物线y=(x﹣2)2+1的顶点坐标为()A.(2,1)B.(2,﹣1)C.(﹣2,﹣1)D.(﹣2,1)3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.把Rt△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.不变B.缩小为原来的C.扩大为原来的3倍D.扩大为原来的9倍5.如图,△ABC中,点D,E分别在AB,AC上,DE∥BC.若AD=1,BD=2,则△ADE 与△ABC的面积之比为()A.1:2B.1:3C.1:4D.1:96.如图,在正方形网格中,△MPN绕某一点旋转某一角度得到△M′P′N′,则旋转中心可能是()A.点A B.点B C.点C D.点D7.已知⊙O1,⊙O2,⊙O3是等圆,△ABP内接于⊙O1,点C,E分别在⊙O2,⊙O3上.如图,①以C为圆心,AP长为半径作弧交⊙O2于点D,连接CD;②以E为圆心,BP长为半径作弧交⊙O3于点F,连接EF;下面有四个结论:①CD+EF=AB②③∠CO2D+∠EO3F=∠AO1B④∠CDO2+∠EFO3=∠P所有正确结论的序号是()A.①②③④B.①②③C.②④D.②③④8.如图,抛物线y=﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.2B.C.D.3二、填空题(本题共16分,每小题2分)9.点(﹣1,﹣3)关于原点的对称点的坐标为.10.如图,在平面直角坐标系xOy中,射线l的端点为(0,1),l∥x轴,请写出一个图象与射线l有公共点的反比例函数的表达式:.11.如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形.如图,矩形ABCD为黄金矩形,宽AD=,则长AB为.12.如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=1,∠A=45°,则的长度为.13.如图,在正方形网格中,点A,B,C在⊙O上,并且都是小正方形的顶点,P 是上任意一点,则∠P 的正切值为.14.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(m,0),(n,0),则m+n的值为.15.为了打赢脱贫攻坚战,某村计划将该村的特产柑橘运到A地进行销售.由于受道路条件的限制,需要先将柑橘由公路运到火车站,再由铁路运到A地.村里负责销售的人员从该村运到火车站的所有柑橘中随机抽取若干柑橘,进行了“柑橘完好率”统计,获得的数据记录如下表:柑橘总质量n/kg100150200250300350400450500完好柑橘质量92.40138.45183.80229.50276.30322.70367.20414.45459.50m/kg柑橘完好的频0.9240.9230.9190.9180.9210.9220.9180.9210.919率①估计从该村运到火车站柑橘完好的概率为(结果保留小数点后三位);②若从该村运到A地柑橘完好的概率为0.880,估计从火车站运到A地柑橘完好的概率为.16.如图,分别过第二象限内的点P作x,y轴的平行线,与y,x轴分别交于点A,B,与双曲线分别交于点C,D.下面三个结论,①存在无数个点P使S△AOC=S△BOD;②存在无数个点P使S△POA=S△POB;③存在无数个点P使S四边形OAPB=S△ACD.所有正确结论的序号是.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:sin60°﹣cos30°+tan45°.18.如图,在△ABC中,∠B=30°,tan C=,AD⊥BC于点D.若AB=8,求BC的长.19.如图,△ABC为等边三角形,将BC边绕点B顺时针旋转30°,得到线段BD,连接AD,CD,求∠ADC的度数.20.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如下表:x…﹣2﹣1012…y1…01234…y2…0﹣1038…(1)求y2的表达式;(2)关于x的不等式ax2+bx+c>kx+m的解集是.21.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.22.在平面内,O为线段AB的中点,所有到点O的距离等于OA的点组成图形W.取OA 的中点C,过点C作CD⊥AB交图形W于的点D,D在直线AB的上方,连接AD,BD.(1)求∠ABD的度数;(2)若点E在线段CA的延长线上,且∠ADE=∠ABD,求直线DE与图形W的公共点个数.23.阅读下面材料:小军遇到这样一个问题:如图1,在△ABC中,AB=AC,P是△ABC内一点,∠PAC=∠PCB=∠PBA.若∠ACB=45°,AP=1,求BP的长.小军的思路是:根据已知条件可以证明△ACP∽△CBP,进一步推理可得BP的长.请回答:∵AB=AC,∴∠ABC=∠ACB.∵∠PCB=∠PBA,∴∠PCA=.∵∠PAC=∠PCB,∴△ACP∽△CBP.∴.∵∠ACB=45°,∴∠BAC=90°.∴=.∵AP=1,∴PC=.∴PB=.参考小军的思路,解决问题:如图2,在△ABC中,AB=AC,P是△ABC内一点,∠PAC=∠PCB=∠PBA.若∠ACB=30°,求的值;24.点A是反比例函数y=(x>0)的图象l1上一点,直线AB∥x轴,交反比例函数y =(x>0)的图象l2于点B,直线AC∥y轴,交l2于点C,直线CD∥x轴,交l1于点D.(1)若点A(1,1),求线段AB和CD的长度;(2)对于任意的点A(a,b),判断线段AB和CD的大小关系,并证明.25.如图,在矩形ABCD中,E是BA延长线上的定点,M为BC边上的一个动点,连接ME,将射线ME绕点M顺时针旋转76°,交射线CD于点F,连接MD.小东根据学习函数的经验,对线段BM,DF,DM的长度之间的关系进行了探究.下面是小东探究的过程,请补充完整:(1)对于点M在BC上的不同位置,画图、测量,得到了线段BM,DF,DM的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8位置9 BM/cm0.000.53 1.00 1.69 2.17 2.96 3.46 3.79 4.00 DF/cm0.00 1.00 1.74 2.49 2.69 2.21 1.140.00 1.00 DM/cm 4.12 3.61 3.16 2.52 2.09 1.44 1.14 1.02 1.00在BM,DF,DM的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当DF=2cm时,DM的长度约为cm.26.在平面直角坐标系xOy中,抛物线y=ax2+bx经过点(3,3).(1)用含a的式子表示b;(2)直线y=x+4a+4与直线y=4交于点B,求点B的坐标(用含a的式子表示);(3)在(2)的条件下,已知点A(1,4),若抛物线与线段AB恰有一个公共点,直接写出a(a<0)的取值范围.27.已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB上(不与点O,B重合),连接CA.将射线CA绕点C逆时针旋转120°得到射线CA′,将射线BO绕点B逆时针旋转150°与射线CA′交于点D.(1)根据题意补全图1;(2)求证:①∠OAC=∠DCB;②CD=CA(提示:可以在OA上截取OE=OC,连接CE);(3)点H在线段AO的延长线上,当线段OH,OC,OA满足什么等量关系时,对于任意的点C都有∠DCH=2∠DAH,写出你的猜想并证明.28.在平面直角坐标系xOy中,已知点A(0,2),点B在x轴上,以AB为直径作⊙C,点P在y轴上,且在点A上方,过点P作⊙C的切线PQ,Q为切点,如果点Q在第一象限,则称Q为点P的离点.例如,图1中的Q为点P的一个离点.(1)已知点P(0,3),Q为P的离点.①如图2,若B(0,0),则圆心C的坐标为,线段PQ的长为;②若B(2,0),求线段PQ的长;(2)已知1≤PA≤2,直线l:y=kx+k+3(k≠0).①当k=1时,若直线l上存在P的离点Q,则点Q纵坐标t的最大值为;②记直线l:y=kx+k+3(k≠0)在﹣1≤x≤1的部分为图形G,如果图形G上存在P的离点,直接写出k的取值范围.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水结冰B.随意翻到一本书的某页,这页的页码是偶数C.明天太阳从东方升起D.三角形的内角和是360°【分析】根据随机事件的意义,这个选项进行判断即可.解:“通常温度降到0℃以下,纯净的水结冰”是必然事件;“随意翻到一本书的某页,这页的页码可能是偶数,也可能是奇数”因此选项B符合题意;“明天太阳从东方升起”是必然事件,不符合题意;“三角形的内角和是180°”因此“三角形的内角和是360°”是确定事件中的不可能事件,不符合题意;故选:B.2.抛物线y=(x﹣2)2+1的顶点坐标为()A.(2,1)B.(2,﹣1)C.(﹣2,﹣1)D.(﹣2,1)【分析】抛物线的顶点式为:y=a(x﹣h)2+k,其顶点坐标是(h,k),可以确定抛物线的顶点坐标.解:抛物线y=(x﹣2)2+1是以抛物线的顶点式给出的,其顶点坐标为:(2,1).故选:A.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.把Rt△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.不变B.缩小为原来的C.扩大为原来的3倍D.扩大为原来的9倍【分析】根据相似三角形的性质解答.解:三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:A.5.如图,△ABC中,点D,E分别在AB,AC上,DE∥BC.若AD=1,BD=2,则△ADE 与△ABC的面积之比为()A.1:2B.1:3C.1:4D.1:9【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质即可求出△ADE与△ABC的面积之比.解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=.故选:D.6.如图,在正方形网格中,△MPN绕某一点旋转某一角度得到△M′P′N′,则旋转中心可能是()A.点A B.点B C.点C D.点D【分析】连接PP'、NN'、MM',作PP'的垂直平分线,作NN'的垂直平分线,作MM'的垂直平分线,交点为旋转中心.解:如图,∵△MNP绕某点旋转一定的角度,得到△M'N'P',∴连接PP'、NN'、MM',作PP'的垂直平分线,作NN'的垂直平分线,作MM'的垂直平分线,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.7.已知⊙O1,⊙O2,⊙O3是等圆,△ABP内接于⊙O1,点C,E分别在⊙O2,⊙O3上.如图,①以C为圆心,AP长为半径作弧交⊙O2于点D,连接CD;②以E为圆心,BP长为半径作弧交⊙O3于点F,连接EF;下面有四个结论:①CD+EF=AB②③∠CO2D+∠EO3F=∠AO1B④∠CDO2+∠EFO3=∠P所有正确结论的序号是()A.①②③④B.①②③C.②④D.②③④【分析】根据圆心角、弧、弦的关系,圆周角定理即可得到结论.解:由题意得,AP=CD,BP=EF,∵AP+BP>AB,∴CD+EF>AB;∵⊙O1,⊙O2,⊙O3是等圆,∴=,=,∵+=,∴+=;∴∠CO2D=∠AO1P,∠EO3F=∠BO1P,∵∠AO1P+∠BO1P=∠AO1P,∴∠CO2D+∠EO3F=∠AO1B;∵∠CDO2=∠APO1,∠BPO1=∠EFO3,∵∠P=∠APO1+∠BPO1,∴∠CDO2+∠EFO3=∠P,∴正确结论的序号是②③④,故选:D.8.如图,抛物线y=﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.2B.C.D.3【分析】根据抛物线y=﹣1与x轴交于A,B两点,可得A、B两点坐标,D是以点C(0,4)为圆心,根据勾股定理可求BC的长为5,E是线段AD的中点,再根据三角形中位线,BD最小,OE就最小.解:∵抛物线y=﹣1与x轴交于A,B两点,∴A、B两点坐标为(﹣3,0)、(3,0),∵D是以点C(0,4)为圆心,根据勾股定理,得BC=5,∵E是线段AD的中点,O是AB中点,∴OE是三角形ABD的中位线,∴OE=BD,即点B、D、C共线时,BD最小,OE就最小.如图,连接BC交圆于点D′,∴BD′=BC﹣CD′=5﹣1=4,∴OE′=2.所以线段OE的最小值为2.故选:A.二、填空题(本题共16分,每小题2分)9.点(﹣1,﹣3)关于原点的对称点的坐标为(1,3).【分析】直接利用关于原点对称点的性质得出答案.解:点(﹣1,﹣3)关于原点的对称点的坐标为:(1,3).故答案为:(1,3).10.如图,在平面直角坐标系xOy中,射线l的端点为(0,1),l∥x轴,请写出一个图象与射线l有公共点的反比例函数的表达式:答案不唯一,如y=.【分析】直接利用射线的特点得出符合题意的反比例函数解析式.解:∵射线l的端点为(0,1),l∥x轴,∴写出一个图象与射线l有公共点的反比例函数的表达式:答案不唯一,如y=.故答案为:答案不唯一,如y=.11.如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形.如图,矩形ABCD为黄金矩形,宽AD=,则长AB为2.【分析】判断黄金矩形的依据是:宽与长之比为0.618,根据已知条件即可得出答案.解:∵矩形ABCD是黄金矩形,且AD=,∴,,∴AB=2,故答案为2.12.如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=1,∠A=45°,则的长度为.【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=1,∠COD=90°,根据弧长公式求得即可.解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=1,∵AC=BD=1,OC=OD=1,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=π,故答案为:.13.如图,在正方形网格中,点A,B,C在⊙O上,并且都是小正方形的顶点,P是上任意一点,则∠P的正切值为.【分析】:连接OA、OB,作OD⊥AB于D,如图,利用等腰三角形的性质和圆周角定理得到∠AOD=∠APB,再利用正切的性质得到tan∠AOD=,从而得到tan∠P的值.解:连接OA、OB,作OD⊥AB于D,如图,∵OA=OB,OD⊥AB,∴∠AOD=∠AOB,∵∠APB=∠AOB,∴∠AOD=∠APB,在Rt△AOD中,tan∠AOD==,∴tan∠P=.故答案为.14.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(m,0),(n,0),则m+n的值为2.【分析】根据根与系数的关系解答即可.解:∵抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(m,0),(n,0),∴m+n=﹣=2.故答案是:2.15.为了打赢脱贫攻坚战,某村计划将该村的特产柑橘运到A地进行销售.由于受道路条件的限制,需要先将柑橘由公路运到火车站,再由铁路运到A地.村里负责销售的人员从该村运到火车站的所有柑橘中随机抽取若干柑橘,进行了“柑橘完好率”统计,获得的数据记录如下表:柑橘总质量n/kg100150200250300350400450500完好柑橘质量92.40138.45183.80229.50276.30322.70367.20414.45459.50m/kg柑橘完好的频0.9240.9230.9190.9180.9210.9220.9180.9210.919率①估计从该村运到火车站柑橘完好的概率为0.920(结果保留小数点后三位);②若从该村运到A地柑橘完好的概率为0.880,估计从火车站运到A地柑橘完好的概率为.【分析】(1)根据表格中频率的变化情况,估计概率即可;(2)根据完好的概率进行列方程求解即可.解:(1)根据抽查的柑橘完好的频率,大约集中在0.920上下波动,因此估计柑橘的完好的概率为0.920,故答案为:0.920;(2)设总质量为m千克,从火车站运到A地柑橘完好的概率为x,由题意得,m×0.920×x=m×0.880,解得,x=,故答案为:.16.如图,分别过第二象限内的点P作x,y轴的平行线,与y,x轴分别交于点A,B,与双曲线分别交于点C,D.下面三个结论,①存在无数个点P使S△AOC=S△BOD;②存在无数个点P使S△POA=S△POB;③存在无数个点P使S四边形OAPB=S△ACD.所有正确结论的序号是①②③.【分析】如图,设C(m,),D(n,),则P(n,),利用反比例函数k的几何意义得到S△AOC=3,S△BOD=3,则可对①进行判断;根据三角形面积公式可对②进行判断;通过计算S四边形OAPB和S△ACD得到m与n的关系可对对③进行判断.解:如图,设C(m,),D(n,),则P(n,),∵S△AOC=3,S△BOD=3,∴S△AOC=S△BOD;所以①正确;∵S△POA=﹣n×=﹣,S△POB=﹣n×=﹣,∴S△POA=S△POB;所以②正确;∵S四边形OAPB=﹣n×=﹣,S△ACD=×m×(﹣)=3﹣,∴当﹣=3﹣,即m2﹣mn﹣2n2=0,所以m=2n(舍去)或m=﹣n,此时P点为无数个,所以③正确.故答案为①②③.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:sin60°﹣cos30°+tan45°.【分析】直接利用特殊角的三角函数值分别代入得出答案.解:原式==1.18.如图,在△ABC中,∠B=30°,tan C=,AD⊥BC于点D.若AB=8,求BC的长.【分析】根据直角三角形中30°角所对的直角边是斜边的一半可以求得AD的长,然后即可求得BD的长,再根据AD的长和tan C=,可以求得CD的长,从而可以求得BC 的长,本题得以解决.解:∵AD⊥BC,∴∠ADB=∠ADC=90°.∵在Rt△ADB中,∠B=30°,AB=8,∴AD=4,BD=,∵在Rt△ADC中,tan C=,AD=4,∴,∴CD=3.∴BC=BD+CD=.19.如图,△ABC为等边三角形,将BC边绕点B顺时针旋转30°,得到线段BD,连接AD,CD,求∠ADC的度数.【分析】首先证明∠ABD=90°,求出∠BDC,∠ADB即可解决问题.解:∵△ABC为等边三角形,∴AB=BC,∠ABC=60°.根据题意可知BD=BC,∠DBC=30°.∴AB=BD.∴∠ABD=90°,∠BDC=75°.∴∠BDA=45°.∴∠ADC=30°.20.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如下表:x…﹣2﹣1012…y1…01234…y2…0﹣1038…(1)求y2的表达式;(2)关于x的不等式ax2+bx+c>kx+m的解集是x<﹣2或x>1.【分析】(1)根据题意设出y2的表达式,再把(0,0)代入,求出a的值,即可得出y2的表达式;(2)利用表中数据得到直线与抛物线的交点为(﹣2,0)和(1,3),x<﹣2或x>1时,y2>y1,从而得出不等式ax2+bx+c>kx+m的解集.解:(1)根据题意设y2的表达式为:y2=a(x+1)2﹣1,把(0,0)代入得a=1,∴y2=x2+2x;(2)当x=﹣2时,y1=y2=0;当x=1时,y1=y2=3;∴直线与抛物线的交点为(﹣2,0)和(1,3),而x<﹣2或x>1时,y2>y1,∴不等式ax2+bx+c>kx+m的解集是x<﹣2或x>1.故答案为:x<﹣2或x>1.21.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.【分析】过O点作半径OD⊥AB于E,如图,利用垂径定理得到AE=BE=4,再利用勾股定理计算出OE,然后计算出DE的长即可.解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4,在Rt△AEO中,OE===3,∴ED=OD﹣OE=5﹣3=2,答:筒车工作时,盛水桶在水面以下的最大深度为2m.22.在平面内,O为线段AB的中点,所有到点O的距离等于OA的点组成图形W.取OA 的中点C,过点C作CD⊥AB交图形W于的点D,D在直线AB的上方,连接AD,BD.(1)求∠ABD的度数;(2)若点E在线段CA的延长线上,且∠ADE=∠ABD,求直线DE与图形W的公共点个数.【分析】(1)根据题意,图形W为以O为圆心,OA为直径的圆.如图1,连接OD,根据等边三角形的判定与性质即可求解;(2)根据切线的判定即可求解.解:(1)根据题意,图形W为以O为圆心,OA为直径的圆.如图1,连接OD,∴OA=OD.∵点C为OA的中点,CD⊥AB,∴AD=OD.∴OA=OD=AD.∴△OAD是等边三角形.∴∠AOD=60°.∴∠ABD=30°.(2)如图2,∵∠ADE=∠ABD,∴∠ADE=30°.∵∠ADO=60°.∴∠ODE=90°.∴OD⊥DE.∴DE是⊙O的切线.∴直线DE与图形W的公共点个数为1.23.阅读下面材料:小军遇到这样一个问题:如图1,在△ABC中,AB=AC,P是△ABC内一点,∠PAC=∠PCB=∠PBA.若∠ACB=45°,AP=1,求BP的长.小军的思路是:根据已知条件可以证明△ACP∽△CBP,进一步推理可得BP的长.请回答:∵AB=AC,∴∠ABC=∠ACB.∵∠PCB=∠PBA,∴∠PCA=∠PBC.∵∠PAC=∠PCB,∴△ACP∽△CBP.∴.∵∠ACB=45°,∴∠BAC=90°.∴=.∵AP=1,∴PC=.∴PB=2.参考小军的思路,解决问题:如图2,在△ABC中,AB=AC,P是△ABC内一点,∠PAC=∠PCB=∠PBA.若∠ACB=30°,求的值;【分析】阅读材料:证明△ACP∽△CBP.得出.由等腰直角三角形的性质得出CB=AC得出=.PC=AP=.得出PB=PC=2.解决问题:证明△ACP∽△CBP.得出=,设AP=a,则PC=,得出PB=3a.即可得出.【解答】阅读材料:解:∵AB=AC,∴∠ABC=∠ACB.∵∠PCB=∠PBA,∴∠PCA=∠PBC.∵∠PAC=∠PCB,∴△ACP∽△CBP.∴.∵∠ACB=45°,∴∠BAC=90°.∴CB=AC,∴=.∵AP=1,∴PC=AP=.∴PB=PC=2.故答案为:∠PBC;;2;解决问题:解:作AD⊥BC于D,如图2所示:∵AB=AC,∴∠ABC=∠ACB=30°.BD=CD=BC,∴AD=AC,CD=AD,∴AC=2AD,BC=2CD=2AD,∵∠PCB=∠PBA,∴∠PCA=∠PBC.∵∠PAC=∠PCB,∴△ACP∽△CBP.∴==,设AP=a,则PC=,∴PB=3a.∴.24.点A是反比例函数y=(x>0)的图象l1上一点,直线AB∥x轴,交反比例函数y =(x>0)的图象l2于点B,直线AC∥y轴,交l2于点C,直线CD∥x轴,交l1于点D.(1)若点A(1,1),求线段AB和CD的长度;(2)对于任意的点A(a,b),判断线段AB和CD的大小关系,并证明.【分析】(1)根据题意求得B(3,1),C(1,3),D(,3),即可求得AB和CD 的长度;(2)根据题意得到A(a,),B(3a,).C(a,),D(,),进一步求得AB=2a,CD=.即可求得AB>CD.解:(1)∵AB∥x轴,A(1,1),B在反比例函数的图象上,∴B(3,1).同理可求:C(1,3),D(,3).∴AB=2,CD=.(2)AB>CD.证明:∵A(a,b),A在反比例函数的图象上,∴A(a,).∵AB∥x轴,B在反比例函数的图象上,∴B(3a,).同理可求:C(a,),D(,).∴AB=2a,CD=.∵a>0,∴2a>.∴AB>CD.25.如图,在矩形ABCD中,E是BA延长线上的定点,M为BC边上的一个动点,连接ME,将射线ME绕点M顺时针旋转76°,交射线CD于点F,连接MD.小东根据学习函数的经验,对线段BM,DF,DM的长度之间的关系进行了探究.下面是小东探究的过程,请补充完整:(1)对于点M在BC上的不同位置,画图、测量,得到了线段BM,DF,DM的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8位置9 BM/cm0.000.53 1.00 1.69 2.17 2.96 3.46 3.79 4.00 DF/cm0.00 1.00 1.74 2.49 2.69 2.21 1.140.00 1.00 DM/cm 4.12 3.61 3.16 2.52 2.09 1.44 1.14 1.02 1.00在BM,DF,DM的长度这三个量中,确定BM的长度是自变量,DF的长度和DM的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当DF=2cm时,DM的长度约为 2.98和1.35 cm.【分析】(1)由函数的定义可得;(2)描点即可;(3)结合图象,即可求解.解:(1)由函数的定义可得:BM的长度是自变量,DF的长度和DM的长度都是这个自变量的函数,故答案为:BM,DF,DM;(2)如图所示.(3)由图象得到:当DF=2cm时,DM的长度约为2.98cm和1.35cm.26.在平面直角坐标系xOy中,抛物线y=ax2+bx经过点(3,3).(1)用含a的式子表示b;(2)直线y=x+4a+4与直线y=4交于点B,求点B的坐标(用含a的式子表示);(3)在(2)的条件下,已知点A(1,4),若抛物线与线段AB恰有一个公共点,直接写出a(a<0)的取值范围.【分析】(1)将点(3,3)代入解析式即可求得;(2)把y=4代入y=x+4a+4得到关于x的方程,解方程即可求得;(3)根据抛物线与线段AB恰有一个公共点,分两种情况讨论,即可得结论.解:(1)将点(3,3)代入y=ax2+bx,得9a+3b=3.∴b=﹣3a+1.(2)令x+4a+4=4,得x=﹣4a.∴B(﹣4a,4).(3)∵a<0,∴抛物线开口向下,抛物线与线段AB恰有一个公共点,∵A(1,4),B(﹣4a,4)∴点A、B所在的直线为y=4,由(1)得b=1﹣3a,则抛物线可化为:y=ax2+(1﹣3a)x,分两种情况讨论:①当抛物线y=ax2+(1﹣3a)x与直线y=4只有一个公共点时,且抛物线的顶点在点A、B之间,则1≤≤﹣4a或﹣4a≤≤1,方程ax2+(1﹣3a)x=4的根的判别式:△=0,即(1﹣3a)2+16a=0,解得a1=﹣,a2=﹣1,当a1=﹣时,=6(不符合题意),当a2=﹣1时,=2,则1≤≤﹣4a成立.②当抛物线经过点A时,即当x=1,y=4时,a+1﹣3a=4,解得a=﹣;∴a<﹣时,抛物线与线段AB恰有一个公共点,综上:a的取值为:a=﹣1或a<﹣时,抛物线与线段AB恰有一个公共点.27.已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB 上(不与点O,B重合),连接CA.将射线CA绕点C逆时针旋转120°得到射线CA′,将射线BO绕点B逆时针旋转150°与射线CA′交于点D.(1)根据题意补全图1;(2)求证:①∠OAC=∠DCB;②CD=CA(提示:可以在OA上截取OE=OC,连接CE);(3)点H在线段AO的延长线上,当线段OH,OC,OA满足什么等量关系时,对于任意的点C都有∠DCH=2∠DAH,写出你的猜想并证明.【分析】(1)根据题意即可补全图形;(2)①由旋转得∠ACD=120°,由三角形内角和得出∠DCB+∠ACO=60°,∠OAC+∠ACO=60°,即可得出结论;②在OA上截取OE=OC,连接CE,则∠OEC=∠OCE=(180°﹣∠MON)=30°,∠AEC=150°,得出∠AEC=∠CBD,易证AE=BC,由ASA证得△AEC≌△CBD,即可得出结论;(3)猜想OH﹣OC=OA时,对于任意的点C都有∠DCH=2∠DAH,在OH上截取OF=OC,连接CF、CH,则FH=OA,∠COF=180°﹣∠MON=60°,得出△OFC是等边三角形,则CF=OC,∠CFH=∠COA=120°,由SAS证得△CFH≌△COA,得出∠H=∠OAC,由三角形外角性质得出∠BCH=∠COF+∠H=60°+∠H=60°+∠OAC,则∠DCH=60°+∠H+∠DCB=60°+2∠OAC,由CA=CD,∠ACD=120°,得出∠CAD=30°,即可得出∠DCH=2∠DAH.【解答】(1)解:根据题意补全图形,如图1所示:(2)证明:①由旋转得:∠ACD=120°,∴∠DCB+∠ACO=180°﹣120°=60°,∵∠MON=120°,∴∠OAC+∠ACO=180°﹣120°=60°,∴∠OAC=∠DCB;②在OA上截取OE=OC,连接CE,如图2所示:则∠OEC=∠OCE=(180°﹣∠MON)=(180°﹣120°)=30°,∴∠AEC=180°﹣∠OEC=180°﹣30°=150°,由旋转得:∠CBD=150°,∴∠AEC=∠CBD,∵OA=OB,OE=OC,∴AE=BC,在△AEC和△CBD中,,∴△AEC≌△CBD(ASA),∴CD=CA;(3)解:猜想OH﹣OC=OA时,对于任意的点C都有∠DCH=2∠DAH;理由如下:在OH上截取OF=OC,连接CF、CH,如图3所示:则FH=OA,∠COF=180°﹣∠MON=180°﹣120°=60°,∴△OFC是等边三角形,∴CF=OC,∠CFH=∠COA=120°,在△CFH和△COA中,,∴△CFH≌△COA(SAS),∴∠H=∠OAC,∴∠BCH=∠COF+∠H=60°+∠H=60°+∠OAC,∴∠DCH=60°+∠H+∠DCB=60°+2∠OAC,∵CA=CD,∠ACD=120°,∴∠CAD=30°,∴∠DCH=2(∠CAD+∠OAC)=2∠DAH.28.在平面直角坐标系xOy中,已知点A(0,2),点B在x轴上,以AB为直径作⊙C,点P在y轴上,且在点A上方,过点P作⊙C的切线PQ,Q为切点,如果点Q在第一象限,则称Q为点P的离点.例如,图1中的Q为点P的一个离点.(1)已知点P(0,3),Q为P的离点.①如图2,若B(0,0),则圆心C的坐标为(0,1),线段PQ的长为;②若B(2,0),求线段PQ的长;(2)已知1≤PA≤2,直线l:y=kx+k+3(k≠0).①当k=1时,若直线l上存在P的离点Q,则点Q纵坐标t的最大值为6;②记直线l:y=kx+k+3(k≠0)在﹣1≤x≤1的部分为图形G,如果图形G上存在P的离点,直接写出k的取值范围.【分析】(1)①如图可知:C(0,1),在Rt△PQC中,CQ=1,PC=2;②如图,过C作CM⊥y轴于点M,连接CP,CQ,M(0,1).在Rt△ACM中,由勾股定理可得CA=,CQ=.在Rt△PCM中,由勾股定理可得PC=.在Rt△PCQ中,由勾股定理可得PQ==.(2)①当k=1时,y=x+4,Q(t﹣4,t),P的纵坐标为4时,PQ与圆C相切,设B (m,0),则圆心为C(,1),由CQ⊥PQ,可求CQ的解析式为y=﹣x++1,Q 点横坐标为﹣=t﹣4,则C(2t﹣5,1),再由CQ=AC,得到t=6或t=2;②y =kx+k+3经过定点(﹣1,3),PQ是圆的切线,AO是圆的弦,则有PQ2=PA•PO,当k<0时,Q点的在端点(﹣1,3)和(1,2k+3)之间运动,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4﹣2),此时k=1﹣2,当P(0,3)时,PQ=,Q(1,2k+3),1+4k2=3,所以1﹣2<k≤﹣;当k >0时,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4+2),此时k=1+2,当P(0,3)时,PQ=,Q(1,2k+3),1+4k2=3,所以≤k<1+2.解:(1)①如图可知:C(0,1),在Rt△PQC中,CQ=1,PC=2,∴PQ=,故答案为(0,1);;②如图,过C作CM⊥y轴于点M,连接CP,CQ.∵A(0,2),B(2,0),∴C(1,1).∴M(0,1).在Rt△ACM中,由勾股定理可得CA=.∴CQ=.∵P(0,3),M(0,1),∴PM=2.在Rt△PCM中,由勾股定理可得PC=.在Rt△PCQ中,由勾股定理可得PQ==.(2)①如图1:当k=1时,y=x+4,∴Q(t﹣4,t),∵1≤PA≤2,∴P的纵坐标为4时,PQ与圆C相切,设B(m,0),∴C(,1),∵CQ⊥PQ,∴CQ的解析式为y=﹣x++1,∴Q点横坐标为﹣,∴﹣=t﹣4,∴m=4t﹣10,∴C(2t﹣5,1),∵CQ=AC,∴(2t﹣5)2+1=2(t﹣1)2,∴t=6或t=2,∴t的最大值为6;故答案为6.②∵﹣1≤x≤1,∵y=kx+k+3经过定点(﹣1,3),∵PQ是圆的切线,AO是圆的弦,∴PQ2=PA•PO,当k<0时,Q点的在端点(﹣1,3)和(1,2k+3)之间运动,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4﹣2),此时k=1﹣2,当P(0,3)时,PQ=,Q(1,2k+3),∴1+4k2=3,∴k=,∴k=﹣,∴1﹣2<k≤﹣;当k>0时,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4+2),此时k=1+2,当P(0,3)时,PQ=,Q(1,2k+3),∴1+4k2=3,∴k=,∴k=,∴≤k<1+2.。

2018-2019学年北京通州区初三上学期期中数学试卷(WORD版含答案)

2018-2019学年北京通州区初三上学期期中数学试卷(WORD版含答案)

通州区2018—2019学年第一学期九年级期中学业水平质量检测数学试卷一、选择题(本题共8个小题,每小题2分,共16分.每小题只有一个正确选项) 1.如果14b a b =-,那么a b 的值为A .5B .15C .3D .132. 在平面直角坐标系xOy 中,二次函数24y x x =-的图象与x 轴的交点坐标是 A .(0,0)B .(4,0)C .(4,0)、(0,0)D .(2,0)、(2-,0)3.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OC ,OB =3OD ),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD =1.8 cm 时,那么AB 的长为 A .7.2 cm B .5.4 cmC .3.6 cmD .0.6 cm4. 如图,在Rt △DCB 中,∠C =90°,点A 在边DC 上,且不与点C ,D 重合,那么tan ABC ∠与tan DBC ∠ 的大小关系是A .tan ABC ∠> tan DBC ∠ B .tan ABC ∠ < tan DBC ∠ C .tan ABC ∠ = tan DBC ∠ D .无法确定5.在平面直角坐标系xOy 中,抛物线()()2110y a x a =--≠的顶点坐标是 A .(2,-1) B .(-1,-1)C .(1,1)D .(1,-1)6. 如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC =3:1,连接AE 交BD 于点F ,那么△DEF 的周长与△BAF 的周长之比为A .3:4B .9:16C .1:3D .3:27.已知反比例函数3y x=-,下列结论:①图象必经过点(-3,1);②图象在第二,四象限内;③y 随x 的增大而增大;④当x >-1时,y >3.其中错误的结论有 A .①④ B .②③C .②④D .③④8. 科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一段时间后,记录下这种植物高度的增长情况(如下表):由这些数据,科学家推测出植物每天高度的增长量y 是温度x 的二次函数,那么下列三个结论:①该植物在0℃时,每天高度的增长量最大;②该植物在﹣6℃时,每天高度的增长量能保持在25mm 左右; ③该植物与大多数植物不同,6℃以上的环境下高度几乎不增长. 上述结论中,所有正确结论的序号是 A .①②③B .①③C .①②D .②③二、填空题(本题共8个小题,每小题2分,共16分)9. 经测试发现,近视眼镜的度数y (度)与镜片焦距x (米)成反比例函数关系,其关系式为120y x=.如果某一近视眼镜镜片的焦距为0.3米,那么近视眼镜的度数为_______度.10. 如图,在△ABC 中,DE ∥BC ,AD :DB = 3:1,BC =8,那么DE 的长等于__________.11. 如图,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高,AC =8,BC =6,那么∠ACD 的正切值是____________.12. 已知二次函数23y x mx =-+在0x =和2x =时的函数值相等,那么m 的值是______. 13. 如图,一运动员乘雪橇沿坡比1如果下滑的垂直高度为1000米.那么这名运动员滑到坡底的路程是__________米.14. 在同一直角坐标系xOy 中,二次函数y x =与反比例函数()10y x x=>的图象如图所示,如果两个函数图象上有三个不同的点A (1x ,m ),B (2x ,m),C (3x ,m ),其中m 为常数,令123W x x x =++,那么W 的值为___________(用含m 的代数式表示). 15.勾股定理与黄金分割是几何中的双宝,前者好比黄金,后者堪称珠玉,生活中到处可见黄金分割的美.如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割,已知AB =10 cm ,AC >BC ,那么AC 的长约为____________cm (结果精确到0.1 cm ).16. 函数()220y ax ax m a =-+>的图象过点(2,0),那么使函数值0y <成立的x 的取值范围是______________.三、解答题(本题共68分,第17—25题,每小题6分,第26—27题,每小题7分)17. 已知034a b =≠,求代数式2291533a b a b a b--- 的值.18. 如图,矩形ABCD 的边AB 与x 轴平行,顶点A 的坐标为(2,1),点B 与点D 都在反比例函数()60y x x=>的图象上,求矩形ABCD19. 如图,已知CD 为Rt △ABC 斜边上的中线,过点D 作AC 的平行线,过点C 作CD的垂线,两线相交于点E . 求证:△ABC ∽△DEC .20.对于自变量x 的不同的取值范围,有着不同的对应关系,这样的函数通常叫做分段函数.它是一个函数,而不是几个函数. 分段函数在自变量x 的不同的取值范围内,函数的表达式也不同.例如:()()2200≤,x x x y x x ⎧+⎪=⎨->⎪⎩是分段函数.当0x ≤时,它是二次函数2+2y x x =;当0x >时,它是正比例函数y x =-. (1)请在平面直角坐标系中画出函数()()2200≤,x x x y x x ⎧+⎪=⎨->⎪⎩的图象;(2)y 轴左侧图象的最低点的坐标是 ; (3)当1y =-时,求自变量x 的值.21. 如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长,交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,求线段AE 的长度.22. 如图,在平面直角坐标系xOy 中,直线16y kx =+与函数25(0)y x x=>的图象的两个交点分别为A (a ,1)、B .(1)求k ,a 的值及点B 的坐标;(2)过点P (n ,0)作x 轴的垂线,与直线16y kx =+ 和函数25(0)y x x=>的图象分别交于点M ,N , 当点M 在点N 上方时,写出n 的取值范围.23. 如图,菱形ABCD 的对角线AC ,BD 相交于点O ,60ABC ∠=︒,过点B 作AC 的平行线交DC 的延长线于点E . (1)求证:四边形ABEC 为菱形; (2)如果AB =6,连接OE ,求OE 的长.24.从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的优美线.(1)如图,在△ABC 中,AD 为角平分线,∠B =50°,∠C =30°,求证:AD 为△ABC 的优美线;(2)在△ABC 中,∠B =46°,AD 是△ABC 的优美线,且△ABD 是以AB 为腰的等腰三角形,求∠BAC 的度数.25.在平面直角坐标系xOy 中,抛物线()220y ax x c a =++≠经过点()34A -,和()01B ,.(1)求抛物线的表达式和顶点坐标;(2)将抛物线在A 、B 之间的部分记为图象M (含A 、B 两点).将图象M 沿y 轴翻折,得到图象N .如果过点()30C -,和()0D b ,的直线与图象M 、图象N 都相交,且只有两个交点,求b 的取值范围.26. 如图,在等边△ABC 中,作45ACD ABD ∠=∠=︒,边CD 、BD 交于点D ,连接AD .∠的度数;(1)请直接写出CDB∠的度数;(2)求ADC(3)用等式表示线段AC、BD、CD三者之间的数量关系,并证明.Array27. 定义:在平面直角坐标系xOy中,如果将点P绕点T(0,t)(t>0)旋转180°得到点Q ,那么称线段QP 为“拓展带”,点Q 为点P 的“拓展点”. (1)当t =3时,点(0,0)的“拓展点”坐标为_______,点(-1,1)的“拓展点”坐标为_________; (2)如果t >1,当点M (2,1)的“拓展点”N 在函数4y x=-的图象上时,求t 的值; (3)当t =1时,点Q 为点P (2,0)的“拓展点”,如果抛物线()21y x m =--与“拓展带”PQ 有交点,求m 的取值范围.通州区2018—2019学年第一学期九年级期中学业水平质量检测数学试卷参考答案及评分标准一、选择题(本题共8个小题,每小题2分,共16分)二、填空题(本题共8个小题,每小题2分,共16分)9. 400 10. 6 11.43 12. 2 13. 2000 14. 1m15. 6.2 16. 02x << 三、解答题(本题共68分,第17—25题,每小题6分,第26—27题,每小题7分) 17. 解:原式=()()331533a b a b a ba b+---………………… 2分 =353a ba b+- . (3)分∵034a b=≠, ∴34b a =. ………………… 4分原式=454a aa a+- ………………… 5分=5a a=5. (6)分18. 解:当2x =时,∴6632y x === . ………………… 1分 ∴()23D ,, ………………… 2分312AD =-=.当1y =时,∴61x=. ∴6x =. ………………… 3分∴()61B ,. ………………… 4分 ∴624AB =-=.∴矩形ABCD 的周长是2+4+2+4=12. ………………… 6分19. 证明:∵CD 为Rt △ABC 斜边上的中线,∴CD AD =. …………………1分∴ACD A ∠=∠.∵DE ∥AC .∴ACD CDE ∠=∠. (2)分∴A CDE ∠=∠. (3)分∵90ACB ∠=︒,CE ⊥CD , (4)分∴ ACB DCE ∠=∠. ………………… 5分∴△ABC ∽△DEC. (6)分 20.解:(1)正确画出函数的图象; ………………… 3分(2)(-1,-1); ………………… 4分(3)当0x >,1y =-时,1x -=-,1x =; ………………… 5分当0≤x ,1y =-时,212x x -=+,1x =-.所以自变量x 的值为1或-1. (6)分21. 解:∵四边形ABCD 是正方形,∴AB AD DC ==,AB ∥DC ,AD ∥BC . ……………… 1分 ∵AB ∥DC ,∴ABF GDF ∠=∠,BAF DGF ∠=∠. ∴△ABF ∽△GDF . ∴AF ABFG DG =. ……………… 2分 ∵G 为CD 边中点,FG =2,∴122AF AB DC =. ∴4AF = ,6AG AF FG =+= . ……………… 3分∵AD ∥BC , ∴E DAG ∠=∠. ∵G 为CD 边中点, ∴DG CG =. ∵AGD EGC ∠=∠,∴△ADG ≌△ECG . ……………… 4分 ∴AG GE =. ……………… 5分 ∴212AE AG GE AG =+==. ……………… 6分22. 解:(1)把A (a ,1)代入函数5(0)y x x=>中, ∴51a=. ∴5a =. ……………… 1分 把A (5,1)代入函数6y kx =+中, ∴156k =+.∴1k =-. ……………… 2分∴6,5.y x y x =-+⎧⎪⎨=⎪⎩解得1,5x y =⎧⎨=⎩,5,1x y =⎧⎨=⎩.∴点B 的坐标为(1,5). ……………… 4分 (2)15n <<. ……………… 6分 23.(1)证明:∵四边形ABCD 是菱形,∴AB ∥DC ,AB =BC . ∵BE ∥AC ,∴四边形ABEC 是平行四边形. ……………… 1分 ∵AB =BC ,60ABC ∠=︒,∴△ABC 是等边三角形. ……………… 2分 ∴AB =AC .∴四边形ABEC 为菱形. ……………… 3分(2)解:∵四边形ABCD 是菱形,60ABC ∠=︒,∴BD ⊥AC ,30ABO CBO ∠=∠=︒. 在Rt △ABO 中, ∵cos BOABO AB∠=, ∴cos 30︒=6BO.∴BO = ……………… 4分 ∵四边形ABEC 为菱形,60ABC ∠=︒, ∴60EBC ∠=︒,BE =AB =6.∴90OBE OBC CBE ∠=∠+∠=︒. ……………… 5分∴OE ===. ……………… 6分24.(1)证明:∵50B ∠=︒,30C ∠=︒,∴180100BAC B C ∠=︒-∠-∠=︒. ……………… 1分 ∵AD 为角平分线, ∴50BAD CAD ∠=∠=︒∴50B BAD ∠=∠=︒. ∴DA DB =.∴△ABD 是等腰三角形. ……………… 2分∵50B CAD ∠=∠=︒,C C ∠=∠,∴△CAD ∽△CBA. ……………… 3分 ∴AD 为△ABC 的优美线.(2)解: ∵AD 是△ABC 的优美线,且△ABD 是以AB 为腰的等腰三角形,∴△CAD ∽△CBA .∴46CAD B ∠=∠=︒. ……………… 4分 ∵△ABD 是以AB 为腰的等腰三角形, 分两种情况:当AB =AD 时, ∴46ADB B ∠=∠=︒. 又∵ADB C CAD ∠=∠+∠,∴0C ∠=︒,不符合题意,这种情况不存在. ……………… 5分 当AB =BD 时, ∴()118046672ADB BAD ∠=∠=︒-︒=︒. ∴6746113BAC BAD CAD ∠=∠+∠=︒+︒=︒.……………… 6分 ∴∠BAC 的度数为113︒.25. 解:(1)∵抛物线()220y ax x c a =++≠经过点()34A -,和()01B ,. ∴964,1.a c c -+=⎧⎨=⎩解得1,1.a c =⎧⎨=⎩∴抛物线的表达式为()2221=1y x x x =+++. ……………… 1分∴顶点坐标为()10-,. ……………… 2分 (2)设点()34A -,关于 y 轴的对称点为’A ,则点()34A ',.若直线CD 经过点()34A ',,可得2b =. ……………… 3分若直线CD 经过点()01B ,,可得1b=. ……………… 4分若点D 与坐标原点重合,0b =. ……………… 5分 综上,120b b <=≤或. ……………… 6分26. 解:(1)60︒; ……………… 1分(2)设AB 与CD 的交点为O.∵45ACD ABD ∠=∠=︒,AOC BOD ∠=∠,∴△AOC ∽△DOB . ……………… 2分 ∴AO OCOD OB=.∵AOD BOC ∠=∠,∴△AOD ∽△COB . ……………… 3分 ∴60ADC ABC ∠=∠=︒. ……………… 4分 (3)答案一:线段AC 、BD 、CD三者之间的数量关系为CD BD +=. 证明:如图,延长CD 到点E ,使DE DB =,连接AE .∵60ADC ∠=︒, ∴120ADE ∠=︒. ∵60CDB ∠=︒, ∴120ADB ∠=︒. 在△ADE 和△ADB 中,,,,DE DB ADE ADB DA DA =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ADB . ……………… 5分 ∴AE AB =,45E ABD ∠=∠=︒. ∵45ACD ∠=︒,∴90EAC ∠=︒,AE AC =. ……………… 6分∴EC =.∴CD BD +=. ……………… 7分 另一种证法:延长BD 到点E ,使DE DC =,连接AE . 答案二:线段AC 、BD 、CD)CD BD -=.证明:如图,在D C 上截取DE DB =,连接BE ,过点A 作AF ⊥CD 于点F . 可证△ADB ≌△CEB ,可得CE AD =,sin AF ADC AD ∠==,2AF =. sin 2AF ACF AC ∠==2AF =. =)CD BD =-.参考答案一的评分标准给分.27.解:(1)点(0,0)的“拓展点”坐标为(0,6),点(-1,1)的“拓展点”坐标为(1,5).……………… 2分(2)当t >1时,点M (2,1)的“拓展点”N 为(-2,2t -1).……………… 3分∵点N 在函数4y x=-的图象上, ∴4212t -=--. ∴32t =. ……………… 4分 (3)当t =1时,点P (2,0)的“拓展点”Q 为(-2,2),当抛物线()21y x m =--经过点P (2,0)时,可得1m =或3m =.……………… 5分当抛物线()21y x m =--经过点Q (-2,2)时,可得2m =-+2m =--……………… 6分∴m的取值范围为23m -≤. ……………… 7分更多初中数学资料,初中数学试题精解请微信关注。

2019-2020学年北京市昌平区九年级上学期期末数学试卷 (解析版)

2019-2020学年北京市昌平区九年级上学期期末数学试卷 (解析版)

2019-2020学年北京市昌平区九年级(上)期末数学试卷一、选择题1.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱2.已知∠A是锐角,tan A=1,那么∠A的度数是()A.15°B.30°C.45°D.60°3.随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是()A.B.C.D.4.如图,AB为⊙O的直径,弦CD⊥AB于点E,连接AC,OC,OD,若∠A=20°,则∠COD的度数为()A.40°B.60°C.80°D.100°5.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB 平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()A.(4,2)B.(4,3)C.(6,2)D.(6,3)6.二次函数y=x2+bx+c的图象如图所示,若点A(0,y1)和B(﹣3,y2)在此函数图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.如图所示的网格是正方形网格,图中△ABC绕着一个点旋转,得到△A'B'C',点C的对应点C'所在的区域在1区∼4区中,则点C'所在单位正方形的区域是()A.1区B.2区C.3区D.4区8.如图,抛物线y=﹣x2+2x+m交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=﹣1,则b=4;④抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2.其中结论正确的序号是()A.①②B.①②③C.①②④D.②③④二、填空题(共8道小题,每小题2分,共16分)9.已知抛物线y=x2+c,过点(0,2),则c=.10.如图,已知正方形OABC的三个顶点坐标分别为A(2,0),B(2,2),C(0,2),若反比例函数y=(k>0)的图象与正方形OABC的边有交点,请写出一个符合条件的k值.11.如图,正方形ABCD内接于⊙O,⊙O的半径为6,则的长为.12.如图,在△ABC中,∠C=90°,∠A=α,AC=20,请用含α的式子表示BC的长.13.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC的长为.14.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为.15.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为m.16.如图,抛物线y=x2+2x+2和抛物线y=x2﹣2x﹣2的顶点分别为点M和点N,线段MN 经过平移得到线段PQ,若点Q的横坐标是3,则点P的坐标是,MN平移到PQ 扫过的阴影部分的面积是.三、解答题(共6道小题,每小题5分,共30分)17.计算:sin30°+2cos60°×tan60°﹣sin245°.18.如图,在Rt△ABC中,∠C=90°,tan A=,BC=2,求AB的长.19.已知二次函数y=﹣x2﹣2x+3.(1)将二次函数化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中画出y=﹣x2﹣2x+3的图象;(3)结合函数图象,直接写出y>0时x的取值范围.20.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.21.如图,A,B,C是⊙O上的点,sin A=,半径为5,求BC的长.22.课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图1所示,分别为Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm.当边AC与DE重合,且边AB和DF在同一条直线上时:(1)如图2在下边的图形中,画出所有符合题意的图形;(2)求BF的长.四、解答题(共4道小题,每小题6分,共24分)23.材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10m,间距AB为32m,桥面AB 水平,主索最低点为点P,点P距离桥面为2m;为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如图4:甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;乙同学:如图5,以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;(2)距离点P水平距离为4m和8m处的吊索共四条需要更换,则四根吊索总长度为多少米?24.如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.25.如图1,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为xcm,C,D两点间的距离为y1cm,P,D两点之间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm0.00 1.00 2.00 3.00 3.20 4.00 5.00 6.00 6.507.008.00 y1/cm0.00 1.04 2.09 3.11 3.30 4.00 4.41 3.46 2.50 1.530.00 y2/cm 6.24 5.29 4.35 3.46 3.30 2.64 2.00m 1.80 2.00 2.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)如图2,在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,并画出函数y2的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a 的取值范围.五、解答题(共2道小题,每小题7分,共14分)27.已知等边△ABC,点D为BC上一点,连接AD.(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.28.对于平面直角坐标系xOy中,已知点A(﹣2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45°≤∠APB≤90°时,则称点P为线段AB的可视点,且当PA=PB时,称点P为线段AB的正可视点.(1)①如图1,在点P1(3,6),P2(﹣2,﹣5),P3(2,2)中,线段AB的可视点是;②若点P在y轴正半轴上,写出一个满足条件的点P的坐标:.(2)在直线y=x+b上存在线段AB的可视点,求b的取值范围;(3)在直线y=﹣x+m上存在线段AB的正可视点,直接写出m的取值范围.参考答案一、选择题(共8道小题,每小题2分,共16分)下列各题均有四个选项,其中只有一个是符合题意的.1.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【分析】根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.解:俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,故选:D.2.已知∠A是锐角,tan A=1,那么∠A的度数是()A.15°B.30°C.45°D.60°【分析】直接利用特殊角的三角函数值得出答案.解:∵∠A是锐角,tan A=1,∴∠A的度数是:45°.故选:C.3.随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.4.如图,AB为⊙O的直径,弦CD⊥AB于点E,连接AC,OC,OD,若∠A=20°,则∠COD的度数为()A.40°B.60°C.80°D.100°【分析】先根据垂径定理得到=,然后根据圆周角得到∠BOD和∠BOC的度数,从而得到∠COD的度数.解:∵弦CD⊥AB,∴=,∴∠BOD=∠BOC=2∠A=2×20°=40°,∴∠COD=40°+40°=80°.故选:C.5.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB 平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()A.(4,2)B.(4,3)C.(6,2)D.(6,3)【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移1个单位,向上平移了1个单位,然后可得B′点的坐标;解:∵A(1,0)平移后得到点A′的坐标为(2,1),∴向右平移1个单位,向上平移了1个单位,∴B(3,2)的对应点坐标为(4,3),故选:B.6.二次函数y=x2+bx+c的图象如图所示,若点A(0,y1)和B(﹣3,y2)在此函数图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定【分析】根据抛物线的对称性,在对称轴同侧的可根据增减性由自变量x的大小得出函数值y的大小,在对称轴一侧的可根据离对称轴的远近和抛物线的增减性进行判断.解:点A(0,y1)和B(﹣3,y2)在抛物线对称轴x=﹣2的两侧,且点A比点B离对称轴要远,因此y1>y2,故选:A.7.如图所示的网格是正方形网格,图中△ABC绕着一个点旋转,得到△A'B'C',点C的对应点C'所在的区域在1区∼4区中,则点C'所在单位正方形的区域是()A.1区B.2区C.3区D.4区【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点P即为旋转中心,从而得出线段AB和点C是绕着P点逆时针旋转90°,据此可得答案.解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点P即为旋转中心,由图可知,线段AB和点C绕着P点逆时针旋转90°,∴点C逆时针旋转90°后所得对应点C′落在4区,故选:D.8.如图,抛物线y=﹣x2+2x+m交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=﹣1,则b=4;④抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2.其中结论正确的序号是()A.①②B.①②③C.①②④D.②③④【分析】①根据抛物线与y轴的交点坐标的求法即可判断;②当m=0时,可得抛物线与x轴的两个交点坐标和对称轴即可判断;③根据抛物线与x轴的一个交点坐标和对称轴即可得另一个交点坐标即可判断;④根据二次函数图象当x1<1<x2,且x1+x2>2,则y1>y2.解:①∵抛物线与y轴的交点坐标为(0,m),∴C(0,m),故①正确;②当m=0时,抛物线与x轴的两个交点坐标分别为(0,0)、(2,0),对称轴方程为x=1,∴△ABD是等腰直角三角形,故②正确;③当a=﹣1时,抛物线与x轴的一个交点坐标为(﹣1,0),∵对称轴x=1,∴另一个交点坐标为(3,0),∴b=﹣3,故③错误;④观察二次函数图象可知:当x1<1<x2,且x1+x2>2,则y1>y2.故④正确.故选:C.二、填空题(共8道小题,每小题2分,共16分)9.已知抛物线y=x2+c,过点(0,2),则c=2.【分析】把点(0,2)代入y=x2+c即可得到结论.解:∵抛物线y=x2+c,过点(0,2),∴0+c=2,∴c=2,故答案为:2.10.如图,已知正方形OABC的三个顶点坐标分别为A(2,0),B(2,2),C(0,2),若反比例函数y=(k>0)的图象与正方形OABC的边有交点,请写出一个符合条件的k值k=1(满足条件的k值的范围是0<k≤4).【分析】把B(2,2)代入y=即可得到结论.解:∵反比例函数y=(k>0)的图象与正方形OABC的边有交点,∴把B(2,2)代入y=得,k=4,∴满足条件的k值的范围是0<k≤4,故k=1(答案不唯一),故答案为:k=1(满足条件的k值的范围是0<k≤4).11.如图,正方形ABCD内接于⊙O,⊙O的半径为6,则的长为3π.【分析】连接OB,CO,根据弧长公式即可求解.解:连接OB,OC,则OC=OB=6,∠BOC=90°,∴的弧长为π×6=3π,故答案为3π.12.如图,在△ABC中,∠C=90°,∠A=α,AC=20,请用含α的式子表示BC的长20tanα.【分析】直接利用正切的定义求解.解:在△ABC中,∠C=90°,tan A=,所以BC=AC tan A=20tanα.故答案为20tanα.13.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC的长为2.【分析】连接AB,根据切线长定理得到PA=PB,根据等边三角形的性质得到AB=PA =6,∠PAB=60°,根据切线的性质得到∠PAC=90°,根据正切的定义计算即可.解:连接AB,∵PA,PB是⊙O的切线,∴PA=PB,∵∠P=60°,∴△PAB为等边三角形,∴AB=PA=6,∠PAB=60°,∵PA是⊙O的切线,∴∠PAC=90°,∴∠CAB=30°,∵AC是⊙O的直径,∴∠ABC=90°,在Rt△ABC中,BC=AB•tan∠CAB=6×=2,故答案为:2.14.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为(1,2).【分析】根据位似变换的性质解答.解:以原点O为位似中心,把△OAB缩小为原来的,A(2,4),∴A的对应点A'的坐标为(2×,4×),即(1,2),故答案为:(1,2).15.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为25m.【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m.故答案为:25.16.如图,抛物线y=x2+2x+2和抛物线y=x2﹣2x﹣2的顶点分别为点M和点N,线段MN 经过平移得到线段PQ,若点Q的横坐标是3,则点P的坐标是(1,5),MN平移到PQ扫过的阴影部分的面积是16.【分析】由抛物线解析式求得点M、N的坐标,然后根据平移的性质来求点P的坐标;阴影部分的面积=平行四边形PMNQ的面积.解:如图,连接PM,QN,MQ、PN.由y=x2+2x+2=(x+1)2+1,y=x2﹣2x﹣2=(x﹣1)2﹣3,知M(﹣1,1),N(1,﹣3).∵点Q的横坐标是3,点Q在抛物线y=x2﹣2x﹣2上,∴y=32﹣2×3﹣2=1.∴Q(3,1).∴线段MN先向上平移4个单位,然后向右平移2个单位得到线段PQ.∴点P的坐标是(1,5),∴PN⊥MQ,且PN与MQ相互平分,∴平行四边形PMNQ是菱形.根据平移的性质知,S阴影部分=S菱形PMNQ=PN•MQ=×4×8=16.故答案是:(1,5);16.三、解答题(共6道小题,每小题5分,共30分)17.计算:sin30°+2cos60°×tan60°﹣sin245°.【分析】将特殊角的三角函数值代入求解.解:sin30°+2cos60°×tan60°﹣sin245°=,=.18.如图,在Rt△ABC中,∠C=90°,tan A=,BC=2,求AB的长.【分析】根据直角三角形的边角关系,求出AC,再根据勾股定理求出AB.解:∵在Rt△ABC中,∠C=90°,∴tan A==.∵BC=2,∴=,AC=6.∵AB2=AC2+BC2=40,∴AB=.19.已知二次函数y=﹣x2﹣2x+3.(1)将二次函数化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中画出y=﹣x2﹣2x+3的图象;(3)结合函数图象,直接写出y>0时x的取值范围.【分析】(1)利用配方法可把抛物线解析式化顶点式;(2)先解方程﹣x2﹣2x+3=0得抛物线与x轴的交点坐标为(﹣3,0),(1,0),再确定抛物线的顶点坐标和与y轴的交点坐标,然后利用描点法画二次函数图象;(3)结合函数图象,写出抛物线在x轴上方所对应的自变量的范围即可.解:(1)y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)=﹣(x+1)2+4;(2)抛物线的顶点坐标为(﹣1,4),当x=0时,y=﹣x2﹣2x+3=3,则抛物线与y轴的交点坐标为(0,3);当y=0时,﹣x2﹣2x+3=0,解得x1=1,x2=﹣3,则抛物线与x轴的交点坐标为(﹣3,0),(1,0);如图,(3)﹣3<x<1.20.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=90°(直径所对的圆周角是直角)(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.【分析】(1)根据要求画出图形即可.(2)利用圆周角定理证明∠OAP=∠OBP=90°即可.解:(1)补全图形如图.(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=90°(直径所对的圆周角是直角),∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.故答案为90,直径所对的圆周角是直角.21.如图,A,B,C是⊙O上的点,sin A=,半径为5,求BC的长.【分析】构造直径三角形,利用垂径定理,圆周角定理解决问题即可.【解答】证明:方法Ⅰ:连接OB,OC,过点O作OD⊥BC,如图1∵OB=OC,且OD⊥BC,∴∠BOD=∠COD=∠BOC,∵∠A=∠BOC,∴∠BOD=∠A,sin A=sin∠BOD=,∵在Rt△BOD中,∴sin∠BOD==,∵OB=5,∴=,BD=4,∵BD=CD,∴BC=8.方法Ⅱ:作射线BO,交⊙O于点D,连接DC,如图2.∵BD为⊙O的直径,∴∠BCD=90°,∵∠BDC=∠A,∴sin A=sin∠BDC=,∵在Rt△BDC中,∴sin∠BDC==.∵OB=5,BD=10,∴=,∴BC=8.22.课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图1所示,分别为Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm.当边AC与DE重合,且边AB和DF在同一条直线上时:(1)如图2在下边的图形中,画出所有符合题意的图形;(2)求BF的长.【分析】(1)按题意画出图形即可;(2)分两种情况,由勾股定理求出BC,AB,则可得出答案.解:(1)补全图形如图:(2)情况Ⅰ,如图1:∵在Rt△ACF中,∠F=∠ACF=45°,∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(+2)cm.情况Ⅱ,如图2:∵在Rt△ACF中,∠F=∠ACF=45°,∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(﹣2)cm.四、解答题(共4道小题,每小题6分,共24分)23.材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10m,间距AB为32m,桥面AB 水平,主索最低点为点P,点P距离桥面为2m;为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如图4:甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;乙同学:如图5,以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;(2)距离点P水平距离为4m和8m处的吊索共四条需要更换,则四根吊索总长度为多少米?【分析】(1)根据选择的坐标系,可以直接写出点C的坐标,然后设出主索抛物线的表达式,再根据点C和点P都在抛物线上,即可求得主索抛物线的表达式;(2)根据求出的抛物线解析式,将x=4和8代入解析式中,即可求得四根吊索的长度,从而可以求得四根吊索总长度为多少米.解:当选择甲同学的坐标系时,(1)由图可知,点C的坐标为(16,0),设抛物线的表达式为y=ax2+c(a≠0),由题意可知,C点坐标为(16,0),P点坐标为(0,﹣8),,解得,∴主索抛物线的表达式为y=x2﹣8;(2)x=4时,y=×42﹣8=,此时吊索的长度为10﹣=(m),由抛物线的对称性可得,x=﹣4时,此时吊索的长度也为m,同理,x=8时,y=×82﹣8=﹣6,此时吊索的长度为10﹣6=4(m),x=﹣8时,此时吊索的长度也为4m,∵++4+4=13(米),∴四根吊索的总长度为13米.当选择乙同学的坐标系时,(1)由图可知,点C的坐标为(16,10),设抛物线的表达式为y=ax2+c(a≠0),由题意可知,C点坐标为(16,10),P点坐标为(0,2),解得.∴主索抛物线的表达式为y=x2+2;(2)x=4时,y=×42+2=,此时吊索的长度为m,由抛物线的对称性可得,x=﹣4时,此时吊索的长度也为m,同理,x=8时,y=x2+2=4,此时吊索的长度为4m,x=﹣8时,此时吊索的长度也为4m,∵++4+4=13(米),∴四根吊索的总长度为13米.当选择丙同学的坐标系时,(1)由图可知,点C的坐标为(16,8),设抛物线的表达式为y=ax2(a≠0)162×a=8,解得a=,∴主索抛物线的表达式为y=x2;(2)x=4时,y=×42=,此时吊索的长度为(m),由抛物线的对称性可得,x=﹣4时,此时吊索的长度也为m,同理,x=8时,y=×82=2,此时吊索的长度为2+2=4(m),x=﹣8时,此时吊索的长度也为4m,∵++4+4=13(米),∴四根吊索的总长度为13米.24.如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.【分析】(1)如图,连接OD.根据已知条件得到∠AOD=∠BOD=90°,根据等腰三角形的性质得到∠ODC=∠OCD.推出FC⊥OC,于是得到结论;(2)根据三角函数的定义得到=,根据相似三角形的性质即可得到结论.【解答】(1)证明:如图,连接OD.∵点D是半圆的中点,∴∠AOD=∠BOD=90°,∴∠ODC+∠OED=90°,∵OD=OC,∴∠ODC=∠OCD.又∵CF=EF,∴∠FCE=∠FEC.∵∠FEC=∠OED,∴∠FCE=∠OED.∴∠FCE+∠OCD=∠OED+∠ODC=90°,即FC⊥OC,∴FC是⊙O的切线;(2)解:∵tan A=,∴在Rt△ABC中,=,∵∠ACB=∠OCF=90°,∴∠ACO=∠BCF=∠A,∵△ACF∽△CBF,∴===.∴AF=10,∴CF2=BF•AF.∴BF=.∴AO==.25.如图1,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为xcm,C,D两点间的距离为y1cm,P,D两点之间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm0.00 1.00 2.00 3.00 3.20 4.00 5.00 6.00 6.507.008.00y1/cm0.00 1.04 2.09 3.11 3.30 4.00 4.41 3.46 2.50 1.530.00y2/cm 6.24 5.29 4.35 3.46 3.30 2.64 2.00m 1.80 2.00 2.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)如图2,在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,并画出函数y2的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为 4.54.【分析】(1)通过取点、画图、测量可求解;(2)根据题意作图即可;(3)由题意可得PD=AD,画出y=x,交曲线AD的值为所求,即可求解.解:(1)通过取点、画图、测量,可得m=1.73,(2)如图(3)∵当AD=2PD,∴PD=AD,在(2)中图象中作出y=x的图象,并测量两个函数图象交点得:AD=4.54,故答案为:4.54.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是直线x=1;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a 的取值范围.【分析】(1)①A与B关于对称轴x=1对称;②A(0,c)向右平移2个单位长度,得到点B(2,c),代入解析式即可求得;(2)分两种情况a>0和a<0讨论,结合图象确定有1个整数点时a的最大和最小值,进而确定a的范围.解:(1)①∵A与B关于对称轴x=1对称,∴抛物线对称轴为直线x=1,故答案为直线x=1;②∵抛物线y=ax2+bx+c与y轴交于点A,∴A(0,c)点A向右平移2个单位长度,得到点B(2,c),∵点B在抛物线上,∴4a+2b+c=c,∴b=﹣2a.(2)方法一:如图1,若a>0,∵A(0,c),B(2,c),∴区域内(不含边界)恰有1个整点D的坐标为(1,c﹣1),则理另一个整点E(1,c ﹣2)不在区域内,∵把x=1代入抛物线y=ax2+bx+c得y=a+b+c=﹣a+c,∴根据题意得,解得1<a≤2,如图2,若a<0,同理可得,解得﹣2≤a<﹣1综上,符合题意的a的取值范围为﹣2≤a<﹣1或1<a≤2.方法二:∵AB=2,点A是整点,∴点C到AB的距离大于1并且小于等于2.∵点C到AB的距离表示为c﹣a,减去c的差的绝对值,∴1<|c﹣a﹣c|≤2,即1<|a≤2,∴﹣2≤a<﹣1或1<a≤2.五、解答题(共2道小题,每小题7分,共14分)27.已知等边△ABC,点D为BC上一点,连接AD.(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.【分析】(1)根据全等三角形性质和三角形外角的性质即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠CBE,根据三角形的外角的性质得到∠APE =∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°.根据旋转的性质得到AF=AD,∠DAF=120°.根据全等三角形的性质得到AQ=QE,于是得到结论.【解答】(1)补全图形图1,证明:在△ABD和△BEC中,∴△ABD≌△BEC(SAS)∴∠BAD=∠CBE.∵∠APE是△ABP的一个外角,∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°;(2)补全图形图2,,证明:在△ABD和△BEC中,∴△ABD≌△BEC(SAS)∴∠BAD=∠CBE,∵∠APE是△ABP的一个外角,∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°.∵AF是由AD绕点A逆时针旋转120°得到,∴AF=AD,∠DAF=120°.∵∠APE=60°,∴∠APE+∠DAP=180°.∴AF∥BE,∴∠1=∠F,∵△ABD≌△BEC,∴AD=BE.∴AF=BE.在△AQF和△EQB中,△AQF≌△EQB(AAS),∴AQ=QE,∴,∵AE=AC﹣CE,CD=BC﹣BD,且AE=BC,CD=BD.∴AE=CD,∴.28.对于平面直角坐标系xOy中,已知点A(﹣2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45°≤∠APB≤90°时,则称点P为线段AB的可视点,且当PA=PB时,称点P为线段AB的正可视点.(1)①如图1,在点P1(3,6),P2(﹣2,﹣5),P3(2,2)中,线段AB的可视点是P2,P3;②若点P在y轴正半轴上,写出一个满足条件的点P的坐标:P(0,3)(答案不唯一).(2)在直线y=x+b上存在线段AB的可视点,求b的取值范围;(3)在直线y=﹣x+m上存在线段AB的正可视点,直接写出m的取值范围.【分析】(1)①如图1,以AB为直径作圆G,则点P在圆上,则∠APB=90°,若点P在圆内,则∠APB>90°,以C(,)为圆心,AC为半径作圆,在点P优弧上时,∠APB=45°,点P在优弧内,圆G外时,45°<∠APB<90°;以D(,﹣)为圆心,AD为半径作圆,在点P优弧上时,∠APB=45°,点P 在优弧内,圆G外时,45°<∠APB<90°;分别判断点P1,P2,P3的位置即可求解;②观察图象可求解;(2)分别求出直线y=x+b与圆C,圆D相切时,b的值,即可求解;(3)线段AB的正可视点的定义,可得线段CQ和线段DW上的点为线段AB的正可视点,将点的坐标代入可求解.解:(1)①如图1,以AB为直径作圆G,则点P在圆上,则∠APB=90°,若点P在圆内,则∠APB>90°,以C(,)为圆心,AC为半径作圆,在点P优弧上时,∠APB=45°,点P在优弧内,圆G外时,45°<∠APB<90°;以D(,﹣)为圆心,AD为半径作圆,在点P优弧上时,∠APB=45°,点P 在优弧内,圆G外时,45°<∠APB<90°;∵点P1(3,6),P2(﹣2,﹣5),P3(2,2)∴P1C=>=AC,则点P1在圆C外,则∠AP1B<45°,P2D==AC,则点P2在圆D上,则∠AP2B=45°,P3G==BG,点P3在圆G上,则∠AP3B=90°,∴线段AB的可视点是P2,P3,故答案为:P2,P3;②由图1可得,点P的坐标:P(0,3)(答案不唯一,纵坐标y p范围:≤y p≤6).(2)如图2,设直线y=x+b与圆C相切于点H,交x轴于点N,连接BH,∵∠HNB=∠HBN=45°,∴NH=BH,∠NHB=90°,且NH是切线,∴BH是直径,∴BH=5,∴BN=10,∴ON=7,∴点N(﹣7,0)∴0=﹣7+b,∴b=7,当直线y=x+b与圆D相切同理可求:b=﹣8∴﹣8≤b≤7(3)如图3,作AB的中垂线,交⊙C于点Q,交⊙D于点W,∵直线y=﹣x+m上存在线段AB的正可视点,∴线段CQ和线段DW上的点为线段AB的正可视点.∵点C(,),点D(,﹣),点Q(,+),点W(,﹣﹣)分别代入解析式可得:∴m=3,m=+3,m=﹣2,m=﹣2﹣,∴m的取值范围:或.。

北京市西城区2019届九年级上期末数学试卷含答案解析

北京市西城区2019届九年级上期末数学试卷含答案解析

2019-2019学年北京市西城区九年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.二次函数y=(x﹣5)2+7的最小值是()A.﹣7 B.7 C.﹣5 D.52.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A.B.C.D.3.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A.12 B.C.D.4.将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5 B.y=(x﹣3)2+5 C.y=(x﹣3)2﹣4 D.y=(x+3)2﹣9 5.若一个扇形的半径是18cm,且它的弧长是12π cm,则此扇形的圆心角等于()A.30°B.60°C.90°D.120°6.如图,在平面直角坐标系xOy中,点A的坐标为(﹣1,2),AB⊥x轴于点B.以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,则点A1的坐标为()A.(﹣2,4)B.(,1)C.(2,﹣4)D.(2,4)7.如图,一艘海轮位于灯塔P的南偏东37°方向,距离灯塔40 海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的正东方向上的B处.这时,B处与灯塔P的距离BP的长可以表示为()A.40海里B.40tan37°海里C.40cos37°海里D.40sin37°海里8.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A.30°B.45°C.50°D.70°9.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)10.二次函数y=2x2﹣8x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为()A.8 B.﹣10 C.﹣42 D.﹣24二、填空题(本题共18分,每小题3分)11.若,则的值为.12.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1y2.(填“>”,“<”或“=”)13.△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为.14.如图,线段AB和射线AC交于点A,∠A=30°,AB=20.点D在射线AC上,且∠ADB是钝角,写出一个满足条件的AD的长度值:AD=.15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为.16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是;由此可证明直线PA,PB都是⊙O的切线,其依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:4cos30°•tan60°﹣sin245°.18.如图,△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,求tanC的值.19.已知抛物线y=﹣x2+2x+3与x轴交于A,B两点,点A在点B的左侧.(1)求A,B两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.20.如图,在四边形ABCD中,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB;(2)若AB=12,AD=8,CD=15,求DB的长.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?22.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n <t,直接写出m的取值范围.23.如图,AB是⊙O的一条弦,且AB=.点C,E分别在⊙O上,且OC⊥AB 于点D,∠E=30°,连接OA.(1)求OA的长;(2)若AF是⊙O的另一条弦,且点O到AF的距离为,直接写出∠BAF的度数.24.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B处测得最高塔塔顶A 的仰角为45°,然后向最高塔的塔基直行90米到达C处,再次测得最高塔塔顶A 的仰角为58°.请帮助他们计算出最高塔的高度AD约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)25.如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.(1)求证:∠PCE=∠PEC;(2)若AB=10,ED=,sinA=,求PC的长.26.阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.下面是他的探究过程,请将(2)、(3)、(4)补充完整:(1)将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x﹣1>;当x<0时,原不等式可以转化为x2+4x﹣1<;(2)构造函数,画出图象设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图象.双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为;(4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为.27.(7分)如图,在平面直角坐标系xOy中,二次函数y=﹣+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣+bx+c的图象分别交于B,C两点,点B在第一象限.(1)求二次函数y=﹣+bx+c的表达式;(2)连接AB,求AB的长;(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.28.(7分)在△ABC中,∠ACB=90°,AC=BC=4,M为AB的中点.D是射线BC 上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN.(1)如图1,当BD=2时,AN=,NM与AB的位置关系是;(2)当4<BD<8时,①依题意补全图2;②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.29.(8分)在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.(1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线;(2)当⊙O的半径为1时,如图3,①第一象限内的一条入射光线平行于x轴,且自⊙O的外部照射在其上点P处,此光线经⊙O反射后,反射光线与y轴平行,则反射光线与切线l的夹角为°;②自点A(﹣1,0)出发的入射光线,在⊙O内不断地反射.若第1个反射点P1在第二象限,且第12个反射点P12与点A重合,则第1个反射点P1的坐标为;(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.2019-2019学年北京市西城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.二次函数y=(x﹣5)2+7的最小值是()A.﹣7 B.7 C.﹣5 D.5【考点】二次函数的最值.【分析】根据二次函数的性质求解.【解答】解:∵y=(x﹣5)2+7∴当x=5时,y有最小值7.故选B.【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x 的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣,函数最小值y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣,函数最大值y=.2.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据锐角的余弦等于邻边比斜边,可得答案.【解答】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理,得AB==5.cosA==,故选:A.【点评】本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A.12 B.C.D.【考点】切线的性质.【分析】连接CP,由切线的性质可得CP⊥AO,再由切线长定理可得∠POC=45°,进而可得△POC是等腰直角三角形,利用勾股定理即可求出OC的长.【解答】解:连接CP,∵OA边与⊙C相切于点P,∴CP⊥AO,∵⊙C与∠AOB的两边分别相切,∠AOB=90°,∴∠POC=45°,∴OP=CP=6,∴OC==6,故选C.【点评】本题考查了切线的性质定理、切线长定理以及勾股定理的运用,能够正确的判定△POC是等腰直角三角形是解题关键.4.将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5 B.y=(x﹣3)2+5 C.y=(x﹣3)2﹣4 D.y=(x+3)2﹣9【考点】二次函数的三种形式.【分析】运用配方法把一般式化为顶点式即可.【解答】解:y=x2﹣6x+5=x2﹣6x+9﹣4=(x﹣3)2﹣4,故选:C.【点评】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键.5.若一个扇形的半径是18cm,且它的弧长是12π cm,则此扇形的圆心角等于()A.30°B.60°C.90°D.120°【考点】弧长的计算.【分析】把弧长公式进行变形,代入已知数据计算即可.【解答】解:根据弧长的公式l=,得n===120°,故选:D.【点评】本题考查的是弧长的计算,掌握弧长的公式l=是解题的关键.6.如图,在平面直角坐标系xOy中,点A的坐标为(﹣1,2),AB⊥x轴于点B.以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,则点A1的坐标为()A.(﹣2,4)B.(,1)C.(2,﹣4)D.(2,4)【考点】位似变换;坐标与图形性质.【分析】直接利用位似图形的性质以及结合A点坐标直接得出点A1的坐标.【解答】解:∵点A的坐标为(﹣1,2),以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,∴点A1的坐标为(﹣2,4).故选:A.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.7.如图,一艘海轮位于灯塔P的南偏东37°方向,距离灯塔40 海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的正东方向上的B处.这时,B处与灯塔P的距离BP的长可以表示为()A.40海里B.40tan37°海里C.40cos37°海里D.40sin37°海里【考点】解直角三角形的应用﹣方向角问题.【分析】根据已知条件得出∠BAP=37°,再根据AP=40海里和正弦定理即可求出BP的长.【解答】解:∵一艘海轮位于灯塔P的南偏东37°方向,∴∠BAP=37°,∵AP=40海里,∴BP=AP•sin37°=40sin37°海里;故选D.【点评】本题考查解直角三角形,用到的知识点是方位角、直角三角形、锐角三角函数的有关知识,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.8.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A.30°B.45°C.50°D.70°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】根据三角形的内角和定理得到∠A=80°,根据圆周角定理得到∠D=∠A=80°,根据等腰三角形的内角和即可得到结论.【解答】解:∵∠ABC=70°,∠ACB=30°,∴∠A=80°,∴∠D=∠A=80°,∵D是的中点,∴,∴BD=CD,∴∠DBC=∠DCB==50°,故选C.【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,等腰三角形的性质,熟练掌握圆周角定理是解题的关键.9.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)【考点】根据实际问题列二次函数关系式.【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【点评】此题主要考查了根据实际问题列二次函数解析式,关键是正确理解题意,找出题目中的等量关系,再列函数解析式.10.二次函数y=2x2﹣8x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x 轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为()A.8 B.﹣10 C.﹣42 D.﹣24【考点】二次函数的性质.【分析】根据抛物线顶点式得到对称轴为直线x=2,在7<x<8这一段位于x轴的上方,利用抛物线对称性得到抛物线在0<x<1这一段位于x轴的上方,而图象在1<x<2这一段位于x轴的下方,于是可得抛物线过点(﹣2,0),(6,0),然后把(﹣2,0)代入y=2x2﹣8x+m可求出m的值.【解答】解:∵抛物线y=2x2﹣8x+m=2(x﹣2)2﹣8+m的对称轴为直线x=2,而抛物线在﹣2<x<﹣1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方∴抛物线过点(﹣2,0),(6,0),把(﹣2,0)代入y=2x2﹣8x+m得8+16+m=0,解得m=﹣24.故选D.【点评】本题考查了抛物线与x轴的交点以及抛物线的轴对称性:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本题共18分,每小题3分)11.若,则的值为.【考点】比例的性质.【分析】已知的比值,根据比例的合比性质即可求得.【解答】解:根据比例的合比性质,已知=,则=.【点评】熟练应用比例的合比性质.12.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1>y2.(填“>”,“<”或“=”)【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为﹣3、2时的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣3时,y1=x2﹣5x=24;当x=2时,y2=x2﹣5x=﹣6;∵24>﹣6,∴y1>y2.故答案为:>.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.13.△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为90.【考点】相似三角形的性质.【分析】由△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,即可求得△AC的周长以及相似比,又由相似三角形的周长的比等于相似比,即可求得答案.【解答】解:∵△ABC的三边长分别为5,12,13,∴△ABC的周长为:5+12+13=30,∵与它相似的△DEF的最小边长为15,∴△DEF的周长:△ABC的周长=15:5=3:1,∴△DEF的周长为:3×30=90.故答案为90.【点评】此题考查了相似三角形的性质.熟练掌握相似三角形的周长比等于相似比是解题关键.14.如图,线段AB和射线AC交于点A,∠A=30°,AB=20.点D在射线AC上,且∠ADB是钝角,写出一个满足条件的AD的长度值:AD=10.【考点】含30度角的直角三角形.【分析】过B作BE⊥AC于E,由∠A=30°,AB=20,得到AE=10,推出∠ADB >∠AEB,即可得到结论.【解答】解:过B作BE⊥AC于E,∵∠A=30°,AB=20,∴AE=10,∵∠ADB是钝角,∴∠ADB>∠AEB,∴0<AD<10,∴AD=10,故答案为:10.【点评】本题考查了含30°角的直角三角形的性质,熟记直角三角形的性质是解题的关键.15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为102+(x﹣5+1)2=x2.【考点】由实际问题抽象出一元二次方程.【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理列出方程.【解答】解:设绳索长OA=OB=x尺,由题意得,102+(x﹣5+1)2=x2.故答案为:102+(x﹣5+1)2=x2.【点评】本题考查了由实际问题抽象出一元二次方程,考查学生理解题意能力,关键是能构造出直角三角形,用勾股定理来求解.16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对的圆周角是90°;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端,且与半径垂直的直线是圆的切线.【考点】作图—复杂作图;切线的判定.【分析】分别利用圆周角定理以及切线的判定方法得出答案.【解答】解:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是:直径所对的圆周角是90°;由此可证明直线PA,PB都是⊙O的切线,其依据是:经过半径外端,且与半径垂直的直线是圆的切线.故答案为:直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线.【点评】此题主要考查了切线的判定以及圆周角定理,正确把握切线的判定方法是解题关键.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:4cos30°•tan60°﹣sin245°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=4××﹣()2=6﹣=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.如图,△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,求tanC的值.【考点】解直角三角形.【分析】根据在△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,可以求得BD、AD、CD的长,从而可以求得tanC的值.【解答】解:∵△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,∴∠ADB=∠ADC=90°,∴AB=2BD,∴BD=6,∴CD=BC﹣BD=15﹣6=9,∴AD=,∴tanC=.即tanC的值是.【点评】本题考查解直角三角形,解题的关键是计算出题目中各边的长,找出所求问题需要的条件.19.已知抛物线y=﹣x2+2x+3与x轴交于A,B两点,点A在点B的左侧.(1)求A,B两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.【考点】抛物线与x轴的交点.【分析】(1)令y=0解方程即可求得A和B的横坐标,然后利用配方法即可求得对称轴和顶点坐标;(2)首先求得D的坐标,然后利用面积公式即可求解.【解答】解:(1)令y=0,则﹣x2+2x+3=0,解得:x1=﹣1,x2=3.则A的坐标是(﹣1,0),B的坐标是(3,0).y=﹣x2+2x+3=﹣(x﹣1)2+4,则对称轴是x=1,顶点C的坐标是(1,4);(2)D的坐标是(1,﹣4).AB=3﹣(﹣1)=4,CD=4﹣(﹣4)=8,则四边形ACBD的面积是:AB•CD=×4×8=16.【点评】本题考查了待定系数法求函数解析式以及配方法确定二次函数的对称轴和顶点坐标,正确求得A和B的坐标是关键.20.如图,在四边形ABCD中,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB;(2)若AB=12,AD=8,CD=15,求DB的长.【考点】相似三角形的判定与性质.【分析】(1)根据平行线的性质,可得∠ADB与∠DBC的关系,根据两个角对应相等的两个三角形相似,可得答案;(2)根据相似三角形的性质,可得答案.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠DBC.∵∠A=∠BDC,∴△ABD∽△DCB;(2)∵△ABD∽△DCB,AB=12,AD=8,CD=15,∴=,即=,解得DB=10,DB的长10.【点评】本题考查了相似三角形的判定与性质,利用了两个角对应相等的两个三角形相似,利用相似三角形的对应边成比例是解题关键.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?【考点】一元二次方程的应用.【分析】设人行道的宽度为x米,则矩形绿地的长度为:,宽度为:8﹣2x,根据两块绿地的面积之和为60平方米,列方程求解.【解答】解:设人行道的宽度为x米,由题意得,2××(8﹣2x)=60,解得:x1=2,x2=9(不合题意,舍去).答:人行道的宽度为2米.【点评】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.22.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n <t,直接写出m的取值范围.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征;二次函数图象与几何变换.【分析】(1)抛物线与x轴只有一个公共点,则判别式△=0,据此即可求得k 的值;(2)把C1化成顶点式的形式,利用函数平移的法则即可确定;(3)首先求得t的值,然后求得等y=t时C2中对应的自变量的值,结合函数的性质即可求解.【解答】解:(1)根据题意得:△=16﹣8k=0,解得:k=2;(2)C1是:y1=2x2﹣4x+2=2(x﹣1)2,抛物线C2是:y2=2(x+1)2﹣8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2﹣8=0,即t=0.在y2=2(x+1)2﹣8中,令y=0,解得:x=1或﹣3.则当n<t时,即2(x+1)2﹣8<0时,m的范围是﹣3<m<1.【点评】本题考查抛物线与x轴的交点的个数的确定,以及函数的平移方法,根据函数的性质确定m的范围是关键.23.如图,AB是⊙O的一条弦,且AB=.点C,E分别在⊙O上,且OC⊥AB 于点D,∠E=30°,连接OA.(1)求OA的长;(2)若AF是⊙O的另一条弦,且点O到AF的距离为,直接写出∠BAF的度数.【考点】垂径定理;勾股定理;圆周角定理.【分析】(1)根据垂径定理求出AD的长,根据圆周角定理求出∠AOD的度数,运用正弦的定义解答即可;(2)作OH⊥AF于H,根据勾股定理和等腰直角三角形的性质求出∠OAF的度数,分情况计算即可.【解答】解:(1)∵OC⊥AB,AB=,∴AD=DB=2,∵∠E=30°,∴∠AOD=60°,∠OAB=30°,∴OA==4;(2)如图,作OH⊥AF于H,∵OA=4,OH=2,∴∠OAF=45°,∴∠BAF=∠OAF+∠OAB=75°,则∠BAF′=∠OAF′﹣∠OAB=15°,∴∠BAF的度数是75°或15°.【点评】本题考查的是垂径定理、圆周角定理和勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键,注意分情况讨论思想的应用.24.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B处测得最高塔塔顶A 的仰角为45°,然后向最高塔的塔基直行90米到达C处,再次测得最高塔塔顶A 的仰角为58°.请帮助他们计算出最高塔的高度AD约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据已知条件求出BD=AD,设DC=x,得出AD=90+x,再根据tan58°=,求出x的值,即可得出AD的值.【解答】解:∵∠B=45°,AD⊥DB,∴∠DAB=45°,∴BD=AD,设DC=x,则BD=BC+DC=90+x,∴AD=90+x,∴tan58°===1.60,解得:x=150,∴AD=90+150=240(米),答:最高塔的高度AD约为240米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.25.如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.(1)求证:∠PCE=∠PEC;(2)若AB=10,ED=,sinA=,求PC的长.【考点】切线的性质.【分析】(1)由弦切角定理可知∠PCA=∠B,由直角所对的圆周角等于90°可知∠ACB=90°.由同角的余角相等可知∠AED=∠B,结合对顶角的性质可知∠PCE=∠PEC;(2)过点P作PF⊥AC,垂足为F.由锐角三角函数的定义和勾股定理可求得AC=8,AE=,由等腰三角形三线合一的性质可知EF=,然后证明△AED∽△PEF,由相似三角形的性质可求得PE的长,从而得到PC的长.【解答】解:(1)∵PC是圆O的切线,∴∠PCA=∠B.∵AB是圆O的直径,∴∠ACB=90°.∴∠A+∠B=90°.∵PD⊥AB,∴∠A+∠AED=90°.。

2023北京通州区初三(上)期末考数学试卷及答案

2023北京通州区初三(上)期末考数学试卷及答案
!(!计算"’034’"/&#’!%$’槡)5 #2槡#
解"原式(’6槡## &!2#槡#5#2槡# &&&&&&&&&&&&&&&&&&&&& #’分%
(%2槡#&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& #"分%
!)!解 "
#!%把 )#!$’%代入"(+* 得"*(’$&&&&&&&&&&&&&&&&&&&&&& #!分 %
032(,#3(槡%
05扇 形
(!#$%)&$4,#!
(
’! %
&&&&&&&&&&&&&&&&&&&&&&&&&
#’ 分 %
5$34,
(
! #4,)32(
! #
6#6槡%9槡%
5阴影 (’%!’槡% &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& #"分%

2021-2022学年北京市西城区九年级(上)期末数学试卷(解析版)

2021-2022学年北京市西城区九年级(上)期末数学试卷(解析版)

2021-2022学年北京市西城区九年级第一学期期末数学试卷一、选择题(共16分,每题2分).1.古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是()A.B.C.D.2.二次函数y=2(x﹣3)2+1的图象的顶点坐标是()A.(﹣2,1)B.(2,1)C.(﹣3,1)D.(3,1)3.如图,点A、B、C在⊙O上,△OAB为等边三角形,则∠ACB的度数是()A.60°B.50°C.40°D.30°4.将一元二次方程x2﹣8x+10=0通过配方转化为(x+a)2=b的形式,下列结果中正确的是()A.(x﹣4)2=6B.(x﹣8)2=6C.(x﹣4)2=﹣6D.(x﹣8)2=54 5.如图,⊙O是正方形ABCD的外接圆,若⊙O的半径为4,则正方形ABCD的边长为()A.4B.8C.D.6.生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为x,那么根据题意可以列方程为()A.2.5(1+x)=3.2B.2.5(1+2x)=3.2C.2.5(1+x)2=3.2D.2.5(1﹣x)2=3.27.下列说法中,正确的是()A.“射击运动员射击一次,命中靶心”是必然事件B.事件发生的可能性越大,它的概率越接近1C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得8.抛物线y=ax2+bx+c的顶点为A(2,m),且经过点B(5,0),其部分图象如图所示.对于此抛物线有如下四个结论:①ac<0;②a﹣b+c>0;③m+9a=0;④若此抛物线经过点C(t,n),则t+4一定是方程ax2+bx+c=n的一个根.其中所有正确结论的序号是()A.①②B.①③C.③④D.①④二、填空题(共16分,每题2分)9.在平面直角坐标系xOy中,点(4,﹣7)关于原点的对称点坐标为.10.关于x的一元二次方程x2+mx+4=0有一个根为1,则m的值为.11.如图1所示的铝合金窗帘轨道可以直接弯曲制作成弧形.若制作一个圆心角为160°的圆弧形窗帘轨道(如图2)需用此材料800πmm,则此圆弧所在圆的半径为mm.12.写出一个开口向下,且对称轴在y轴左侧的抛物线的表达式:.13.如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为.14.如图,在平面直角坐标系xOy中,抛物线y=﹣(x﹣4)2+2可以看作是抛物线y=x2+2经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由抛物线y=x2+2得到抛物线y=﹣(x﹣4)2+2的过程:.15.如图,将△ABC绕点A顺时针旋转α(0°<α<90°)得到△ADE,点B的对应点D 恰好落在边BC上,则∠ADE=.(用含α的式子表示)16.如图,在Rt△ABC中,∠ACB=90°,D是△ABC内的一个动点,满足AC2﹣AD2=CD2.若AB=2,BC=4,则BD长的最小值为.三、解答题(共68分,第17-18题,每题5分,第19题6分,第20题5分,第21题6分,第22-24题,每题5分,第25-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:x2﹣2x﹣2=0.18.问题:如图,AB是⊙O的直径,点C在⊙O内,请仅用无刻度的直尺,作出△ABC中AB边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长AC交⊙O于点D,延长BC交⊙O于点E;②分别连接AE,BD并延长相交于点F;③连接FC并延长交AB于点H.所以线段CH即为△ABC中AB边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵AB是⊙O的直径,点D,E在⊙O上,∴∠ADB=∠AEB=°.()(填推理的依据)∴AE⊥BE,BD⊥AD.∴AE,是△ABC的两条高线.∵AE,BD所在直线交于点F,∴直线FC也是△ABC的高所在直线.∴CH是△ABC中AB边上的高.19.已知二次函数y=x2+4x+3.(1)求此函数图象的对称轴和顶点坐标;(2)画出此函数的图象;(3)若点A(0,y1)和B(m,y2)都在此函数的图象上,且y1<y2,结合函数图象,直接写出m的取值范围.20.如图,在正方形ABCD中,射线AE与边CD交于点E,将射线AE绕点A顺时针旋转,与CB的延长线交于点F,BF=DE,连接FE.(1)求证:AF=AE;(2)若∠DAE=30°,DE=2,直接写出△AEF的面积.21.已知关于x的一元二次方程x2﹣(k+5)x+6+2k=0.(1)求证:此方程总有两个实数根;(2)若此方程恰有一个根小于﹣1,求k的取值范围.22.有甲、乙两个不透明的口袋,甲口袋中装有两个相同的球,它们分别写有数﹣2,2;乙口袋中装有三个相同的球,它们分别写有数﹣5,m,5.小明和小刚进行摸球游戏,规则如下:先从甲口袋中随机取出一个球,其上的数记为a;再从乙口袋中随机取出一个球,其上的数记为b.若a<b,小明胜;若a=b,为平局;若a>b,小刚胜.(1)若m=﹣2,用树状图或列表法分别求出小明、小刚获胜的概率;(2)当m为何值时,小明和小刚获胜的概率相同?直接写出一个符合条件的整数m的值.23.如图,AB,AC是⊙O的两条切线,切点分别为B,C,连接CO并延长交⊙O于点D,过点D作⊙O的切线交AB的延长线于点E,EF⊥AC于点F.(1)求证:四边形CDEF是矩形;(2)若CD=2,DE=2,求AC的长.24.某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度y(单位:m)与行进的水平距离x(单位:m)之间关系的图象如图所示.已知篮球出手位置A与篮筐的水平距离为 4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m.(1)图中点B表示篮筐,其坐标为,篮球行进的最高点C的坐标为;(2)求篮球出手时距地面的高度.25.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,D是的中点,DE⊥BC交BC 的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=10,BC=8,求BD的长.26.在平面直角坐标系xOy中,抛物线y=a(x﹣h)2﹣8a的顶点为A,0<h<.(1)若a=1,①点A到x轴的距离为;②求此抛物线与x轴的两个交点之间的距离;(2)已知点A到x轴的距离为4,此抛物线与直线y=﹣2x+1的两个交点分别为B(x1,y1),C(x2,y2),其中x1<x2,若点D(x D,y D)在此抛物线上,当x1<x D<x2时,y D 总满足y2<y D<y1,求a的值和h的取值范围.27.如图1,在△ABC中,∠ACB=90°,CA=CB,点D,E分别在边CA,CB上,CD=CE,连接DE,AE,BD.点F在线段BD上,连接CF交AE于点H.(1)①比较∠CAE与∠CBD的大小,并证明;②若CF⊥AE,求证:AE=2CF;(2)将图1中的△CDE绕点C逆时针旋转α(0°<α<90°),如图2.若F是BD的中点,判断AE=2CF是否仍然成立.如果成立,请证明;如果不成立,请说明理由.28.在平面直角坐标系xOy中,⊙O的半径为1,点A在⊙O上,点P在⊙O内,给出如下定义:连接AP并延长交⊙O于点B,若AP=kAB,则称点P是点A关于⊙O的k倍特征点.(1)如图,点A的坐标为(1,0).①若点P的坐标为(﹣,0),则点P是点A关于⊙O的倍特征点;②在C1(0,),C2(,0),C3(,﹣)这三个点中,点是点A关于⊙O的倍特征点;③直线l经过点A,与y轴交于点D,∠DAO=60°.点E在直线l上,且点E是点A 关于⊙O的倍特征点,求点E的坐标;(2)若当k取某个值时,对于函数y=﹣x+1(0<x<1)的图象上任意一点M,在⊙O 上都存在点N,使得点M是点N关于⊙O的k倍特征点,直接写出k的最大值和最小值.参考答案一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.解:选项C能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,选项A、B、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,故选:C.2.二次函数y=2(x﹣3)2+1的图象的顶点坐标是()A.(﹣2,1)B.(2,1)C.(﹣3,1)D.(3,1)【分析】二次函数y=a(x﹣h)2+k(a≠0)的顶点坐标是(h,k).解:根据二次函数的顶点式方程y=2(x﹣3)2+1知,该函数的顶点坐标是:(3,1).故选:D.3.如图,点A、B、C在⊙O上,△OAB为等边三角形,则∠ACB的度数是()A.60°B.50°C.40°D.30°【分析】先根据等边三角形的性质得到∠AOB=60°,然后根据圆周角定理求∠ACB的度数.解:∵△OAB为等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=30°.故选:D.4.将一元二次方程x2﹣8x+10=0通过配方转化为(x+a)2=b的形式,下列结果中正确的是()A.(x﹣4)2=6B.(x﹣8)2=6C.(x﹣4)2=﹣6D.(x﹣8)2=54【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程作边写成完全平方形式即可.解:x2﹣8x=﹣10,x2﹣8x+16=6,(x﹣4)2=6.故选:A.5.如图,⊙O是正方形ABCD的外接圆,若⊙O的半径为4,则正方形ABCD的边长为()A.4B.8C.D.【分析】连接BD.由题意,△BCD是等腰直角三角形,故可得出结论.解:如图,连接BD.由题意,△BCD是等腰直角三角形,∵BD=8,∠CBD=45°,∠BCD=90°,∴BC=BD=4.故选:D.6.生活垃圾无害化处理可以降低垃圾及其衍生物对环境的影响.据统计,2017年全国生活垃圾无害化处理能力约为2.5亿吨,随着设施的增加和技术的发展,2019年提升到约3.2亿吨.如果设这两年全国生活垃圾无害化处理能力的年平均增长率为x,那么根据题意可以列方程为()A.2.5(1+x)=3.2B.2.5(1+2x)=3.2C.2.5(1+x)2=3.2D.2.5(1﹣x)2=3.2【分析】利用2019年全国生活垃圾无害化处理能力=2017年全国生活垃圾无害化处理能力×(1+年平均增长率)2,即可得出关于x的一元二次方程,此题得解.解:依题意得:2.5(1+x)2=3.2.故选:C.7.下列说法中,正确的是()A.“射击运动员射击一次,命中靶心”是必然事件B.事件发生的可能性越大,它的概率越接近1C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得【分析】根据必然事件,随机事件,不可能事件的特点,以及列表法与树状图法逐一判断即可.解:A.“射击运动员射击一次,命中靶心”是随机事件,故A不符合题意;B.事件发生的可能性越大,它的概率越接近1,故B符合题意;C.某种彩票中奖的概率是1%,因此买100张该种彩票就可能会中奖,故C不符合题意;D.抛掷一枚图钉,“针尖朝上”的概率不可以用列举法求得,故D不符合题意;故选:B.8.抛物线y=ax2+bx+c的顶点为A(2,m),且经过点B(5,0),其部分图象如图所示.对于此抛物线有如下四个结论:①ac<0;②a﹣b+c>0;③m+9a=0;④若此抛物线经过点C(t,n),则t+4一定是方程ax2+bx+c=n的一个根.其中所有正确结论的序号是()A.①②B.①③C.③④D.①④【分析】由抛物线开口和抛物线与y轴交点判断①,由抛物线的对称性及经过点(5,0)可判断②,由抛物线对称轴为直线x=2可得b=﹣4a,由a﹣b+c=0可得c=﹣5a,从而判断③,点C对称点横坐标为4﹣t可判断④.解:∵抛物线开口向下,∴a<0,∵抛物线与y轴交点在x轴上方,∴c>0,∴ac<0,①正确.∵抛物线顶点为A(2,m),∴抛物线对称轴为直线x=2,∵抛物线过点(5,0),∴由对称性可得抛物线经过点(﹣1,0),∴a﹣b+c=0,②错误,∵﹣=2,∴b=﹣4a,∴5a+c=0,∴c=﹣5a∵(2,m)为抛物线顶点,∴4a+2b+c=m,∴4a﹣8a﹣5a=m,即9a+m=0,③正确,∵点C(t,n)在抛物线上,∴点C关于对称轴对称点(4﹣t,n)在抛物线上,∴4﹣t为ax2+bx+c=n的一个根,④错误.故选:B.二、填空题(共16分,每题2分)9.在平面直角坐标系xOy中,点(4,﹣7)关于原点的对称点坐标为(﹣4,7).【分析】利用关于原点对称点的坐标特点可得答案.解:在平面直角坐标系xOy中,点(4,﹣7)关于原点的对称点坐标为(﹣4,7),故答案为:(﹣4,7).10.关于x的一元二次方程x2+mx+4=0有一个根为1,则m的值为﹣5.【分析】把x=1代入方程x2+mx+4=0得1+m+4=0,然后解关于m的方程.解:把x=1代入方程x2+mx+4=0得1+m+4=0,解得m=﹣5.故答案为:﹣5.11.如图1所示的铝合金窗帘轨道可以直接弯曲制作成弧形.若制作一个圆心角为160°的圆弧形窗帘轨道(如图2)需用此材料800πmm,则此圆弧所在圆的半径为900mm.【分析】利用弧长的计算公式即可求解.解:设此圆弧所在圆的半径为Rmm,由弧长公式得:=800π,解得:R=900,即此圆弧所在圆的半径为900mm,故答案为:900.12.写出一个开口向下,且对称轴在y轴左侧的抛物线的表达式:y=﹣x2﹣x,(答案不唯一).【分析】满足开口向下且对称轴在y轴左侧可以判断a、b的正负,从而可以得到所求得抛物线的表达式.解:∵开口向下,∴a<0,∵对称轴在y轴左侧,∴﹣<0,∴b<0,故抛物线的解析式可以为y=﹣x2﹣x,(答案不唯一),故答案为:y=﹣x2﹣x,(答案不唯一).13.如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为(2,1).【分析】根据图形得出A、B、C的坐标,再连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,最后求出点Q的坐标即可.解:从图形可知:A点的坐标是(0,2),B点的坐标是(1,3),C点的坐标是(3,3),连接AB,作线段AB和线段BC的垂直平分线MN、EF,两线交于Q,则Q是圆弧的圆心,如图,∴Q点的坐标是(2,1),故答案为:(2,1).14.如图,在平面直角坐标系xOy中,抛物线y=﹣(x﹣4)2+2可以看作是抛物线y=x2+2经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由抛物线y=x2+2得到抛物线y=﹣(x﹣4)2+2的过程:将抛物线y=x2+2绕顶点(0,2)顺时针方向旋转180度,再向右平移4个单位长度得到抛物线y=﹣(x﹣4)2+2.(答案不唯一).【分析】根据抛物线的顶点坐标和开口方向的变化进行解答.解:抛物线y=x2+2的顶点为(0,2),抛物线y=﹣(x﹣4)2+2的顶点为(4,2),∴将抛物线y=x2+2绕顶点(0,2)顺时针方向旋转180度,再向右平移4个单位长度得到抛物线y=﹣(x﹣4)2+2.故答案为:将抛物线y=x2+2绕顶点(0,2)顺时针方向旋转180度,再向右平移4个单位长度得到抛物线y=﹣(x﹣4)2+2.(答案不唯一).15.如图,将△ABC绕点A顺时针旋转α(0°<α<90°)得到△ADE,点B的对应点D 恰好落在边BC上,则∠ADE=90°﹣.(用含α的式子表示)【分析】根据旋转的性质得到AD=AB,∠ADE=∠B,根据等腰三角形的性质得到∠ADB =∠B,求得∠ADE=∠ADB=90°﹣.解:由旋转的性质可知,AD=AB,∠ADE=∠B,∴∠ADB=∠B,∵∠BAD=α,∴∠ADE=∠ADB==90°﹣,故答案为:90°﹣.16.如图,在Rt△ABC中,∠ACB=90°,D是△ABC内的一个动点,满足AC2﹣AD2=CD2.若AB=2,BC=4,则BD长的最小值为2.【分析】由AC2﹣AD2=CD2.得∠ADC=90°,取点H为AC的中点,可知DH和BH都是定值,从而解决问题.解:取AC的中点H,连接HD,HB,在Rt△ABC中,由勾股定理得AC=,∵AC2﹣AD2=CD2.∴∠ADC=90°,∵点H为AC的中点,∴DH=CH=3,∴BH=,∵BD≥BH﹣DH,∴BD的最小值为5﹣3=2,故答案为:2.三、解答题(共68分,第17-18题,每题5分,第19题6分,第20题5分,第21题6分,第22-24题,每题5分,第25-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:x2﹣2x﹣2=0.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.解:移项,得x2﹣2x=2,配方,得x2﹣2x+1=2+1,即(x﹣1)2=3,开方,得x﹣1=±.解得x1=1+,x2=1﹣.18.问题:如图,AB是⊙O的直径,点C在⊙O内,请仅用无刻度的直尺,作出△ABC中AB边上的高.小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.作法:如图,①延长AC交⊙O于点D,延长BC交⊙O于点E;②分别连接AE,BD并延长相交于点F;③连接FC并延长交AB于点H.所以线段CH即为△ABC中AB边上的高.(1)根据小芸的作法,补全图形;(2)完成下面的证明.证明:∵AB是⊙O的直径,点D,E在⊙O上,∴∠ADB=∠AEB=90°.(直径所对的圆周角是直角)(填推理的依据)∴AE⊥BE,BD⊥AD.∴AE,BD是△ABC的两条高线.∵AE,BD所在直线交于点F,∴直线FC也是△ABC的高所在直线.∴CH是△ABC中AB边上的高.【分析】(1)根据要求作出图形即可.(2)利用三角形的三条高交于一点解决问题即可.解:(1)如图,线段CH即为所求.(2)∵AB是⊙O的直径,点D,E在⊙O上,∴∠ADB=∠AEB=90°.(直径所对的圆周角是直角),∴AE⊥BE,BD⊥AD.∴AE,BD是△ABC的两条高线.∵AE,BD所在直线交于点F,∴直线FC也是△ABC的高所在直线.∴CH是△ABC中AB边上的高.故答案为:90,直径所对的圆周角是直角,BD.19.已知二次函数y=x2+4x+3.(1)求此函数图象的对称轴和顶点坐标;(2)画出此函数的图象;(3)若点A(0,y1)和B(m,y2)都在此函数的图象上,且y1<y2,结合函数图象,直接写出m的取值范围.【分析】(1)将解析式化为顶点式即可;(2)画出函数图象;(3)由题意可得2<|m+2|,求出m的取值范围即可.解:(1)y=x2+4x+3=(x+2)2﹣1,∴对称轴为直线x=﹣2,顶点(﹣2,﹣1);(2)如图:(3)∵点A(0,y1)和B(m,y2)都在此函数的图象上,且y1<y2,∴2<|m+2|,∴m>0或m<﹣4.20.如图,在正方形ABCD中,射线AE与边CD交于点E,将射线AE绕点A顺时针旋转,与CB的延长线交于点F,BF=DE,连接FE.(1)求证:AF=AE;(2)若∠DAE=30°,DE=2,直接写出△AEF的面积.【分析】(1)根据正方形的性质得到AB=AD,∠ABC=∠D=∠BAD=90°,求得∠ABF=90°,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到∠BAF=∠DAE,得到△AEF是等腰直角三角形,根据直角三角形的性质得到AE=2DE=4,于是得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°,在△ABF与△ADE中,,∴△ABF≌△ADE(SAS),∴AF=AE;(2)解:由(1)知,△ABF≌△ADE,∴∠BAF=∠DAE,∴∠BAF+∠BAE=∠DAE=∠BAE=90°,∴∠FAE=90°,∴△AEF是等腰直角三角形,在Rt△ADE中,∠D=90°,∠DAE=30°,DE=2,∴AE=2DE=4,∴△AEF的面积=×4×4=8.21.已知关于x的一元二次方程x2﹣(k+5)x+6+2k=0.(1)求证:此方程总有两个实数根;(2)若此方程恰有一个根小于﹣1,求k的取值范围.【分析】(1)计算根的判别式得到Δ=(k+1)2≥0,然后根据根的判别式的意义得到结论;(2)解方程得到x1=2,x2=k+3,则k+3<﹣1,然后解不等式即可.【解答】(1)证明:∵Δ=(k+5)2﹣4(6+2k)=k2+2k+1=(k+1)2≥0,∴此方程总有两个实数根;(2)∵x=,∴x1=2,x2=k+3,∵此方程恰有一个根小于﹣1,∴k+3<﹣1,解得k<﹣4,即k的取值范围为k<﹣4.22.有甲、乙两个不透明的口袋,甲口袋中装有两个相同的球,它们分别写有数﹣2,2;乙口袋中装有三个相同的球,它们分别写有数﹣5,m,5.小明和小刚进行摸球游戏,规则如下:先从甲口袋中随机取出一个球,其上的数记为a;再从乙口袋中随机取出一个球,其上的数记为b.若a<b,小明胜;若a=b,为平局;若a>b,小刚胜.(1)若m=﹣2,用树状图或列表法分别求出小明、小刚获胜的概率;(2)当m为何值时,小明和小刚获胜的概率相同?直接写出一个符合条件的整数m的值.【分析】(1)画树状图,共有6种等可能的结果,其中a<b的结果有2种,a>b的结果有3种,再由概率公式分别求解即可;(2)画树状图,共有6种等可能的结果,其中a<b的结果有3种,a>b的结果有3种,再由概率公式得小明获胜的概率=小刚获胜的概率即可.解:(1)画树状图如下:共有6种等可能的结果,其中a<b的结果有2种,a>b的结果有3种,∴小明获胜的概率为=,小刚获胜的概率为=;(2)m为0时,小明和小刚获胜的概率相同,理由如下:画树状图如下:共有6种等可能的结果,其中a<b的结果有3种,a>b的结果有3种,∴小明获胜的概率=小刚获胜的概率==.23.如图,AB,AC是⊙O的两条切线,切点分别为B,C,连接CO并延长交⊙O于点D,过点D作⊙O的切线交AB的延长线于点E,EF⊥AC于点F.(1)求证:四边形CDEF是矩形;(2)若CD=2,DE=2,求AC的长.【分析】(1)根据切线的性质得到AC⊥CD,DE⊥CD,得到AC∥DE,∠ACD=90°,根据平行线的判定定理得到EF∥CD,根据矩形的判定定理即可得到结论;(2)根据切线的性质得到AB=AC,BE=DE=2,根据矩形的性质得到CF=DE=2,EF=CD=2,根据勾股定理即可得到结论.【解答】(1)证明:∵AC、DE是⊙O的切线,CD是⊙的直径,∴AC⊥CD,DE⊥CD,∴AC∥DE,∠ACD=90°,∵EF⊥AC,∴EF∥CD,∴四边形CDEF是矩形;(2)解:∵AB,AC,DE是⊙O的切线,∴AB=AC,BE=DE=2,由(1)知,四边形CDEF是矩形,∴CF=DE=2,EF=CD=2,∵EF⊥AC,∴∠AFE=90°,∴AE2=AF2+EF2,∴(AC+2)2=(AC﹣2)2+(2)2,解得AC=5,故AC的长为5.24.某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度y(单位:m)与行进的水平距离x(单位:m)之间关系的图象如图所示.已知篮球出手位置A与篮筐的水平距离为 4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m.(1)图中点B表示篮筐,其坐标为(4.5,3.05),篮球行进的最高点C的坐标为(3,3.3);(2)求篮球出手时距地面的高度.【分析】(1)根据已知篮球出手位置A与篮筐的水平距离为4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m.即可得到答案;(2)设抛物线的解析式为y=a(x﹣3)2+3.3,把B(4.5,3.05)代入求得抛物线的解析式为y=﹣(x﹣3)2+3.3,当x=0时,解方程即可得到结论.解:(1)∵篮球出手位置A与篮筐的水平距离为4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m,∴点B表示篮筐,其坐标为(4.5,3.05),篮球行进的最高点C的坐标为(3,3.3);故答案为:(4.5,3.05),(3,3.3);(2)设抛物线的解析式为y=a(x﹣3)2+3.3,把B(4.5,3.05)代入得,3.05=a(4.5﹣3)2+3.3,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+3.3,当x=0时,y=2.3,答:篮球出手时距地面的高度为2.3米.25.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,D是的中点,DE⊥BC交BC 的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=10,BC=8,求BD的长.【分析】(1)要证明DE是⊙O的切线,所以连接OD,求出∠ODE=90°即可,根据已知DE⊥BC,可得∠DEC=90°,所以只要证明OD∥BE即可解答;(2)由(1)可得BD平分∠ABC,所以想到过点D作DF⊥AB,垂足为F,进而证明△ADF≌△CDE,可得AF=CE,易证△BDF≌△BDE,可得BF=BE,然后进行计算即可解答.【解答】(1)证明:连接OD,∵DE⊥BC,∴∠DEC=90°,∵D是的中点,∴=,∴∠ABD=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ODE=180°﹣∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:过点D作DF⊥AB,垂足为F,由(1)得:∠ABD=∠CBD,∴BD平分∠ABC,∵DF⊥AB,DE⊥BC,∴DF=DE,∵四边形ABCD内接于⊙O,∴∠A+∠DCB=180°,∵∠DCB+∠DCE=180°,∴∠A=∠DCE,∵∠DFA=∠DEC=90°,∴△ADF≌△CDE(AAS),∴AF=EC,∵∠DFB=∠DEC=90°,BD=BD,∴△BDF≌△BDE(AAS),∴BF=BE,设AF=EC=x,则BE=BF=8+x,∵AB=10,∴AF+BF=10,∴x+8+x=10,∴x=1,∴BF=9,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=∠DBF,∴△BFD∽△BDA,∴BD2=BF•BA,∴BD2=90,∴BD=3.26.在平面直角坐标系xOy中,抛物线y=a(x﹣h)2﹣8a的顶点为A,0<h<.(1)若a=1,①点A到x轴的距离为8;②求此抛物线与x轴的两个交点之间的距离;(2)已知点A到x轴的距离为4,此抛物线与直线y=﹣2x+1的两个交点分别为B(x1,y1),C(x2,y2),其中x1<x2,若点D(x D,y D)在此抛物线上,当x1<x D<x2时,y D 总满足y2<y D<y1,求a的值和h的取值范围.【分析】(1)①把a=1代入函数解析式求出顶点坐标,进而求解.②令y=0,求出x1与x2,进而求解.(2)由当x1<x D<x2时,y D总满足y2<y D<y1可得当x1<x<x2时,y随x增大而减小,从而可得点A与点C重合或点A在点C右侧,进而求解.解:(1)①把a=1代入y=a(x﹣h)2﹣8a得y=(x﹣h)2﹣8,∴抛物线顶点坐标为(h,﹣8),∴点A到x轴的距离为|﹣8|=8,故答案为:8.②把y=0代入y=(x﹣h)2﹣8得0=(x﹣h)2﹣8,解得x1=h+2,x2=h﹣2,∵x1﹣x2=h+2﹣(h﹣2)=4,∴抛物线与x轴的两个交点之间的距离为4.(2)∵y=a(x﹣h)2﹣8a,∴点A坐标为(h,﹣8a),∴|﹣8a|=4,解得a=或a=﹣,∵当x1<x D<x2时,y D总满足y2<y D<y1,∴当x1<x<x2时,y随x增大而减小,如图,当抛物线开口向上,点A与点C重合或点A在点C右侧时满足题意,∴a=,y=(x﹣h)2﹣4,∴点A坐标为(h,﹣4),把x=h代入y=﹣2x+1得y=﹣2h+1,当﹣2h+1≤﹣4时,记得h≥,∵0<h<,∴≤h<.27.如图1,在△ABC中,∠ACB=90°,CA=CB,点D,E分别在边CA,CB上,CD=CE,连接DE,AE,BD.点F在线段BD上,连接CF交AE于点H.(1)①比较∠CAE与∠CBD的大小,并证明;②若CF⊥AE,求证:AE=2CF;(2)将图1中的△CDE绕点C逆时针旋转α(0°<α<90°),如图2.若F是BD的中点,判断AE=2CF是否仍然成立.如果成立,请证明;如果不成立,请说明理由.【分析】(1)①通过证明△ACE≌△BCD,利用全等三角形对应角相等解答即可;②利用同角或等角的余角相等判定△FCB和△FCD是等腰三角形即可得出结论;(2)延长CF至点G,使FG=FC,连接BG,则得:△DCF≌△BGF,再利用题意证明△ACE≌△CBG,结论可得.解:(1)①∠CAE=∠CBD.理由:在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠CAE=∠CBD.②证明:∵∠ACB=90°,∴∠ACH+∠ECH=90°.∵CF⊥AE,∴∠ACH+∠CAH=90°.∴∠CAH=∠ECH.由①知:∠CAE=∠CBD,∴∠ECH=∠CBD.∴CF=BF.∵∠DCB=90°,∴∠DCF+∠ECF=90°,∠CDF+∠CBD=90°.∴∠CDF=∠DCF,∴CF=DF.∴BD=2CF.由①知:△ACE≌△BCD,∴AE=BD.∴AE=2CF.解:(2)若F是BD的中点,AE=2CF仍然成立.理由:延长CF至点G,使FG=FC,连接BG,如图,∴F是BD的中点,∴FD=FB.在△DCF和△BGF中,,∴△DCF≌△BGF(SAS).∴CD=BG,∠DCF=∠G.∴CD∥BG.∴∠DCB+∠GBC=180°.∵将图1中的△CDE绕点C逆时针旋转α,∴∠ACD=∠BCE=α.∴∠DCB=90°﹣∠ACD=90°﹣α,∠ACE=∠ACB+∠BCE=90°+α.∴∠CBG=180°﹣∠BCD=180°﹣(90°﹣α)=90°+α.∴∠ACE=∠CBG.∵CD=CE,∴CE=BG.在△ACE和△CBG中,,∴△ACE≌△CBG(SAS).∴AE=CG.∵FG=FC,∴CG=2CF.∴AE=2CF.∴若F是BD的中点,AE=2CF仍然成立.28.在平面直角坐标系xOy中,⊙O的半径为1,点A在⊙O上,点P在⊙O内,给出如下定义:连接AP并延长交⊙O于点B,若AP=kAB,则称点P是点A关于⊙O的k倍特征点.(1)如图,点A的坐标为(1,0).①若点P的坐标为(﹣,0),则点P是点A关于⊙O的倍特征点;②在C1(0,),C2(,0),C3(,﹣)这三个点中,点C3是点A关于⊙O的倍特征点;③直线l经过点A,与y轴交于点D,∠DAO=60°.点E在直线l上,且点E是点A关于⊙O的倍特征点,求点E的坐标;(2)若当k取某个值时,对于函数y=﹣x+1(0<x<1)的图象上任意一点M,在⊙O 上都存在点N,使得点M是点N关于⊙O的k倍特征点,直接写出k的最大值和最小值.【分析】(1)①由题意知AP=OA+OP=1+=,AB=2,则k=;②由勾股定理得AC1==,假设点C1是点A关于⊙O的倍特征点,则AE=>2OA=2,不符合题意,同理判断C2、C3即可;③设直线AD交⊙O于B,连接OE,过点E作EF⊥x轴于点F,根据点E点A关于⊙O的倍特征点,得,由含30°的直角三角形的性质可得OE,AE的长;(2)设直线y=﹣x+1与x轴,y轴的交点分别为C,D,过点N作NP⊥CD交CD于P,交⊙O于B,过点O作直线EF⊥CD交⊙O于E,F,由,可知k越大,1﹣k的值越小,则﹣1+的值越小,得AM=BP,MN=NP时,k的值最小,即A 与E重合,N与F重合时,k的值最小,从而解决问题.解:(1)①∵A(1,0),P(﹣),∴AP=OA+OP=1+=,∵B(﹣1,0),∴AB=2,∵AP=kAB,∴k=,故答案为:;②∵C1(0,),A(1,0),∴OC1=,∴AC1==,假设点C1是点A关于⊙O的倍特征点,∴,∴AE=>2OA=2,不符合题意,∴点C1不是点A关于⊙O的倍特征点,同理可求出AC3===,假设点C3是点A关于⊙O的倍特征点,∴,∴C3为AF的中点,∴F(0,﹣1),∵F在圆上,∴点C3是点A关于⊙O的倍特征点,∵C2(),∴AC2=,∴,∴点C2不是点A关于⊙O的倍特征点,故答案为:C3;③如图,设直线AD交⊙O于B,连接OE,过点E作EF⊥x轴于点F,∵点E点A关于⊙O的倍特征点,∴,∴E是AB的中点,∴OE⊥AB,∵∠EAO=60°,∴∠EOA=30°,∴AE=,EF=,OE==,∴EF=,∴E();(2)设直线y=﹣x+1与x轴,y轴的交点分别为C,D,过点N作NP⊥CD交CD于P,交⊙O于B,过点O作直线EF⊥CD交⊙O于E,F,∴MN≥NP,AM≤BP,∵AM=AN﹣MN=(1﹣k)AN,∴,∵k越大,1﹣k的值越小,∴﹣1+的值越小,∴当的值越大,k的值越小,∴AM=BP,MN=NP时,k的值最小,∴A与E重合,N与F重合时,k的值最小,∵C,D是直线y=﹣x+1与x轴,y轴的交点,∴C(1,0),D(0,1),∵O到C和D的距离都是1,∴OC=OD=1,∴CD==,∵OG⊥CD,∴CG=DG=,∴OG==,∴FG=OF﹣OG=1﹣,∴k=,∴k的最小值为,当点N在E点,A在F点时,k有最大值为.。

2019-2020学年北京市通州区七年级(上)期中数学试卷解析版

2019-2020学年北京市通州区七年级(上)期中数学试卷解析版

2019-2020学年北京市通州区七年级(上)期中数学试卷一、选择题(本题共8个小题,每小题3分,共24分)每题均有四个选项,符合题意得选项只有一个.1.(3分)下列四个数中,比﹣2大但比1小的数是()A.0B.3C.﹣2D.﹣32.(3分)下列各数中是负数的是()A.|﹣3|B.﹣3C.﹣(﹣3)D.3.(3分)如图,数轴的单位长度为1,若点A和点C所表示的有理数是互为相反数,则点B表示的有理数是()A.﹣3B.﹣1C.1D.34.(3分)如图,数轴上A,B,C三点表示的数分别为a,b,c,且AB=BC.如|b|<|a|<|c|,那么关于原点O的位置,下列说法正确的是()A..在B,C之间更靠近B B..在B,C之间更靠近CC..在A,B之间更靠近B D..在A,B之间更靠近A5.(3分)算式(﹣2)×(﹣2)×(﹣2)×(﹣2)×(﹣2)可表示为()A.(﹣2)×5B.﹣25C.(﹣2)5D.以上都不正确6.(3分)如果某同学家电冰箱冷藏室的设定温度为6℃,且冷冻室的设定温度比冷藏室的温度低22℃,那么该同学家电水箱冷库室的设定温度为()A.28℃B.﹣28℃C.16℃D.﹣16℃7.(3分)如果一个有理数的绝对值比它的相反数大,那么这个数是()A.正数B.负数C.负数和零D.正数和零8.(3分)点A,B在数轴上的位置如图所示,其对应的有理数分别是a和b.对于下列四个结论:①b﹣a>0;②|a|<|b|;③a+b>0;④>0.其中正确的是()A.①②③④B.①②③C.①③④D.②③④二、填空题(本题共8个小题,每小题2分,共16分)9.(2分)庆祝中华人民共和国成立70周年阅兵式于2019年10月1日上午在北京天安门广场隆重举行.这次阅兵编59个方(梯)队和联合军乐团,总规模约1.5万人,各型飞机160余架、装备580台(套),是近几次阅兵中规模最大的一次,将1.5万人用科学记数法表示为人.10.(2分)如图,数轴上点A关于原点对称的点为点B,那么点B表示的有理数的绝对值是.11.(2分)比较大小:﹣﹣.12.(2分)计算:1﹣1÷×(﹣7)的结果是.13.(2分)对于一对有理数a,b,如果a≠b且a+b=0.那么这对有理数可以是a=,b=.14.(2分)在数轴上,点A表示的数是﹣3.从点A出发,沿数轴移动5个单位长度到达点B,那么点B表示的数为.15.(2分)观察以下等式:第1个等式:=1;第2个等式:=1,第3个等式:=1,第4个等式:=1,第5个等式:=1,……按照以上规律,写出第7个等式:.16.(2分)有理数a在数轴上的位置如图.用“>”或”<“填空:0,﹣a+10.三、解答题(本题共60分,第17期12分,第18题4分,第19期16分,第20-23题每题5分,第24题片分)解等应写出文字说明、演算步骤成证明过程,17.(12分)在横线上直接写出下列算武的运算结果.(1)(+3)+(﹣8)=.(2)0﹣(﹣6)=.(3)=.(4)﹣3﹣|﹣4|=.(5)=.(6)﹣32+(﹣2)2=.18.(4分)在横线上填写每步运算的依据.解:(﹣6)+(﹣15)+(+6)=(﹣6)+(+6)+(﹣15)()=[(﹣6)+(+6)]+(﹣15)()=0+(﹣15)()=﹣15()19.(16分)计算(1)(﹣10)﹣(﹣3)+(﹣5)﹣(+7);(2);(3);(4).20.(5分)科技改变世界.快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确放入相应的格口,还会感应避让障碍物、自动归队取包裹,没电的时候还会自己找充电桩充电.每台分拣机器人一小时可以分拣1.8万件包襄,大大提高了分拣效率,某分拣仓库计划平均每天分拣20万件包裹,但实际每天的分拣量与计划相比会有出入,下表是该仓库10月份第三周分拣包裹的情况(超过计划量记为正,未到达计划量记为负):星期一二三四五六日分拣情况(单位:万件)+6﹣3﹣4+5﹣1+7﹣8(1)该仓库本周内分拣包裹数量最多的一天是星期,最少的一天是星期,最多的一天比最少的一天多分拣万件包裹;(2)该仓库本周实际分拣包裹一共多少万件?21.(5分)小华间学早晨跑步,他从自己家出发.先向东跑了2km则达小盛家,又继续向东跑了1.5km到这小昌家,然后又向西跑到学校.如果小华跑步的速度是均匀的,且到达小盛家用了8分钟,整个跑步过程共用时32分钟,以小华家为原点,向东为正方向,用1个单位长度表示1km,建立数轴.(1)依题意画出数轴,分别用点A表示出小盛家、用点B表示出小昌家;(2)在数轴上,用点C表示出学校的位置;(3)求小盛家与学校之间的距离.22.(5分)如图,在数轴上有三个点A,B,C,完成下列问题:(1)将点B向右移动6个单位长度到点D,在数轴上表示出点D;(2)在数轴上找到点E,使点E到B,C两点的距离相等,并在数轴上标出点E表示的数;(3)在数轴上有一点F,满足点F到点A与点F到点C的距离和是9,那么点F表示的数是.23.(5分)我们新定义一种运算,用符号“⊕”表示:当x≤y时,x⊕y=x2,当x>y时,x⊕y=y.求算式(﹣4)⊕[(﹣2)⊕(﹣4)]﹣[(﹣5)⊕(﹣4)]的值.24.(8分)给出如下定义:如果两个不相等的有理数a,b满足等式a﹣b=ab.那么称a,b是“关联有理数对”,记作(a,b).如:因为3﹣,3×.所以数对(3,)是“关联有理数对”.(1)在数对①(1,)、②(﹣1,0)、③(,)中,是“关联有理数对”的是(只填序号);(2)若(m,n)是“关联有理数对”,则(m,n)“关联有理数对”.(﹣m,﹣n)“关联有理数对”(填“是”或“不是”);(3)如果两个有理数是一对“关联有理数对”,其中一个有理数是5,求另一个有理数.2019-2020学年北京市通州区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共8个小题,每小题3分,共24分)每题均有四个选项,符合题意得选项只有一个. 1.【解答】解:∵﹣3<﹣2<0<1<3,故选项A符合题意.故选:A.2.【解答】解:﹣3的绝对值=3>0;﹣3<0;﹣(﹣3)=3>0;>0.故选:B.3.【解答】解:∵点A和点C所表示的有理数是互为相反数,∴原点的位置为点B右侧第一个点,∴点B表示的有理数为﹣1,故选:B.4.【解答】解:∵|b|<|a|<|c|∴点C到原点的距离最大,点A次之,点B最小又∵AB=BC∴原点O的位置在点A与点B之间,更靠近点B.故选:C.5.【解答】解:(﹣2)×(﹣2)×(﹣2)×(﹣2)×(﹣2)=(﹣2)5,故选:C.6.【解答】解:由题可得,冷冻室的温度为:6﹣22=﹣16(℃).故选:D.7.【解答】解:如果一个有理数的绝对值比它的相反数大,那么这个数是正数,故选:A.8.【解答】解:根据图示,可得﹣3<a<0,b>3,∴(1)b﹣a>0,故正确;(2)|a|<|b|,故正确;(3)a+b>0,故正确;(4)<0,故错误.∴正确的是①②③.故选:B.二、填空题(本题共8个小题,每小题2分,共16分)9.【解答】解:1.5万=15000=1.5×104.故答案为:1.5×104.10.【解答】解:由数轴上点A关于原点对称的点为点B,∵数轴上两点关于原点对称的点互为相反数,∴点B表示的有理数是3,其绝对值是3.故答案为:3.11.【解答】解:∵<,∴﹣>﹣.故答案为:>.12.【解答】解:原式=1﹣7×(﹣7)=50.故答案为:50.13.【解答】解:∵a+b=0且a≠b,∴a、b互为相反数,且a、b都不为0,∴a=1,b=﹣1,故答案为1,﹣1(答案不唯一).14.【解答】解:∵在数轴上,点A表示﹣3,从点A出发,沿数轴移动5个单位长度到达点B,∴点B表示的数是:﹣3﹣5=﹣8或﹣3+5=2,故答案为:﹣8或215.【解答】解:观察可知:第7个等式为++×=1,故答案为++×=1.16.【解答】解:根据数轴可知:a<0<1,|a|>1,所以﹣>0,﹣a+1>0,故答案为:>,>.三、解答题(本题共60分,第17期12分,第18题4分,第19期16分,第20-23题每题5分,第24题片分)解等应写出文字说明、演算步骤成证明过程,17.【解答】解:(1)(+3)+(﹣8)=﹣5;(2)0﹣(﹣6)=6;(3)=;(4)﹣3﹣|﹣4|=﹣7;(5)=﹣;(6)﹣32+(﹣2)2=﹣5.故答案为:(1)﹣5;(2)6;(3);(4)﹣7;(5)﹣;(6)﹣5.18.【解答】解:(﹣6)+(﹣15)+(+6)=(﹣6)+(+6)+(﹣15)(加法交换律)=[(﹣6)+(+6)]+(﹣15)(加法交结合律)=0+(﹣15)(互为相反数的两个数相加得零)=﹣15(一个数与零相加仍得这个数)故答案为:加法交换律;加法结合律;互为相反数的两个数相加得零;一个数与零相加仍得这个数19.【解答】解:(1)原式=﹣10+3﹣5﹣7=﹣19;(2)原式=﹣+﹣=+﹣(+)=3﹣1=2;(3);(4).(3)原式=﹣18+2+=﹣15;(4)原式=(﹣)×(﹣5+7﹣12)=﹣×(﹣10)=32.20.【解答】解:(1)从表格可知,分拣包裹数量最多的一天是星期六,最少的一天是周日,最多比最少多:7﹣(﹣8)=15万件,故答案为六、日、15;(2)6﹣3﹣4+6﹣1+7﹣8=3万件,1.8×7+3=16.6万件,∴该仓库本周实际分拣包裹一共13.6万件.21.【解答】解:(1)点A、点B的位置如图:(2)2÷8=0.2532×0.25=88﹣3.5=4.53.5﹣4.5=﹣1故点C对应的数字是﹣1,位置如图所示:(3)2﹣(﹣1)=3(km)∴小盛家与学校之间的距离为3km.22.【解答】解:(1)∵﹣5+6=1∴点D位于数轴上表示数1的位置,如图所示:(2)点E表示的数为:(﹣5+3)÷2=﹣2÷2=﹣1如图所示:(3)由题意得:|x﹣(﹣2)|+|x﹣3|=9∴x1=﹣4,x2=5故答案为:﹣4或5.23.【解答】解:∵当x≤y时,x⊕y=x2,当x>y时,x⊕y=y,∴(﹣4)⊕[(﹣2)⊕(﹣4)]﹣[(﹣5)⊕(﹣4)]=(﹣4)⊕(﹣4)﹣25=16﹣25=﹣9.24.【解答】解:(1)①因为1﹣=,1×=,所以数对(1,)是“关联有理数对”;②因为﹣1﹣0=﹣1,﹣1×0=0,所以数对(﹣1,0)不是“关联有理数对”;③因为﹣=﹣=,×=,所以数对(,)是“关联有理数对”;故答案为:①③;(2)(﹣m,﹣n)不是“关联有理数对”;理由:因为(m,n)是“关联有理数对”所以m﹣n=mn,因为﹣m﹣(﹣n)=n﹣m,﹣m•(﹣n)=mn=m﹣n,所以(﹣m,﹣n)不是“关联有理数对”;故答案为:是,不是;(3)设a=5,(a,b)是“关联有理数对”,所以a﹣b=ab,即5﹣b=5b,解得b=,所以另一个有理数是.。

北京市各区2020届九年级上学期期末数学试卷精选汇编:代数综合专题(含答案)

北京市各区2020届九年级上学期期末数学试卷精选汇编:代数综合专题(含答案)

代数综合专题西城区26.在平面直角坐标系xOy中,抛物线y=x2–2m x–2m–2.(1)若该抛物线与直线y= 2交于A,B两点,点B在y轴上.求该抛物线的表达式及点A的坐标;(2)横坐标为整数的点称为横整点.①将(1)中的抛物线在 A,B两点之间的部分记作G1(不含A,B两点),直接写出G1上的横整点的坐标;②抛物线y=x2–2m x–2m–2与直线y=–x–2交于C,D两点,将抛物线在C,D两点之间的部分记作G2(不含C,D两点),若G2上恰有两个横整点,结合函数的图象,求m的取值范围.26.解:(1)∵抛物线y=x2-2m x-2m-2与直线y=2交于A,B两点,点B在y轴上,∴点B的坐标为(0,2).∴-2m - 2= 2.∴m = -2.∴抛物线的表达式为y=x2+4x+ 2.∵A,B两点关于直线x =-2对称,∴点A的坐标为(-4,2).(2)①y=x2+4x+2的图象,如图1所示.G1上的横整点分别是(-3,-1),(-2,-2),(-1,-1).②对于任意的实数m,抛物线y=x2-2m x-2m–2与直线y= -x-2总有一个公共点(-1,-1),不妨记为点C.当m≤-1时,若G2上恰有两个横整点,则横整点的横坐标为-3,-2,如图2.∴ -2≤32m<-.当m>-1时,若G2上恰有两个横整点,则横整点的横坐标为0,1,如图3.∴12m<≤1.图1图2 图3综上,G2恰有两个横整点,m的取值范围是-2≤32m<-或12m<≤1.··························································································6分东城区26 .在平面直角坐标系xOy中,抛物线y=a-4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,-a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围海淀区.26在平面直角坐标系xOy中,已知抛物线G:2240)y ax ax a=-+≠(.(1)当a =1时,①抛物线G 的对称轴为x =_____________;②若在抛物线G 上有两点12(2,),(,)y m y ,且21y y >,则m 的取值范围是____________;(2)抛物线G 的对称轴与x 轴交于点M ,点M 与点A 关于y 轴对称,将点M 向右平移3个单位得到点B ,若抛物线G 与线段AB 恰有一个公共点,结合图象,求a 的取值范围.26.解:(1)①1; ②m >2或m <0;(2)∵抛物线G :224y ax ax =-+的对称轴为x =1,且对称轴与x 轴交于点M , ∴点M 的坐标为(1,0). ∵点M 与点A 关于y 轴对称, ∴点A 的坐标为(-1,0). ∵点M 右移3个单位得到点B , ∴点B 的坐标为(4,0).依题意,抛物线G 与线段AB 恰有一个公共点, 把点A (-1,0)代入224y ax ax =-+可得43a =-;把点B (4,0)代入224y ax ax =-+可得12a =-;把点M (1,0)代入224y ax ax =-+可得4a =. 根据所画图象可知抛物线G 与线段AB 恰有一个 公共点时可得 41432a a -<≤-=或.大兴区25.在平面直角坐标系xOy 中,抛物线与x 轴的交点为A , B (点A 在点B 的左侧).(1)求点A,B 的坐标;(2)横、纵坐标都是整数的点叫整点. ①直接写出线段AB 上整点的个数;沿x 翻折,得到新抛物线,直接写出新抛物线在x 轴上方的部分与线段AB所围成的区域内(包括边界)整点的个数.25.解:(1)得中,令)(在,01-1412=-=y x y 1,321-==x x ……………………………………………………………..1分∴点A 的坐标为(-1,0),点B 的坐标为(3,0)………………………..2分 (2)①5;……………………………………………………………………..3分②6. ……………………………………………………………………..5分石景山26.在平面直角坐标系xOy 中,抛物线24(0)y ax ax c a =-+≠与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B .与x 轴,y 轴分别交于点C ,D .(1)求抛物线的对称轴;(2)若点A 与点D 关于x 轴对称, ①求点B 的坐标;②若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.26.解:(1)∵24y ax ax c =-+2(2)4a x a c =--+,∴抛物线的对称轴是直线2x =. ………………………… 2分 (2)①∵直线335y x =-与x 轴,y 轴分别交于点C ,D , ∴点C 的坐标为(5,0),点D 的坐标为(0,3)-. ∵抛物线与y 轴的交点A 与点D 关于x 轴对称, ∴点A 的坐标为(0,3).∵将点A 向右平移2个单位长度,得到点B ,∴点B 的坐标为(2,3). ………………………… 3分 ②抛物线为243(0)y ax ax a =-+≠,顶点为(2,34)P a -. (ⅰ)当0a >时,如图1.令5x =,得25203530y a a a =-+=+>, 即点(5,0)C 总在抛物线上的点(5,53)E a +的下方. ∵P B y y <∴点(2,3)B 总在抛物线顶点P 的上方,结合函数图象,可知当0a >时,抛物线与线段BC 恰有一个公共点.(ⅱ)当0a <时,如图2. 当抛物线过点(5,0)C 时, 252030a a -+=,解得35a =-.结合函数图象,可得35a -≤.综上所述,a 的取值范围是35a -≤或0a >. …………………… 6分丰台区25.在平面直角坐标系xOy 中,抛物线1C :221y mx mx m =++-沿x 轴翻折得到抛物线2C . (1)求抛物线2C 的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.① 当1m =时,求抛物线1C 和2C 围成的封闭区域内(包括边界)整点的个数;② 如果抛物线1C 和2C 围成的封闭区域内(包括边界)恰有7个整点,求出m 的取值范围.25.(1)顶点坐标为(1-,1);…….…....………….....…………….…...….….....…………2分 (2)①当1m =时,21:2C y x x =+,22:2C y x x =--. ….…...….….....…………3分 根据图象可知,1C 和2C 围成的区域内(包括边界)整点有5个.…4分②抛物线在1C 和2C 围成的区域内 (包括边界) 恰有7个整点,结合函数图象,可得抛物线与x 轴的一个交点的横坐标的取值范围为 1≤2x <.将(1,0)代入221y mx mx m =++-,得到 14m =, …….....………5分 将(2,0)代入221y mx mx m =++-,得到 19m =,结合图象可得 19m <≤14. ….…...…..….....………….........………6分顺义区26.在平面直角坐标系 中,抛物线与 轴交于点A ,将点A 向左平移3个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含m 的式子表示); (2)求抛物线的对称轴;(3)已知点P (-1,-m ),Q (-3,1).若抛物线与线段PQ 恰有一个公共点,结合函数图象,求m 的取值范围.26.解:(1)依题意得:A (0,-m ).………………………………………………… 1分 ∴B (-3,-m ). ………………………………………………………… 2分 (2)∵点A ,B 关于抛物线的对称轴对称, ∴抛物线的对称轴为x =32-;………………………………………… 4分(3)当m >0时,点A (0,-m )在y 轴负半轴, 此时,点P ,Q 位于抛物线内部(如图1).所以,抛物线与线段PQ 无交点. ……………………… 5分当m <0时,点A (0,-m )在y 轴正半轴,当AQ 与x 轴平行,即A (0,1)时(如图2), 图1 抛物线与线段PQ 恰有一个交点Q (-3,1).6分26轴交于点A .(1)直接写出点A 的坐标;(2)点A 、B 关于对称轴对称,求点B 的坐标;(3)已知点(4,0)P ,PQ 恰有两个公共点,结合函数图象,求a 的取值范围.26.解:(1)()0,3-; ················································································· 1 (2)∵212b ax a a-=-=-=; ∴()2,3B -. ··········································································· 2 (3)当抛物线过点P (4,0)时,38a =, ················································ 3 ∴8,03Q ⎛⎫- ⎪⎝⎭.此时,抛物线与线段PQ有两个公共点.当抛物线过点1(,0)Qa-时,a=1,此时,抛物线与线段PQ有两个公共点.∵抛物线与线段PQ恰有两个公共点,∴318a≤≤. (5)当抛物线开口向下时,3a<-. (6)综上所述,当318a≤≤或3a<-时,抛物线与线段PQ恰有两个公共点.昌平区26.在平面直角坐标系xOy中,抛物线2y ax bx c=++与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是________;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a的取值范围.26.(1)①对称轴是:x=1.…………………………………………………………………… 1分②b=-2a.…………………………………………………………………… 3分(2)-2≤a<-1或1<a≤2.……………………………………………………………………6分门头沟26.在平面直角坐标系xOy中,抛物线()2420y ax ax a a=-+≠的顶点为P,且与y轴交于点A,与直线y a=-交于点B,C(点B在点C的左侧).(1)求抛物线()2420y ax ax a a=-+≠的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.①当2a=时,请直接写出“W区域”内的整点个数;②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.房山区.在平面直角坐标系xOy 中,抛物线1+2-2-=2m mx mx y 与x 轴交于点A ,B . (1)若2=AB ,求m 的值;(2)过点)20(,P 作与x 轴平行的直线,交抛物线于点M ,N .当2≥MN 时,求m 的取值范围.26. (1)抛物线对称轴为直线1=22--=mmx . …………1分 ⸪点A 、B 关于直线1=x 对称,AB =2∴ 抛物线与x 轴交于点(0,0)、(2,0).…………2分将(0,0)代入1+2-2-=2m mx mx y 中, 得0=1+2-m 即21=m . …………3分 (2)抛物线1+2-2-=2m mx mx y 与x 轴有两个交点∴0>Δ 即()0>1+-2(4-2-2)m m m …………4分 解得: 0<31>m m 或①若0>m ,开口向上,如图26-1当2≥MN 时,有2≤1+2-m 解得21-≥m 图26-1结合※可得31>m …………5分②若0<m ,开口向下,如图26-2当2≥MN 时,有2≥1+2-m 解得21-≤m 结合※可得21-≤m …………6分 综上所述m 的取值范围为31>m 或21-≤m 图26-2密云区26. 在平面直角坐标系xOy 中,抛物线2258y ax ax a =-++(0a ≠). (1)写出抛物线顶点的纵坐标 (用含a 的代数式表示);(2)若该抛物线与x 轴的两个交点分别为点A 和点B ,且点A 在点B 的左侧,AB =4. ① 求a 的值;② 记二次函数图象在点 A ,B 之间的部分为W (含 点A 和点B ),若直线 y kx b =+ (0k ≠)经过(1,-1),且与 图形W 有公共点,结合函数图象,求 b 的取值范围.25. (1)4a +8 ………………………………1分(2)①解:∵抛物线的对称轴是x =1又∵ 抛物线与x 轴的两个交点分别为点A 和点B ,AB =4∴ 点A 和点B 各距离对称轴2个单位 ∵ 点A 在点B 的左侧∴A (-1,0),B (3,0) ………………………………3分 ∴将B (3,0)代入2258y ax ax a =-++ ∴9a -6a +5a+8=0a=-1 ………………………………4分②当 y kx b =+(0k ≠)经过(1,-1)和A (-1,0)时, 当 y kx b =+(0k ≠)经过(1,-1)和B (3,0)时, ∴………………………………6分朝阳区26.在平面直角坐标系xOy 中,抛物线2y ax bx =+经过点(3,3) . (1)用含a 的式子表示b ;(2)直线4+4y x a =+与直线4y =交于点B ,求点B 的坐标(用含a 的式子表示);(3)在(2)的条件下,已知点A (1,4),若抛物线与线段A B 恰有一个公共点,直接写出10k b k b +=-⎧⎨-+=⎩12b =-130k b k b +=-⎧⎨+=⎩32b =-1322b b ≥-≤-或a(a<0)的取值范围.通州区26.在平面直角坐标系中,存在抛物线以及两点和.(1)求该抛物线的顶点坐标;(2)若该抛物线经过点,求此抛物线的表达式;(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.26. (1)顶点坐标为()·····1分(2)·····2分·····3分(3)如图1抛物线顶点在线段上时,............................... 4分如图2抛物线顶过点时,·····5分综上: 或····6分燕山区26.在平面直角坐标系xOy 中,抛物线2221y x mx m =-+-. (1) 求抛物线顶点C 的坐标(用含m 的代数式表示);(2) 已知点A (0,3),B (2,3),若该抛物线与线段AB 有公共点,结合函数图象,求出m 的取值范围.26.解:(1) 2221y x mx m -+-==2()1x m --∴抛物线顶点为C (m ,-1). ………………………2分(2)把A (0,3)的坐标代入2221y x mx m =-+-得231m -=, 解得 2m ±=.把B (2,3)的坐标代入2221y x mx m -+-=得2232221m m -⨯+-=, 即240m m -=, 解得 0m =,或4m =.结合函数图象可知:20m -≤≤,或24m ≤≤. ………………………6分。

2022-2023学年江苏省南通通州区九年级数学第一学期期末调研试题含解析

2022-2023学年江苏省南通通州区九年级数学第一学期期末调研试题含解析

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=45;④S四边形ECFG=2S△BGE.A.4B.3C.2D.12.函数y=kx与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.3.如图,在△ABC中,AB=18,BC=15,cos B=35,DE∥AB,EF⊥AB,若DEAF=12,则BE长为()A.7.5 B.9 C.10 D.54.如图,AD 是⊙O 的直径,以A 为圆心,弦AB 为半径画弧交⊙O 于点C ,连结BC 交AD 于点E ,若DE =3,BC =8,则⊙O 的半径长为( )A .256B .5C .163D .2535.我县为积极响应创建“省级卫生城市”的号召,为打造“绿色乐至,健康乐至”是我们每个乐至人应尽的义务.某乡镇积极开展垃圾分类有效回收,据统计2017年有效回收的垃圾约1.5万吨,截止2019年底,有效回收的垃圾约2.8万吨,设这两年该乡镇的垃圾有效回收平均增长率为x ,则下列方程正确的是( ). A .1.5(1+2x )=2.8 B .21.5(1) 2.8x +=C .21.5 2.8x =D .1.5(1)x ++21.5(1) 2.8x +=6.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则sin ∠BDE 的值是 ( )A .15B .14C .13D .247.一元二次方程240x -=的解是( ) A .x 1=2,x 2=-2B .x =-2C .x =2D .x 1=2,x 2=08.点P (6,-8)关于原点的对称点的坐标为( ) A .(-6,8)B .(–6,-8)C .(8,-6)D .(–8,-6)9.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球,摸出白球的概率是( ) A .12B .13C .14D .1610.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A .B .C .D .二、填空题(每小题3分,共24分)11.如图,已知等边ABC ∆的边长为4,BD AB ⊥,且233BD =.连结AB ,CD 并延长交于点E ,则线段BE 的长度为__________.12.如图,直线y =x +2与反比例函数y =kx的图象在第一象限交于点P .若OP =10,则k 的值为________.13.在一个不透明的盒子中装有除了颜色以外没有任何其他区别的1个黑球和2个红球,从盒子中任意取出1个球,取出红球的概率是____.14.如图,A 是反比例函数y =4x(x >0)图象上一点,以OA 为斜边作等腰直角△ABO ,将△ABO 绕点O 以逆时针旋转135°,得到△A 1B 1O ,若反比例函数y =xk的图象经过点B 1,则k 的值是_____.15.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y …343…16.已知在Rt ABC 中,90C ∠=︒,1cot 3B =,2BC =,那么AC =_____________. 17.将抛物线C 1:y =x 2﹣4x+1先向左平移3个单位,再向下平移2个单位得到将抛物线C 2,则抛物线C 2的解析式为:_____.18.如图,在111A B C △中,已知111111745,A B B C AC ===,,依次连接111A B C △的三边中点, 得222A B C △,再依次连接222A B C △的三边中点得333A B C △,···,则555A B C 的周长为_____________________.三、解答题(共66分)19.(10分)如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .(Ⅰ)求证:∠A =∠EBC ;(Ⅱ)若已知旋转角为50°,∠ACE =130°,求∠CED 和∠BDE 的度数.20.(6分)计算:01182sin 45(2)()3π-︒+--.21.(6分)如图,从一块长80厘米,宽60厘米的铁片中间截去一个小长方形,使截去小长方形的面积是原来铁片面积的一半,并且剩下的长方框四周的宽度一样,求这个宽度.22.(8分)如图,抛物线y =ax 2 +bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积.23.(8分)在平面直角坐标系xOy 中,抛物线2221y mx mx m =--+与x 轴交于点A ,B .(1)若2AB =,求m 的值;(2)过点(0,2)P 作与x 轴平行的直线,交抛物线于点M ,N .当2MN ≥时,求m 的取值范围.24.(8分)如图,△ABC 的边BC 在x 轴上,且∠ACB =90°.反比例函数y =kx(x >0)的图象经过AB 边的中点D ,且与AC 边相交于点E ,连接CD .已知BC =2OB ,△BCD 的面积为1.(1)求k 的值;(2)若AE =BC ,求点A 的坐标.25.(10分)深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组. (1)小智被分配到A“全程马拉松”项目组的概率为 .(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.26.(10分)如图,在Rt ABC中,ACB90∠=,DCE是ABC绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.()1求旋转角的大小;()2若AB10=,AC8=,求BE的长.参考答案一、选择题(每小题3分,共30分)1、B【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,∵AB=BC,∠ABE=∠BCF,BE=CF,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°.∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=52k,∴sin=∠BQP=BPQB=45,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=12BC,BF5BC,∴BE:BF=15△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选B.点睛:本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.2、D【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论,然后再对照选项即可.【详解】解:分两种情况讨论:①当k<0时,反比例函数y=kx在二、四象限,而二次函数y=kx2﹣k开口向下,故A、B、C、D都不符合题意;②当k>0时,反比例函数y=kx在一、三象限,而二次函数y=kx2﹣k开口向上,与y轴交点在原点下方,故选项D正确;故选:D.【点睛】本题主要考查反比例函数与二次函数的图象,掌握k对反比例函数与二次函数的图象的影响是解题的关键.3、C【分析】先设DE=x,然后根据已知条件分别用x表示AF、BF、BE的长,由DE∥AB可知DE CEAB CB=,进而可求出x的值和BE的长.【详解】解:设DE=x,则AF=2x,BF=18﹣2x,∵EF⊥AB,∴∠EFB=90°,∵cos B=BFBE=35,∴BE=53(18﹣2x),∵DE∥AB,∴DE CE AB CB=,∴515(182)31815x x--=∴x=6,∴BE=53⨯(18﹣12)=10,故选:C.【点睛】本题主要考查了三角形的综合应用,根据平行线得到相关线段比例是解题关键.4、A【分析】由作法得AB AC=,根据圆周角定理得到∠ADB=∠ABE,再根据垂径定理的推论得到AD⊥BC,BE=CE=12BC=4,于是可判断Rt△ABE∽Rt△BDE,然后利用相似比求出AE,从而得到圆的直径和半径.【详解】解:由作法得AC=AB,∴AB AC,∴∠ADB=∠ABE,∵AB为直径,∴AD⊥BC,∴BE=CE=12BC=4,∠BEA=∠BED=90°,而∠BDE=∠ABE,∴Rt△ABE∽Rt△BDE,∴BE:DE=AE:BE,即4:3=AE:4,∴AE=163,∴AD=AE+DE=163+3=253,∴⊙O的半径长为256.故选:A.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系.也考查了圆周角定理.5、B【分析】根据题意可得等量关系:2017年有效回收的垃圾的量×(1+增长率)2=2019年有效回收的垃圾的量,根据等量关系列出方程即可.【详解】设这两年该乡镇的垃圾有效回收平均增长率为x,∵2017年有效回收的垃圾约1.5万吨,截止2019年底,有效回收的垃圾约2.8万吨,∴1.5(1+x)2=2.8,故选:B.【点睛】此题考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,经过两次变化后的数量关系为a(1±x)2=b.6、C【分析】由矩形的性质可得AB=CD,AD=BC,AD∥BC,可得BE=CE=12BC=12AD,由全等三角形的性质可得AE=DE,由相似三角形的性质可得AF=2EF,由勾股定理可求DF的长,即可求sin∠BDE的值.【详解】∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵点E是边BC的中点,∴BE=CE=12BC=12AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴AF AD=EF BE=2∴AF=2EF,∴AE=3EF=DE,∴ sin∠BDE=EF1= DE3,故选C.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键.7、A【分析】首先将原方程移项可得24x=,据此进一步利用直接开平方法求解即可.【详解】原方程移项可得:24x=,解得:12x=,22x-=,故选:A.【点睛】本题主要考查了直接开平方法解一元二次方程,熟练掌握相关方法是解题关键.8、A【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),可以直接选出答案.【详解】解:根据关于原点对称的点的坐标的特点可得:点P(6,-8)关于原点过对称的点的坐标是(-6,8).故选:A.【点睛】本题主要考查了关于原点对称的点的坐标的特点,关键是熟记关于原点对称的点的坐标的特点:它们的坐标符号相反.9、A【分析】根据概率公式计算即可.【详解】∵盒子内装有红球1个、绿球1个、白球2个共4个球,∴出一个球,摸出白球的概率是21 42 =,故选:A.【点睛】此题考查概率的公式,熟记概率的计算方法是解题的关键.10、A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.二、填空题(每小题3分,共24分)11、1【分析】作CF⊥AB,根据等边三角形的性质求出CF,再由BD⊥AB,由CF∥BD,得到△BDE∽△FCE,设BE为x,再根据对应线段成比例即可求解.【详解】作CF⊥AB,垂足为F,∵△ABC为等边三角形,∴AF=12AB=2,∴=又∵BD⊥AB,∴CF∥BD,∴△BDE∽△FCE,设BE为x,∴EF EB CF DB =,即223233x x += 解得x=1故填:1.【点睛】此题主要考查相似三角形的判定与性质,解题的根据是根据题意构造相似三角形进行求解.12、3【分析】已知直线y=x+2与反比例函数y=k x的图象在第一象限交于点P ,设点P 的坐标为(m,m+2),根据10,列出关于m 的等式,即可求出m ,得出点P 坐标,且点P 在反比例函数图象上,所以点P 满足反比例函数解析式,即可求出k 值.【详解】∵直线y=x+2与反比例函数y=k x 的图象在第一象限交于点P ∴设点P 的坐标为(m,m+2)∵10 22(2)10m m ++=解得m 1=1,m 2=-3∵点P 在第一象限∴m=1∴点P 的坐标为(1,3)∵点P 在反比例函数y=k x 图象上 ∴31k = 解得k=3故答案为:3【点睛】本题考查了一次函数与反比例函数交点问题,交点坐标同时满足一次函数和反比例函数解析式,根据直角坐标系中点坐标的性质,可利用勾股定理求解.13、23 【分析】根据概率的定义即可解题.【详解】解:一共有3个球,其中有2个红球,∴红球的概率=23. 【点睛】本题考查了概率的实际应用,属于简单题,熟悉概念是解题关键.14、-1【分析】过点A 作AE ⊥y 轴于点E ,过点B 1作BF ⊥y 轴于点F ,则可证明△OB 1F ∽△OAE ,设A (m ,n ),B 1(a ,b ),根据三角形相似和等腰三角形的性质求得m=2.n=-2a ,再由反比例函数k 的几何意义,可得出k 的值. 【详解】过点A 作AE ⊥y 轴于点E ,过点B 1作BF ⊥y 轴于点F ,∵等腰直角△ABO 绕点O 以逆时针旋转135°,∴∠AOB 1=90°,∴∠OB 1F =∠AOE ,∵∠OFB 1=∠AEF =90°,∴△OB 1F ∽△OAE ,∴1B F OE =OF AF =1OB OA, 设A (m ,n ),B 1(a ,b ),∵在等腰直角三角形OAB 中,A OB O =22,OB =OB 1, ∴a n =b m 2, ∴m 2b .n 2a ,∵A 是反比例函数y =4x(x >0)图象上一点, ∴mn =4,ab =4,解得ab =﹣1.∵反比例函数y =k x 的图象经过点B 1, ∴k =﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数k 的几何意义及旋转的性质,等腰直角三角形的性质,反比例函数k 的几何意义是本题的关键.15、(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax 2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x=0+22=1; 点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x 轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x 轴的交点,关键是熟练掌握二次函数的对称性.16、1【分析】根据三角函数的定义即可求解.【详解】∵cotB=BC AC, ∴AC=13BC BC cotB=3BC=1. 故答案是:1.【点睛】此题考查锐角三角函数的定义及运用,解题关键在于掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,余切为邻边比对边.17、y =(x+1)2﹣1【分析】先确定抛物线C 1:y =x 2﹣4x+1的顶点坐标为(2,﹣3),再利用点平移的坐标变换规律,把点(2,﹣3)平移后对应点的坐标为(﹣1,﹣1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线C 1:y =x 2﹣4x+1=(x ﹣2)2﹣3的顶点坐标为(2,﹣3),把点(2,﹣3)先向左平移3个单位,再向下平移2个单位后所得对应点的坐标为(-1,﹣1),所以平移后的抛物线的解析式为y =(x+1)2﹣1, 故答案为y =(x+1)2﹣1.【点睛】此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的特点.18、1【分析】根据三角形的中位线定理得:A 2B 2=12 A 1B 1、 B 2C 2=12 B 1C 1、C 2A 2=12C 1A 1,则△A 2B 2C 2的周长等于△A 1B 1C 1的周长的一半,以此类推可求出△A 5B 5C 5的周长为△A 1B 1C 1的周长的412. 【详解】解:∵ A 2B 2=12 A 1B 1、 B 2C 2=12 B 1C 1、C 2A 2=12C 1A 1, ∴△A 5B 5C 5的周长为△A 1B 1C 1的周长的412, ∴△A 5B 5C 5的周长为(7+4+5)×412=1. 故答案为1.【点睛】 本题主要考查了三角形的中位线定理,灵活运用三角形的中位线定理并归纳规律是解答本题的关键.三、解答题(共66分)19、(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°, ∠CED =35°【分析】(Ⅰ)由旋转的性质可得AC =CD ,CB =CE ,∠ACD =∠BCE ,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC =CD ,∠ABC =∠DEC ,∠ACD =∠BCE =50°,∠EDC =∠A ,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC 绕点C 顺时针旋转得到△DEC ,∴AC =CD ,CB =CE ,∠ACD =∠BCE ,∴∠A =180ACD 2︒-∠,∠CBE =180BCE 2︒-∠, ∴∠A =∠EBC ;(Ⅱ)∵将△ABC 绕点C 顺时针旋转得到△DEC ,∴AC =CD ,∠ABC =∠DEC ,∠ACD =∠BCE =50°,∠EDC =∠A ,∠ACB=∠DCE∴∠A =∠ADC =65°,∵∠ACE =130°,∠ACD =∠BCE =50°,∴∠ACB =∠DCE =80°,∴∠ABC =180°﹣∠BAC ﹣∠BCA =35°,∵∠EDC =∠A =65°,∴∠BDE =180°﹣∠ADC ﹣∠CDE =50°.∠CED=180°﹣∠DCE ﹣∠CDE=35°【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.20、2-【分析】按顺序化简二次根式,代入特殊角的三角函数值,进行0次幂运算,负指数幂运算,然后再按运算顺序进行计算即可.【详解】解: 0112sin 45(2)()3π-︒+--=-2132⨯+-2【点睛】 本题考查了特殊角的三角函数值,实数的混合运算等,正确把握各运算的运算法则是解题的关键.21、长方框的宽度为10厘米【分析】设长方框的宽度为x 厘米,则减去小长方形的长为(80﹣2x )厘米,宽为(60﹣2x )厘米,根据长方形的面积公式结合截去小长方形的面积是原来铁片面积的一半,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】解:设长方框的宽度为x 厘米,则减去小长方形的长为(80﹣2x )厘米,宽为(60﹣2x )厘米,依题意,得:(80﹣2x )(60﹣2x )=12×80×60, 整理,得:x 2﹣70x+600=0,解得:x 1=10,x 2=60(不合题意,舍去).答:长方框的宽度为10厘米.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 22、(1)2142y x x =--+顶点D 的坐标为(-1,92) (2)H (34,158)(2)K (-32,358) 【分析】(1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D 的坐标;(2)根据抛物线的解析式可求出C 点的坐标,由于CD 是定长,若△CDH 的周长最小,那么CH+DH 的值最小,由于EF 垂直平分线段BC ,那么B 、C 关于直线EF 对称,所以BD 与EF 的交点即为所求的H 点;易求得直线BC 的解析式,关键是求出直线EF 的解析式;由于E 是BC 的中点,根据B 、C 的坐标即可求出E 点的坐标;可证△CEG ∽△COB ,根据相似三角形所得的比例线段即可求出CG 、OG 的长,由此可求出G 点坐标,进而可用待定系数法求出直线EF 的解析式,由此得解;(2)过K 作x 轴的垂线,交直线EF 于N ;设出K 点的横坐标,根据抛物线和直线EF 的解析式,即可表示出K 、N 的纵坐标,也就能得到KN 的长,以KN 为底,F 、E 横坐标差的绝对值为高,可求出△KEF 的面积,由此可得到关于△KEF 的面积与K 点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K 点坐标.【详解】(1)由题意,得164404240a b a b -+=⎧⎨++=⎩解得12a =-,b =-1. 所以抛物线的解析式为2142y x x =--+,顶点D 的坐标为(-1,92). (2)设抛物线的对称轴与x 轴交于点M .因为EF 垂直平分BC ,即C 关于直线EG 的对称点为B ,连结BD 交于EF 于一点,则这一点为所求点H ,使DH +CH 最小,即最小为DH +CH =DH +HB =BD=2CD ==. ∴△CDH 的周长最小值为CD +DR +CH=2. 设直线BD 的解析式为y =k 1x +b ,则11112092k b k b +=⎧⎪⎨-+=⎪⎩解得132k =-,b 1= 2. 所以直线BD 的解析式为y =32-x + 2. 由于BCCE =BCRt △CEG ∽△COB ,得CE :CO =CG :CB ,所以CG = 2.3,GO = 1.3.G (0,1.3).同理可求得直线EF 的解析式为y =12x +32. 联立直线BD 与EF 的方程,解得使△CDH 的周长最小的点H (34,158).(2)设K (t ,2142t t --+),x F <t <x E .过K 作x 轴的垂线交EF 于N . 则KN =y K -y N =2142t t --+-(12t +32)=2135222t t --+. 所以S △EFK =S △KFN +S △KNE =12KN (t + 2)+12KN (1-t )= 2KN = -t 2-2t + 3 =-(t +32)2+294. 即当t =-32时,△EFK 的面积最大,最大面积为294,此时K (-32,358). 【点睛】本题是二次函数的综合类试题,考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和性质、三角形面积的求法、二次函数的应用等知识,难度较大.23、(1)12m =;(2)m 的取值范围为13m >或12m ≤-. 【分析】(1)先求出抛物线的对称轴,利用对称性求出A 、B 的坐标,然后把点代入抛物线,即可求出m 的值; (2)根据根的判别式得到m 的范围,再结合2MN ≥,然后分为:①开口向上,②开口向下,两种情况进行分析,即可得到答案.【详解】解:(1)抛物线对称轴为直线212m x m-=-=. ∴点,A B 关于直线1x =对称,∵2AB = ∴抛物线与x 轴交于点(0,0),(2,0),将(0,0)代入2221y mx mx m =--+中,得210m -+=, ∴12m =; (2)抛物线2221y mx mx m =--+与x 轴有两个交点∴>0∆,即2(2)4(21)0m m m ---+>, 解得:13m >或0m <; ①若0m >,开口向上,如图,当2MN ≥时,有212m -+≤, 解得:12m ≥-; ∵13m >或0m <, ∴13m >; ②若0m <,开口向下,如图,当2MN ≥时,有212m -+≥,解得:12m ≤-, ∵13m >或0m <, ∴12m ≤-; 综上所述,m 的取值范围为:13m >或12m ≤-. 【点睛】本题考查了二次函数的性质,二次函数与坐标轴的交点问题,根的判别式,解题的关键是掌握二次函数的性质,利用数形结合的思想和分类讨论的思想进行解题.24、(1)k =12;(2)A (1,1).【解析】(1)连接OD ,过D 作DF ⊥OC 于F ,依据∠ACB =90°,D 为AB 的中点,即可得到CD =12AB =BD ,进而得出BC =2BF =2CF ,依据BC =2OB ,即可得到OB =BF =CF ,进而得出k =xy =OF •DF =BC •DF =2S △BCD =12;(2)设OB=m,则OF=2m,OC=3m,DF=6m,进而得到E(3m,12m-2m),依据3m(12m-2m)=12,即可得到m=2,进而得到A(1,1).【详解】解:(1)如图,连接OD,过D作DF⊥OC于F,∵∠ACB=90°,D为AB的中点,∴CD=12AB=BD,∴BC=2BF=2CF,∵BC=2OB,∴OB=BF=CF,∴k=xy=OF•DF=BC•DF=2S△BCD=12;(2)设OB=m,则OF=2m,OC=3m,DF=6m,∵DF是△ABC的中位线,∴AC=2DF=12 m,又∵AE=BC=2m,∴CE=AC-AE=12m-2m,∴E(3m,12m-2m),∵3m(12m-2m)=12,∴m2=4,又∵m>0,∴m=2,∴OC=1,AC=1,∴A(1,1).【点睛】本题考查了反比例函数图象上点的坐标特征,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.25、(1)13(2)13【分析】(1)直接利用概率公式可得;(2)记这三个项目分别为A、B、C,画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)小智被分配到A“全程马拉松”项目组的概率为13,故答案为:13.(2)画树状图为:共有9种等可能的结果数,其中小智和小慧被分配到同一个项目组的结果数为3,所以小智和小慧被分到同一个项目组进行志愿服务的概率为31 = 93.【点睛】本题主要考察概率,熟练掌握概率公式是解题关键.26、(1)90°;(2)1.【分析】(1)根据题意∠ACE即为旋转角,只需求出∠ACE的度数即可.(2)根据勾股定理可求出BC,由旋转的性质可知CE=CA=8,从而可求出BE的长度.【详解】解:(1)∵△DCE是△ABC绕着点C顺时针方向旋转得到的,此时点B、C、E在同一直线上,∴∠ACE=90°,即旋转角为90°,(2)在Rt△ABC中,∵AB=10,AC=8,∴22AB AC,∵△ABC绕着点C旋转得到△DCE,∴CE=CA=8,∴BE=BC+CE=6+8=1。

2021-2022学年北京人大附中本部九年级(上)期末数学模拟练习试卷(六)

2021-2022学年北京人大附中本部九年级(上)期末数学模拟练习试卷(六)

2021-2022学年北京人大附中本部九年级(上)期末数学模拟练习试卷(六)1.(单选题,3分)在抛物线y=x2-4x-5上的一个点的坐标为()A.(0,-4)B.(2,0)C.(1,0)D.(-1,0)2.(单选题,3分)在半径为6cm的圆中,60°的圆心角所对弧的弧长是()A.πcmB.2πcmC.3πcmD.6πcm3.(单选题,3分)将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为()A.y=(x+3)2+5B.y=(x-3)2+5C.y=(x+5)2+3D.y=(x-5)2+34.(单选题,3分)2020年是紫禁城建成600年暨故宫博物院成立95周年,在此之前有多个国家曾发行过紫禁城元素的邮品.图1所示的摩纳哥发行的小型张中的图案,以敞开的紫禁城大门和大门内的石狮和太和殿作为邮票和小型张的边饰,如果标记出图1中大门的门框并画出相关的几何图形(图2),我们发现设计师巧妙地使用了数学元素(忽略误差),图2中的四边形ABCD与四边形A'B'C'D'是位似图形,点O是位似中心,点A'是线段OA的中点,那么以下结论正确的是()A.四边形ABCD与四边形A'B'C'D'的相似比为1:1B.四边形ABCD与四边形A'B'C'D'的相似比为1:2C.四边形ABCD与四边形A'B'C'D'的周长比为3:1D.四边形ABCD与四边形A'B'C'D'的面积比为4:15.(单选题,3分)如图,AB是⊙O的直径,CD是弦,若∠CDB=32°,则∠ABC等于()A.68°B.64°C.58°D.32° 6.(单选题,3分)若抛物线y=ax 2+bx+c (a≠0)经过A (1,0),B (3,0)两点,则抛物线的对称轴为( )A.x=1B.x=2C.x=3D.x=47.(单选题,3分)近年来我国无人机产业迅猛发展,无人机驾驶员已正式成为国家认可的新职业,中国民用航空局的现有统计数据显示,从2017年底至2019年底,全国拥有民航局颁发的民用无人机驾驶执照的人数已由约2.44万人增加到约6.72万人.若设2017年底至2019年底,全国拥有民用无人机驾驶执照人数的年平均增长率为x ,则可列出关于x 的方程为( )A.2.44(1+x )=6.72B.2.44(1+2x )=6.72C.2.44(1+x )2=6.72D.2.44(1-x )2=6.728.(单选题,3分)现有函数y= {x +4(x <a)x 2−2x (x ≥a )如果对于任意的实数n ,都存在实数m ,使得当x=m 时,y=n ,那么实数a 的取值范围是( )A.-5≤a≤4B.-1≤a≤4C.-4≤a≤1D.-4≤a≤59.(填空题,3分)若正六边形的边长为2,则它的半径为 ___ .10.(填空题,3分)若抛物线y=ax 2(a≠0)经过A (1,3),则该抛物线的解析式为___ .11.(填空题,3分)如图,在Rt△ABC 中,∠C=90°,AC=6,AB=9,则sinB=___ .12.(填空题,3分)若抛物线y=ax2+bx+c(a≠0)的示意图如图所示,则a___ 0,b___ 0,c___ 0(填“>”,“=”或“<”).13.(填空题,3分)如图,AB为⊙O的直径,AB=10,CD是弦,AB⊥CD于点E,若CD=6,则EB=___ .14.(填空题,3分)如图,PA,PB是⊙O的两条切线,A,B为切点,若OA=2,∠APB=60°,则PB=___ .15.(填空题,3分)放缩尺是一种绘图工具,它能把图形放大或缩小.制作:把钻有若干等距小孔的四根直尺用螺栓分别在点A,B,C,D处连接起来,使得直尺可以绕着这些点转动,O为固定点,OD=DA=CB,DC=AB=BE,在点A,E处分别装上画笔.画图:现有一图形M,画图时固定点O,控制点A处的笔尖沿图形M的轮廓线移动,此时点E处的画笔便画出了将图形M放大后的图形N.原理:若连接OA,OE,可证得以下结论:① △ODA和△OCE为等腰三角形,则∠DOA= 12(180°-∠ODA),∠COE= 12(180°-∠___ );② 四边形ABCD为平行四边形(理由是___ );③ ∠DOA=∠COE,于是可得O,A,E三点在一条直线上;④ 当DCCB =35时,图形N是以点O为位似中心,把图形M放大为原来的___ 倍得到的.16.(填空题,3分)如图,在平面直角坐标系xOy中,P(4,3),⊙O经过点P.点A,点B在y轴上,PA=PB,延长PA,PB分别交⊙O于点C,点D,设直线CD与x轴正方向所夹的锐角为α.(1)⊙O的半径为 ___ ;(2)tanα=___ .17.(问答题,5分)计算:2sin60°-tan45°+cos230°.18.(问答题,5分)已知关于x的方程x2+2x+k-4=0.(1)如果方程有两个不相等的实数根,求k的取值范围;(2)若k=1,求该方程的根.19.(问答题,6分)借助网格画图并说理:如图所示的网格是正方形网格,△ABC的三个顶点是网格线的交点,点A在BC边的上方,AD⊥BC于点D,BD=4,CD=2,AD=3.以BC为直径作⊙O,射线DA交⊙O于点E,连接BE,CE.(1)补全图形;(2)填空:∠BEC=___ °,理由是 ___ ;(3)判断点A与⊙O的位置关系并说明理由;(4)∠BAC ___ ∠BEC(填“>”,“=”或“<”).20.(问答题,5分)二次函数y=ax2+bx+c(a≠0)的图象经过(3,0)点,当x=1时,函数的最小值为-4.(1)求该二次函数的解析式并画出它的图象;(2)直线x=m与抛物线y=ax2+bx+c(a≠0)和直线y=x-3的交点分别为点C,点D,点C 位于点D的上方,结合函数的图象直接写出m的取值范围.21.(问答题,5分)如图,AB为⊙O的直径,AC为弦,点D在⊙O外,∠BCD=∠A,OD交⊙O于点E.(1)求证:CD是⊙O的切线;,求DE的长.(2)若CD=4,AC=2.7,cos∠BCD= 92022.(问答题,5分)如图,一艘海轮位于灯塔P的南偏东30°方向,距离灯塔100海里的A 处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B处.(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔150海里的点O处.圆形暗礁区域的半径为60海里,进入这个区域,就有触礁的危险.① 请判断海轮到达B处是否有触礁的危险?并说明理由.② 如果海伦从B处继续向正北方向航行,是否有触礁的危险?直接写出结论,不用说明理由.(参考数据:√2≈1.414,√3≈1.732)23.(问答题,7分)如图,正方形ABCD的边长为4,点E在AB边上,BE=1,F为BC边的中点.将正方形截去一个角后得到一个五边形AEFCD,点P在线段EF上运动(点P可与点E,点F重合),作矩形PMDN,其中M,N两点分别在CD,AD边上.设CM=x,矩形PMDN的面积为S.(1)DM=___ (用含x的式子表示),x的取值范围是___ ;(2)求S与x的函数关系式;(3)要使矩形PMDN的面积最大,点P应在何处?并求最大面积.24.(问答题,7分)已知:点A(-1,-4)和P是一次函数y=kx+b与反比例函数y= m图象x的两个不同交点,点P关于y轴的对称点为P′,直线AP以及AP′分别与x轴交于点M和N.的表达式;(1)求反比例函数y= mxMN,求k的取值范围.(2)若PP′≥ 3225.(问答题,7分)已知抛物线y=- 1x2+x.2(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;(2)已知该抛物线经过A(3n+4,y1),B(2n-1,y2)两点.① 若n<-5,判断y1与y2的大小关系并说明理由;② 若A,B两点在抛物线的对称轴两侧,且y1>y2,直接写出n的取值范围.26.(问答题,0分)在平面直角坐标系xOy中,抛物线y=ax2+bx经过点(3,3).(1)用含a的式子表示b;(2)直线y=x+4a+4与直线y=4交于点B,求点B的坐标(用含a的式子表示);(3)在(2)的条件下,已知点A(1,4),若抛物线与线段AB恰有一个公共点,直接写出a(a<0)的取值范围.27.(问答题,0分)在Rt△ABC中,∠ACB=90°,∠ABC=30°,BC= √3.将△ABC绕点B顺时针旋转α(0°<α≤120°)得到△A'BC',点A,点C旋转后的对应点分别为点A',点C'.(1)如图1,当点C'恰好为线段AA'的中点时,α=___ °,AA'=___ ;(2)当线段AA'与线段CC'有交点时,记交点为点D.① 在图2中补全图形,猜想线段AD与A'D的数量关系并加以证明;② 连接BD,请直接写出BD的长的取值范围.28.(问答题,0分)对于平面内的图形G1和图形G2,记平面内一点P到图形G1上各点的最短距离为d1,点P到图形G2上各点的最短距离为d2,若d1=d2,就称点P是图形G1和图形G2的一个“等距点”.在平面直角坐标系xOy中,已知点A(6,0),B(0,2 √3).(1)在R(3,0),S(2,0),T(1,√3)三点中,点A和点B的等距点是 ___ ;(2)已知直线y=-2.① 若点A和直线y=-2的等距点在x轴上,则该等距点的坐标为 ___ ;② 若直线y=a上存在点A和直线y=-2的等距点,求实数a的取值范围;x,以原点O为圆心作半径为r的⊙O.若⊙O上(3)记直线AB为直线l1,直线l2:y=- √33有m个直线l1和直线l2的等距点,以及n个直线l1和y轴的等距点(m≠0,n≠0),当m≠n时,求r的取值范围.。

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷(有答案和解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。

通州区2019-2020年初三第一次模拟考试九年级数学试卷

通州区2019-2020年初三第一次模拟考试九年级数学试卷

通州区2019-2020年初三第一次模拟考试数学试卷2019年4月1. 如图,∠AOB 的角平分线是( )A .射线OBB .射线OEC .射线ODD .射线OC2. 港珠澳大桥是中国第一例集桥、双人工岛、隧道为一体的跨海通道. 其中海底隧道是由33个巨型沉管连接而成,沉管排水总量约76000吨. 将数76000用科学记数法表示为( )A .47.610⨯B .37610⨯C .50.7610⨯D .57.610⨯3. x 的取值范围为( ) A .2x >B .2x ≥C .2x =D .2x ≠4.某几何体的平面展开图如图所示,则该几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱5. 如果3y x =-+,且x y ≠,那么代数式22x y x y y x+--的值为( ) A .3B .3-C .13 D .13- 6.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”设绳子长x 尺,木条长y 尺,则根据题意所列方程组正确的是( )A . 4.5112x y x y -=⎧⎪⎨-=⎪⎩,B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩,C . 4.5112x y y x +=⎧⎪⎨-=⎪⎩,D . 4.5112x y x y -=⎧⎪⎨-=⎪⎩, 7. 2018年我国科技实力进一步增强,嫦娥探月、北斗组网、航母海试、鲲龙击水、港珠澳大桥正式通车……,这些成就的取得离不开国家对科技研发的大力投入.下图是2014年—2018年我国研究与试验发展(R&D)经费支出及其增长速度情况. 2018年我国研究与试验发展(R&D)经费支出为19657亿元,比上年增长11.6%,其中基础研究经费1118亿元.% 亿元 2014-2018年我国研究与试验发展(R&D )经费支出及其增长速度根据统计图提供的信息,下列说法中合理的是( )A .2014年—2018年,我国研究与试验发展(R&D)经费支出的增长速度始终在增加B .2014年—2018年,我国研究与试验发展(R&D)经费支出增长速度最快的年份是2017年C .2014年—2018年,我国研究与试验发展(R&D)经费支出增长最多的年份是2017年D .2018年,基础研究经费约占该年研究与试验发展( (R&D)经费支出的10%8. 为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图. 如图,y 轴上动点M 的纵坐标m y 表示学生的期中考试成绩,直线10x =上动点N 的纵坐标n y 表示学生的期末考试成绩,线段MN 与直线6x =的交点为P ,则点P 的纵坐标P y 就是这名学生的学期总评成绩. 有下面几种说法:①若某学生的期中考试成绩为70分,期末考试成绩为80分,则他的学期总评成绩为75分;②甲同学的期中考试成绩比乙同学高10分,但期末考试成绩比乙同学低10分,那么甲的学期总评成绩比乙同学低;③期中成绩占学期总评成绩的60%. 结合这张算图进行判断,其中正确的说法是( )A. ①③B. ②③C. ②D. ③)9. 实数c 满足ac bc >,那么请你写出一个符合题意的实数c 的值:c =________.10. 如图,AB 是⊙O 的直径,弦CD AB ⊥于点E ,如果AC CD =,则∠ACD 的度数是_________.A11. 中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为__________.12. 若多项式2x ax b ++可以写成()2x m +的形式,且0ab ≠,则a 的值可以是_____,b 的值可以是_____ . 13. 小华同学的身高为170 cm ,测得他站立在阳光下的影长为85 cm ,紧接着他把手臂竖直举起,测得影长为105b a 432-4-3-21-10cm ,那么小华举起的手臂超出头顶的长度为____________ cm.14. 如图所示,在一条笔直公路l 的两侧,分别有A 、B 两个小区,为了方便居民出行,现要在公路l 上建一个公共自行车存放点,使存放点到A 、B 小区的距离之和最小,你认为存放点应该建在 处(填“C ”“E ”或“D ”),理由是____________________________15. 色,这称为一次摸球试验,之后把它放回袋中,搅匀后再继续摸出一球……,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表: 的值最有可能的是 .16.甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点…,若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为__________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:)116tan 3012-⎛⎫-︒-+ ⎪⎝⎭18. 解不等式组: 32431.22x x x +<⎧⎪⎨-⎪⎩,≥19.已知:如图1,在△ABC 中,∠ACB =90°.求作:射线CG ,使得CG ∥AB .图1 图2下面是小东设计的尺规作图过程. 作法:如,2,①以点A 为圆心,适当长为半径作弧,分别交AC ,AB 于D ,E 两点; ②以点C 为圆心,AD 长为半径作弧,交AC 的延长线于点F ; ③以点F 为圆心,DE 长为半径作弧,两弧在∠FCB 内部交于点G ; ④作射线CG .所以射线CG 就是所求作的射线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:连接FG 、DE .∵△ADE ≌ △_________, ∴∠DAE = ∠_________.∴CG ∥AB (__________________________)(填推理的依据).20.关于x 的一元二次方程()2210x x n +--=有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.21. 如图,在△ABC 中,∠ACB =90°,D 是BC 边上的一点,分别过点A 、B 作BD 、AD 的平行线交于点E ,且 AB平分∠EAD .(1)求证:四边形EADB是菱形;(2)连接EC ,当∠BAC =60°,BC =ECB 的面积.22.如图,在平面直角坐标系xOy 中,直线2y x =与函数()0my x x=>的图象交于点A (1,2).(1)求m 的值;(2)过点A 作x 轴的平行线l ,直线2y x b =+与直线l 交于点B ,与函数()0my x x=>的图象交于点C ,与x 轴交于点D .①当点C 是线段BD 的中点时,求b 的值; ②当BC BD >时,直接写出b 的取值范围.23. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,过点A 作⊙O 的切线交F ,使AF =AE ,连接AF 并延长交⊙O 于点D. (1)求证:B CAD ∠=∠; (2)若CE =2,30B ∠=︒,求AD 的长.24. 数学活动课上,老师提出问题:如图1,在Rt △ABC 中,90C ∠=︒,BC =4 cm ,AC =3 cm ,点D 是AB 的中点,点E 是BC 上一个动点,连接AE 、DE . 问CE 的长是多少时,△AED 的周长等于CE 长的3倍. 设CE =x cm ,△AED 的周长为y cm (当点E 与点B 重合时,y 的值为10).小牧根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小牧的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(2)建立平面直角坐标系,描出上表中对应值为坐标的点,画出该函数的图象,如图2; (3)结合画出的函数图象,解决问题:①当CE 的长约为 cm 时,△AED 的周长最小; ②当CE 的长约为 cm 时,△AED 的周长等于CE 的长的3倍.图1y/25. 某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达到6分及以上为合格,达到9分及以上为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如下.(1)补充完成下列的成绩统计分析表:(2分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组学生;(填“甲”或“乙”)(3)如果学校准备推荐其中一个组参加区级比赛,你推荐____参加,请你从两个不同的角度说明推荐理由.26. 已知二次函数2y x ax b =-+在0x =和4x =时的函数值相等. (1)求二次函数2y x ax b =-+的对称轴;(2)过P (0,1)作x 轴的平行线与二次函数2y x ax b =-+的图象交于不同的两点M 、N .①当2MN =时,求b 的值;②当=4PM PN +时,请结合函数图象,直接写出b 的取值范围.27. 如图,在等边ABC △中,点D 是线段BC 上一点.作射线AD ,点B 关于射线AD 的对称点为E .连接CE并延长,交射线AD 于点F .(1)设BAF α∠=,用α表示BCF ∠的度数;(2)用等式表示线段AF 、CF 、EF 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,已知点A (0,2),B (2,2),点M 为线段AB 上一点. (1)在点()2,1C ,()2,0D ,()1,2E 中,可以与点M 关于直线y x =对称的点是____________;(2)若x 轴上存在点N ,使得点N 与点M 关于直线y x b =+对称,求b 的取值范围.(3)过点O 作直线l ,若直线y x =上存在点N ,使得点N 与点M 关于直线l 对称(点M 可以与点N 重合),.请你直接写出点N 横坐标n 的取值范围.X k B 1。

2019届北京市东城区九年级上学期期末考试数学试卷【含答案及解析】

2019届北京市东城区九年级上学期期末考试数学试卷【含答案及解析】

2019届北京市东城区九年级上学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 若关于的方程有一个根为 -1,则的值为A. B. C. D.2. 二次函数的最大值为A.3 B.4 C.5 D.63. 一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球4. 在Rt△ABC中,∠C=90°,若BC=1,AC=2,则cosA的值为A. B. C. D.25. 若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx =5的解为A. B.C. D.6. 如图,在△ABC中,,,,则的值为A. B. C. D.7. 如图,⊙O的半径为3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠P=30°,则弦AB的长为A. B. C. D.28. 如图,点A, B, C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为A.70° B.90° C.110° D.120°9. 如图1,在中,,.点O是BC的中点,点D沿B→A→C方向从B运动到C.设点D经过的路径长为,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的A. B. C. D.二、填空题10. 请你写出一个一元二次方程,满足条件:①二次项系数是1;②方程有两个相等的实数根.此方程可以是.11. 将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为.12. 已知,AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点,若CD=,则⊙O半径的长为.13. 如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,则旗杆的高度为米.14. 如图,已知A(,2),B(,1),将△AOB绕着点O逆时针旋转90°,得到△A′O B′,则图中阴影部分的面积为.三、解答题15. 阅读下面材料:在数学课上,老师提出如下问题:小涵的主要作法如下:老师说:“小涵的作法正确.”请回答:小涵的作图依据是.16. 解方程:.17. 如图,△ABC中,D为BC 上一点,∠BAD=∠C,AB=6, BD=4,求CD的长.18. 已知:抛物线y=x2+(2m-1)x+m2-1经过坐标原点,且当x<0时,y随x的增大而减小.(1)求抛物线的解析式;(2)结合图象写出y<0时,对应的x的取值范围;(3)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.当BC=1时,直接写出矩形ABCD的周长.19. 列方程或方程组解应用题:某公司在2013年的盈利额为200万元,预计2015年的盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,求该公司这两年盈利额的年平均增长率是多少?20. 如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′,使它和△ABC关于点O成中心对称;(2)请在方格网中标出所有的D 点,使以点A,O,C′,D为顶点的四边形是平行四边形.21. 石头剪子布,又称“猜丁壳”,是一种起源于中国流传多年的猜拳游戏.游戏时的各方每次用一只手做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头” .两人游戏时,若出现相同手势,则不分胜负游戏继续,直到分出胜负,游戏结束.三人游戏时,若三种手势都相同或都不相同,则不分胜负游戏继续;若出现两人手势相同,则视为一种手势与第三人所出手势进行对决,此时,参照两人游戏规则.例如甲、乙二人同时出石头,丙出剪刀,则甲、乙获胜.假定甲、乙、丙三人每次都是随机地做这三种手势,那么:(1)直接写出一次游戏中甲、乙两人出第一次手势时,不分胜负的概率;(2)请你画出树状图求出一次游戏中甲、乙、丙三人出第一次手势时,不分胜负的概率.22. 如图,△ABC 中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)求证:DF是⊙O的切线;(2)若,半径OA=3,求AE的长.23. 如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度.他们采取的方法是:先在地面上的点A处测得杆顶端点P的仰角是45°,再向前走到B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°,这时只需要测出AB的长度就能通过计算求出电线杆PQ的高度.你同意他们的测量方案吗?若同意,画出计算时的图形,简要写出计算的思路,不用求出具体值;若不同意,提出你的测量方案,并简要写出计算思路.24. 请阅读下面材料,并回答所提出的问题.三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.已知:如图,△ABC中, AD是角平分线.求证:.证明:过C作CE∥DA,交BA的延长线于E.∴.①AD是角平分线,∴ ...②又,.③.(1)上述证明过程中,步骤①②③处的理由是什么?(写出两条即可)(2)用三角形内角平分线定理解答:已知,△ABC中,AD是角平分线,AB=7cm,AC=4cm,BC=6cm,求BD 的长;(3)我们知道如果两个三角形的高相等,那么它们面积的比就等于底的比.请你通过研究△ABD和△ACD面积的比来证明三角形内角平分线定理.25. 在平面直角坐标系xOy中,抛物线y=mx2-8mx+16m-1(m>0)与x轴的交点分别为A(x1,0),B(x2,0).(1)求证:抛物线总与x轴有两个不同的交点;(2)若AB=2,求此抛物线的解析式.(3)已知x轴上两点C(2,0),D(5,0),若抛物线y=mx2-8mx+16m-1(m>0)与线段CD有交点,请写出m的取值范围.26. 已知:在等边△ABC中, AB=,D,E分别是AB,BC的中点(如图1).若将△BDE绕点B逆时针旋转,得到△BD1E1,设旋转角为α(0°<α<180°),记射线CE1与AD1的交点为P.(1)判断△BDE的形状;(2)在图2中补全图形,a.猜想在旋转过程中,线段CE1与AD1的数量关系并证明;b.求∠APC的度数;(3)点P到BC所在直线的距离的最大值为.(直接填写结果)27. 已知两个函数,如果对于任意的自变量x,这两个函数对应的函数值记为y1,y2,都有点(x,y1)、(x,y2)关于点(x,x)对称,则称这两个函数为关于y=x的对称函数.例如,和为关于y=x的对称函数.(1)判断:①和;②和;③和,其中为关于y=x的对称函数的是__________(填序号).(2)若和()为关于y=x的对称函数.①求k、b的值.②对于任意的实数x,满足x>m时,恒成立,则m满足的条件为______.(3)若和为关于y=x的对称函数,且对于任意的实数x,都有,请结合函数的图象,求n的取值范围.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】。

2018-2019学年九年级(上)期末数学试卷(含解析)

2018-2019学年九年级(上)期末数学试卷(含解析)

2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,=×2×5=5.∴S△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C,D的坐标,进而可得出0<m<4,由点P的横坐标为m可得出点P,E的坐标,进而可得出PE=﹣m2+m+2,再利用二次函数的性质即可解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P,C,D的坐标可求出点Q的坐标,此题得解.【解答】解:(1)将A(﹣1,0),B(5,0)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵直线y=﹣x+3与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,3),点D的坐标为(4,0),∴0<m<4.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+4m+5),点E的坐标为(m,﹣m+3),∴PE=﹣m2+4m+5﹣(﹣m+3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,0<<4,∴当m=时,PE最长.(3)由(2)可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。

2019-2020学年北京市通州区八年级上册期末数学试卷(有答案)【最新版】

2019-2020学年北京市通州区八年级上册期末数学试卷(有答案)【最新版】

2019-2020学年北京市通州区八年级(上)期末数学试卷一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.若代数式有意义,则x的取值是()A.x=2B.x≠2C.x=3D.x≠﹣32.若代数式有意义,则x的取值是()A.x=0B.x≠0C.x≥0D.x>03.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A.B.C.D.4.如图:过△ABC的边BC上一点D作DF∥AC,若∠A=40°,∠B=60°,则∠FDB的度数为()A.40°B.60°C.100°D.120°5.下列多边形中,内角和为720°的图形是()A.B.C.D.6.如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边DE的对应边为()A.BE B.AB C.CA D.BC7.在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是()A.A B.B C.C D.D8.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是()A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同B.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同二、填空题(共8道小题,每小题2分,共16分)9.在括号内填入适当的整式,使分式值不变:.10.实数的平方根是.11.=.12.写出一个比4大且比5小的无理数:.13.如图,在△ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC延长线上一点,∠DAC=130°,则∠ECF的度数为.14.等腰三角形的一腰长为3,底边长为4,那么它底边上的高为.15.在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是.16.如图,在△ABC中,按以下步骤作图:①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;②分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点F;③作射线BF交AC于G.如果BG=CG,∠A=60°,那么∠ACB的度数为.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:18.计算:19.=.20.解方程:.21.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.22.已知a﹣b=2,求代数式的值.23.如果a2+2a﹣1=0,求代数式(a﹣)•的值.24.已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.25.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.26.已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过A的直线m不与直线l及直线AB重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.(1)依题意补全图形;(2)求证:△AEC≌△BDA.27.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②若∠B=60°,求证:BD=BC.28.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q 关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:PA=PM.2019-2020学年北京市通州区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.若代数式有意义,则x的取值是()A.x=2B.x≠2C.x=3D.x≠﹣3【分析】根据分式有意义分母不等于0列式计算,求出x的取值范围即可得解.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故选:D.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)如果分式无意义,那么分母为零;(2)如果分式有意义,那么分母不为零;(3)如果分式的值为零,那么分子为零且分母不为零.反之也成立.2.若代数式有意义,则x的取值是()A.x=0B.x≠0C.x≥0D.x>0【分析】二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.【解答】解:由题意得:x≥0,故选:C.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.3.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.4.如图:过△ABC的边BC上一点D作DF∥AC,若∠A=40°,∠B=60°,则∠FDB的度数为()A.40°B.60°C.100°D.120°【分析】依据三角形内角和定理,即可得到∠C的度数,再根据平行线的性质,即可得到∠FDB 的度数.【解答】解:∵∠A=40°,∠B=60°,∴∠C=80°,又∵DF∥AC,∴∠CDF=∠C=80°,∴∠FDB=100°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.下列多边形中,内角和为720°的图形是()A.B.C.D.【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是六,故选:D.【点评】本题考查了多边形内角和定理,此题只要结合多边形的内角和公式,寻求等量关系,构建方程求解.6.如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边DE的对应边为()A.BE B.AB C.CA D.BC【分析】全等三角形的对应边相等,根据全等三角形的性质即可得出结论.【解答】解:∵△ABC与△BDE全等,BD<DE<BE,BC<AB<AC,∴在这两个三角形中边DE的对应边为AB,故选:B.【点评】本题主要考查了全等三角形的性质,解决问题的关键是掌握:全等三角形的对应边相等.7.在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是()A.A B.B C.C D.D【分析】首先判断出的取值范围,然后根据:一般来说,当数轴方向朝右时,右边的数总比左边的数大,判定出这个点是哪个即可.【解答】解:∵2.5<<3,∴在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是D.故选:D.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.8.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是()A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同B.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同【分析】利用随机事件发生的可能性是否一样对各选项进行判断.【解答】解:A、在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性不相同,应该对50件产品编序号,然后抽取序号的方式,这样满足是随机事件且该事件每个结果发生的可能性都相等;B、一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同,这个事件满足是随机事件且该事件每个结果发生的可能性都相等;C、小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性不相同;D、口袋里有5个颜色不同的球,从口袋里随意摸出一个球,满足摸出每个球的可能性相同,则要使5个球只是颜色不同,其它都一样.故选:B.【点评】本题考查了可能性的大小:对于机事件发生的可能性(概率)的计算方法,只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.二、填空题(共8道小题,每小题2分,共16分)9.在括号内填入适当的整式,使分式值不变:.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣a,得.∴括号内应填入﹣ab.故答案为:﹣ab.【点评】本题考查了分式的基本性质,解题时注意:分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.10.实数的平方根是.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±)2=,∴实数的平方根是±.故答案为±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11.=﹣2.【分析】根据简=|a|得到原式=|2﹣|,然后根据绝对值的意义去绝对值即可.【解答】解:原式=|2﹣|=﹣(2﹣)=﹣2.故答案为﹣2.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了绝对值的意义.12.写出一个比4大且比5小的无理数:.【分析】由于4=,5=,所以可写出一个二次根式,此根式的被开方数大于16且小于25即可.【解答】解:比4大且比5小的无理数可以是.故答案为.【点评】本题考查了对估算无理数的大小的应用,注意:无理数是指无限不循环小数,此题是一道开放型的题目,答案不唯一.13.如图,在△ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC延长线上一点,∠DAC=130°,则∠ECF的度数为100°.【分析】根据等腰三角形的性质和三角形的内角和解答即可.【解答】解:∵∠DAC=130°,∠DAC+∠CAB=180°,∴∠CAB=50°,∵AC=BC,∴∠CBA=50°,∠ACB=180°﹣50°﹣50°=80°,∴∠ECF=180°﹣80°=100°,故答案为:100°.【点评】此题考查等腰三角形的性质和三角形内角和,关键是根据等腰三角形的性质和三角形的内角和解答.14.等腰三角形的一腰长为3,底边长为4,那么它底边上的高为.【分析】等腰三角形的腰和底边高线构成直角三角形,根据勾股定理即可求得底边上高线的长度.【解答】解:如图,∵AB=AC=3,BC=4,AD⊥BC,∴BD=DC=2,在Rt△ABD中,由勾股定理得:AD==.故答案为:.【点评】本题主要考查了等腰三角形的性质以及勾股定理的应用.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.15.在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变.【分析】依据分式的基本性质进行判断即可.【解答】解:在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变,故答案为:分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变.【点评】本题主要考查了解分式方程,解决问题的关键是掌握解分式方程的基本步骤.16.如图,在△ABC中,按以下步骤作图:①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;②分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点F;③作射线BF交AC于G.如果BG=CG,∠A=60°,那么∠ACB的度数为40°.【分析】利用基本作图可判断BG平分∠ABC,则∠ABG=∠CBG,再利用BG=CG得到∠C=∠CBG,然后根据三角形内角和计算∠C的度数.【解答】解:由作法得BG平分∠ABC,∴∠ABG=∠CBG,∵BG=CG,∴∠C=∠CBG,∴∠ABG=∠CBG=∠C,∵∠A+∠ABC+∠C=180°,即60°+3∠C=180°,∴∠C=40°.故答案为40°.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:【分析】先通分化为同分母分式,再利用同分母分式的加减法则计算,约分得到最简结果.【解答】解:原式=====.【点评】本题考查了分式的加减运算,掌握运算法则是解题的关键.18.计算:【分析】可运用平方差公式,直接计算出结果.【解答】解:原式==12﹣2=10.【点评】本题考查了乘法的平方差公式.掌握平方差公式的结构特点是解决本题的关键.19.=.【分析】先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验即可.【解答】解:方程两边同时乘以2x(x+3)得,x+3=4x,整理得,3x=3,解得x=1,把x=1代入2x(x+3)得,2x(x+3)=8,故x=1是原分式方程的解.【点评】本题考查的是解分式方程,在解答此类问题时要注意验根.20.解方程:.【分析】观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)整理,得2x=4(3分)x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.【分析】利用SAS证明△ABC≌△DCE,根据全等三角形的对应边相等即可得到AB=CD.【解答】解:∵BC∥DE∴∠ACB=∠E,在△ABC和△DCE中∵∴△ABC≌△DCE(SAS)∴AB=CD.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△ABC≌△DCE (SAS).22.已知a﹣b=2,求代数式的值.【分析】原式括号中通分并利用同分母分式的加减法则计算,约分得到最简结果,把a﹣b=2整体代入计算即可求出值.【解答】解:原式====,当a﹣b=2时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.如果a2+2a﹣1=0,求代数式(a﹣)•的值.【分析】原式括号中通分并利用同分母分式的加减法则计算,约分得到最简结果,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:原式====a(a+2)=a2+2a,∵a2+2a﹣1=0,∴原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.【分析】欲证明△ADE是等腰三角形,只要证明∠ADE=∠1即可.【解答】证明:∵DE∥AC,∴∠ADE=∠2,∵∠1=∠2,∴∠ADE=∠1,∴EA=ED,即△ADE是等腰三角形.【点评】本题考查等腰三角形的判定,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.【分析】连接AC,首先由勾股定理求得AC2的值;然后在直角△ACD中,再次利用勾股定理来求AD的长度即可.【解答】解:连接AC,∵∠B=90°∴AC2=AB2+BC2.∵AB=BC=2∴AC2=8.∵∠D=90°∴AD2=AC2﹣CD2.∵CD=1,∴AD2=7.∴.【点评】考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.26.已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过A的直线m不与直线l及直线AB重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.(1)依题意补全图形;(2)求证:△AEC≌△BDA.【分析】(1)根据要求画出图形即可.(2)根据AAS证明即可.【解答】(1)解:如图所示.(2)证明:∵直线l⊥AB,∴∠CAB=90°,∴∠CAE+∠DAB=90°,∵BD⊥m,∴∠ADB=90°,∴∠DAB+∠B=90°,∴∠CAE=∠B,∵BD⊥m于点D,CE⊥m于点E,∴∠CEA=∠DAB=90°,在△AEC和△BDA中,,∴△AEC≌△BDA(AAS).【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.27.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②若∠B=60°,求证:BD=BC.【分析】(1)分别以A,B为圆心,大于AB长的一半为半径画弧,过两弧的交点作直线l即可;(2)①依据图形即可得到∠ABC度数的取值范围.②连接AC,依据线段垂直平分线的性质以及等边三角形的性质,即可得到结论.【解答】解:(1)如图所示,直线l即为所求,(2)①当垂足E在线段BC上时,45°≤∠ABC<90°;②如图,连接AC,∵CD是AB的垂直平分线∴,CA=CB,又∵∠B=60°,∴△ABC是等边三角形,∴BC=AB,∴.【点评】本题主要考查了基本作图以及线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.28.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q 关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:PA=PM.【分析】(1)根据三角形的外角性质得到∠APC,由等腰三角形的性质即可得到结论;(2)①根据题意补全图形即可;②过点A作AH⊥BC于点H,根据等边三角形的判定和性质解答即可.【解答】解:(1)∵△ABC为等边三角形∴∠B=60°∴∠APC=∠BAP+∠B=80°∵AP=AQ∴∠AQB=∠APC=80°,(2)①补全图形如图所示,②证明:过点A作AH⊥BC于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠PAB=∠QAC,∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM∴∠PAB=∠MAC,AQ=AM∴∠PAM=∠BAC=60°,∴△APM为等边三角形∴PA=PM.【点评】本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角的性质,轴对称的性质,熟练掌握等边三角形的判定和性质是解题的关键.。

2019-2020年初三第一次阶段性测试数学试卷及答案

2019-2020年初三第一次阶段性测试数学试卷及答案

2019-2020年初三第一次阶段性测试数学试卷及答案一、填空题:(本大题每题2分,共20分,把答案填写在题中横线上)1、┃π-14.3┃=_____________;若a <0,则3322a a a a +++=____________.2、当a __________时,42-a 无意义;22--x x有意义的条件是_____________. 3、已知一个样本1,2,3,x ,5,它的平均数是3,则这个样本的极差是___________;方差是____________.4、某校九年级上学期期末统一考试后,甲、乙两班的数学成绩(单位:分)的统计情况如下表所示:从各统计指标(平均分、中位数、众数、方差)综合来看,你认为______班的成绩较好。

5、若关于x 的方程22)2()1(2+=--b x a x 有两个相等的实根,则=a ________;=b ________.6、已知菱形ABCD 中对角线AC 、BD 相交于点O ,添加条件______________或_____________可使菱形ABCD 成为正方形.7、已知点C 为线段AB 的黄金分割点,且AC=1㎝,则线段AB 的长为____________________.8、如图,E 为□ABCD 中AD 边上的一点,将△ABE 沿BE 折叠使得点A 刚好落在BC 边上的F 点处,若AB 为4,ED 为3,则□ABCD 的周长为_________.9、已知:如图,矩形ABCD 的对角线相交于O ,AE 平分∠BAD 交BC 于E ,∠CAE=15°, 则∠BOE=_______°.第8题图 第9题图 第10题图10、如图,折叠直角梯形纸片的上底AD ,点D 落在底边BC 上点F 处,已知DC=8㎝,FC = 4㎝,则EC 长 ㎝.二、选择题:(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 11、下列各式中与327x --是同类二次根式的是【 】.A 、327x B 、273x - C 、2391x -- D 、3x12、在下列各式的化简中,化简正确的有【 】. ①3a =a a ;②5x x -x x =4x x ;③6a2b a =ab ab 23 ;④24+61=86 A 、1个 B 、2个 C 、3个 D 、4个 13、下面是李刚同学在一次测验中解答的填空题,其中答对的是【 】. A 、若x 2=4,则x =2B 、方程x (2x -1)=2x -1的解为x =1C 、若x 2+2x +k =0的一个根为1,则3-=kD 、若分式1232-+-x x x 的值为零,则x =1,214、若关于x 的方程06)(22=+--x k x x 无实根,则k 可取的最小整数为【 】. A 、5- B 、4- C 、3- D 、2-15、甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后填入下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);(3)甲班成绩比乙班成绩波动大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市通州区九年级(上)期末测试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个.1.已知2a=3b,则的值为()A.B.C.D.2.函数y=中自变量x的取值范围是()A.x≠1 B.x≠0 C.x>0 D.全体实数3.下列图形中有可能与图相似的是()A.B.C.D.4.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值为()A.B.C.D.5.如图,A,B,C,D是⊙O上的四个点,AD∥BC.那么与的数量关系是()A. = B.> C.< D.无法确定6.如图,图象对应的函数表达式为()A.y=5x B.C.D.7.在抛物线y=﹣2(x﹣1)2上的一个点是()A.(2,3)B.(﹣2,3)C.(1,﹣5)D.(0,﹣2)8.如图,某学校数学课外活动小组的同学们,为了测量一个小湖泊两岸的两棵树A和B之间的距离,在垂直AB的方向AC上确定点C,如果测得AC=75米,∠ACB=55°,那么A和B之间的距离是()米.A.75•sin55°B.75•cos55°C.75•tan55°D.9.在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点A,B,C,则对系数a和b判断正确的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>010.如图,在⊙O中,直径AB⊥CD于点E,AB=8,BE=1.5,将沿着AD对折,对折之后的弧称为M,则点O与M所在圆的位置关系为()A.点在圆上B.点在圆内C.点在圆外D.无法确定二、填空题(本题共18分,每小题3分)11.计算cos60°= .12.把二次函数y=x2﹣2x+3化成y=a(x﹣h)2+k的形式为.13.如图,A,B,C,D分别是∠α边上的四个点,且CA,DB均垂直于∠α的一条边,如果CA=AB=2,BD=3,那么tanα= .14.如图,在△ABC中,点O是△ABC的内心,∠BOC=118°,∠A= °.15.二次函数y=x2﹣x﹣2的图象如图所示,那么关于x的方程x2﹣x﹣2=0的近似解为(精确到0.1).16.数学课上,老师介绍了利用尺规确定残缺纸片圆心的方法.小华对数学老师说:“我可以用拆叠纸片的方法确定圆心”.小华的作法如下:第一步:如图1,将残缺的纸片对折,使的端点A与端点B重合,得到图2;第二步:将图2继续对折,使的端点C与端点B重合,得到图3;第三步:将对折后的图3打开如图4,两条折痕所在直线的交点即为圆心O.老师肯定了他的作法.那么他确定圆心的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:3tan30°+cos245°﹣sin60°.18.计算:(π﹣3)0+4sin45°﹣+|1﹣|.19.已知△ABC,求作△ABC的内切圆.20.如图,四边形ABCD∽四边形EFGH,连接对角线AC,EG.求证△ACD∽△EGH.21.二次函数y=x2+(2m+1)x+m2﹣1与x轴交于A,B两个不同的点.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时A,B两点的坐标.22.在平面直角坐标系xOy中,直线y=﹣x+1与双曲线y=相交于点A(m,2).(1)求反比例函数的表达式;(2)画出直线和双曲线的示意图;(3)过动点P(n,0)且垂于x轴的直线与y=﹣x+1及双曲线y=的交点分别为B和C,当点B位于点C上方时,根据图形,直接写出n的取值范围.23.如图,⊙O的直径AB垂直弦CD于点E,AB=8,∠A=22.5°,求CD的长.24.在数学活动课上,老师带领学生去测量操场上树立的旗杆的高度,老师为同学们准备了如下工具:①高为m米的测角仪,②长为n米的竹竿,③足够长的皮尺.请你选用以上的工具,设计一个可以通过测量,求出国旗杆高度的方案(不用计算和说明,画出图形并标记可以测量的长度或者角度即可,可测量的角度选用α,β,γ标记,可测量的长度选用a,b,c,d标记,测角仪和竹竿可以用线段表示).(1)你选用的工具为:;(填序号即可)(2)画出图形.25.如图,在△ABC中,F是AB上一点,以AF为直径的⊙O切BC于点D,交AC于点G,AC∥OD,OD与GF交于点E.(1)求证:BC∥GF;(2)如果tanA=,AO=a,请你写出求四边形CGED面积的思路.26.有这样一个问题:探究函数y=x﹣的图象与性质.小东根据学习函数的经验,对函数y=x﹣的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x﹣的自变量x的取值范围是;(2)下表是y与x的几组对应值,求m的值;点,画出该函数的图象;(4)进一步探究发现,该函数图象在第三象限内的最高点的坐标是(﹣2,﹣),结合函数的图象,写出该函数的其它性质(一条即可).27.已知:过点A(3,0)直线l1:y=x+b与直线l2:y=﹣2x交于点B.抛物线y=ax2+bx+c的顶点为B.(1)求点B的坐标;(2)如果抛物线y=ax2+bx+c经过点A,求抛物线的表达式;(3)直线x=﹣1分别与直线l1,l2交于C,D两点,当抛物线y=ax2+bx+c与线段CD有交点时,求a的取值范围.28.在等边△ABC中,E是边BC上的一个动点(不与点B,C重合),∠AEF=60°,EF交△ABC 外角平分线CD于点F.(1)如图1,当点E是BC的中点时,请你补全图形,直接写出的值,并判断AE与EF的数量关系;(2)当点E不是BC的中点时,请你在图(2)中补全图形,判断此时AE与EF的数量关系,并证明你的结论.29.在平面直角坐标系xOy中,若P和Q两点关于原点对称,则称点P与点Q是一个“和谐点对”,表示为[P,Q],比如[P(1,2),Q(﹣1,﹣2)]是一个“和谐点对”.(1)写出反比例函数y=图象上的一个“和谐点对”;(2)已知二次函数y=x2+mx+n,①若此函数图象上存在一个和谐点对[A,B],其中点A的坐标为(2,4),求m,n的值;②在①的条件下,在y轴上取一点M(0,b),当∠AMB为锐角时,求b的取值范围.北京市通州区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个.1.已知2a=3b,则的值为()A.B.C.D.【考点】S1:比例的性质.【分析】根据等式的性质,可得答案.【解答】解:两边都除以2b,得=,故选:B.2.函数y=中自变量x的取值范围是()A.x≠1 B.x≠0 C.x>0 D.全体实数【考点】G4:反比例函数的性质.【分析】根据分式有意义,分母不等于0解答.【解答】解:函数y=中自变量x的取值范围是x≠0.故答案为:x≠0.3.下列图形中有可能与图相似的是()A.B.C.D.【考点】S5:相似图形.【分析】根据相似图形的定义直接判断即可.【解答】解:观察图形知该图象是一个四边形且有一个角为直角,只有C符合,故选C.4.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值为()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】利用勾股定理求出AB的长度,然后根据sinB=代入数据进行计算即可得解.【解答】解:∵∠C=Rt∠,AC=4,BC=3,∴AB===5,∴sinB==.故选D.5.如图,A,B,C,D是⊙O上的四个点,AD∥BC.那么与的数量关系是()A. = B.> C.< D.无法确定【考点】M4:圆心角、弧、弦的关系.【分析】根据平行线的性质得∠DAC=∠ACB,根据圆周角定理得=.【解答】证明:连接AC,∵AD∥BC,∴∠DAC=∠ACB,∴=.故选:A.6.如图,图象对应的函数表达式为()A.y=5x B.C.D.【考点】G2:反比例函数的图象.【分析】根据函数的图象的形状及位置确定函数的表达式即可.【解答】解:∵函数的图象为双曲线,∴为反比例函数,∵反比例函数的图象位于二、四象限,∴k<0,只有D符合,故选D.7.在抛物线y=﹣2(x﹣1)2上的一个点是()A.(2,3)B.(﹣2,3)C.(1,﹣5)D.(0,﹣2)【考点】H5:二次函数图象上点的坐标特征.【分析】把各点的横坐标代入函数式,比较纵坐标是否相符,逐一检验.【解答】解:A、x=2时,y=﹣2(x﹣1)2=﹣2≠3,点(2,3)不在抛物线上,B、x=﹣2时,y=﹣2(x﹣1)2=﹣18≠3,点(﹣2,3)不在抛物线上,C、x=1时,y=﹣2(x﹣1)2=0≠﹣5,点(1,﹣5)不在抛物线上,D、x=0时,y=﹣2(x﹣1)2=﹣2,点(0,﹣2)在抛物线上,故选D.8.如图,某学校数学课外活动小组的同学们,为了测量一个小湖泊两岸的两棵树A和B之间的距离,在垂直AB的方向AC上确定点C,如果测得AC=75米,∠ACB=55°,那么A和B之间的距离是()米.A.75•sin55°B.75•cos55°C.75•tan55°D.【考点】T8:解直角三角形的应用.【分析】根据题意,可得Rt△ABC,同时可知AC与∠ACB.根据三角函数的定义解答.【解答】解:根据题意,在Rt△ABC,有AC=75,∠ACB=55°,且tanα=,则AB=AC×tan55°=75•tan55°,故选C.9.在平面直角坐标系xOy中,二次函数y=ax2+bx的图象经过点A,B,C,则对系数a和b判断正确的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0【考点】H4:二次函数图象与系数的关系.【分析】根据二次函数y=ax2+bx的图象经过点A,B,C,画出函数图象的草图,根据开口方向和对称轴即可判断.【解答】解:由题意知,二次函数y=ax2+bx的图象经过点A,B,C,则函数图象如图所示,∴a>0,﹣<0,∴b>0,故选:A.10.如图,在⊙O中,直径AB⊥CD于点E,AB=8,BE=1.5,将沿着AD对折,对折之后的弧称为M,则点O与M所在圆的位置关系为()A.点在圆上B.点在圆内C.点在圆外D.无法确定【考点】M8:点与圆的位置关系;M2:垂径定理;PB:翻折变换(折叠问题).【分析】作辅助线,根据垂径定理得:AF=FD=AD,根据直径得出半径的长为4,根据勾股定理计算得出ED和AD的长,接着计算OF和FH的长,做比较,O与新圆心的距离小于半径的长,得出结论.【解答】解:过O作OF⊥AD,交⊙O于G,交M于H,连接OD,∵AB为⊙O的直径,AB=8,∴OA=OB=OG=OD=4,∵BE=1.5,∴OE=4﹣1.5=2.5,在Rt△OED中,由勾股定理得:DE===,在RtAED中,AD====2,∵OF⊥AD,∴AF=AD=,由勾股定理得:OF===,由折叠得:M所在圆与圆O是等圆,∴M所在圆的半径为4,∴FH=FG=4﹣,∵4﹣>,∴FH>OF,∴O在M所在圆内,故选B.二、填空题(本题共18分,每小题3分)11.计算cos60°= .【考点】T5:特殊角的三角函数值.【分析】根据记忆的内容,cos60°=即可得出答案.【解答】解:cos60°=.故答案为:.12.把二次函数y=x2﹣2x+3化成y=a(x﹣h)2+k的形式为y=(x﹣1)2+2 .【考点】H9:二次函数的三种形式.【分析】根据配方法的操作整理即可得解.【解答】解:y=x2﹣2x+3,=x2﹣2x+1+2,=(x﹣1)2+2,所以,y=(x﹣1)2+2.故答案为:y=(x﹣1)2+2.13.如图,A,B,C,D分别是∠α边上的四个点,且CA,DB均垂直于∠α的一条边,如果CA=AB=2,BD=3,那么tanα= .【考点】T7:解直角三角形.【分析】根据三角函数的定义即可得到结论.【解答】解:∵AC⊥OB,BD⊥OB,∴∠OAC=∠OBD=90°,∴tanα=,∵CA=AB=2,BD=3,∴,∴OA=4,∴tanα==;故答案为:.14.如图,在△ABC中,点O是△ABC的内心,∠BOC=118°,∠A= 56 °.【考点】MI:三角形的内切圆与内心.【分析】先根据∠BOC=118°求出∠OBC+∠OCB的度数,再由角平分线的性质求出∠ABC+∠ACB 的度数,由三角形内角和定理即可得出结论.【解答】解:∵∠BOC=118°,∴∠OBC+∠OCB=180°﹣118°=62°.∵点O是△ABC的∠ABC与∠ACB两个角的角平分线的交点,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=124°,∴∠A=180°﹣124°=56°.故答案为:56.15.二次函数y=x2﹣x﹣2的图象如图所示,那么关于x的方程x2﹣x﹣2=0的近似解为x1=﹣1.3,x2=4.3 (精确到0.1).【考点】HB:图象法求一元二次方程的近似根.【分析】根据二次函数图象与x轴交点的横坐标是相应的一元二次方程的解,可得一元二次方程的近似根.【解答】解:∵抛物线y=x2﹣x﹣2与x轴的两个交点分别是(﹣1.3,0)、(4.3,0),又∵抛物线y=x2﹣x﹣2与x轴的两个交点,就是方程x2﹣x﹣2=0的两个根,∴方程x2﹣x﹣2=0的两个近似根是4.3或﹣1.3故答案为x1=﹣1.3,x2=4.3.16.数学课上,老师介绍了利用尺规确定残缺纸片圆心的方法.小华对数学老师说:“我可以用拆叠纸片的方法确定圆心”.小华的作法如下:第一步:如图1,将残缺的纸片对折,使的端点A与端点B重合,得到图2;第二步:将图2继续对折,使的端点C与端点B重合,得到图3;第三步:将对折后的图3打开如图4,两条折痕所在直线的交点即为圆心O.老师肯定了他的作法.那么他确定圆心的依据是轴对称图形的性质及圆心到圆上各点的距离相等.【考点】N3:作图—复杂作图;M2:垂径定理;PB:翻折变换(折叠问题).【分析】由圆心到圆上各点的距离相等知圆心在AB和BC的中垂线上,再结合轴对称图形的性质知两条折痕即为AB、BC的中垂线,从而得出答案.【解答】解:如图,第一步对折由轴对称图形可知OC是AB的中垂线,点O在AB中垂线上;第二步对折由轴对称图形可知OD是BC的中垂线,点O在BC中垂线上;从而得出点O在AB、BC中垂线交点上,故答案为:轴对称图形的性质及圆心到圆上各点的距离相等.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:3tan30°+cos245°﹣sin60°.【考点】T5:特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:3tan30°+cos245°﹣sin60°==.18.计算:(π﹣3)0+4sin45°﹣+|1﹣|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】本题涉及零指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:==1+2﹣2+﹣1=.19.已知△ABC,求作△ABC的内切圆.【考点】N3:作图—复杂作图;MI:三角形的内切圆与内心.【分析】圆心到各边的距离相等所以要作各角的角平分线的交点,交点就是圆的圆心,圆的半径是圆心到各边的距离.【解答】解:20.如图,四边形ABCD∽四边形EFGH,连接对角线AC,EG.求证△ACD∽△EGH.【考点】S8:相似三角形的判定;S6:相似多边形的性质.【分析】根据四边形ABCD∽四边形EFGH相似的性质,得出对应边的必相等,对应角相等,从而得出△ACD∽△EGH.【解答】证明:∵四边形ABCD∽四边形EFGH,∴,∴△ADC ∽△EHG .21.二次函数y=x 2+(2m+1)x+m 2﹣1与x 轴交于A ,B 两个不同的点. (1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时A ,B 两点的坐标. 【考点】HA :抛物线与x 轴的交点.【分析】(1)根据二次函数与x 轴有两个不同的交点结合根的判别式即可得出关于m 的一元一次不等式,解之即可得出结论;(2)将m=1代入原函数解析式,令y=0求出x 值,进而即可找出点A 、B 的坐标,此题得解.【解答】解:(1)∵二次函数y=x 2+(2m+1)x+m 2﹣1与x 轴交于A ,B 两个不同的点, ∴一元二次方程x 2+(2m+1)x+m 2﹣1=0有两个不相等的实数根, ∴△=(2m+1)2﹣4(m 2﹣1)=4m+5>0,解得:m >﹣.(2)当m=1时,原二次函数解析式为y=x 2+3x , 令y=x 2+3x=0, 解得:x 1=﹣3,x 2=0,∴当m=1时,A 、B 两点的坐标为(﹣3,0)、(0,0).22.在平面直角坐标系xOy 中,直线y=﹣x+1与双曲线y=相交于点A (m ,2). (1)求反比例函数的表达式; (2)画出直线和双曲线的示意图;(3)过动点P (n ,0)且垂于x 轴的直线与y=﹣x+1及双曲线y=的交点分别为B 和C ,当点B 位于点C 上方时,根据图形,直接写出n 的取值范围 0<n <2,n <﹣1 . 【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据直线上点的坐标特征求出m ,把点A 的坐标代入反比例函数解析式,计算即可;(2)根据题意画出图象; (3)结合图象解答.【解答】解(1)∵点A (m ,2)在直线y=﹣x+1上,解得,m=﹣1,∴A(﹣1,2),∵点A(﹣1,2)在双曲线y=上,∴k=﹣2,∴反比例函数的表达式为:y=﹣;(2)直线和双曲线的示意图如图所示:(3)由图象可知,当0<n<2,n<﹣1时,点B位于点C上方.23.如图,⊙O的直径AB垂直弦CD于点E,AB=8,∠A=22.5°,求CD的长.【考点】M2:垂径定理.【分析】根据圆周角定理得出∠COE的度数,在Rt△ACE中,由三角函数的定义得出CE,再由垂径定理得出CD即可.【解答】解:∵AB=8,∴OC=OA=4,∵∠A=22.5°,∴∠COE=2∠A=45°,∵直径AB垂直弦CD于E,∴,24.在数学活动课上,老师带领学生去测量操场上树立的旗杆的高度,老师为同学们准备了如下工具:①高为m米的测角仪,②长为n米的竹竿,③足够长的皮尺.请你选用以上的工具,设计一个可以通过测量,求出国旗杆高度的方案(不用计算和说明,画出图形并标记可以测量的长度或者角度即可,可测量的角度选用α,β,γ标记,可测量的长度选用a,b,c,d标记,测角仪和竹竿可以用线段表示).(1)你选用的工具为:①③;(填序号即可)(2)画出图形.【考点】T8:解直角三角形的应用;SA:相似三角形的应用.【分析】(1)利用测角仪以及足够长的皮尺即可解决问题;(2)根据仰角的知识,确定测量方案,进而得出答案.【解答】解:(1)选用的工具为:①③;故答案为:①③;(2)如图所示:可以量出AM,AC,AB的长,以及α,β的度数,即可得出DC,NC的长.25.如图,在△ABC中,F是AB上一点,以AF为直径的⊙O切BC于点D,交AC于点G,AC∥OD,OD与GF交于点E.(1)求证:BC∥GF;(2)如果tanA=,AO=a,请你写出求四边形CGED面积的思路.【考点】MC:切线的性质;T7:解直角三角形.【分析】(1)根据切线的性质,可得OD⊥BC,利用平行线的性质可证得∠C=90°,由AF为直径,可得∠AGF=90°,进而可得BC∥GF;(2)先证明四边形CGED为矩形,再根据锐角三角函数、勾股定理求GF,OE,DE的长,进而可求四边形CGED的面积.【解答】证明:(1)∵⊙O切BC于点D,∴OD⊥BC,∵AC∥OD,∴∠C=∠ODB=90°,∵AF为⊙O直径,∴∠AGF=90°=∠C,∴BC∥GF.解:(2)∵AC∥OD,BC∥GF∴四边形CGED为平行四边形,∵∠C=90°,∴四边形CGED为矩形,∵tanA=,∴sinA=,∵AF=2AO=2a,OF=a,∴GF=AF•sinA=2a×=,∵OD⊥BC,∴GE=EF==,在Rt△OEF中,OE===,∴DE=OD﹣OE=a﹣=,=GE•DE=×=.∴S四边形CGED26.有这样一个问题:探究函数y=x﹣的图象与性质.小东根据学习函数的经验,对函数y=x﹣的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x﹣的自变量x的取值范围是x≠0 ;(2)下表是y与x的几组对应值,求m的值;点,画出该函数的图象;(4)进一步探究发现,该函数图象在第三象限内的最高点的坐标是(﹣2,﹣),结合函数的图象,写出该函数的其它性质(一条即可)当x>0时,y随x的增大而增大.【考点】H3:二次函数的性质;62:分式有意义的条件;H2:二次函数的图象;H7:二次函数的最值.【分析】(1)由分母不为0,可得出自变量x的取值范围;(2)将x=4代入函数表达式中,即可求出m值;(3)连线,画出函数图象;(4)观察函数图象,找出函数性质.【解答】解:(1)∵x2在分母上,∴x≠0.故答案为:x≠0.(2)当x=4时,m=x﹣=×4﹣=.(3)连线,画出函数图象,如图所示.(4)观察图象,可知:当x>0时,y随x的增大而增大.故答案为:当x>0时,y随x的增大而增大.27.已知:过点A(3,0)直线l1:y=x+b与直线l2:y=﹣2x交于点B.抛物线y=ax2+bx+c的顶点为B.(1)求点B的坐标;(2)如果抛物线y=ax2+bx+c经过点A,求抛物线的表达式;(3)直线x=﹣1分别与直线l1,l2交于C,D两点,当抛物线y=ax2+bx+c与线段CD有交点时,求a的取值范围.【考点】H8:待定系数法求二次函数解析式;F5:一次函数的性质;F8:一次函数图象上点的坐标特征;H9:二次函数的三种形式.【分析】(1)将点A的坐标代入直线l1,求出其函数表达式,联立直线l1、l2表达式成方程组,解方程组即可得出点B的坐标;(2)设抛物线y=ax2+bx+c的顶点式为y=a(x﹣h)2+k,由抛物线的顶点坐标即可得出y=a(x ﹣1)2﹣2,再根据点C的坐标利用待定系数法即可得出结论;(3)根据两直线相交,求出点C、D的坐标,将其分别代入y=a(x﹣1)2﹣2中求出a的值,由此即可得出抛物线y=ax2+bx+c与线段CD有交点时,a的取值范围.【解答】解:(1)将A(3,0)代入直线l1:y=x+b中,0=3+b,解得:b=﹣3,∴直线l1:y=x﹣3.联立直线l1、l2表达式成方程组,,解得:,∴点B的坐标为(1,﹣2).(2)设抛物线y=ax2+bx+c的顶点式为y=a(x﹣h)2+k,∵抛物线y=ax2+bx+c的顶点为B(1,﹣2),∴y=a(x﹣1)2﹣2,∵抛物线y=ax2+bx+c经过点A,∴a(3﹣1)2﹣2=0,解得:a=,∴抛物线的表达式为y=(x﹣1)2﹣2.(3)∵直线x=﹣1分别与直线l1,l2交于C、D两点,∴C、D两点的坐标分别为(﹣1,﹣4),(﹣1,2),当抛物线y=ax2+bx+c过点C时,a(﹣1﹣1)2﹣2=﹣4,解得:a=﹣;当抛物线y=ax2+bx+c过点D时,a(﹣1﹣1)2﹣2=2,解得:a=1.∴当抛物线y=ax2+bx+c与线段CD有交点时,a的取值范围为﹣≤a≤1且a≠0.28.在等边△ABC中,E是边BC上的一个动点(不与点B,C重合),∠AEF=60°,EF交△ABC 外角平分线CD于点F.(1)如图1,当点E是BC的中点时,请你补全图形,直接写出的值,并判断AE与EF的数量关系;(2)当点E不是BC的中点时,请你在图(2)中补全图形,判断此时AE与EF的数量关系,并证明你的结论.【考点】S9:相似三角形的判定与性质;KK:等边三角形的性质.【分析】(1)由等边三角形的性质得到∠EAC=30°,得到∠CEF=30°,求得∠ECF=120°,得到∠EFC=30°,推出AC垂直平分EF,得到△AEF是等边三角形,于是得到结论;(2)连接AF,EF与AC交于点G.由CD是它的外角平分线.得到∠ACF=60°=∠AEF,根据相似三角形的性质得到,∠AFE=∠ACB=60°,得到△AEF为等边三角形,于是得到结论.【解答】解:(1);∵△ABC是等边三角形,点E是BC的中点,∴∠EAC=30°,∵∠AEF=60°,∴∠CEF=30°,∵CD平分△ABC外角,∴∠ECF=120°,∴∠EFC=30°,∴CE=CF,∴AC垂直平分EF,∴AE=AF;∴△AEF是等边三角形,∴AE=EF;(2)连接AF,EF与AC交于点G.∵在等边△ABC中,CD是它的外角平分线.∴∠ACF=60°=∠AEF,∵∠AGE=∠FGC∴△AGE∽△FGC,∴,∵∠AGF=∠EGC,∴△AGF∽△EGC,∵∠AFE=∠ACB=60°,∴△AEF为等边三角形,∴AE=EF.29.在平面直角坐标系xOy中,若P和Q两点关于原点对称,则称点P与点Q是一个“和谐点对”,表示为[P,Q],比如[P(1,2),Q(﹣1,﹣2)]是一个“和谐点对”.(1)写出反比例函数y=图象上的一个“和谐点对”;(2)已知二次函数y=x2+mx+n,①若此函数图象上存在一个和谐点对[A,B],其中点A的坐标为(2,4),求m,n的值;②在①的条件下,在y轴上取一点M(0,b),当∠AMB为锐角时,求b的取值范围.【考点】GB:反比例函数综合题.【分析】(1)由题目中所给和谐点对的定义可知P、Q即为关于原点对称的两个点,在反比例函数图象上找出两点即可;(2)①由A、B为和谐点对可求得点B的坐标,则可得到关于m、n的方程组,可求得其值;②当M在x轴上方时,可先求得∠AMB为直角时对应的M点的坐标,当点M向上运动时满足∠AMB为锐角;当点M在x轴下方时,同理可求得b的取值范围.【解答】解:∴可取[P(1,1),Q(﹣1,﹣1)];(2)①∵A(2,4)且A和B为和谐点对,∴B点坐标为(﹣2,﹣4),将A和B两点坐标代入y=x2+mx+n,可得,∴;②(ⅰ) M点在x轴上方时,若∠AMB 为直角(M点在x轴上),则△ABC为直角三角形,∵A(2,4)且A和B为和谐点对,∴原点O在AB线段上且O为AB中点,∴AB=2OA,∵A(2,4),∴OA=,∴AB=,在Rt△ABC中,∵O为AB中点∴MO=OA=,若∠AMB 为锐角,则;(ⅱ) M点在x轴下方时,同理可得,,综上所述,b的取值范围为或.2017年5月23日。

相关文档
最新文档