小学奥数种类型
二年级奥数30种题型
二年级奥数的30种题型:
1.归一问题
2.归总问题
3.和差问题
4.和倍问题
5.差倍问题
6.倍比问题
7.相遇问题
8.追及问题
9.植树问题
10.年龄问题
11.行船问题
12.列车问题
13.时钟问题
14.盈亏问题
15.工程问题
16.正反比例问题
17.按比例分配
18.百分数问题
19.“牛吃草”问题
20.鸡兔同笼问题
21.方阵问题
22.商品利润问题
23.存款利率问题
24.溶液浓度问题
25.构图布数问题
26.幻方问题
27.抽屉原则问题
28.公约公倍问题
29.最值问题
30.列方程问题
这些题型涵盖了二年级奥数的各个方面,对于提高学生的数学思维能力和解题能力有很大帮助。
但是请注意,这些题型的难度可能会因人而异,因此建议根据学生的实际情况来选择适合的题目进行练习。
小学奥数分类型讲解(60种)
小学奥数类型集锦1、最值问题【最小值问题】例1 外宾由甲地经乙地、丙地去丁地参观。
甲、乙、丙、丁四地和甲乙、乙丙、丙丁的中点,原来就各有一位民警值勤。
为了保证安全,上级决定在沿途增加值勤民警,并规定每相邻的两位民警(包括原有的民警)之间的距离都相等。
现知甲乙相距5000米,乙丙相距8000米,丙丁相距4000米,那么至少要增加______位民警。
(《中华电力杯》少年数学竞赛决赛第一试试题)讲析:如图5.91,现在甲、乙、丙、丁和甲乙、乙丙、丙丁各处中点各有一位民警,共有7位民警。
他们将上面的线段分为了2个2500米,2个4000米,2个2000米。
现要在他们各自的中间插入若干名民警,要求每两人之间距离相等,这实际上是要求将2500、4000、2000分成尽可能长的同样长的小路。
由于2500、4000、2000的最大公约数是500,所以,整段路最少需要的民警数是(5000+8000+4000)÷500+1=35(名)。
例2 在一个正方体表面上,三只蚂蚁分别处在A、B、C的位置上,如图5.92所示,它们爬行的速度相等。
若要求它们同时出发会面,那么,应选择哪点会面最省时?(湖南怀化地区小学数学奥林匹克预赛试题)讲析:因为三只蚂蚁速度相等,要想从各自的地点出发会面最省时,必须三者同时到达,即各自行的路程相等。
我们可将正方体表面展开,如图5.93,则A、B、C三点在同一平面上。
这样,便将问题转化为在同一平面内找出一点O,使O到这三点的距离相等且最短。
所以,连接A和C,它与正方体的一条棱交于O;再连接OB,不难得出AO=OC=OB。
故,O点即为三只蚂蚁会面之处。
【最大值问题】例1 有三条线段a、b、c,并且a<b<c。
判断:图5.94的三个梯形中,第几个图形面积最大?(全国第二届“华杯赛”初赛试题)讲析:三个图的面积分别是:三个面积数变化的部分是两数和与另一数的乘积,不变量是(a+b+c)的和一定。
小学奥数35个专题汇总
小学奥数35个专题汇总1.和差倍问题2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
小学奥数分类
一、行程问题:简单相遇、二次相遇、多次相遇、火车过桥、流水行船、环形跑道、基本行程、多人行程、钟面行程、走走停停、接送问题、发车问题、电梯行程、猎狗追兔、平均速度
二、数论问题:数的整除、约数倍数、余数问题、质数合数、奇偶分析、中国剩余定理、位值原理、完全平方数、整数拆分、进位制
三、几何问题:巧求周长、几何的五大模型、勾股定理与弦图、圆与扇形、立体图形的表面积和体积、立体图形染色计数、其它直线型几何问题、格点与面积
四、计数问题:加法原理、乘法原理、排列组合、枚举法、标数法、捆绑法、插板法、排除法、对应法、树形图法、归纳法、整体法、递推法、容斥原理
五、应用题:分数百分数应用题、工程问题、鸡兔同笼问题、盈亏问题、年龄问题、植树问题、牛吃草问题、经济利润问题、浓度问题、比例问题、还原问题
六、计算问题:数学计算公式、繁分数的计算、分数裂项与整数裂项、换元法、凑整、找规律、比较与估算、循环小数化分数、拆分、通项归纳、定义新运算。
小学四年级数学奥数题精选四种经典题型
小学四年级数学奥数题精选四种经典题型(含答案解析)1统筹规划【试题】1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
【分析】:先洗水壶然后烧开水,在烧水的时候去洗茶壶、洗茶杯、拿茶叶。
共需要1+10=11分钟。
【试题】是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?【分析】:依题意,大卡车每吨耗油量为10÷5=2(公升);小卡车每吨耗油量为5÷2=2.5(公升)。
为了节省汽油应尽量选派大卡车运货,又由于137=5×27+2,因此,最优调运方案是:选派27车次大卡车及1车次小卡车即可将货物全部运完,且这时耗油量最少,只需用油10×27+5×1=275(公升)【试题】3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?【分析】:一般的做法是先同时烙两张饼,需要4分钟,之后再烙第三张饼,还要用4分钟,共需8分钟,但我们注意到,在单独烙第三张饼的时候,另外一个烙饼的位置是空的,这说明可能浪费了时间,怎么解决这个问题呢?我们可以先烙第一、二两张饼的第一面,2分钟后,拿下第一张饼,放上第三张饼,并给第二张饼翻面,再过两分钟,第二张饼烙好了,这时取下第二张饼,并将第三张饼翻过来,同时把第一张饼未烙的一面放上。
两分钟后,第一张和第三张饼也烙好了,整个过程用了6分钟。
2速算与巧算【试题】计算9+99+999+9999+99999【分析】在涉及所有数字都是9的计算中,常使用凑整法。
例如将999化成1000—1去计算。
这是小学数学中常用的一种技巧。
9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=1111053年龄问题【试题】爸爸、妈妈今年的年龄和是86岁,5年后,爸爸比妈妈大6岁。
(完整版)小学数学奥数35个专题题型分类及解题技巧
6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
小学奥数 各种题型公式及方法汇总
小学奥数各种题型公式及方法汇总小学奥数-------各种题型公式及方法汇总小学奥数各种题型计算公式汇总一、高斯议和方法和=(首项+末项)×项数÷2。
项数=(末项-首项)÷公差+1。
末项=首项+公差×(项数-1)。
首项=末项-公差×(项数-1)二、流水行船问题1、船速=(顺水速度+逆水速度)÷2;2、水速=(顺水速度-逆水速度)÷2此外,对于河流中的漂浮物,我们还可以经常使用一个常识性性质,即为:漂浮物速度=流水速度。
流水行船问题中的相遇与追及①两只船在河流中碰面问题,当甲、乙两船(甲在上游、乙在下游)在江河里并肩送出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船甩开另一只船所用的时间,与水速毫无关系.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也存有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.三、工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:通常抽象化成单位“1”;工作效率:单位时间内顺利完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;四、逻辑推理的方法1、列表推理小说法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.2、假设推理小说用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.1解题突破口:找题目所给的矛盾点进行假设五、抽屉原理举例桌上存有十个苹果,必须把这十个苹果放在九个抽屉里,无论怎样摆,有的抽屉可以摆一个,有的可以摆两个,有的可以摆五个,但最终我们可以辨认出至少我们可以找出一个抽屉里面至少摆两个苹果。
小学奥数1分题型讲解(18种).doc
1、和倍问题(一)学习指导例1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?分析:我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?解:(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)(2)秦奋的年龄:40÷5=8岁(3)妈妈的年龄:8×4=32岁综合:40÷(4+1)=8岁8×4=32岁为了保证此题的正确,验证(1)8+32=40岁(2)32÷8=4(倍)计算结果符合条件,所以解题正确。
例2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?分析:看图:已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。
看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。
(1)甲乙两架飞机每小时的航程(速度和)是⎪(千米)3600=31200(2)乙飞机的速度是:()400⎪(千米)+11200=2(3)甲飞机的速度是:(千米)答:甲乙飞机的速度分别每小时行800千米、400千米。
例3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?分析:思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。
根据条件需要先求出哥哥剩下多少本课外书。
如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。
小学一年级奥数知识点
一年级数学奥数辅导姓名:一年级奥数知识点分类一、排队问题二、多种选择三、找规律——数字四、找规律——图形五、植树问题六、锯木料七、速算与巧算(一)八、速算与巧算(二)九、数数与计数(一)十、数数与计数(二)——数图形十一、填数与拆数十二、自然数串趣十三、单数与双数十四、分组与组式十五、不等与排序十六、综合练习一、排队问题1、小动物们排成一排去春游,小猴子的前面有10只小动物,后面有21只小动物,参加春游的小动物一共有多少只?2、小朋友站成一排做操,小林的左边有12个小朋友,右边有17个小朋友,这一排一共有多少个小朋友?3、妈妈排队买菜,妈妈的前面有14个人,后面有15个人,排队买菜的一共有多少人?4、一队小朋友排队上车,一共有16个小朋友,小明的前面有5个小朋友,小明的后面有几个小朋友?5、有17个不同颜色的气球摆成一排,红色气球的左边有7个气球,红色气球的右边有几个气球?6、一队小朋友一共有21人,从后往前数,小明是第9个,小明的前面有几个小朋友?7、一排宿舍共有23间,从左往右数,王老师的宿舍是第7间,王老师宿舍的右边还有几间?8、小朋友排成一队做操,小华的左边有8个小朋友,小亮的右边有5个小朋友,小亮在小华的左边,并且与小华相邻,排队做操的一共有多少个小朋友?9、小朋友排成一队做操,小明的左边有8个小朋友,小红的右边有5个小朋友,小明在小红的左边,小明和小红之间还有3个小朋友,排队做操的一共有多少个小朋友?二、多种选择1、小华从学校到汽车站有2条路可走,从汽车站到图书馆有1条路可走,小华从学校到汽车站乘车去图书馆,有几种不同的走法?2、从小强家到小红家有3条路可以走,从小红家到老师家有2条路可以走,那么,小强先到小红家,再和小红一块到老师家,有几种不同的走法?3、从小明家道学校有3条路可走,从学校到公园有1条路可走,小明从家经过学校到公园,有几种不同的走法?4、丽丽从家到书店有3条路可走,从书店到电影院有2条路可走,丽丽从家到书店再到电影院,有几种不同的走法?5、小狗、小猴、小兔3只小动物排队,有几种不同的排法?6、小明、小丽、小红3个小朋友排成一行,有几种不同的排法?7、小军、小华、小明3个小朋友进行跳棋比赛,每2个小朋友要赛一次,一共要赛几次?8、小丽、小红、小方、小强4个小朋友进行乒乓球比赛,比赛前每2个小朋友都要握一次手,他们一共要握多少次手?三、找规律——数字一、找规律填数字1、 2 ,4 ,6 ,8,(),12 ,(),162、15,12,9 ,(),33、 5 ,10 ,15 ,20,(),()4、 5 ,6 ,11,17,28,()5、 1 ,3 ,4 ,7 ,11 ,(),()6、15,25,35,(),(),65,757、90,(),(),60,50,(),()8、11,22,33,(),(),66,()9、1,3,6,10,(),(),2810、(1,2),(3,5),(5, 8),(7,11),(,)11、(1,9),(3,7),(2,8),(4,),(,5)二、简单的推理1、已知:□+○=12,□-2=6,那么:□=_○=_2、已知:□-○=8,○+3=5,那么:□=_○=_3、已知:○+○+□=17,□+□=6,那么:□=_○=_4、已知:○+○+○+□=15,□+□=6,那么:□=_○=_5、已知:○+○+□+□=22,○+○=10那么:□=_○=_二、填一填四、找规律——图形。
小学奥数(13种典型例题口诀和解析)
小学数学中的13种典型例题口诀及解析二和差问题已知两数的和与差,求这两个数。
【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
三鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=12四浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)五路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。
除以速度和,就把时间得。
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?相遇那一刻,路程全走过。
即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得。
即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)(2)追及问题【口诀】:慢鸟要先飞,快的随后追。
小学奥数分类型讲解(60种)
小学奥数分类型讲解(60种)1、最值问题【最小值问题】例1外宾由甲地经乙地、丙地去丁地参观。
甲、乙、丙、丁四地和甲乙、乙丙、丙丁的中点,原来就各有一位民警值勤。
为了保证安全,上级决定在沿途增加值勤民警,并规定每相邻的两位民警(包括原有的民警)之间的距离都相等。
现知甲乙相距5000米,乙丙相距8000米,丙丁相距4000米,那么至少要增加______位民警。
(《中华电力杯》少年数学竞赛决赛第一试试题)讲析:如图5.91,现在甲、乙、丙、丁和甲乙、乙丙、丙丁各处中点各有一位民警,共有7位民警。
他们将上面的线段分为了2个2500米,2个4000米,2个2000米。
现要在他们各自的中间插入若干名民警,要求每两人之间距离相等,这实际上是要求将2500、4000、2000分成尽可能长的同样长的小路。
由于2500、4000、2000的最大公约数是500,所以,整段路最少需要的民警数是(5000+8000+4000)÷500+1=35(名)。
例2在一个正方体表面上,三只蚂蚁分别处在A、B、C的位置上,如图5.92所示,它们爬行的速度相等。
若要求它们同时出发会面,那么,应选择哪点会面最省时?(湖南怀化地区小学数学奥林匹克预赛试题)讲析:因为三只蚂蚁速度相等,要想从各自的地点出发会面最省时,必须三者同时到达,即各自行的路程相等。
我们可将正方体表面展开,如图5.93,则A、B、C三点在同一平面上。
这样,便将问题转化为在同一平面内找出一点O,使O到这三点的距离相等且最短。
所以,连接A和C,它与正方体的一条棱交于O;再连接OB,不难得出AO=OC=OB。
故,O点即为三只蚂蚁会面之处。
【最大值问题】例1有三条线段a、b、c,并且a<b<c。
判断:图5.94的三个梯形中,第几个图形面积最大?(全国第二届“华杯赛”初赛试题)讲析:三个图的面积分别是:三个面积数变化的部分是两数和与另一数的乘积,不变量是(a+b+c)的和一定。
奥数题的分类
奥数题的分类
1. 计数类奥数题呀,那可真是像数星星一样有趣呢!比如说计算从 1
到 100 所有数字的总和,这就像把一颗颗星星串起来一样,好玩吧!
2. 几何类奥数题,就像拼拼图一样有意思咧!像求一个奇怪形状的图形面积,不就是把拼图碎片拼出完整画面的挑战嘛!
3. 应用题类奥数题,嘿,这就像解决生活中的小难题呢!就好比说要算出几个人分苹果怎么分才最公平,这多贴近生活呀!
4. 组合类奥数题难道不是像搭积木一样吗?把不同的元素组合起来,哇,真是充满变化和惊喜呀!比如从一堆不同颜色的球里选出几个特定组合的球,太奇妙啦!
5. 逻辑推理类奥数题,简直如同侦探破案一般刺激呀!像通过一些线索推断出谁是小偷一样,需要我们超级敏锐的大脑呢!
6. 数论类奥数题,就如同探索数字世界的秘密宝藏一样呢!例如探究某个数的规律,这不是很神秘很吸引人嘛!
我觉得奥数题的这些分类都各有各的趣味和挑战,能让我们在数学的海洋里尽情遨游,发现好多好多有趣的东西!。
小学奥数所有题型归类
小学奥数所有题型归类目录一、消去法二、页码问题三、还原法四、平均数五、定义新运算六、最大最小七、位置原则八、相遇行程九、追及行程十、火车行程十一、流水行程十二、牛吃草十三、方程十四、不定方程十五、假设法十六、设值法十七、面积计算十八、表面积、体积十九、图形计算消去法例1、学校第一次买了3个水杯和20个茶杯共用134元,第二次又买了同样的3个水杯和16个茶杯,共用去118元,问水杯和茶杯的单价各是多少钱?例2、3娄苹果和5娄梨一共是86只,6娄苹果和4篓梨是112只,问每篓苹果和每篓梨各有多少只?例3、买一本故事书和一本科技书要用20元,买同样的3本故事书和4本科技书要用72元,问一本故事书和一本科技书各多少元?例4、7袋大米和3袋面粉共重425千克,同样的3袋大米和7袋面粉共重325千克,求每袋大米和每袋面粉的重量?例5、甲买了8盒糖和5盒糖共用了171元,乙买了5盒糖和2盒糕共用了90元,问每盒糖和每盒糕各多少元?例6、到商店里买了2个足球和3个篮球需要154元,买3个足球和5个篮球需245元,问买1个篮球和1个足球各多少元?例7、买9张桌子和3把椅子要780元,5张桌子的价钱比3把椅子的价格贵340元,问每张桌子和椅子各多少元?例8、买1千克水果糖,2千克奶糖和3千克巧克力共需76元,买同样的2千克水果糖,4千克奶糖和5千克巧克力共要136元,且奶糖单价是水果糖的1.25倍,求水果糖,奶糖及巧克力的单价?例9、学校购买篮球、排球和足球,第一次各买2个共用去71.4元,第二次买4只篮球2只足球,3只排球共用113.7元,第三次买5只篮球,4只排球,2只足球共用去140.7元,问篮球、排球和足球每只各多少元?例10、小明妈妈用188元买了一件大衣,一条裤子和一双鞋,妈妈记得大衣的价钱比裤子贵117元,大衣和裤子一共比鞋贵138元,问每件价钱是多少?例11、运一批砖,用2辆车和3台拖拉机运,32次运完,如果用5辆汽车和2台拖拉机运,16次运完,现在用11辆汽车装运,几次可以运完?例12、一些人共同分担购买小船的款,其中10人后来决定不参加,余下的人没人要多分担1元,当实际付款时,又有15人退出,最后余下的人每人又多负担2元,问原先同意购船的是多少人?例13、李明、张斌、王刚三人去文具店买练习本,圆珠笔和橡皮,李明买了4本练习本,一只圆珠笔和10块橡皮,共付11元,张斌买了3本练习本,一只圆珠笔和7块橡皮,共付8.9元,王刚买了一本练习本,一只圆珠笔和一块橡皮,问王刚共付多少钱?例14、学校用一笔钱买奖品,若一只钢笔和二本日记本为一份奖品,则可买60份奖品,若以一只钢笔和三本日记本为一份奖品,则可买50份奖品,问这笔钱全部用来买钢笔或日记本,可买多少?例15、甲、乙、丙三人共同去解100道数学题,每人都解出了其中的60道题,将其中只有1人解出的题叫难题,2人都能解出的题叫中等题,3人都解出的题叫容易题,问,难题多还是容易题多?多多少道题?例16、李强租中了张大伯一块土地,他每年要支付给张大伯800元钱和若干千克小麦,某天他心里打起小算盘,当时小麦的价格为每千克1.2元,这笔开销相当于每亩地70元,但现在小麦市场价已经涨到每千克1.6元,所以他所支付的相当于每亩地80元,通过李强的小算盘,你知道这块土地有多少亩吗?页码问题例1、一本书共204页,问需多少个数码编页码?例2、一本小说的页码,在排版时必须用2211个数码,问这本书共多少页?例3、一本书页码从1至62,即共有62页,再把这本书的各项的页码累加起来时,有一个页码被错误的多加了一次,结果得到的和为2000,问这个被多加了一次的页码是几?例4、有一本48页的书,中间缺了一张,小明将残书的页码相加,得到1131,问缺了哪一页?例5、将自然数按从小到大的顺序无间隔地排成一个大数,123456789101112……问,左起第2000位上的数字是多少?例6、一本书共有205页,给他编上页码1,2,3……205,问数码“1”一共出现了多少次?例7、有一列数1,2,3……999,1000中,数字“0”出现次数为多少?还原法例1、把一个数乘以4以后减去46,再把所得的差了除以3,然后减去10、最后得4,问这个数是几?例2、小马虎在做一道题目时,把一个加数个位的5看成了9,把另一个加数十位上的8看成了3,结果是123,问正确的结果是多少?例3、学校运来36棵树苗,乐乐与欢欢两人争着去栽,乐乐拿了若干树苗,欢欢看到乐乐拿的太多,就抢了10棵,乐乐不肯,又从欢欢那里抱回来6棵,这时乐乐拿的是欢欢的2倍,问乐乐最初拿了多少棵树苗?例4、甲,乙,丙三组共有图书90本,乙组向甲组借三本后,有送给丙组5本,结果三个组拥有相当数量的图书,问,甲,乙,丙三个组原来有多少本图书?例5、在A商店我花了所带钱的2/3,在B商店又花了省下钱的1/3,离开B商店时,我还有4元钱,问进A商店时我身上有多少钱?例6、一捆电线第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,问这捆电线原来有多少米?例7、有一堆棋子,把它四等分后剩下一枚,取走三份又一枚,剩下的再四等份又剩一枚,再取走三份又一枚,剩下的再四等份又剩一枚,问原来至少有多少枚棋子?例8、袋里有若干个球,小明每次拿出其中的一半再放回一个球,这样共操作了5次,袋中还有3个球,问袋中原来有多少个球?例9、三堆苹果共48个,先从第一堆中拿出与第二堆个数相等的苹果并入第二堆,再从第二堆中拿出与第三堆个数相等的苹果并入第三堆,最后又从第三堆中拿出与这时第一堆个数相等的苹果并入第一堆,这时三堆苹果树恰好相等,问:三堆苹果原来各有多少个?例10、有甲、乙、丙三个油桶,各盛油若干千克,先将甲桶油倒入乙丙两桶,使他们各自增加原有油的一倍,再将乙桶油倒入丙、甲两桶,使他们的油各增加一倍,最后按同样的规律将丙桶油倒入甲、乙两桶,这时各桶油都是16千克,问各桶原有油多少千克?例11、兄弟三人分24个橘子,每人所得个数分别等于他们三年前各自的岁数,如果老三先把所得的橘子的一半平分给老大与老二,接着老二把现有的橘子的一半平分给老三和老大,最后老大把现在的橘子的一半平均分给老二和老三,这时每人的橘子数恰好相同,问兄弟三人现在的年龄各多少岁?例12、在电脑里先输入一个数,它会按给定的指令如下运算,如果输入的数是偶数,就把它除以2,如果输入的是基数,就把它加上3,同样的运算,这样进行了3次,得出的结果是27,问原来输入的数可能是多少?例13、小明每分钟吹一次肥皂泡,每次恰好吹出100个,肥皂泡吹出之后,经过一分钟有一半破了,经过两分钟还有十分之一没有破,经过两分半钟肥皂泡全部破了,小明在第20次吹出100个新的肥皂泡的时候,没有破的肥皂泡共有多少个?平均数例1、某班有学生41人,数学考试时有三位同学因病缺考,平均成绩是80分,后来这三位同学补考,成绩为100分,96分和85分,问这时全班的平均成绩是多少?例2、五年级同学进行达标抽测,10名学生的跳高成绩分别是99、106、110、97、96、95、82、90、92、93厘米,求他们跳高的平均成绩?例3、30名女生平均体重为22千克,30名男生的平均体重为28千克,问男生女生平均体重是多少?例4、女生是男生人数的2倍,女生平均的体重是22千克,男生平均体重为28千克,问男生女生平均体重是多少?例5、一辆汽车以40千米/小时速度行了120千米,返回时以60千米/小时的速度行进,求汽车往返的平均速度?例6、一辆汽车以每小时40千米速度行完了一段路程,返回时速度为60千米/小时,求汽车的往返平均速度?例7、五个数的平均数是30,如果把这五个数从小到大排列,那么前三个数的平均数是25,后三个数的平均数是35,问中间那个数是多少?例8、 一个学生前六次测验平均分数是93,他第七次考多少分就可以使七次平均分数变成94分?例9、 一位同学前六次测验平均分数是93分,他第七次测验成绩比七次测验平均成绩分数高3分,他第七次测验成绩是多少?例10、 有五个数,平均数是9,如果把一个数改成1,则5个数平均数是8,问改动的数是几?例11、 ABCD 四个数平均数是75,AB 平均数比CD 平均数多2,A 是90,问B 是多少? 例12、 A 、B 、C 、D 、E 五个数每次去掉一个,求出另四个数的平均数,这样算了五次,得到5个数17、25、27、32、39、问原五个数的平均数是多少?例13、 有三个数,每次选出其中两个求得其平均数再加上余下的第三个数,三次得到三个数35、27、25、问三个数分别是多少?例14、 数学测验满分100分,6位同学平均91分,而且分数各不相同,其中最低分65分,问第三名至少的多少分?例15、 数学竞赛男女平均分是63分,男生平均分是60分,女生平均分是70分,问男生女生人数比是多少?例16、 数学测验全班平均分是78分,男生平均75.5分,女生平均81分,问男生是女生人数的几倍?例17、 5个人轮流背两个行李包,从甲地去乙地,已知甲乙两地相聚15千米,问平均每人背包几千米?例18、 9个人在两张乒乓球台上进行单打练习,从9点开始,12点结束,平均每人练习了几分钟?例19、 小刚在计算11个数的平均数时,四舍五入得15.35,老师说最后一位数字错了,问正确结果是多少?例20、 甲、乙、丙三人买了8个汉堡,平均分着吃,甲拿出5个汉堡的钱,乙拿出3个汉堡的钱,丙没带钱,吃完一算丙应拿出4元钱,问甲,乙各应收回多少钱?例21、 甲、乙、丙三人共买一斤三两包子,甲没带钱,乙付了7两包子钱,丙付了6两包子钱,甲和乙吃的一样多,丙比甲多吃一两,吃完一算,甲应付20元,问丙应收回多少钱?例22、 甲、乙、丙、丁四人拿出同样多的钱合伙买回同样价格物品若干件,买回后,甲、乙、丙分别比丁多拿了3件,7件,14件,最后一算,乙应给丁14元,问丙应给丁多少元?例23、 黑板上写着从1开始的若干个连续自然数,擦去其中的一个后,其余各数的平均数是35717,问擦去的是几?定义新运算例1、 已知a △b=3a-b 2,求10△6=? 例2、 已知4⊕2=4+442⊕3=2+22+2221⊕4=1+11+111+1111求3⊕5? 例3、 对于任意数a 、b 、c 、d 规定<a 、b 、c 、d >=2ab- d c,已知<1,2,3,x >=2,求x ?例4、 对于任意自然数规定n !=1×2×3×4×.....×n ,求1!+2!+3!+.....+100!的个位数字?例5、规定2Θ3=2×3×4 4Θ5=4×5×6×7×83Θ4=3×4×5×6 求a Θb ?例6已知a*b=(a+b )-(a-b ),求9*2例7、a ,b 表示两个数,规定a ⊙b=a+b 2问:①2⊙(23 ⊙45 ) ②34 ⊙16 ⊙x=12,求x 例8、对平面上两点M 、N,,定义运算M △N 表示M 和N 的中点,已知A 、B 、C 、D 是边长为4的正方形,求以A △B ,B △C 、C △D 、D △A 为顶点的四边形面积例9、a 、b 为任意自然数,R 为常数,规定a △b=ab+R (a+b ),而且1△1=5,求5△8 例10、定义运算a ⊙b=3a+5ab+kb ,其a 、b 为任意数,k 为常数。
小学四年级奥数题精选各类题型及解析
小学四年级奥数题精选各类题型及解析1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
2、有137吨物资要从甲地运往乙地,大卡车旳载重量是5吨,小卡车旳载重量是2吨,大卡车与小卡车每车次旳耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼旳一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,如何样安排四人旳用水顺序,才能使他们所花旳总时刻最少,并求出那个总时刻。
5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。
因为天黑,必须借助于手电筒过桥,但是他们总共只有一个手电筒,同时桥旳载重能力有限,最多只能承受两个人旳重量,也确实是说,每次最多过两个人。
现在希望能够用最短旳时刻过桥,如何样才能做到最短呢?你来帮他们安排一下吧。
最短时刻是多少分钟呢?6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
要过河时刻最少?是多少?四年级奥数题:速算与巧算〔一〕1.【试题】计算9+99+999+9999+999992【试题】计算199999+19999+1999+199+193【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)4【试题】计算9999×2222+3333×33345.【试题】56×3+56×27+56×96-56×57+566.【试题】计算98766×98768-98765×98769四年级奥数题:年龄问题1、父亲45岁,亲小孩23岁。
三年级奥数有几种不同的分法
字典法则(字典排列法、整数分拆)知识图谱字典法则知识精讲一.字典排列法所谓字典排序法,就是指在枚举时,像字典里的单词顺序那样排列出所有答案.例如:用数字4、5、6可以组成多少个不同的三位数.用字典排列法枚举时,每个位置都按从小到大排列,枚举的顺序是:456、465、546、564、645、654.二.整数分拆1.概念:把一个自然数表示成若干个自然数的和的形式.2.方法:在进行整数分拆时,要按一定的顺序,做到不重复、不遗漏.将一个整数拆分成三个数相加,其实可以先固定第一个数,那剩下两个数的和也是固定的,这样问题就转化成将一个新的整数拆分成两个数相加.3.分人与分堆的区别:整数分拆时,分堆无顺序,分人有顺序.4.枚举中的至多、至少问题:根据至多、至少的条件用字典排列法进行分类枚举.三.分类计数枚举法是解决计数问题的基础,但是对于比较复杂的问题,如果直接枚举容易出现重复或者遗漏.这时就需要先把所有情形分成若干小类,再针对每一小类进行枚举.在分类时,一定要注意类与类之间有没有重复和遗漏的情况.三点剖析本讲主要培养学生的实践应用能力,其次培养学生的运算能力.本讲内容是在基本整数分拆的基础上,进一步学习字典排列.能够有顺序的去枚举出符合条件的所有情况,对于情况较多的问题,能够进行合理的分类等.后续课程还会进一步讲解树形图.课堂引入例题1、语文老师给大家留了一篇阅读练习.这天,柯小南在家做作业,发现文章里有好多生僻字,就找来字典用部首检字表查一下.查完后,小南又往拼音音节索引翻了翻,这些拼音音节索引都是按照一定的顺序来的,比如,声母是p,韵母先是a,然后是ai ,an,ang,ao,a为开头的结束后,是e,按照顺序有ei,en,eng.然后再是韵母是i……想到这里,小南想起来以前学过的整数分拆,在数比较大时,总会出现重复或遗漏的情况,如果学习字典上的这种有序排列方式来做题,是不是会好一些呢?例如,高斯先生拿8颗糖分给艾小莎和柯小南,两人都要有,可能有多少种情况呢?例题2、三个整数之和等于7,共有________组这样的三个数.字典排列例题1、满足下面性质的数称为好数:它的个位比十位大,十位比百位大,百位比千位大,并且相邻两位数字的差不超过2.例如1346、3579为好数,而1456就不是好数,那么一共有________个四位数是好数.同学们可以根据要求,从最高位上依次枚举.例题2、高斯先生计划在下周要去3次健身馆,但是为了防止运动过量,不能连续两天都去.高斯先生一共有多少种满足条件的时间安排?可以周一、周三、周五去,还可以……例题3、小包子每个5角钱,大包子每个2元钱.艾小莎一共有6元钱,如果把这些钱全部用来买包子,一共有________种不同的买法.我可以买大包子,也可以买小包子,或者两个都买吧.随练1、唐小虎拿着10元钱去买冰激凌,店里有单价为1元5角和2元的两种冰激凌.如果唐小虎两种冰激凌都要买,并且刚好要把10元钱花完,那他一共可以买多少个冰激凌?分几人例题1、高斯先生给柯小南12个相同的练习本,如果柯小南把这些本子全都分给唐小果和艾小莎,有多少种不同的分法?我可以先给唐小果,那剩下的就都是艾小莎的了.例题2、唐妈妈把9颗糖分给小虎和小果,使得他俩每人都有糖,有________种不同的分法.我先拿,剩下的给姐姐就行了吧?所以我能拿几个有多少种情况,那就有几种不同的分法.例题3、唐小果把6个相同的笔记本分给唐小虎、柯小南和艾小莎三个人,有人可能没分到,共有________种不同的分法.我可以先给小虎拿,问题就变成小南和小莎两个人去拿了.例题4、两个海盗分20枚金币.请问:如果每个海盗最少分到5枚金币,一共有________种不同的分法.最少分到5枚金币,那就是说最多分到15枚.例题5、三个同学分6个高思积分,每个同学至多分到4个高思积分,也有可能分不到,共有________种不同的分法.先看看6可以拆成哪三个数相加.例题6、老师要求唐小虎把一篇英语课文抄写4遍,每天至少写1遍.那么唐小虎完成这些课文共有________种不同的可能.小虎,怎么又被罚抄了?认真写哦~随练1、把9块蛋糕分给果果、蕊蕊、莹莹三个小朋友,每位小朋友至少要有2块蛋糕,共有多少种不同的分法?随练2、猴子小孙从山上采来10个桃子.如果小孙把这些桃子全部分给猴爸和猴妈,并且猴爸和猴妈都要分到桃子,那么小孙共有多少种不同的分法?分几堆例题1、现在有7束玫瑰花,要把它们分成2堆,一共有多少种不同的分法?注意分两人和分两堆的区别哦~例题2、艾小莎有20块巧克力,如果她要把这些糖果分成2堆,且每堆最少有2块巧克力,那么一共有多少种不同的分法?分两堆,是不计次序的.小莎,要注意一下.例题3、小刘去地里挖红薯,一共挖了11个红薯,现在要把它们分成3堆,一共有多少种不同的分法?分三堆,是不是不能为0呢?例题4、 15个苹果分3堆,每堆至少放3个苹果,至多放7个苹果,共有________种不同的分法. 例题5、 有19本书,分成5份.如果每份至少有一本书,且每份的本数都不相同,有多少种分法? 随练1、 把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?随练2、 科学老师让大家观察蚂蚁的习性,唐小虎在小区的广场上发现了12只黑蚂蚁,这12只蚂蚁恰好凑成了3堆,每堆至少有2只.这3堆蚂蚁可能各有________只.分类枚举法例题1、 艾小莎要从苹果、梨、橘子、桃中挑2个水果来吃,每种水果都有很多个,共有________种不同的挑法. 例题2、 从1~8这八个自然数中, 任取三个数,其中没有连续自然数的取法有________种.例题3、 高斯先生拿来三块木板,上面分别写着数字1,2,3.唐小虎可以用这些木板拼出多少个不同的数?例题4、 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止.如果天数不限,可能的吃法有多少种?例题5、 一个骰子,各面点数已画好,分别为1~6;从空间一点看,能看到的不同点数的组合一共有________种.随练1、 把10只鸽子关在3个同样的笼子里,使得每个笼子里都有鸽子,可以有多少种不同的放法?随练2、 1997的数字和是199726+++=,在小于2000的四位数中,数字和为26的除了1997外还有几个?可以分类枚举,如果有4,那就不能有3和5了.题目中没有说3块木板都要用……这些鸡蛋最少吃1天,最多就吃3天吧.从每个面、每条棱、每个点看过去的都不一样哦~易错纠改例题1、 从3个1,2个2,1个3中选出3个数字可以组成________个不同的3位数.拓展1、 从1,2,3,4,5,6中任意选出三个不同的数字,使它们的和为偶数,一共有______种不同的选法. A.6 B.9 C.10 D.122、 如图,一只小蚂蚁要从一个正四面体的顶点A 出发,沿着这个正四面体的棱依次走遍4个顶点再回到顶点A .这只小蚂蚁一共有___________种不同的走法.3、 白雪公主要吃完10个相同的苹果,每天至少吃3个苹果,所吃天数不限,一共有__________种不同的吃法.4、 小李摆摊卖货,小木偶每个卖1元,大木偶每个卖2元.他今天一共卖出了5个木偶.小李今天一共可能卖了多少钱?5、 (1)小明买回了一袋糖豆,他数了一下,一共有10个.现在他要把这些糖豆分成3堆,一共有多少种不同的分法? (2)如果小明有两袋糖豆,每袋10个.要把这两袋糖豆分成3堆,每堆最少要有5个,一共有多少种不同的分法?6、 18个苹果分成3堆,每堆至少放4个苹果,至多放9个苹果,共有__________种不同的分法.7、 在所有四位数中,各位数字之和超过32的共有多少个?8、 分析并口述题目的做题思路及方法.盘子里一共有20颗花生,唐小虎和唐小果一起吃.每人一口吃2颗,两个人一起把花生吃完(每人至少吃一口).请列举出他们吃花生数量的所有情况.1、2、3组成三位数有6个!不对不对,小虎,是3个1,2个2,1个3.那3、1、2、2、1、3组成的三位数有24个.也不对,认真审题哦~DABC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数种类型小学奥数必须掌握的30个知识模块来源:奥数网整理2011-07-01 10:28:43[标签:奥数]奥数精华资讯免费订阅 1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
关键问题:确定对象总量和总的组数。
7.牛吃草问题基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。
周期:我们把连续两次出现所经过的时间叫周期。
关键问题:确定循环周期。
闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。
10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
11.定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
12.数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an = a1+(n-1)d;通项=首项+(项数一1) ×公差;数列和公式:sn,= (a1+ an)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (an+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(an-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;13.二进制及其应用十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。
所以234=200+30+4=2×102+3×10+4。
=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。
(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7+……+A3×22+A2×21+A1×20注意:An不是0就是1。
十进制化成二进制:①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。
②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。
14.加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。
关键问题:确定工作的分类方法。
基本特征:每一种方法都可完成任务。
乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n 步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法。
关键问题:确定工作的完成步骤。
基本特征:每一步只能完成任务的一部分。
直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
直线特点:没有端点,没有长度。
线段:直线上任意两点间的距离。
这两点叫端点。
线段特点:有两个端点,有长度。
射线:把直线的一端无限延长。
射线特点:只有一个端点;没有长度。
①数线段规律:总数=1+2+3+…+(点数一1);②数角规律=1+2+3+…+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数15.质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1<……< p>求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)互质数:如果两个数的最大公约数是1,这两个数叫做互质数。
16.约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:1、几个数都除以它们的最大公约数,所得的几个商是互质数。