教学设计行星的运动

合集下载

2021年高中物理行星的运动教案精选2篇

2021年高中物理行星的运动教案精选2篇

高中物理行星的运动教案精选2篇行星运动的高中物理必修二的一课内容,下面职场为你了高中物理必修二教案行星运动,希望对你有帮助。

物理必修二教案行星运动【教学目标】1、了解人类探索宇宙奥秘的发展简史,增强求知欲;2、理解开普勒三个定律的内容和意义,会分析行星运动的基本特点;3、理解开普勒第三定律椭圆运动规律到圆运动规律的转换;4、培养学生尊重事实,善于观察,善于思考,善于动手的思想和能力,建立科学的宇宙观。

物理必修二教案行星运动【学情分析】1 、学生已有的知识结构和能力。

从学生已经具有的知识基础来看,学生在学习本节课之前,可能只是通过小学的科学课、报刊、___、电视等方式对有关科学家的事例略知一二,对科学家的发现、发明、创造内容的了解应该是非常琐碎的,无系统的天体运动研究历史方面的知识,但对天体的运动学习应该具有很大的好奇心和浓厚的兴趣。

2 、学生认知能力上的欠缺。

从学生的认知能力看,由于行星运动抽象、无法感知,学生在理解行星的运动规律上会存在障碍,同时椭圆在数学上还未接触过,也会给学生造成困惑。

物理必修二教案行星运动【重点难点】1、理解和掌握开普勒行星运动定律,认识行星的运动2、对开普勒行星定律的理解和应用。

物理必修二教案行星运动【教学过程】活动1【讲授】新课教学引入新课:自人类诞生之日起,我们就对这茫茫宇宙充满了好奇,希望探索宇宙的奥秘。

我国古代产生了很多与此有关的美丽神话传说,比如关于宇宙的—— ___开天地。

科学技术发展到今天,科学家对宇宙万物有了一定的认识。

现在,我们知道,宇宙是这样产生的——宇宙大 ___。

本节我们就共同来学习前人所探索到的行星的运动情况。

进行新课:一、古人对天体运动的看法及发展过程在古代,人们对于天体的运动存在着两种对立的看法,被称为“地心说”和“日心说”(教师介绍相关物理学史)。

1、“地心说”:地球是宇宙的中心,是静止不动的,太阳、月亮以及其他行星都绕地球运动;2、“日心说”:太阳是宇宙的中心,地球、月亮以及其他行星都在绕太阳运动。

高中物理行星运动模型教案

高中物理行星运动模型教案

高中物理行星运动模型教案教学目标:
1. 理解太阳系行星的运动规律
2. 掌握行星绕太阳公转和自转的原理
3. 熟练运用万有引力定律解释行星运动规律
教学内容:
1. 行星的公转运动
2. 行星的自转运动
3. 万有引力定律及其在太阳系中的应用
教学重点:
1. 太阳系行星的运动规律
2. 万有引力定律的应用
教学方法:
1. 讲授
2. 实验展示
3. 课堂讨论
教学过程:
一、导入(5分钟)
1. 引入太阳系行星的概念,激发学生对行星运动的兴趣。

二、学习行星的公转运动(20分钟)
1. 通过讲解和模型展示,介绍行星绕太阳公转的规律。

2. 带领学生计算太阳系行星的周期和轨道。

三、学习行星的自转运动(20分钟)
1. 通过实验和观察,让学生理解行星的自转规律。

2. 讨论行星自转的影响因素及其与公转的关系。

四、学习万有引力定律(15分钟)
1. 讲解万有引力定律的基本原理及其应用到太阳系行星运动中。

2. 演示如何利用万有引力定律计算行星的运动轨道和速度。

五、总结和讨论(10分钟)
1. 和学生总结行星运动的规律和原理。

2. 引导学生思考太阳系中的行星运动和宇宙的奥秘。

教学反思:
通过本节课的学习,学生应该掌握太阳系行星的运动规律,理解行星绕太阳公转和自转的原理,熟练运用万有引力定律解释行星运动规律。

同时,通过实验和讨论,培养学生的观察力和思维能力,激发他们对宇宙的兴趣和探索欲望。

《行星的运动》参考教案

《行星的运动》参考教案

《⾏星的运动》参考教案6.1 ⾏星的运动⼀、知识⽬标1.了解“地⼼说”和“⽇⼼说”两种不同的观点及发展过程.2.知道开普勒对⾏星运动的描述.⼆、教学重点1.“⽇⼼说”的建⽴过程.2.⾏星运动的规律.三、教学难点1.学⽣对天体运动缺乏感性认识.2.开普勒如何确定⾏星运动规律的.四、教学⽅法1.“⽇⼼说”的建⽴的教学——采⽤对⽐、反证及讲授法.2.⾏星运动规律的建⽴——采⽤挂图、放录像资料或⽤CAI课件模拟⾏星的运动情况.五、教学步骤导⼊新课我们与⽆数⽣灵⽣活在地球上,⽩天我们沐浴着太阳的光辉.夜晚,仰望苍穹,繁星闪烁,美丽的⽉亮把我们带⼊了⽆限的遐想之中,这浩瀚⽆垠的宇宙中有着⽆数的⼤⼩不⼀、形态各异的天体,它们的神秘始终让我们渴望了解,并不断地去探索.⽽伟⼤的天⽂学家、物理学家已为我们的探索开了头,让我们对宇宙来⼀个初步的了解.⾸先,我们来了解⾏星的运动情况.板书:⾏星的运动.新课教学(⼀)⽤投影⽚出⽰本节课的学习⽬标1.了解“地⼼说”和“⽇⼼说”两种不同的观点及发展过程.2.知道开普勒对⾏星运动的描述.(⼆)学习⽬标完成过程1.“地⼼说”和“⽇⼼说”的发展过程在浩瀚的宇宙中,存在着⽆数⼤⼩不⼀、形态各异的星球,⽽这些天体是如何运动的呢?在古代,⼈类最初通过直接的感性认识,建⽴了“地⼼说”的观点,认为地球是静⽌不动的,⽽太阳和⽉亮绕地球⽽转动.因为“地⼼说”⽐较符合⼈们的⽇常经验,太阳总是从东边升起,从西边落下,好像太阳绕地球转动.正好,“地⼼说”的观点也符合宗教神学关于地球是宇宙中⼼的说法,所以“地⼼说”统治了⼈们很长时间.但是随着⼈们对天体运动的不断研究,发现“地⼼说”所描述的天体的运动不仅复杂⽽且问题很多.如果把地球从天体运动的中⼼位置移到⼀个普通的、绕太阳运动的⾏星的位置,换⼀个⾓度来考虑天体的运动,许多问题都可以解决,⾏星运动的描述也变得简单了.随着世界航海事业的发展,⼈们希望借助星星的位置为船队导航,因⽽对⾏星的运动观测越来越精确.再加上第⾕等科学家经过长期观测及记录的⼤量的观测数据,⽤托勒密的“地⼼说”模型很难得出完美的解答.当时,哥伦布和麦哲伦的探险航⾏已经使不少⼈相信地球并不是⼀个平台,⽽是⼀个球体,哥⽩尼就开始推测是不是地球每天围绕⾃⼰的轴线旋转⼀周呢?他假设地球并不是宇宙的中⼼,它与其他⾏星都是围绕着太阳做匀速圆周运动.这就是“⽇⼼说”的模型.⽤“⽇⼼说”能较好地和观测的数据相符合,但它的思想⼏乎在⼀个世纪中被忽略,很晚才被⼈们接受.原因有:(1)“⽇⼼说”只是⼀个假设.利⽤这个“假设”,⾏星运动的计算⽐“地⼼说”容易得多.但著作中有很不精确的数据.根据这些数据得出的结果不能很好地跟⾏星位置的观测结果相符合.(2)当时的欧洲的统治者还是教会,把哥⽩尼的学说称为“异端学说”,因为它不符合教会的利益.致使这个正确的观点被推迟⼀个世纪才被⼈们所接受.德国的物理学家开普勒继承和总结了他的导师第⾕的全部观测资料及观测数据,也是以⾏星绕太阳做匀速圆周运动的模型来思考和计算的,但结果总是与第⾕的观测数据有8′的⾓度误差.当时公认的第⾕的观测误差不超过2′.开普勒想,很可能不是匀速圆周运动.在这个⼤胆思路下,开普勒⼜经过四年多的刻苦计算,先后否定了19种设想,最后终于计算出⾏星是绕太阳运动的,并且运动轨迹为椭圆,证明了哥⽩尼的“⽇⼼说”是正确的.并总结为⾏星运动三定律.同学们,前⼈的这种对问题的⼀丝不苟、孜孜以求的精神值得⼤家学习.我们对待学习更应该是脚踏实地,认认真真,不放过⼀点疑问,要有热爱科学、探索真理的热情及坚强的品质,来实现你的⼈⽣价值.2.开普勒⾏星运动规律(1)出⽰⾏星运动的挂图边看边介绍,让学⽣对⾏星运动有⼀个简单的感性认识.(2)放有关⾏星运动的录像录像的效果很好,很直观,让同学能看到三维的⽴体画⾯,让同学们的感性认识⼜提⾼⼀步.(3)开普勒⾏星运动的规律开普勒关于⾏星运动的描述可表述为三定律.我们主要介绍开普勒第⼀定律和第三定律.(4)所有的⾏星围绕太阳运⾏的轨道都是椭圆,太阳处在所有椭圆的⼀个焦点上.这就是开普勒第⼀定律.⾏星运动的轨道不是正圆,⾏星与太阳的距离⼀直在变.有时远离太阳,有时靠近太阳.它的速度的⼤⼩、⽅向时刻在改变.⽰意图如下:板书:开普勒第⼀定律:所有⾏星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的⼀个焦点上.(5)所有⾏星的轨道半长轴的三次⽅跟公转周期的⼆次⽅的⽐值都相等.这是开普勒第三定律.每个⾏星的椭圆轨道只有⼀个,但是它们运动的轨道的半长轴的三次⽅与公转周期的平⽅的⽐值是相等的.我们⽤R表⽰椭圆的半长轴,T代表公转周期,表达式可为:显然K是⼀个与⾏星本⾝⽆关的量,同学们想⼀想,K有可能与什么有关呢?同学们开始讨论、猜想.都围绕太阳运转,只与中⼼体有关的⼀个值了.板书:开普勒第三定律:所有⾏星的轨道的半长轴的三次⽅与公转周期的三次⽅的⽐值都是相同的.表达式:(R表⽰椭圆的半长轴,T表⽰公转周期)(6)同学们知道现在我们已经发现太阳周围有⼏颗⾏星了吗?分别是什么?学⽣回答:⾦、⽊、⽔、⽕、⼟、地球、天王星、海王星、冥王星.评价:(回答的很好),那同学们知道哪颗⾏星离太阳最近?同学回答:⽔星.⽼师提问:⽔星绕太阳运转的周期多⼤?⼀般学⽣不知道.⽼师告诉学⽣:⽔星绕太阳⼀周需88天.⽼师提问:我们⽣活的地球呢?同学们踊跃回答:约365天.3.补充说明(1)开普勒第三定律对所有⾏星都适合.(2)对于同⼀颗⾏星的卫星,也符合这个运动规律.⽐如绕地球运⾏的⽉球与⼈造卫星,就符合这⼀定律(K′与⾏星绕太阳的K值不同,中⼼体变,K值改变)六、⼩结通过本节课的学习,我们了解和知道了:1.“地⼼说”和“⽇⼼说”两种不同的观点及发展过程.2.⾏星运动的轨迹及物理量之间的定量关系(K是与⾏星⽆关的量).3.⾏星绕太阳的椭圆的半长轴R3与周期T2的⽐值为K,还知道对⼀个⾏星的不同卫星,它们也符合这个运⾏规律,即(K与K′是不同的).七、板书设计⾏星的运动1.“地⼼说”与“⽇⼼说”的发展过程.2.。

行星的运动教案设计

行星的运动教案设计

一、教学目标1. 让学生了解行星的运动特点和规律。

2. 使学生掌握开普勒定律及其在行星运动中的应用。

3. 培养学生运用物理知识解决实际问题的能力。

二、教学内容1. 行星的运动特点2. 开普勒定律3. 行星运动规律的应用三、教学重点与难点1. 教学重点:行星的运动特点,开普勒定律,行星运动规律的应用。

2. 教学难点:开普勒定律的推导和应用。

四、教学方法1. 采用问题驱动法,引导学生探究行星运动的规律。

2. 利用多媒体动画演示行星运动,增强学生直观感受。

3. 案例分析法,分析行星运动在现实生活中的应用。

五、教学过程1. 引入新课:通过讲解行星的运动特点,激发学生兴趣。

2. 讲授行星的运动特点:介绍行星运动的规律,如椭圆轨道、面积速率恒定等。

3. 讲解开普勒定律:阐述开普勒第一、第二、第三定律的定义及其推导过程。

4. 应用开普勒定律分析行星运动:举例说明开普勒定律在行星运动中的应用。

5. 分析行星运动在现实生活中的应用:介绍行星运动在航天、地球科学等领域的应用。

6. 课堂互动:学生提问、讨论,解答疑惑。

行星的运动教案设计一、教学目标1. 使学生了解开普勒定律及其对行星运动规律的描述。

2. 让学生通过观察和分析,掌握行星运动的规律。

3. 培养学生的科学探究能力和团队协作精神。

二、教学内容1. 开普勒定律的描述和解释。

2. 行星运动的规律。

3. 行星运动规律在现实生活中的应用。

三、教学重点与难点1. 教学重点:开普勒定律的内容及其对行星运动的解释。

2. 教学难点:开普勒定律的推导和应用。

四、教学方法1. 采用问题驱动法,引导学生探究行星运动的规律。

2. 利用多媒体动画演示行星运动,增强学生直观感受。

3. 案例分析法,分析行星运动在现实生活中的应用。

五、教学过程1. 引入新课:通过讲解行星的运动特点,激发学生兴趣。

2. 讲授行星的运动特点:介绍行星运动的规律,如椭圆轨道、面积速率恒定等。

3. 讲解开普勒定律:阐述开普勒定律的内容,引导学生理解开普勒定律对行星运动的解释。

第1节 行星的运动 教学设计

第1节 行星的运动 教学设计

第七章万有引力与宇宙航行第1节行星的运动[学习目标]1.了解人类对行星运动规律的认识历程.2.知道开普勒定律的内容.3.能用开普勒定律分析一些简单的行星运动问题.知识点1地心说与日心说1.地心说:地球是宇宙的中心,且是静止不动的,太阳、月亮以及其他行星都绕地球运动.2.日心说:太阳是宇宙的中心,且是静止不动的,地球和其他行星都绕太阳运动.3.局限性:都把天体的运动看得很神圣,认为天体的运动必然是最完美、最和谐的匀速圆周运动,而与丹麦天文学家第谷的观测数据不符.知识点2开普勒定律1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等.3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.其表达式为a3T2=k,其中a是椭圆轨道的半长轴,T是行星绕太阳公转的周期,k是对所有行星都相同的常量.[判一判](1)各行星围绕太阳运动的速率是不变的.()(2)开普勒定律仅适用于行星绕太阳的运动.()(3)行星轨道的半长轴越长,行星的公转周期越长.()(4)可近似认为地球围绕太阳做圆周运动.()(5)行星绕太阳运动一周的时间内,它与太阳的距离是不变的.()(6)公式a3T2=k,只适用于轨道是椭圆的运动.()提示:(1)×(2)×(3)√(4)√(5)×(6)×[想一想](1)请利用你学习的知识分析哪个小孩说得更有道理?(2)如何理解开普勒第三定律中的常量k?提示:(1)第二个小孩说得更有道理,因为地球有绕地轴的自转和绕太阳的公转,地球每天自转一周,因此坐在家中的小孩相对“家”虽然没有动,但随地球旋转了一周,路程大约是8万里.(2)当行星绕太阳运行时,虽然轨道半径和周期各不相同,但是k=a3T2相同,常量k与行星无关,但与中心天体有关.中心天体不同,常量k一般也不相同,即k值是由中心天体决定的,与环绕天体无关.例如卫星绕地球运行的k值与行星绕太阳运行的k值不同,k不是一个普适常量.总结一下就是:①对同一中心天体,k值不变.②对不同的中心天体,k值不同.③k值大小由中心天体的质量决定.1.(对开普勒定律的理解)关于行星的运动,下列说法正确的是()A.关于行星的运动,早期有“地心说”与“日心说”之争,“日心说”理论是完美无缺的B.所有行星围绕太阳运动的轨道都是椭圆,且近日点速度小,远日点速度大C.开普勒第三定律r3T2=k,式中k的值仅与中心天体的质量有关D.卫星围绕行星运动不满足开普勒第三定律解析:选 C.地心说认为地球是宇宙的中心,其他天体都绕地球运行;日心说认为太阳是宇宙的中心,所有天体都绕太阳运行.不论是日心说还是地心说,在研究行星运动时都是有局限性的,A错误;根据开普勒行星运动定律,所有行星围绕太阳运动的轨道都是椭圆,且近日点速度大,远日点速度小,B错误;开普勒第三定律r3T2=k,式中k的值仅与中心天体的质量有关,C正确;卫星围绕行星运动也满足开普勒第三定律,D错误.2.(对开普勒定律的理解)关于开普勒行星运动定律,下列说法不正确的是()A.所有行星围绕太阳的运动轨道都是椭圆,太阳处在椭圆的一个焦点上B.对于任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积C.行星在近日点的速率小于在远日点的速率D.对于开普勒第三定律a3T2=k,k值是与a和T均无关的值解析:选C.由开普勒第一定律知A正确;由开普勒第二定律可知,太阳系的任一行星与太阳的连线在相等时间内扫过的面积相等,由于行星在近日点与太阳的连线短,则运行速率必然大,故B正确,C错误;由开普勒第三定律可知,D正确.3.(对开普勒第三定律的理解)(多选)对于开普勒第三定律的公式a3T2=k,下列说法正确的是()A.公式只适用于轨道是椭圆的运动B.式中的k值,对于所有行星都相等C.式中的k值,只与中心天体有关,与绕中心天体旋转的行星无关D.该公式也适用于围绕地球运行的所有卫星解析:选CD.圆是椭圆的特例,故公式既然适用于椭圆轨道的卫星,也就适用于圆轨道的行星,但此时公式中的a为轨道半径,故A错误;比例系数k是一个由中心天体决定而与行星无关的常量,但不是恒量,不同的星系中,k值不同,即只要是围绕同一中心天体运行的不同天体,公式都适用,包括以地球为中心天体的系统,故B错误,C、D正确.4.(开普勒第三定律的应用)阋神星是一个已知最大的属于柯伊伯带及海王星外天体的矮行星,因观测估算比冥王星大,在公布发现时曾被其发现者和NASA等组织称为“第十大行星”.若将地球和阋神星绕太阳的运动看作匀速圆周运动,它们的运行轨道如图所示.已知阋神星绕太阳运行一周的时间约为557年,设地球绕太阳运行的轨道半径为R,则阋神星绕太阳运行的轨道半径约为()A.3557R B.557RC.35572R D.5573R解析:选C.由开普勒第三定律R3地T2地=r3阋T2阋,得r阋=35572R,C正确.探究一对开普勒定律的理解【情景导入】1.图甲是地球绕太阳公转及四季的示意图,由图可知地球在春分日、夏至日、秋分日和冬至日四天中哪一天绕太阳运动的速度最大?哪一天绕太阳运动的速度最小?2.图乙是“金星凌日”的示意图,观察图中地球、金星的位置,地球和金星哪一个的公转周期更长?提示:1.冬至日;夏至日.由题图甲可知,冬至日地球在近日点附近,夏至日在远日点附近,由开普勒第二定律可知,冬至日地球绕太阳运动的速度最大,夏至日地球绕太阳运动的速度最小.2.地球.由题图乙可知,地球到太阳的距离大于金星到太阳的距离,根据开普勒第三定律可得,地球的公转周期更长一些.1.开普勒第一定律解决了行星的轨道问题行星的轨道都是椭圆,如图甲所示.不同行星绕太阳运动的椭圆轨道是不同的,太阳处在椭圆的一个焦点上,如图乙所示,即所有轨道都有一个共同的焦点——太阳.因此开普勒第一定律又叫轨道定律.2.开普勒第二定律解决了行星绕太阳运动的速度大小问题(1)如图所示,如果时间间隔相等,由开普勒第二定律知,面积S A=S B,可见离太阳越近,行星在相等时间内经过的弧长越长,即行星的速率越大.因此开普勒第二定律又叫面积定律.(2)近日点、远日点分别是行星距离太阳的最近点、最远点.同一行星在近日点速度最大,在远日点速度最小.3.开普勒第三定律解决了行星公转周期的长短问题(1)如图所示,由a3T 2=k知椭圆轨道半长轴越长的行星,其公转周期越长,因此第三定律也叫周期定律.常量k与行星无关,只与太阳有关.(2)该定律不仅适用于行星绕太阳的运动,也适用于卫星绕地球的运动,其中常量k与卫星无关,只与地球有关,也就是说k值大小由中心天体决定.【例1】火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的二次方等于它们轨道半长轴之比的三次方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积[解析]根据开普勒行星运动定律,火星和木星沿各自的椭圆轨道绕太阳运行时,太阳位于椭圆的一个焦点上,A错误;行星绕太阳运行的轨道不同,周期不同,运行速度大小也不同,B错误;火星与木星运行的轨道半长轴的立方与周期的平方之比是一个常量,a3火T2火=a3木T2木=k,⎝⎛⎭⎪⎫a火a木3=⎝⎛⎭⎪⎫T火T木2,C正确;火星与太阳连线在相同时间内扫过的面积相等,木星与太阳连线在相同时间内扫过的面积相等,但这两个面积不相等,D错误.[答案] C[针对训练1](多选)如图所示,两质量相等的卫星A、B绕地球做匀速圆周运动,用R、T、v、S分别表示卫星的轨道半径、周期、速度、与地心连线在单位时间内扫过的面积.下列关系式正确的有()A.T A>T B B.v A>v BC.S A=S B D.R3AT2A=R3BT2B解析:选AD.根据开普勒第三定律r3T2=k知,轨道半径越大,周期越大,所以T A>T B,故A、D正确;由v=2πrT知,v Av B=R A T BR B T A=R AR B×R3BR3A=R BR A<1,即v B>v A,故B错误;根据开普勒第二定律可知,应是同一卫星与地心连线在单位时间内扫过的面积相等,故C错误.探究二开普勒定律的应用【情景导入】(1)太阳每天东升西落,这一现象是否说明太阳绕着地球运动呢?为什么?(2)行星m绕恒星M运动情况的示意图如图所示,则在A、B、C、D四个位置中,速度最大的是哪个位置?行星m从A运行到B过程中做加速运动还是减速运动?提示:(1)不能.太阳是太阳系的中心,地球等行星绕太阳运动.太阳东升西落,是因为地球的自转.(2)A减速运动1.适用范围:天体的运动可近似看成匀速圆周运动,开普勒第三定律既适用于做椭圆运动的天体,也适用于做圆周运动的天体.2.应用(1)知道了行星到太阳的距离,就可以由开普勒第三定律计算或比较行星绕太阳运行的周期.反之,知道了行星的周期,也可以计算或比较其到太阳的距离.(2)知道了彗星的周期,就可以由开普勒第三定律计算彗星轨道的半长轴长度,反之,知道了彗星的半长轴长度也可以求出彗星的周期.3.k值:表达式a3T2=k中的常数k,只与中心天体的质量有关,如研究行星绕太阳运动时,常数k只与太阳的质量有关,研究卫星绕地球运动时,常数k只与地球的质量有关.【例2】(多选)如图所示,对开普勒第一定律的理解,下列说法正确的是()A.在行星绕太阳运动一周的时间内,它到太阳的距离是不变化的B.在行星绕太阳运动一周的时间内,它到太阳的距离是变化的C.某个行星绕太阳运动的轨道一定是在某一固定的平面内D.某个行星绕太阳运动的轨道一定不在一个固定的平面内[解析]由开普勒第一定律可知:行星绕太阳运动的轨道是椭圆,有时远离太阳,有时靠近太阳,故它到太阳的距离是变化的,A错误,B正确;行星围绕着太阳运动,由于受到太阳的引力作用而被约束在速度与引力所决定的平面内一定的轨道上,C正确,D错误.[答案]BC【例3】某行星绕一恒星运行的椭圆轨道如图所示,E和F是椭圆的两个焦点,O是椭圆的中心,行星在B点的速度比在A点的速度大.则该恒星位于()A.O点B.B点C.E点D.F点[解析]根据开普勒第一定律,恒星应该位于椭圆的焦点上,故A、B错误;根据开普勒第二定律,对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积,则行星在离恒星较近的位置速率较大,在远离恒星的位置速率较小,因为行星在B点的速度比在A点的速度大,则恒星位于E点,故C正确,D错误.[答案] C【例4】天文学家观察哈雷彗星的周期为76年,到太阳最近的距离为8.9×1010 m,试根据开普勒第三定律计算哈雷彗星到太阳最远的距离.太阳系的开普勒常量k可取3.354×1018 m3/s2.[解析]由开普勒第三定律知a3T2=k,所以a=3kT2=33.354×1018×(76×365×24×3 600)2m≈2.68×1012 m,彗星到太阳最远的距离为2a-8.9×1010m=(2×2.68×1012-8.9×1010)m≈5.27×1012 m.[答案] 5.27×1012 m[针对训练2]地球绕太阳运动的轨道是椭圆,因而地球与太阳之间的距离随季节变化.若认为冬至这天地球离太阳最近,夏至最远.则下列关于地球在这两天绕太阳公转时速度大小的说法中正确的是()A.地球公转速度是不变的B.冬至这天地球公转速度大C.夏至这天地球公转速度大D.无法确定解析:选B.冬至这天地球与太阳的连线短,夏至长.根据开普勒第二定律,要在相等的时间内扫过相等的面积,则在相等的时间内,冬至时地球运动的路径要比夏至时长,所以冬至时地球运动的速度比夏至时的速度大,B正确.[针对训练3](多选)如图,海王星绕太阳沿椭圆轨道运动,P为近日点,Q为远日点,M、N为轨道短轴的两个端点,运行的周期为T0.若只考虑海王星和太阳之间的相互作用,则海王星在从P经过M、Q到N的运动过程中()A.从P到M所用的时间等于T0 4B.从Q到N阶段,速率逐渐变大C.从P到Q阶段,角速度逐渐变小D.从M到N所用时间大于T0 2解析:选BCD.由开普勒第二定律用对称性可知,海王星从P运动到Q所用时间与从Q 回到P 所用时间相等,各为T 02,但从近日点到远日点即P 到Q ,海王星的速率逐渐减小、角速度在减小,故从P 到M 与从M 到Q 虽通过的路程相同,但所用的时间一定是从M 到Q 长,即从P 到M 所用时间小于T 04、从M 到Q所用时间大于T 04,再由对称性可知,从Q 到N 速率逐渐变大,从M 到N 的时间一定大于半个周期,A 错误,B 、C 、D 正确.[针对训练4] 已知两个行星的质量m 1=2m 2,公转周期T 1=2T 2,则它们绕太阳运动轨道的半长轴之比为( )A.a 1a 2=12 B.a 1a 2=21 C.a 1a 2=34 D.a 1a 2=134解析:选C.根据开普勒第三定律a 3T 2=k ,又因为公转周期T 1=2T 2,则它们绕太阳运转轨道的半长轴之比为a 1a 2=3T 21T 22=34. [A 级——合格考达标练]1.关于太阳系中各行星的轨道,以下说法错误的是( )A .所有行星绕太阳运动的轨道都是椭圆B .有的行星绕太阳运动的轨道是圆C .不同行星绕太阳运动的椭圆轨道的半长轴是不同的D .不同的行星绕太阳运动的轨道各不相同解析:选B.由开普勒第一定律知八大行星的轨道都是椭圆,A 正确,B 错误;不同行星离太阳远近不同,轨道不同,半长轴也就不同,C 、D 正确.2.关于环绕地球运动的卫星,下列说法正确的是( )A .分别沿圆轨道和椭圆轨道运动的两颗卫星,不可能具有相同的周期B .沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C .在赤道上空运动的两颗同步卫星,它们的轨道半径有可能不同D .沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合解析:选 B.由开普勒第三定律可知,当圆轨道的直径与椭圆轨道的长轴相等时它们运行周期相等,A 错误;由开普勒第二定律可知,当卫星在沿椭圆轨道运行过程中到地心距离相等时速率相同,B 正确;同步卫星周期一定,由开普勒第三定律可知其轨道半径一定相同,C 错误;沿不同的圆形轨道、椭圆轨道运行的卫星,只要求地心位于轨道平面的圆心或椭圆面的一个焦点上,不同轨道平面可与赤道面成不同夹角、轨迹可有不同交点,故能经过同一点的卫星轨道面不一定重合,D 错误.3.太阳系中有一颗绕太阳公转的行星,到太阳的平均距离是地球到太阳平均距离的4倍,则该行星绕太阳公转的周期是( )A .10年B .2年C .4年D .8年解析:选D.设地球轨道半径为R ,则行星的轨道半径为4R ,根据开普勒第三定律得R 3T 2=(4R )3T 2行,解得:T 行=43T =8T ,地球的公转周期为1年,则说明该行星的公转周期为8年,故D 正确.4.某行星沿椭圆轨道运行,远日点到太阳的距离为a ,近日点到太阳的距离为b ,过远日点时行星的速率为v a ,则过近日点时的速率为( )A.b a v aB . a b v a C.a b v a D . ba v a解析:选C.在行星经过近日点与远日点时各取一段相等的极短时间Δt ,由开普勒第二定律可知,行星与太阳连线在相等时间内扫过的面积相等,则有12b v b Δt =12a v a Δt ,解得v b =a b v a ,C 正确.5.(多选)哈雷彗星绕太阳运动的轨道是比较扁的椭圆,下列说法正确的是( )A .彗星在近日点的速率大于在远日点的速率B .彗星在近日点的角速度大于在远日点的角速度C .彗星在近日点的向心加速度大于在远日点的向心加速度D .若彗星周期为76年,则它的半长轴是地球公转半径的76倍解析:选ABC.根据开普勒第二定律,近日点与远日点相比在相同时间内走过的弧长要大,因此在近日点彗星的线速度(即速率)、角速度都较大,A、B正确;向心加速度a=v2R,在近日点,v大,R小,因此a大,C正确;根据开普勒第三定律r3T2=k,则r31r32=T21T22=762,即r1=35 776r2,D不正确.[B级——等级考增分练]6.火星绕太阳运动的椭圆轨道如图所示,M、N、P是火星依次经过的三个位置,F1、F2为椭圆的两个焦点.火星由M到N和由N到P的过程中,通过的路程相等,火星与太阳中心的连线扫过的面积分别为S1和S2.已知由M→N→P过程中,火星速率逐渐减小.下列判断正确的是()A.太阳位于焦点F2处B.S1<S2C.在M和N处,火星的角速度ωM<ωND.在N和P处,火星的动能E k N<E k P解析:选B.已知由M→N→P过程中,火星速率逐渐减小,根据开普勒第二定律可知,火星和太阳的距离越来越大,即太阳位于焦点F1处,故A错误;火星由M到N和由N到P的过程,通过的路程相等,速率逐渐减小,所以火星由M到N的运动时间小于由N到P的运动时间,根据开普勒第二定律可知单位时间内扫过的面积相等,因此S1<S2,故B正确;因v=ωr,v M>v N>v P,r N>r M,所以火星的角速度ωM>ωN,火星的动能E k N>E k P,故C、D错误.7.我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”方式成功发射第52、53颗北斗导航卫星.发射过程中,北斗52星的某一运行轨道为椭圆轨道,周期为T0,如图所示,则()A.卫星绕地球飞行的轨道是个椭圆,地球处于椭圆的中心B.卫星在A→B→C的过程中,速率逐渐变大C.卫星在A→B过程所用的时间小于T0 4D.在C点卫星速度有最大值解析:选 C.由开普勒第一定律可知,卫星绕地球飞行的轨道是个椭圆,地球处于椭圆的一个焦点上,故A错误;根据开普勒第二定律可知,卫星在相等的时间内扫过的面积相等,卫星在A→B→C的过程中,卫星与地球的距离增大,速率逐渐变小,在C点卫星速度有最小值,故B、D错误;卫星在A→B→C的过程所用的时间是半个周期,由于这段运动过程中速率逐渐变小,A→B、B→C 的路程相等,所以卫星在A→B过程所用的时间小于B→C过程所用的时间,则卫星在A→B过程所用的时间小于T04,故C正确.。

行星的运动教案设计

行星的运动教案设计

一、教案基本信息1. 教案名称:行星的运动教案设计2. 适用年级:八年级3. 学科领域:物理4. 教学时长:45分钟二、教学目标1. 让学生了解行星的运动特点,掌握开普勒定律。

2. 培养学生通过观察、分析、归纳等方法研究物理问题的能力。

3. 激发学生对天文学的兴趣,培养其探索宇宙奥秘的热情。

三、教学内容1. 行星的运动特点2. 开普勒定律的发现3. 开普勒定律的表述4. 行星运动规律的应用5. 太阳系中的行星运动四、教学重点与难点1. 重点:行星的运动特点,开普勒定律的表述及应用。

2. 难点:开普勒第三定律的理解和应用。

五、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳来探究行星的运动规律。

2. 利用多媒体课件,展示行星运动的动态过程,增强学生的直观感受。

3. 结合历史背景,讲述开普勒定律的发现过程,激发学生的学习兴趣。

4. 开展小组讨论,培养学生合作探究的能力。

六、教学步骤1. 引入新课:通过讲解太阳系行星的运动,引发学生对行星运动特点的好奇心。

2. 探究行星运动特点:让学生观察多媒体课件中的行星运动轨迹,引导学生发现行星运动的规律。

3. 讲解开普勒定律:介绍开普勒定律的发现过程,讲解第一、第二、第三定律的内容。

4. 应用开普勒定律:分析太阳系中行星的运动,让学生运用开普勒定律解释行星的运动规律。

5. 课堂小结:总结本节课所学内容,强调开普勒定律在解释行星运动中的重要性。

七、教学活动1. 观察行星运动轨迹:让学生利用多媒体课件观察不同行星的运动轨迹。

2. 小组讨论:学生分组讨论行星运动的规律,分享各自的发现。

3. 展示成果:各小组派代表向全班同学展示讨论成果,讲解行星运动的规律。

4. 思维导图:学生绘制思维导图,总结开普勒定律的内容及应用。

八、作业布置1. 复习开普勒定律的内容,理解行星运动的规律。

2. 结合教材,思考开普勒定律在实际中的应用,如地球的公转等。

3. 预习下一节课内容,了解行星运动的其他解释模型。

关于《行星的运动》(教案)

关于《行星的运动》(教案)

《行星的运动》教案关于《行星的运动》教案(通用12篇)作为一名老师,就有可能用到教案,教案有助于顺利而有效地开展教学活动。

那么你有了解过教案吗?下面是小编收集整理的关于《行星的运动》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

《行星的运动》教案篇1新课标要求(一)知识与技能1、知道地心说和日心说的基本内容。

2、知道所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

3、知道所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量无关,但与太阳的质量有关。

4、理解人们对行星运动的认识过程是漫长复杂的,真理是来之不易的。

(二)过程与方法通过托勒密、哥白尼、第谷?布拉赫、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解。

(三)情感、态度与价值观1、澄清对天体运动神秘模糊的认识,掌握人类认识自然规律的科学方法。

2、感悟科学是人类进步不竭的动力。

重点、难点开普勒行星运动定律、对开普勒行星运动定律的理解和应用方法教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。

教学建议日心说、地心说及两者之间的争论有许多内容可以向学生介绍,教材为了简单明了地讲述开普勒定律,没有过多地叙述这些内容.教学中可以结合教学的实际情况向学生介绍有关的历史材料,也可引导学生课外阅读有关的读物。

这些内容学生会很感兴趣,又容易接受,也是我们进行科学方法和思想教育的好素材。

学习本节课的目的是为下一节推导万有引力定律铺垫,开普勒定律没必要做过高要求。

教学过程(一)引入新课教师活动:在浩瀚的宇宙中有着无数大小不一、形态各异的天体。

白天我们沐浴着太阳的光辉,夜晚,仰望苍穹,繁星闪烁,美丽的月亮把我们带入无限的遐想中。

由这些天体所组成的宇宙始终是人们渴望了解又不断探索的领域。

经成百上千年的探索,伟大的科学家们对它已经有了一些初步的了解。

本节我们就共同来学习前人所探索到的行星的运动情况。

《第七章 1 行星的运动》教学设计教学反思-2023-2024学年高中物理人教版2019必修第二册

《第七章 1 行星的运动》教学设计教学反思-2023-2024学年高中物理人教版2019必修第二册

《行星的运动》教学设计方案(第一课时)一、教学目标1. 理解开普勒行星运动定律的含义和基本规律。

2. 能够运用所学知识解释和预测行星运动现象。

3. 培养观察、分析和解决问题的能力。

二、教学重难点1. 教学重点:理解开普勒第一、第二定律的含义和实际应用。

2. 教学难点:运用开普勒定律解释和预测复杂的行星运动现象。

三、教学准备1. 准备教学PPT,包含图片、图表和相关视频。

2. 准备教学器材,如天文望远镜、星球模型等。

3. 准备相关教学资源,如天文观测数据、科普视频等。

4. 设计课堂讨论和实验环节,引导学生积极参与。

四、教学过程:本节课的教学目标是让学生理解开普勒行星运动三定律,掌握行星运动的规律,并能应用于实际问题。

为了实现这个目标,我将采用以下的教学过程:1. 导入:首先,我会通过一些简单的实验和图片,让学生了解行星的运动情况,并引出本节课的主题——行星的运动。

2. 新课讲解:接下来,我会详细讲解开普勒行星运动三定律。

首先,我会介绍第一定律,即所有行星都沿椭圆轨道绕太阳运动,太阳位于椭圆的一个焦点上。

然后,我会讲解第二定律,即从太阳到行星的连线在相等时间内扫过相等的面积。

最后,我会介绍第三定律,即所有行星绕太阳公转周期的平方和它们轨道半径的立方成正比。

通过讲解和讨论,让学生深入理解这三个定律的含义和适用范围。

3. 实验探究:为了让学生更好地理解行星的运动规律,我会组织学生进行实验探究。

学生需要使用天文望远镜和测量工具,观察行星的运动,并记录数据。

通过实验探究,学生可以更直观地了解行星的运动规律,加深对知识的理解。

4. 案例分析:为了让学生能够将所学知识应用于实际问题,我会给出一些具体的案例,让学生分析行星的运动规律。

例如,太阳系中不同行星的轨道半径和周期的关系,以及行星运动对地球气候的影响等。

通过案例分析,学生可以更好地掌握所学知识,提高解决问题的能力。

5. 课堂互动:在教学过程中,我会鼓励学生积极参与讨论和提问,引导学生思考和探索。

《行星的运动》教学设计

《行星的运动》教学设计
课题
行星的运动




科学观念
(1)了解人类对行星运动规律的认识历程。
(2)了解观察的方法在认识行星运动规律中的作用。
科学思维
(1)行星运动模型的建立。
(2)通过托勒密、哥白尼、开普勒等几位科学家对行星运动的不同认识、了解人类认识事物本质的曲折性并加深对行星运动的理解.
(3)具有使用科学证据的意识和评估科学证据的能力,有定性到定量对行星三定律进行描述、解释。
土星
1.43×1012
9.30×108
天王星
2.87×1012
2.66×109
海王星
4.50×1012
5.20×109
(通过数据验证开普勒第三定律的正确性,并理解k是一个与行星无关的常量)
思考与交流:k是一个与行星无关的常量,那它可能跟谁有关?(每个小组算一组数据)
教师:实际上,多数行星的轨道与圆十分接近(展示表格),
感悟观察在科学研究中的重要性。
体会科学家们实事求是、尊重客观事实、不迷信权威、敢于坚持真理和勇于探索的科学态度和科学精神。
感悟人们对行星ห้องสมุดไป่ตู้动的认识过程是漫长复杂的,真理是来之不易的。
学习任务3:学习开普勒行星运动定律
学生阅读回答相关问题:第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
下面有请各个小组成员把课前收集的关于对天体运动研究的重要代表人物资料(各自的研究结果、所持观点及依据)进行小组讨论并选出一位同学给大家讲讲他们的相关情况。.
对学生收集材料进行点评(表扬、补充);
阅读科学足迹,托勒密:地心宇宙;哥白尼:拦住了太阳,推动了地球
问题探究:
1.为什么日心学说占统治地位的时间较长?

行星的运动教案

行星的运动教案

行星的运动教案一、教学目标:1. 知识与技能:了解行星的运动规律,能够描述地球的自转与公转运动以及月球的绕地球运动。

2. 过程与方法:通过观察和实验证明地球的自转与公转运动以及月球的绕地球运动。

3. 情感态度价值观:培养学生对科学的兴趣,了解地球的美丽与神奇。

二、教学重难点:1. 了解行星的自转与公转运动。

2. 了解月球的绕地球运动三、教学过程:1. 导入:通过播放一段关于夜晚星空的视频,引起学生对行星运动的思考。

2. 概念讲解:(1)自转运动:讲解地球的自转运动,即地球以西向东自转一周所花的时间为一天,造成昼夜交替的现象。

(2)公转运动:讲解地球的公转运动,即地球绕太阳公转的运动,造成四季变化的现象。

(3)绕地运动:讲解月球绕地球运动的规律,即月球以逆时针方向绕地球公转一周所花的时间为一个月。

3. 实验探究:(1)实验一:利用一个篮球表示地球,一颗橙表示太阳,一个小球表示月球,橙球固定在教室中央,篮球在场地上自转,同时绕橙球公转,小球围绕篮球绕圈。

通过实验观察,学生发现地球自转一周为一天,地球公转一周为一年,月球绕地球一周为一个月。

(2)实验二:利用一个手电筒固定表示太阳,一个旋转台表示地球,一个小球表示月球。

通过手电筒照射地球,月球围绕地球运动,学生观察现象并记录下来。

4. 归纳总结:(1)与学生共同总结地球的自转与公转运动以及月球的绕地运动规律,澄清概念和规律。

(2)巩固知识点,解答学生的问题。

5. 练习与拓展:(1)让学生画出地球的自转与公转运动的示意图。

(2)让学生编写一首歌曲或小诗来表达地球的自转与公转运动,激发学生的创造力。

6. 课堂小结:通过本堂课的学习,学生们了解了行星的运动规律,掌握了地球的自转与公转运动以及月球的绕地运动。

同时通过实验探究,培养了学生科学实验的能力,激发了他们对科学的兴趣。

7. 课后作业:要求学生结合自己的实际观察,写一篇关于日月星辰运动的观察日记。

高中物理_第六章第一节 行星的运动教学设计学情分析教材分析课后反思

高中物理_第六章第一节  行星的运动教学设计学情分析教材分析课后反思

6.1行星的运动【教学设计】首先由小组长检查预习情况,然后汇总到课代表处,由课代表陈述检查结果,老师抽查。

由课件出示本节的课程标准、学习目标以及本节课的内容提要。

师:在前面的学习中我们研究了地面上物体的运动,从今天开始我们就把研究触角伸到太空——研究天体运动;自古以来,当人们仰望星空时,广袤无垠的天空有很多大小不一,形态各异的天体,比如太阳、月亮和星星;浩瀚的宇宙一直是人们渴望了解,不断探索的领域,但这个探索过程是漫长而又曲折的,科学家们进行了不懈的努力。

现在就由咱们同学分别扮演五个有代表性的人物,他们分别是亚里士多德、托勒密、哥白尼、第谷、开普勒。

(课前已经给出学生阅读资料,分组扮演不同的人物)学生:扮演不同的人物观看动画:地心说、日心说、实际的太阳系的情景。

学生讨论学习单,把不能解决问题写到黑板上,以便老师了解学生的预习情况。

检查学生讨论的质量,设计问题让学生回答。

要求学生画出行星绕太阳运动的轨道,标出太阳的位置和半长轴。

【问题1】开普勒第一定律说明了行星运动轨迹的形状,不同的行星绕太阳运行时椭圆轨道相同吗?它们的焦点相同吗?【问题2】行星沿着椭圆轨道运行, 太阳位于椭圆的一个焦点上,则行星在远日点的速率大还是在近日点的速率大?【问题3】试求出近日点和远日点地球的速度大小的比值?(太阳的位置为0点)【问题4】公式 中的比例系数 k 与什么有关? 同桌之间互相提问基础知识。

师:从刚才的研究我们发现,太阳系行星的轨道与圆十分接近,所以在中学阶段的研究中我们按圆轨道处理。

学生回答:①行星绕太阳运动轨道是圆,太阳处在圆心上。

②对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行星做匀速圆周运动。

③所有行星的轨道半径的三次方跟它的公转周期的平方的比值都相等。

若用R 代表轨道半径,代表公转周期,开普勒第三定律可以用公式表示为:k T R =23,k 与太阳有关。

抢答环节检查学生对基础知识的掌握情况。

行星的运动教案

行星的运动教案

行星的运动教案【篇一:行星的运动教学设计】第六章万有引力定律(一、行星的运动)教学目的:1.了解地心说和日心说两种不同的观点2.知道开普勒对行星运动的描述教学重点:知道开普勒对行星的描述教学过程:引入:在前面我们学习了力和运动,并且讲述了力和运动的关系:动力学。

介绍了几种常见的物体运动,本章将介绍一种新的力-------万有引力和一种新的运动实例--------行星的运动。

一地心说与日心说1.让同学自己阅读,找出地心说和日心说的观点:地心说:认为地球是宇宙的中心。

地球的静止不动的,太阳、月亮以及其它行星都绕地球运动。

日心说:认为太阳是静止不动的,地球和其它行星都绕太阳动动2.为什么地心说会统治人们很久时间。

3.古人是如何看待天体的运动:古人认为天体的运动是最完美、和谐的匀速圆周运动。

4.谁首先对天体的匀速圆周运动的观点提出怀疑:开普勒二开普勒三定律开普勒通过四年多的刻苦计算,先后否定了十九种设想,最后了发现星运行的轨道不是圆,而是椭圆。

并得出了开普勒两条定律:开普勒第一定律:所有行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳是在这些椭圆的一个焦点上。

开普勒第二定律:太阳和行星的联线在相等的时间内扫过相等的面积如图:如果时间间隔相等,即t2-t1=t4-t3那么面积a=面积b开普勒第三定律:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等。

r/t=k (k是一个与行星或卫星无关的常量,但不同星球的行星或卫星32k值不一定相等)其中m为行星质量,r为行星轨道半径,即太阳与行星的距离。

也就是说,太阳对行星的引力正比于行星的质量而反比于太阳与行星的距离的平方。

而此时牛顿已经得到他的第三定律,即作用力等于反作用力,用在这里,就是行星对太阳也有引力。

同时,太阳也不是一个特殊物体,它用语言表述,就是:太阳与行星之间的引力,与它们质量的乘积成正比,与它们距离的平方成反比。

这就是牛顿的万有引力定律。

行星的运动物理教案

行星的运动物理教案

行星的运动物理教案一、教学目标1. 让学生了解行星运动的基本概念,如行星、椭圆轨道、开普勒定律等。

2. 使学生掌握行星运动的物理原理,如万有引力定律、向心力等。

3. 培养学生的观察能力、思考能力和解决问题的能力。

二、教学内容1. 行星运动的基本概念:行星、椭圆轨道、开普勒定律。

2. 万有引力定律:概念、公式、适用范围。

3. 向心力:概念、公式、作用。

4. 行星运动的规律:椭圆轨道、抛物线轨道、双曲线轨道。

5. 行星运动的速度、加速度和周期:公式、计算方法。

三、教学重点与难点1. 重点:行星运动的基本概念、物理原理、开普勒定律、万有引力定律、向心力。

2. 难点:椭圆轨道、抛物线轨道、双曲线轨道的性质和计算,行星运动的速度、加速度和周期的计算。

四、教学方法1. 采用讲授法,讲解行星运动的基本概念、物理原理、开普勒定律、万有引力定律、向心力等。

2. 利用图形、动画等直观教学手段,展示行星运动的轨迹和物理过程。

3. 引导学生进行观察、思考和讨论,提高学生的参与度和积极性。

4. 布置练习题,巩固所学知识,提高学生的实际应用能力。

五、教学安排1. 第一课时:介绍行星运动的基本概念,讲解椭圆轨道、抛物线轨道、双曲线轨道的性质。

2. 第二课时:讲解万有引力定律、向心力,分析行星运动的规律。

3. 第三课时:讲解行星运动的速度、加速度和周期,举例计算。

4. 第四课时:课堂讨论,提问回答,总结本章知识点。

5. 第五课时:布置作业,巩固所学知识。

六、教学评估1. 课堂问答:通过提问方式检查学生对行星运动基本概念的理解。

2. 小组讨论:让学生分组讨论行星运动的物理原理,并展示讨论成果。

3. 练习题:布置相关的习题,检验学生对知识的掌握和运用能力。

七、教学拓展1. 介绍其他行星的运动特点,如火星、木星、土星等。

2. 探讨行星运动在天文学领域的应用,如行星探测、星系演化等。

3. 引导学生关注行星运动的研究动态,提高学生的科学素养。

行星的运动物理教案

行星的运动物理教案

行星的运动物理教案一、教学目标1. 让学生了解行星的运动特点和规律,掌握开普勒定律。

2. 培养学生运用物理知识分析问题、解决问题的能力。

3. 引导学生运用观察、实验、推理等方法探究行星运动的规律。

二、教学内容1. 行星运动的基本概念:行星、椭圆、抛物线、双曲线。

2. 开普勒定律:第一定律(椭圆定律)、第二定律(面积定律)、第三定律(调和定律)。

3. 行星运动的速度、加速度和向心力。

三、教学重点与难点1. 重点:开普勒定律的理解和应用。

2. 难点:行星运动速度、加速度和向心力的计算。

四、教学方法1. 采用问题驱动法,引导学生通过观察、实验、推理等方法探究行星运动的规律。

2. 利用多媒体课件辅助教学,直观展示行星运动的特点和规律。

3. 开展课堂讨论,鼓励学生发表自己的观点和思考。

五、教学过程1. 导入:简要介绍行星运动的基本概念,激发学生兴趣。

2. 探究开普勒定律:a. 引导学生观察椭圆、抛物线和双曲线,理解行星运动的轨迹。

b. 介绍开普勒第一定律,解释行星运动椭圆轨道的成因。

c. 讲解开普勒第二定律,引导学生理解行星运动速度与面积的关系。

d. 阐述开普勒第三定律,让学生掌握行星运动周期与半长轴的关系。

3. 行星运动的速度、加速度和向心力:a. 引导学生运用牛顿第二定律分析行星运动的向心力。

b. 讲解行星运动速度、加速度与轨道半径的关系。

c. 举例说明行星运动速度、加速度的计算方法。

4. 课堂练习:让学生运用开普勒定律和行星运动公式解决实际问题。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学拓展1. 介绍太阳系中的行星运动:木星、土星、火星、金星、地球和月球。

2. 引导学生了解其他星系中的行星运动规律。

3. 探讨行星运动在天文学和航天领域的应用。

七、课堂互动1. 提问环节:让学生回答关于行星运动的问题,提高学生的参与度。

2. 小组讨论:分组讨论行星运动规律在实际问题中的应用。

3. 分享环节:邀请学生分享自己的学习心得和感悟。

行星的运动教案设计

行星的运动教案设计

行星的运动教案设计物理学是研究物质运动最一般规律和物质基本结构的学科。

接下来是小编为大家整理的行星的运动教案设计,希望大家喜欢!行星的运动教案设计一★课题 6.1行星的运动★教学目标知识与技能:知道地心说和日心说的基本内容。

学习开普勒三大定律,能用三大定律解决问题。

了解人类对行星的认识过程是漫长复杂的,真是来之不易的。

过程与方法:体会精确的观察记录在科学研究中的重要地位。

对过对开普勒三定律的学习了解天体运动的规律。

情感态度与价值观:通过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解。

了解伽利略等科学家为科学献身的精神,学习前人对问题一丝不苟、孜孜以求的精神。

★重难点:掌握天体运动的演变过程; 熟记开普勒三定律.★课时安排:1课时★新课引入:同学们,在前面的学习中我们已经学习了运动学静力学及动力学的基本知识并且用这些知识研究了地面上物体的运动,现在我们就放开视野,从今天开始我们来研究天空中的运动:天体运动。

首先是太阳系行星的运动.研究天体的运动是从古到今科学研究的永恒主题。

关于行星的运动,历史上有两种对立的说法,这是历史上牺牲最大的科学争论。

★新课教学一、地心说1、地心说:认为地球是宇宙中心,任何星球都围绕地球旋转。

2、代表人物:托勒密(公元90——168年)3、存在条件:第一符合人们的日常经验,第二人们多信奉宗教神学,认为地球是宇宙中心。

但:随着观测精度的不断提高,地心说算出的行星位置偏离观测位置越来越大二、日心说1、日心说:太阳是静止不动的,地球和其他行星都绕太阳运动2、代表人物:哥白尼(1473——1543)3、存在条件:地心说解释天体运动不仅复杂,而且许多问题都不能解释。

而用日心说,许多天体运动的问题不但能解决,而且还变得特别简单。

进入高中物理的第一节课就学了参考系的选择,我们知道运动的描述是相对的,从表面上看,两学说只不过是参考系的改变.但大家要注意,这是一两千年前的争论,运动描述的相对性是物理学发展后,一非常现代的科学观点,它们所谓的静止是绝对静止,就像我们还没读书,没学物理时认为地面是绝对静止的,其它物体相对地面的在动叫做运动的物体,地心说的观点就是地球绝对静止,日心说的观点就是太阳绝对静止.现在看来古代的两种学说都不完善,地心说和日心说的共同点:天体的运动都是匀速圆周运动。

物理教案-行星的运动

物理教案-行星的运动

一、教学目标1. 让学生了解行星的运动特点和规律。

2. 使学生掌握开普勒定律及其在行星运动中的应用。

3. 培养学生运用物理知识解决实际问题的能力。

二、教学内容1. 行星的运动特点2. 开普勒定律3. 行星运动的规律三、教学重点与难点1. 教学重点:开普勒定律,行星运动的规律。

2. 教学难点:开普勒定律的理解和应用,行星运动的数学表达。

四、教学方法1. 采用问题驱动法,引导学生探究行星运动的规律。

2. 利用多媒体演示,增强学生对行星运动现象的直观认识。

3. 案例分析法,分析实际问题,提高学生运用物理知识解决实际问题的能力。

五、教学过程1. 导入:通过简要介绍行星的运动特点,激发学生对行星运动规律的兴趣。

2. 新课导入:介绍开普勒定律,引导学生理解行星运动的规律。

3. 课堂讲解:详细讲解开普勒定律的数学表达和应用,分析行星运动的规律。

4. 案例分析:分析实际问题,让学生运用开普勒定律解决行星运动问题。

5. 课堂练习:布置相关练习题,巩固学生对开普勒定律和行星运动规律的理解。

6. 总结与拓展:对本节课内容进行总结,提出课后思考题,引导学生深入研究行星运动。

六、教学评价1. 评价学生对开普勒定律和行星运动规律的理解程度。

2. 评估学生运用物理知识解决实际问题的能力。

3. 考查学生在课堂练习中的表现,以及对知识的掌握和运用。

七、课后作业1. 复习开普勒定律和行星运动规律,总结相关知识点。

2. 完成课后练习题,巩固所学知识。

3. 选择一个实际问题,运用开普勒定律进行分析和解答。

八、教学反思在课后,教师应反思本节课的教学效果,包括学生的参与度、理解程度和反馈。

根据学生的实际情况,调整教学方法和策略,以便更好地满足学生的学习需求。

九、教学拓展1. 介绍其他行星运动的研究成果,如伽利略、牛顿等科学家的贡献。

2. 探讨行星运动在现代天文学和航天技术中的应用。

3. 引导学生关注天文现象,培养学生的观测兴趣和科学素养。

行星的运动教案

行星的运动教案

行星的运动教案一、教学目标1.了解行星的基本概念和分类;2.掌握行星的运动规律和运动轨迹;3.理解行星运动的原因和影响;4.能够运用所学知识解释天文现象。

二、教学内容1. 行星的基本概念和分类行星是指绕太阳运行的天体,按照距离太阳的远近可以分为内行星和外行星。

内行星包括水星、金星、地球和火星,外行星包括木星、土星、天王星、海王星和矮行星等。

2. 行星的运动规律和运动轨迹行星的运动规律可以用开普勒三定律来描述:1.第一定律:行星绕太阳运动的轨道是一个椭圆,太阳位于椭圆的一个焦点上;2.第二定律:行星在其轨道上的速度是不断变化的,当行星离太阳较远时速度较慢,当行星靠近太阳时速度较快;3.第三定律:行星绕太阳公转的周期的平方与行星到太阳平均距离的立方成正比。

3. 行星运动的原因和影响行星运动的原因是由于太阳的引力作用,行星在太阳的引力作用下绕太阳公转。

行星运动的影响包括:1.行星的运动速度和轨道大小影响着行星的季节变化;2.行星的运动轨迹和周期影响着行星的气候和天文现象;3.行星的运动规律和轨道形状影响着行星的探测和研究。

4. 运用所学知识解释天文现象通过对行星运动规律的了解,可以解释很多天文现象,例如:1.行星的视运动和逆行现象;2.行星的日、月、星合和月食、日食现象;3.行星的自转和磁场现象等。

三、教学方法本课程采用讲授、演示和实验相结合的教学方法,通过讲解行星的基本概念和分类,演示行星的运动规律和运动轨迹,以及实验观测行星的运动现象,让学生深入理解行星的运动规律和影响。

四、教学步骤1. 行星的基本概念和分类讲解行星的基本概念和分类,让学生了解行星的基本特征和分类方法。

2. 行星的运动规律和运动轨迹演示行星的运动规律和运动轨迹,让学生了解行星的运动规律和轨道形状。

3. 行星运动的原因和影响讲解行星运动的原因和影响,让学生了解行星运动的原理和影响。

4. 实验观测行星的运动现象通过实验观测行星的运动现象,让学生亲身体验行星的运动规律和影响。

《第七章 1 行星的运动》教学设计教学反思-2023-2024学年高中物理人教版2019必修第二册

《第七章 1 行星的运动》教学设计教学反思-2023-2024学年高中物理人教版2019必修第二册

《行星的运动》教学设计方案(第一课时)一、教学目标1. 理解开普勒行星运动定律的含义和基本应用。

2. 掌握行星绕太阳运动的规律,并能够运用其诠释一些天文现象。

3. 培养观察、分析和解决问题的能力。

二、教学重难点1. 教学重点:理解开普勒行星运动定律,并能够运用其诠释天文现象。

2. 教学难点:通过实验探究行星运动规律,培养观察、分析和解决问题的能力。

三、教学准备1. 准备教学PPT和相关天文图片。

2. 准备实验器械,如天文望遥镜、地球仪等。

3. 准备视频资料,如行星运动的动画和相关天文现象的视频。

4. 设计教室讨论问题和课后作业,以评估学生对知识的掌握水平。

四、教学过程:本节课的教学目标是让学生理解开普勒行星运动三定律,并能够运用这些定律诠释一些简单的天文现象。

在教学过程中,我将采用以下步骤:1. 导入:起首,我会通过一些简单的天文图片和视频来引入行星运动的话题,让学生们对行星运动有一个初步的了解。

2. 基础知识讲解:接下来,我会详细讲解开普勒行星运动三定律,包括每个行星绕太阳运动的周期、轨道半径以及速度等参数之间的干系。

我会通过图表、图片和动画等形式来帮助学生理解这些观点。

3. 实验探究:为了让学生更好地理解行星的运动,我们可以进行一些简单的实验探究。

例如,可以让学生用小球模拟行星的运动,观察行星的运动轨迹和周期,以此来验证开普勒行星运动第一定律。

4. 小组讨论:在讲解和实验的基础上,我会组织学生进行小组讨论,让学生们思考一些与行星运动相关的问题,如为什么行星会按照这样的轨迹运动?这些规律是如何被发现的?等等。

通过讨论,学生们可以更好地理解和掌握行星运动的知识。

5. 教室练习:为了检验学生的学习效果,我会设计一些简单的教室练习题,让学生们运用所学知识来解答。

这些练习题应该涵盖开普勒行星运动三定律的应用,如计算行星距离太阳的距离、速度等参数。

6. 总结回顾:最后,我会对这节课进行总结回顾,强调重点和难点知识,并鼓励学生们在课后继续思考和探索与行星运动相关的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1 《行星的运动》教学设计一、教学内容分析:本节内容主要介绍了人类历史上发现行星运动规律——开普勒三定律的一个过程。

从托勒密发展并完善的地心说,哥白尼勇敢的壮举——提出日心说,布鲁诺宣传和捍卫真理,第谷天才的行星观测技术,到开普勒发现并总结三大定律,经历了一千多年的时间,要让学生了解这段真理发现的艰难历程,并从科学家身上看到坚持不懈、勇于创新的科学精神。

二、教学对象分析(一)学生已有的知识结构和能力。

从学生已经具有的知识基础来看,学生在学习本节课之前,可能只是通过小学的科学课、报刊、杂志、电视等方式对有关科学家的事例略知一二,对科学家的发现、发明、创造内容的了解应该是非常琐碎的,无系统的天体运动研究历史方面的知识,但对天体的运动学习应该具有很大的好奇心和浓厚的兴趣。

(二)学生认知能力上的欠缺。

从学生的认知能力看,由于行星运动抽象、无法感知,学生在理解行星的运动规律上会存在障碍,同时椭圆在数学上还未接触过,也会给学生造成困惑。

本节课的目标切入点准确到位,侧重于“三维”中的情感、态度和价值观;较好地体现了教材内容统领全章的地位和功能。

三、教学目标(一)知识与技能1.了解地心说和日心说的基本内容。

2.知道开普勒行星运动定律及其科学价值,会用该定律分析行星运动问题。

3.知道所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

4.知道所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量无关,但与太阳的质量有关。

(二)过程与方法了解人类对行星运动规律的认识过程,通过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科学家对行星运动的不同认识,认识到观察、实验、总结实际规律在科学探究中的重要作用。

(三)情感、态度与价值观1.通过学习开普勒行星运动定律的建立过程,渗透物理科学探究的方法和思想,形成正确的宇宙运动观。

2.感悟科学是人类进步不竭的动力,感悟科学家对科学的执著和献身精神,培养学生热爱科学、献身科学的精神和勇于创新、敢于坚持真理、实事求是的科学态度。

四、教学重点开普勒行星运动定律五、教学难点(一)行星的椭圆轨道(二)对开普勒行星运动定律的理解和应用六、教学方法教师启发、引导,学生自主学习、思考,演小品,讨论、交流学习成果。

七、教学资源制作ppt课件,行星运动动画;自制教具;视频:《宇宙与人》片段;工具软件:flash8,PowerPoint.八、教学过程(一)引入新课教师活动:飞天梦是一个浪漫的中国梦,是跨越国界的梦,飞天梦助推中国梦,使中国梦触手可及。

1.播放视频:《宇宙与人》片段,当出现“中国航天”字样时,结合课本封面讲解本章新老教材的区别,介绍教材的重要地位。

2.再接着播放视频:《宇宙与人》片段,引入新课(二)进行新课1.两种学说教师提问:课下同学们收集了大量行星运动的历史资料,提出问题:(1)在古代,人们对天体的运动的认识有哪几种学说?(2)各个学说的内容是怎样的?代表人物是谁?(3)哪种学说更先进?用现在的观点,如何认识这两种学说?(4)是哪位科学家否定了古人的观点?他发现了什么规律?学生活动:对照问题分组讨论之后演小品:《地心说与日心说的碰撞》,通过穿越时空的微对话,体会两种学说描述的意思,学生代表发言。

(1)在古代,人们对于天体的运动存在着地心说和日心说两种对立的看法。

(2)“地心说”认为地球是宇宙的中心,是静止不动的,太阳、月亮以及其他行星都绕地球运动;“日心说”认为太阳是宇宙的中心,地球、月亮以及其他行星都在绕太阳运动。

点拨理解:“地心说”占领统治地位的时间较长,日心说比地心说进步了一大步,但仍然不完善,两种学说的不同在于它们所选取的参考系不同。

学生在学习过程中理解和领会相对与绝对的关系。

2.开普勒行星运动定律的建立介绍两位黄金搭档第谷和开普勒(1)第谷的观测第谷(1564—1601)是丹麦的天文学家、出色的观测家,历时二十年观测,记录了行星、月亮、彗星的位置。

第谷本人虽然没有描绘出行星运动的规律,但他积累的资料为开普勒的研究提供了坚实的基础。

(2)开普勒对行星运动的描述开普勒(1571—1630)是德国的天文学家、数学天才。

开普勒与第谷一起工作了十八个月后第谷去世了,开普勒以全部的精力整理了第谷的观测资料,在哥白尼学说的基础上又迈进了一步,于1609年在他的著作《新天文学》中提出了著名的三大定律中的前两条,十年后,又提出了第三条定律。

教师提问:①古人认为天体做什么运动?②开普勒认为行星做什么样的运动?学生活动:阅读查找的材料,并从中找出相应的答案。

教师提问:课下让每位同学亲自动手做了一个关于椭圆画法的自制教具,椭圆有什么特点?学生活动:拿出自己亲手制作的教具(DIY),分组讨论交流椭圆的画法。

之后请同学代表演示并讲解椭圆的画法,介绍关于椭圆的数学知识。

[做一做]用图钉和细绳画椭圆可以用一条细绳和两图钉来画椭圆。

如图所示,把白纸铺在木板上,然后按上图钉.把细绳的两端系在图钉上,用一枝铅笔紧贴着细绳滑动,使绳始终保持张紧状态。

铅笔在纸上画出的轨迹就是椭圆,图钉在纸上留下的痕迹叫做椭圆的焦点。

介绍半长轴。

教师评价:通过同学们智力交锋引发的头脑风暴,使固化在书本中的内容在同学们的心中和手中活了起来。

①古人把天体的运动看得十分神圣,他们认为天体的运动不同于地面物体的运动,天体做的是最完美、最和谐的匀速圆周运动。

②开普勒认为行星做椭圆运动。

他发现假设行星作匀速圆周运动,所得的数据与观测数据不符,只有认为行星作椭圆运动,才能解释这一差别。

开普勒行星运动定律从行星运动轨道、行星运动的线速度变化、轨道与周期的关系三个方面揭示了行星运动的规律。

具体表述为:第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

又叫轨道定律。

教师提问:这一定律说明了行星运动轨迹的形状,不同的行星绕太阳运行时椭圆轨道相同吗?学生活动:不同。

第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

又叫面积定律。

若t AB = t CD = tE K ,则s AB = s CD =s EK教师提问:如图所示,行星沿着椭圆轨道运行,太阳位于椭圆的一个焦点上.比较远日点和近日点速率大小。

学生活动:行星在远日点的速率最小,在近日点的速率最大。

第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。

即: 23Ta =k (常数)又叫周期定律。

比值k 是与行星无关而只与太阳质量有关的恒量。

点拨理解:第一:开普勒定律是从纯运动学的角度来描述行星的时空游戏,它们每一条都是经验定律,只涉及运动学,不涉及动力学。

第二:开普勒定律不仅适用于行星,也适用于卫星。

只不过此时比值 k 是由行星质量所决定的另一恒量。

教师小结:开普勒三定律是一个整体,它对行星运动的描述有一个从定性到定量的过程;开普勒第一定律是其余两个定律的基础;三个定律描述的内容又是各自独立的,并不重复。

教师提问:但由于多数行星的轨道和圆十分接近,在中学阶段的研究中一般都按圆处理。

开普勒三定律适用于圆轨道时,应该怎样表述呢?学生活动:分组讨论,学生代表发言。

3.开普勒三大定律的近似处理:(1)行星绕太阳运动的轨道十分接近圆,太阳处在圆心;(2)对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变;(3)所有行星的轨道半径的三次方跟它的公转周期的二次方的比值都相等,即行星做匀速圆周运动。

教师评价:在科学研究中,懂得忽略什么有时与懂得重视什么同等重要。

科学就是一种近似,一种舍弃次要矛盾紧紧抓住主要矛盾的近似,正是这种近似,才有了真正意义上的科学。

做人也是如此,要懂得取,更要懂得舍,只有舍才能得,正所谓舍得舍得。

课堂总结、点评教师活动:这节课就探究这么多。

学生活动:通过同学们自编自导自演的小品总结这节课的内容。

点评:总结课堂内容,培养学生概括总结能力。

教师活动:这节课你收获了什么?学生活动:分组讨论,学生代表发言。

对描述自然追求简单和谐是科学研究的动力之一。

②对自然奥秘不屈不挠探索的精神和对待科学研究一丝不苟的态度。

③实验观察手段是科学研究的重要方法之一。

④实事求是、尊重客观事实、不迷信权威、敢于坚持真理的科学态度和科学精神。

⑤实验归纳和数学演绎相结合是科学研究中的重要方法。

基础热身1.关于行星运动,以下说法正确的是( )A.行星轨道的半长轴越长,自转周期越大.B.行星轨道的半长轴越长,公转周期越大.C.水星的半长轴最短,公转周期最大.D.海王星离太阳“最远”,绕太阳运动的公转周期最长.误区警示2.关于行星绕太阳运动的下列说法中正确的是 ---------( )A.所有行星都在同一椭圆轨道上绕太阳运动.B.行星绕太阳运动时,太阳位于行星轨道的中心处.C.离太阳越近的行星运动周期越长.D.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.酷题荟萃3.月球环绕地球运动的半径约为地球半径的60倍,运行周期约为27天。

试用开普勒定律计算出:在赤道平面内离地面多大高度,人造地球卫星可以随地10km)球一起转动,就像停留在空中一样?(地球半径约为6.4×3挑战自我4.神舟六号沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的特殊椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为0R ,求飞船由A 点到B九、课后作业(一)课后完成P66“问题与练习”中的问题。

(二)课后阅读教材P64“科学足迹”栏目中的阅读材料,体会人类对行星运动规律的认识历程。

每个小组写一篇读后感。

板书设计一、地心说与日心说地球是中心→太阳是中心→宇宙无限(科学文化推动了认识发展)二、开普勒行星运动定律(一)开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。

(二)开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

A(三)开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。

即:23Ta =k (常数)(K 是一个只与中心天体质量有关的物理量)十、教后反思本节注重调动学生,师生的互动探究式提高课堂教学效率的有效方法,教学中使用各种手段,让学生入境从而激发学生的学习兴趣。

亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。

本节内容虽然对学生而言是抽象的、陌生的,甚至无法去感知 ,但凭着对天体的运动充满好奇,去引导学生了解人们对星体运动认识的发展过程,从“日心说”和“地心说”的内容到其两者之间的争论,从第谷的精心观测到开普勒的数学运算,在学生整体感知的过程中引导学生体会这些大师们的思路、方法及他们的一丝不苟的科学精神,并激发他们热爱科学、探索真理的求知热情。

相关文档
最新文档