17.1 第1课时 勾股定理 公开课一等奖教案

合集下载

17.1勾股定理(第一课时)教案

17.1勾股定理(第一课时)教案

商丘市乡村中小学、幼儿园教师优质课评选17.1勾股定理(第一课时)教案商丘市城乡一体化示范区七中赵伯超2016年6月21日17.1勾股定理(第一课时)教案商丘市城乡一体化示范区七中赵伯超勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。

勾股定理是在学习了三角形有关性质的基础上提出来的,勾股定理揭示了直角三角形的三边之间的数量关系,对前面的知识起到完善,延伸的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

本节课试图通过数学活动,对学生所学知识进行内化与迁移,以发展思维。

同时对勾股定理的学习,对比我国数学家和西方数学家对勾股定理的研究,对学生进行爱国主义的教育,以落实素质教育的目标。

一、教学目标:知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容,会用面积法证明勾股定理。

了解利用拼图验证勾股定理的方法。

数学思考:在勾股定理的探索过程中,让学生经历“观察—猜想—归纳—验证”,培养合情推理能力,体会数形结合和从特殊到一般的思想。

解决问题:1、通过拼图活动,体验数学思维的严谨性,发展形象思维。

2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。

情感与态度:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,感受数学文化,激发学生的爱国热情,激励学生奋发学习。

2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。

二、重点、难点1.重点:探索和证明勾股定理。

经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值。

2.难点:勾股定理的证明。

经历用不同的拼图方法证明勾股定理。

3.突破方法:发挥学生主体作用,通过学生动手实验,让学生在实验中探索,在探索中领悟,在领悟中理解。

人教版八年级数学下册17.1勾股定理(第1课时)一等奖优秀教学设计

人教版八年级数学下册17.1勾股定理(第1课时)一等奖优秀教学设计

人教版初中数学八年级下册17.1勾股定理(第1课时)教学设计【教材分析】1.地位作用:勾股定理是初中几何中最重要的定理之一。

它揭示了直角三角形三边之间的数量关系,搭建起了几何图形和数量关系之间的桥梁,是直角三角形的一条重要性质。

2.教学目标:(1)经历勾股定理的探究及证明过程。

了解关于勾股定理的一些历史文化背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族的自豪感。

(2)能用勾股定理解决一些简单问题。

3.教学重难点:勾股定理的探索及证明过程。

【教学准备】多媒体课件、导学案【教学过程】教学环节与内容学生活动设计意图一.创设情境(4分钟)1、展示2002年北京国际数学家大会的会徽。

你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?通过今天的学习,我们就能理解这个图案的含义2、相传2500年前,毕达哥拉斯有一次在朋友家里做客观察图形寻找其中的直角三角形、正方形观察图案,分析思设置悬念引起学生的学习兴趣,并进行爱国主义教育培养学生的观时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.二.自主探究,合作交流:(18分钟)1.观察上面的图案,你能有什么发现?换成下面的图形,三个正方形A,B,C的面积有什么关系?S A+S B=S C2.由三个正方形的边长构成的等腰直角三角形的三边长之间有怎样的关系?等腰直角三角形斜边的平方等于两直角边的平方和.3.等腰直角三角形有上述性质,其它的直角三角形也有这个性质吗?(1)观察下边两幅图:考其中隐含的规律在教师的引导下通过数等腰直角三角形的个数,思考讨论三个正方形A,B,C之间的面积关系思考并交流,由正方形的面积与边长的关系总结等腰直角三角形三边的关系察,分析,思考能力,让他们体会数学就在我们的身边,生活中处处有数学培养学生从生活实际抽象出数学模型来解决问题的能力从最特殊的等腰直角三角形入手,通过观察正方形面积关系得到直角三角形三边关系长为c ,那么 a 2 + b 2 = c 2 下面我们来证明这个命题如图,在Rt △ABC 中,∠C =90°,∠A 、∠B 和∠C 所对的三条边分别是a 、b 、c . 求证:a 2 + b 2 = c 2证明命题的方法有很多种,下面我们介绍几种:先看我国汉代数学家赵爽的证法:根据证明命题的一般方法分析条件、结论,画出图形写出已知、求证看老师展示的图片在老师引导下共同计算证明回顾证明命题的一般步骤从网格验证到脱离网格,通过计算推导出一般结论,再次体会一题多解,发展学生思维.,22,)(214,)(,2222222222c b a c a ab b ab c a b ab a b c =+=+-+=-+⨯-==即:所以小正方形的面积解:大正方形的面积.,214)(,,)(2222222c b a c ab b a c b a =+=⨯-+=+=即:所以小正方形的面积大正方形的面积.,21212))((21,21),)((2122222c b a c ab b a b a c b a b a =+=⨯-++=++=即所以直角三角形的面积梯形的面积S 3S 2S 1C BA 我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称弦。

1.1勾股定理 一等奖创新教学设计

1.1勾股定理 一等奖创新教学设计

1.1勾股定理一等奖创新教学设计《17.1 勾股定理》第一课时教学设计教学内容:人教版八年级数学下册《17.1 勾股定理》第1课时.教材分析:勾股定理是学生在掌握了直角三角形有关性质的基础上进行学习的,在学习中起到承上启下的作用。

勾股定理是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了直角三角形三边之间的数量关系,可以解决直角三角形中的计算问题,是解直角三角形的主要依据之一。

勾股定理的探索和证明蕴含着丰富的数学思想和科学方法,是培养学生良好思想品质的载体,它在数学的发展过程中起着重要的作用,勾股定理是数与形结合的优美典范。

学情分析:从学生的身心发展特点以及认知水平来看,八年级的学生逻辑思维还是比较薄弱的,但是他们已经具备一定的观察、归纳、探索和推理的能力。

因此本节课需要通过形象直观的图形去感受发现新知识。

在小学,他们已经学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补法解决问题的意识和能力还远远不够,因此我采用直观教具、学具,多媒体演示等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。

教学目标分析:初中数学课程标准中对勾股定理部分提出如下要求:在研究图形性质和运动等过程中,进一步发展空间观念在多种形式的数学活动中,发展合情推理能力经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。

依据对课标、教材及学生的认知特点,确定本节课的教学目标如下:知识与技能目标:了解勾股定理的文化背景,经历探索发现并验证勾股定理的过程。

过程与方法目标:在勾股定理的探索过程中,发展合情推理能力,体会数学思维的严谨性数形结合的数学思想,发展形象思维。

同时,在探究活动中感受解决问题方法的多样性。

情感态度与价值观目标:通过对勾股定理发展历史的了解,尤其是对中国古代数学家对勾股定理的研究,使学生感受数学文化的魅力,激发学生的民族自豪感和学习热情。

勾股定理市公开课获奖教案省名师优质课赛课一等奖教案人教版

勾股定理市公开课获奖教案省名师优质课赛课一等奖教案人教版

勾股定理教案(人教版)一、教学目标:1. 理解勾股定理的概念和含义。

2. 掌握如何使用勾股定理求解直角三角形的边长。

3. 发现直角三角形的特性及其应用。

二、教学重点:1. 理解勾股定理的几何意义。

2. 掌握勾股定理的运用方法。

三、教学难点:1. 独立推导勾股定理的公式。

2. 将勾股定理应用到实际问题中。

四、教学准备:1. 教学课件、黑板、粉笔。

2. 学生作业本、练习册。

五、教学过程:Step 1 引入(10分钟)1. 教师带领学生回顾直角三角形的概念,并让学生回答以下问题:- 什么是直角三角形?- 直角三角形有哪些特点?2. 引出勾股定理的问题:如何求解一个直角三角形的斜边长度?Step 2 导入(15分钟)1. 教师通过黑板上画出一个直角三角形,并向学生提问:有哪些方法可以求解直角三角形的斜边长度?2. 引导学生思考并发现勾股定理的规律。

3. 教师给出勾股定理的定义,并让学生记下勾股定理的公式。

Step 3 讲解(15分钟)1. 教师用实际例子演示如何使用勾股定理求解直角三角形的边长。

2. 教师讲解勾股定理的推导过程,并引导学生进行思考和讨论。

3. 教师解释勾股定理的几何意义,并让学生理解三角形中两个边平方和等于第三边平方的关系。

Step 4 实践(30分钟)1. 学生独立进行练习,使用勾股定理求解直角三角形的边长。

2. 教师逐一巡视学生的解题过程,给予指导和帮助。

Step 5 归纳(10分钟)1. 教师让学生结合练习内容,总结勾股定理的应用方法。

2. 学生展示他们的解题方法和结果。

Step 6 拓展(10分钟)1. 教师提出一些拓展问题,让学生利用勾股定理解决实际问题。

2. 学生互相交流,分享解题思路和结果。

六、教学反思:本节课以勾股定理为主题,通过引入问题、讲解、实践和拓展等环节,有效地引导学生学习和掌握勾股定理的概念、应用方法以及几何意义。

通过学习勾股定理,学生不仅能够发现直角三角形的特性,还能够将勾股定理应用到实际生活中解决问题。

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计
4.合作交流,提升能力:组织学生进行小组讨论,分享学习心得和解决问题的方法,培养学生的合作精神和交流能力。在此基础上,设计一些实际问题,让学生运用勾股定理进行求解,提高他们的问题解决能力。
5.总结反思,拓展提高:在教学结束时,引导学生对勾股定理进行总结,明确其应用范围和注意事项。同时,布置一些拓展提高的练习题,让学生在课后进行巩固。
本节课的教学设计以勾股定理为核心,紧密结合教材内容,注重培养学生的知识技能、过程方法和情感态度与价值观,旨在提高学生的数学素养和实际应用能力。
二、学情分析
八年级学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在本节课之前,学生已经学习了平面几何、立体几何的基本概念,掌握了直角三角形的性质和判定方法,这些都为学习勾股定理奠定了基础。然而,由于勾股定理涉及斜边与直角边的平方关系,学生在理解上可能会存在一定难度。因此,在教学过程中,教师需关注以下几点:
2.自主探究,发现定理:引导学生观察教材中的直角三角形图形,鼓励他们大胆猜想勾股定理的表达形式。在学生自主探究的基础上,引导他们通过实际测量、计算,验证勾股定理的正确性。
3.精讲精练,突破难点:针对勾股定理的证明过程,教师进行详细讲解,并设计具有梯度的问题,让学生逐步掌握定理的证明方法。同时,通过典型例题的讲解和练习,帮助学生巩固定理的应用。
(四)课堂练习,500字
为了巩固学生对勾股定理的理解,我将设计一些课堂练习题。这些练习题分为基础题和提高题,以满足不同层次学生的学习需求。
1.基础题:主要针对勾股定理的基本应用,如已知直角三角形的两边,求解第三边。
2.提高题:涉及勾股定理在实际问题中的应用,如计算建筑物的高度、距离等。
我会让学生独立完成练习题,并在必要时给予指导。通过课堂练习,学生可以检验自己对勾股定理的掌握程度,并为课后作业打下基础。

17.1.1勾股定理(教案)

17.1.1勾股定理(教案)
二、核心素养目标
1.培养学生的逻辑推理能力,通过勾股定理的证明过程,让学生体会数学的严谨性和逻辑性;
2.提高学生的空间想象力,通过直角三角形的实际操作,使学生在直观感知的基础上形成对勾股定理的理解;
3.培养学生的数据分析能力,学会运用勾股定理解决实际问题,并能够从数据中找出规律;
4.增强学生的数学应用意识,将勾股定理应用于生活实际,培养学生学以致用的学习态度;
-理解勾股定理在实际问题中的应用,如测量、建筑等领域。
举例解释:通过具体的直角三角形实例,让学生明确勾股定理的表达式,并在解决实际问题时,如计算斜边长度,能够熟练运用此定理。
2.教学难点
-理解并掌握勾股定理的证明过程,特别是对于证明过程中的逻辑推理和几何直观;
-理解勾股定理逆定理的应用,即如何从三条边的长度关系判断一个三角形是否为直角三角形;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情形?”比如,测量墙角、搭建模型等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
5.培养学生的团队合作精神,通过小组讨论、合作探究,提高学生的沟通与协作能力。

(最新)数学八年级下册第十七章《勾股定理 》省优质课一等奖教案

(最新)数学八年级下册第十七章《勾股定理 》省优质课一等奖教案
例1、(教材P26页思考)
例2(教材P26.....27页探究)
3、交流展示:
例3(补充)1.已知:在Rt△ABC中,∠C=90°,CD⊥BC于D,∠A=60°,CD= ,求线段AB的长
分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。
2、发展合情推理的能力,体会数形结合和由特殊到一般的数学思想.树立数形 结合的思想、分类讨论思想
情感态度与价值观:通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值;通过获得成功的经验和克服困难的经历,增进数学学习的信心.激发学生的民族自豪感,和爱国情怀。
教学重点
勾股定理的简单计算。
教学难点
1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是米。
2.如图,山坡上两株树木之间的坡面距离是4 米,则这两株树之间的垂直距离是米,水平距离是米。
2题3题4题
3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是。
二、选做题:
五、当堂训练:
一、必作题:
1.填空题
⑴在Rt△ABC,∠C=90°,a=8,b=15,则c=。
⑵在Rt△ABC,∠B=90°,a=3,b=4,则c=。
⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a=,b=。
⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为。
⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为。

人教版数学八年级下册17.1第1课时《 勾股定理》教案

人教版数学八年级下册17.1第1课时《 勾股定理》教案

人教版数学八年级下册17.1第1课时《勾股定理》教案一. 教材分析《勾股定理》是中学数学中的一个重要定理,它揭示了直角三角形三边之间的一种简单而美妙的关系。

人教版八年级下册第17.1节《勾股定理》主要介绍了勾股定理的证明和应用。

通过这一节的学习,学生可以加深对勾股定理的理解,提高解决几何问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质、全等三角形的判定和性质等基础知识。

但勾股定理的证明和应用需要学生具备较强的逻辑思维能力和空间想象能力。

因此,在教学过程中,教师需要关注学生的学习基础,针对不同学生进行有针对性的教学。

三. 教学目标1.理解勾股定理的证明过程,掌握勾股定理的内容。

2.能够运用勾股定理解决实际问题,提高解决问题的能力。

3.培养学生的逻辑思维能力和空间想象能力。

四. 教学重难点1.勾股定理的证明过程。

2.勾股定理在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活中的实例,引发学生对勾股定理的思考,激发学生的学习兴趣。

2.演示教学法:通过几何画板等软件,直观地展示勾股定理的证明过程。

3.问题驱动法:引导学生通过解决问题,深入理解勾股定理的内涵。

4.小组合作法:鼓励学生分组讨论,培养学生的团队协作能力。

六. 教学准备1.教学课件:制作勾股定理的课件,包括证明过程的动画演示。

2.几何画板:用于展示勾股定理的证明过程。

3.练习题:准备一些有关勾股定理的应用题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如篮球架、自行车等,引导学生思考这些实例中是否存在勾股定理的应用。

让学生感受到勾股定理在现实生活中的重要性。

2.呈现(10分钟)利用几何画板,演示勾股定理的证明过程。

首先,展示一个直角三角形,然后通过动态变化,引导学生发现直角三角形三边之间存在的关系。

最后,给出勾股定理的数学表达式。

3.操练(10分钟)让学生分组讨论,运用勾股定理解决一些实际问题。

《17.1勾股定理》教学设计(第1课时)

《17.1勾股定理》教学设计(第1课时)

《17.1 勾股定理》教学设计(第1课时)一、内容和内容解析1.内容勾股定理的探究、证明及简单应用.2.内容解析勾股定理的内容是:假如直角三角形的两条直角边长分别为a、b,斜边长为c,那么.它揭示了直角三角形三边之间的数量关系.在直角三角形中,已知任意两边长,就能够求出第三边长.勾股定理常用来求解线段长度或距离问题.勾股定理的探究是从专门的等腰直角三角形动身,到网格中的直角三角形,再到一样的直角三角形,表达了从专门到一样的探探究、发觉和证明的过程.证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探究去发觉图形的性质,提出一样的猜想,并获得定理的证明.我国古代在数学方面又许多杰出的研究成果,关于勾股定理的研究确实是一个突出的例子.教学中能够介绍我国古代在勾股定理的证明和应用方面取得的成就和作出的奉献,以培养学生的民族自豪感;围绕证明勾股定理的过程,培养学生学习数学的热情和信心.基于以上分析,确定本节课的教学重点:探究并证明勾股定理.二、目标和目标解析1.教学目标(1)经历勾股定理的探究过程.了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.(2)能用勾股定明白得决一些简单问题.2.目标解析(1)学生通过观看直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.明白得赵爽弦图的意义及其证明勾股定理的思路,能通过割补法构造图形证明勾股定理.了解勾股定理相关的史料,明白我国古代在研究勾股定理上的杰出成就.(2)学生能运用勾股定理进行简单的运算,关键是已知直角三角形的两边长能求第三条边的长度.三、教学问题诊断分析勾股定理是反映直角三角形三边关系的一个专门的结论.在正方形网格中比较容易发觉以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系.但要从等腰直角三角形过渡到网格中的一样直角三角形,提出合理的猜想,学生有较大困难.学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积.因此,在教学中需要先引导学生观看网格背景下的正方形的面积关系,然后摸索没有网格背景下的正方形的面积关系,再将这种关系表示成边长之间的关系,这有利于学生自然合理地发觉和证明勾股定理.本节课的教学难点是:勾股定理的探究和证明.四、教学过程设计1. 创设情境复习引入国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2021年在北京召开了第24届国际数学家大会.右图确实是大会会徽的图案.你见过那个图案吗?它由哪些我们学过的差不多图形组成?那个图案有什么专门的意义?前面我们学习了有关三角形的知识,我们明白,三角形有三个角和三条边.问题1三个角的数量关系明确吗?三条边的数量关系明确吗?师生活动教师引导,学生回答。

人教版数学八年级下册17.1勾股定理(第一课时)优秀教学案例

人教版数学八年级下册17.1勾股定理(第一课时)优秀教学案例
3.小组合作:教师将学生分为若干小组,鼓励学生相互讨论、交流,共同探究勾股定理的证明方法。这种小组合作的方式不仅能够提高学生的团队合作精神,还能够培养学生的创新思维和问题解决能力。
4.总结归纳:教师组织学生进行总结,让学生分享自己在学习勾股定理过程中的收获和感悟。通过总结归纳,教师帮助学生巩固所学知识,构建知识体系,提高学生的知识运用能力。
2.教师设计具体情境,如测量未知边长的直角三角形,让学生面临实际问题,引出勾股定理的学习需求。
3.教师利用多媒体课件,展示勾股定理的动态演示,帮助学生直观理解勾股定理的含义和应用。
(二)讲授新知
1.教师引导学生从特殊到一般,思考直角三角形边长之间的关系,引导学生发现勾股定理的规律。
2.教师给出勾股定理的定义,解释勾股定理的表达式,并通过几何图形的演示,帮助学生理解勾股定理的含义。
(三)小组合作
1.教师将学生分为若干小组,鼓励学生相互讨论、交流,共同探究勾股定理的证明方法。
2.教师设计合作任务,如共同制作勾股定理的演示道具,让学生在实践中深化对勾股定理的理解。
3.教师组织小组竞赛,激发学生的竞争意识和团队合作精神,提高学生的学习积极性。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如在学习勾股定理的过程中遇到了哪些困难,如何克服等。
2.学生通过教师引导,运用数学归纳法证明勾股定理,培养逻辑思维与推理能力。
3.学生通过解决实际问题,运用勾股定理,提高问题解决能力,培养创新实践能力。
(三)情感态度与价值观
1.学生感受数学文化的魅力,了解勾股定理的历史背景,提高对数学学科的兴趣。
2.学生在探究过程中,培养克服困难、勇于探索的精神,增强自信心。
五、案例亮点

17.1《勾股定理》教案(第1课时)

17.1《勾股定理》教案(第1课时)

勾股定理
教学设计说明
“勾股定理”是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切联系起来,它有着丰富的历史背景,在理论上占有重要地位.整节课以“问题情境——分析探究——得出猜想——实践验证——总结升华”为主线,使学生亲身体验勾股定理的探索和验证过程,努力做到由传统的数学课堂向实验课堂转变.根据教材的特点,本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.
本节课运用的教学方法是“启发探索”式,采用教师引导启发、学生独立思考、自主探究、师生讨论交流相结合的方式,为学生提供观察、思考、探索、发现的时间和空间.使学生以一个创造者或发明者的身份去探究知识,从而形成自觉实践的氛围,达到收获的目的.。

人教版数学八年级下册17.1勾股定理(第1课时)优秀教学案例

人教版数学八年级下册17.1勾股定理(第1课时)优秀教学案例
2.利用合作交流、讨论探究等学习方式,培养学生解决问题的能力,提高学生的团队协作精神。
3.教师引导学生运用数形结合的思想,将抽象的数学问题具体化,提高学生的数学思维能力。
(三)情感态度与价值观
1.激发学生对古代数学文化的兴趣,培养学生对数学的热爱,提高学生的学科素养。
2.通过赞美勾股定理的美,让学生感受数学的严谨、精确,树立正确的数学观念。
5.人文素养培养:教师在教学过程中注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。这种教学方式使学生在学习数学知识的同时,也能够提升自己的综合素质,培养自己的审美情趣。
本节课的案例亮点体现了教学的实用性、互动性和人文性,充分调动了学生的积极性、主动性,使学生在探究、合作、交流中收获知识,提高能力。同时,注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示古代中国建筑中的勾股定理应用,如赵州桥、故宫等,让学生感受数学与实际生活的紧密联系。
2.创设有趣的问题情境,如“勾股定理是如何被发现的?”、“你能用勾股定理解决生活中的问题吗?”等,激发学生的好奇心,引发学生的思考。
3.教师总结并提出本节课的学习目标,引导学生明确本节课的学习内容。
(四)反思与评价
1.教师引导学生对所学知识进行总结,让学生明确勾股定理的定义、证明方法及其应用。
2.学生通过自我评价、同伴评价等方式,反思自己在探究过程中的表现,发现自身的不足,提高自我调控能力。
3.教师针对学生的学习情况,给予及时的反馈和评价,关注学生的成长过程,激发学生的学习动力。
在整个教学过程中,教师应以引导者、组织者、合作者的角色,关注学生的个体差异,充分调动学生的积极性、主动性,使学生在探究、合作、交流中收获知识,提高能力。同时,注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。

勾股定理公开课优质课教学设计一等奖及点评

勾股定理公开课优质课教学设计一等奖及点评

勾股定理(第1课时)人教版《义务教育教科书·数学》(八年级下册第十七章17.1)义务教育教科书数学八年级下册(人民教育出版社)17.1勾股定理(第1课时)教学设计一、内容和内容解析1.内容勾股定理的探究、证明及简单应用.2.内容解析勾股定理的内容是:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.勾股定理是中学数学重要定理之一,它揭示了直角三角形三边之间的数量关系,把形的特征(三角形中有一个角是直角)转化成数量关系:三边之间满足等式:a2+b2=c2,它搭建起了几何图形和数量关系之间的一座桥梁,从而发挥了重要的作用.勾股定理体现了数形结合的思想方法,具有科学创新的重大意义.勾股定理启发了人类对数学的深入思考,促成了在三角学、解析几何学、微积分学的建立,使数学的几何学和代数学两大门类结合起来,对数学进一步的发展拓宽了道路.没有勾股定理,就难以建立起整个数学的大厦.因此,勾股定理不仅被认为是平面几何中最重要的定理之一,也被认为是数学中最重要的定理之一.勾股定理的探究是从特殊的等腰直角三角形出发,到网格中的直角三角形,体现了从特殊到一般的探索的过程,由具体的关系归纳出抽象的猜想,学生亲手实践赵爽的面积证法,证明猜想、发现定理,并以此引导学生探索、发现、证明定理的思路.通过对勾股定理的探究和发现,培养学生学习数学的热情和自信心.我国对勾股定理的研究和其他国家相比是比较早的,在国际上得到肯定.通过对勾股定理历史和我国古代研究勾股定理成就的介绍,以及赵爽证明勾股定理的巧妙弦图,培养学生的民族自豪感,品味数学文化.在直角三角形中,已知任意两边长,就可以求出第三边长.勾股定理常用来求解线段长度或距离问题,这是勾股定理最基础的应用.基于以上分析,确定本节课的教学重点:探索并证明勾股定理.二、目标和目标解析1.目标(1)经历勾股定理的探究、证明过程.了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.(2)能用勾股定理解决一些简单问题.2.目标解析目标(1)要求学生通过观察以直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.理解赵爽弦图的意义及其证明勾股定理的思路,能通过面积不变的关系和对图形面积的不同算法证明勾股定理.了解勾股定理相关的史料,知道我国古代在研究勾股定理上的杰出成就.(2)学生能运用勾股定理进行简单的计算,关键是已知直角三角形的两边长能求第三条边的长度.三、教学问题诊断分析勾股定理是反映直角三角形三边关系的一个特殊的结论.在正方形网格中比较容易发现以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系.但要从等腰直角三角形过渡到网格中的一般直角三角形,提出合理的猜想,学生有较大困难.因此,在教学中先引导学生观察网格背景下的正方形的面积关系,然后思考正方形的面积和直角三角形边的关系,再将这种关系表示成边长之间的关系,归纳出结论.学生第一次尝试用构造图形的方法来证明定理存在较大的困难,小组合作在此发挥了很大的优势,学生间的互助、交流有利于学生自然、合理地发现和证明勾股定理.本节课的教学难点是:勾股定理的探究和证明.四、教学支持条件分析借助PPT动画,动态地演示从网格中的等腰直角三角形,到网格中的一般直角三角形的变化过程,启发学生考虑用割补法求正方形的面积.在学生拼图验证猜想后,播放视频动画再现赵爽弦图的剪拼过程,形象、直观.利用软件的迭代功能,制作出漂亮的勾股树,品味数学之美.教学流程:1、创设情境,导入新课→2、师生互动,探究规律→3、动手实践,验证猜想→4、观察欣赏,感知文化→5、运用定理,巩固新知→6、畅谈收获,归纳小结→7、布置作业,温故新知.五.教学过程设计环节一:情景引入同学们,2002年国际数学家大会在我国的北京召开,下图就是这一届大会会徽的图案.请你仔细的观察这副图案,说一说,它是由哪些基本图形组成的?生:四个直角三角形和正方形组成的师:直角三角形与正方形是我们生活当中比较常见的基本图形,我们已经学过直角三角形两角之间的关系,两个锐角互余,今天这节课来研究直角三角形三边之间的特殊关系评析:本节课由国际数学学家大会的会徽导入,激发学生的兴趣,引入新课教师引导学生发现会徽图案是由直角三角形、正方形组成.引出本节内容是研究直角三角形三边之间的某种特殊关系.环节二:师生互动,探究规律问题1:相传2500多年前,毕达哥拉斯从地砖图案中发现了直角三角形三边之间的某种数量关系.我们也来观察一下这副示意图,我把地砖的颜色给隐藏,可以清楚的发现图中每个小三角形都是等腰直角三角形,假设每个小等腰直角三角形的面积为1.问题1:图中三个正方形A,B,C的面积分别是多少?三个面积之间有什么等量关系?接下来,在网格图中画出一个任意的直角三角形,像刚才的示意图一样,以这个直角三角形的三边为边长向外作出三个正方形,分别记为A,B,C,假设图中每个小正方形的面积为1.问题1:正方形A的面积为?正方形B的面积为?正方形C的面积呢?追问:如何求正方形C的面积呢?师:通过古希腊数学家在朋友家做客,发现朋友家的地板砖三边之间的数量关系,通过图中观察正方形内的三角形是什么三角形?生:等腰直角三角形师:假设每个小的等腰直角三角形的面积为1,请同学们思考A、B、C三角形的面积各位多少?生:正方形A与B的面积为2,正方形C的面积为4师:继续思考正方形A、B、C面积之间有怎样的等量关系?生:正方形A的面积+正方形B的面积=正方形C的面积师:这个结论在等腰直角三角形的前提下成立,反问在一个任意的直角三角形当中是否还成立呢?生:猜想成立问题2:三个正方形A , B ,C 面积之间有什么关系?S A +S B =S C下面,我把这幅示意图中的三个正方形推开,把这个直角三角形的三边记为a ,b ,c ,直角三角形三边之间有什么关系呢?得出猜想:如果直角三角形的两条直角边长分别为a ,b ,斜边长为 c ,那么a 2+b 2=c 2.问题:c 的平方可以表示为什么图形的面积?师:给出任意的直角三角形以各个边向外作正方形A 、B 、C ,假设每个小正方形面积都为1,思考正方形A 、B 、C 的面积为多少?生:正方形A 的面积为16,正方形B 的面积为9 正方形C 的面积为25师:请学生解释一下正方形C 的面积为什么为25?生:正方形A 的面积+正方形B 的面积=正方形C 的面积师:这个规律刚刚是在等腰直角三角形当中得到的,这个三角形是一般的直角三角形,这个结论还能用吗?生:不能师:如何来求正方形C 的面积呢?请同学们思考一下 C BA b a c生:使用割的办法来求正方形C的面积,把正方形C切割成4个直角三角形+一个正方形得到正方形C的面积为25师:请思考一下还有没有其他办法?生:补上4个小的直角三角形,通过大的正方形的面积减去4个直角三角形的面积师:这两种方法都可以求出正方形C的面积,统称为“割补法”师:通过正方形A、B、C的面积数据,有什么等量关系?你们能得出什么结论?生:正方形A的面积+正方形B的面积=正方形C的面积师:把直角三角形的三边记为a、b、c,能否由上面的等式推出直角三角形三边之间的等量关系?生:因为S A+S B=S C,所以a2+b2=c2师:那个同学能够用文字语言来表达一下呢?生:直角三角形两直角边的平方和等于斜边的平方师:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2,这个结论是在网格图当中得到,去掉网格,这个结论还成立吗?评析:由地砖中存在的特殊示意图导入,发现围成等腰直角三角形的三个正方形面积之间存在特殊的数量关系.在正方形的网格图中进一步研究这个示意图,由特殊的直角三角形过渡到一般的直角三角形,面积之间也存在特殊的数量关系.问题1中,教师提出问题,让学生自己独立观察图形,分析数据,思考其中隐含的规律.得出结论:在等腰直角三角形的前提条件下,从这幅示意图中可以得出小正方形A,B的面积之和等于大正方形C的面积.学生很容易通过数格子的方法答出正方形A和正方形B的面积.难点是求由斜边所作的正方形C的面积.环节三:动手实践,验证猜想拼图活动:请同学们拿出课前老师分发的四个直角三角形,拼一拼,摆一摆,看能否得到一个含有边长为c的正方形.请同学上台展示他们的拼图结果。

17.1.1 勾股定理(1) 公开课获奖课件

17.1.1 勾股定理(1) 公开课获奖课件

(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为 c,那么a2+b2=c2.
(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般 的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之 多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.
①用多媒体课件演示. ②小组合作探究:
a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你 能通过剪、拼把它拼成弦图的样子吗?
b.它们的面积分别怎样表示?它们有什么关系?
c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证 法.想一想还有什么方法?
师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边 有关,我国把它称为勾股定理.
拼图实验,探求新知 1.多媒体课件演示教材第22~23页图17.1-2和图17.1-3,引导学生 观察思考. 2.组织学生小组合作学习. 问题:每组的三个正方形之间有什么关系?试说一说你的想法. 引导学生用拼图法初步体验结论. 生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面 积和. 师:这只是猜想,一个数学命题的成立,还要经过我们的证明. 归纳验证,得出定理
蔡琰(作者有待考证)的《胡笳十八 拍》 郭璞的《游仙诗》
鲍照的《拟行路难》 庾信的《拟咏怀》
都特别喜欢。不过都是组诗,太长了 ,就不 贴了orz 。
最后还想推一下萧绎的《幽逼诗》四 首:
【南史曰:元帝避建邺则都江陵,外 迫强敌 ,内失 人和。 魏师至 ,方征 兵四方 ,未至 而城见 克。在 幽逼求 酒,饮 之,制 诗四绝 。后为 梁王詧 所害。 】 南风且绝唱,西陵最可悲。今日还蒿 里,终 非封禅 时。 人世逢百六,天道异贞恒。何言异蝼 蚁,一 旦损鲲 鹏。 松风侵晓哀,霜雰当夜来。寂寥千载 后,谁 畏轩辕 台。 夜长无岁月,安知秋与春。原陵五树 杏,空 得动耕 人。

17.1 勾股定理 获奖【一等奖教案】

17.1  勾股定理  获奖【一等奖教案】

17.1勾股定理第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD =AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.解:方法1:S正方形ACFD=S四边形ABFE=S△BAE+S△BFE,即b2=12c2+12(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2;方法2:此图也可以看成Rt△BEA绕其直角顶点E顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD =S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即12b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D 的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.第2课时勾股定理的逆定理的应用1.进一步理解勾股定理的逆定理;(重点)2.灵活运用勾股定理及逆定理解决实际问题.(难点)一、情境导入某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗?二、合作探究探究点:勾股定理的逆定理的应用【类型一】运用勾股定理的逆定理求角度如图,已知点P是等边△ABC内一点,P A=3,PB=4,PC=5,求∠APB的度数.解析:将△BPC绕点B逆时针旋转60°得△BEA,连接EP,判断△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数.解:∵△ABC为等边三角形,∴BA=BC.可将△BPC绕点B逆时针旋转60°得△BEA,连EP,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE =PB=4,∠BPE=60°.在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+P A2,∴△APE 为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.方法总结:本题考查了等边三角形的判定与性质以及勾股定理的逆定理.解决问题的关键是根据题意构造△APE为直角三角形.【类型二】运用勾股定理的逆定理求边长在△ABC中,D为BC边上的点,AB=13,AD=12,CD=9,AC=15,求BD 的长.解析:根据勾股定理的逆定理可判断出△ACD为直角三角形,即∠ADC=∠ADB =90°.在Rt△ABD中利用勾股定理可得出BD的长度.解:∵在△ADC中,AD=12,CD=9,AC=15,∴AC2=AD2+CD2,∴△ADC是直角三角形,∠ADC=∠ADB=90°,∴△ADB是直角三角形.在Rt△ADB中,∵AD=12,AB=13,∴BD=AB2-AD2=5,∴BD的长为5.方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中.【类型三】勾股定理逆定理的实际应用如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是否为直角三角形.解:∵AB=DC=8m,AD=BC=6m,∴AB2+BC2=82+62=64+36=100.又∵AC2=92=81,∴AB2+BC2≠AC2,∴∠ABC≠90°,∴该农民挖的不合格.方法总结:解答此类问题,一般是根据已知的数据先运用勾股定理的逆定理判断一个三角形是否是直角三角形,然后再作进一步解答.【类型四】运用勾股定理的逆定理解决方位角问题如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是13海里,A、B两艇的距离是5海里;反走私艇B测得距离C艇12海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?解析:已知走私船的速度,求出走私船所走的路程即可得出走私船所用的时间,即可得出走私船何时能进入我国领海.解题的关键是得出走私船所走的路程,根据题意,CE即为走私船所走的路程.由题意可知,△ABE和△ABC均为直角三角形,可分别解这两个直角三角形即可得出.解:设MN与AC相交于E,则∠BEC =90°.∵AB2+BC2=52+122=132=AC2,∴△ABC为直角三角形,且∠ABC=90°.∵MN⊥CE,∴走私艇C进入我国领海的最短距离是CE.由S△ABC=12AB·BC=12 AC·BE,得BE=6013海里.由CE2+BE2=122,得CE=14413海里,∴14413÷13=144169≈0.85(小时)=51(分钟),9时50分+51分=10时41分.答:走私艇C最早在10时41分进入我国领海.方法总结:用数学几何知识解决实际问题的关键是建立合适的数学模型,注意提炼题干中的有效信息,并转化成数学语言.三、板书设计1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题在本节课的教学活动中,尽量给学生充足的时间和空间,让学生以平等的身份参与到学习活动中去,教师要帮助、指导学生进行实践活动,这样既锻炼了学生的实践、观察能力,又在教学中渗透了人文和探究精神,体现了“数学源于生活、寓于生活、用于生活”的教育思想.。

勾股定理的市公开课获奖教案省名师优质课赛课一等奖教案人教版

勾股定理的市公开课获奖教案省名师优质课赛课一等奖教案人教版

勾股定理的教案人教版一、教学目标1. 知识目标:掌握勾股定理的概念和基本应用。

2. 能力目标:能够灵活运用勾股定理解决实际问题。

3. 情感目标:培养学生对数学的兴趣和探索精神。

二、教学重点和难点1. 重点:理解勾股定理的概念和几何意义。

2. 难点:能够熟练应用勾股定理解决实际问题。

三、教学过程1. 导入(5分钟)教师出示一个直角三角形的图形,引导学生观察并提出直角三角形的特点。

2. 学习勾股定理(15分钟)a. 教师给出勾股定理的定义:“在直角三角形中,直角边的平方等于斜边两条边的平方和”,并引导学生理解这个定义。

b. 教师在黑板上列示勾股定理的表述方式:a² + b² = c²,解释其中a,b,c的含义。

c. 教师指导学生自己发现和验证勾股定理。

通过实际测量直角三角形的三边长度,学生可以用数值验证勾股定理的正确性。

3. 勾股定理的应用(20分钟)a. 教师引导学生通过勾股定理求解直角三角形的边长。

给出一些边长已知的直角三角形的例子,让学生运用勾股定理求解未知边长。

b. 补充:勾股定理与三角函数的关系。

教师简要介绍正弦、余弦和正切函数,并说明与勾股定理的关系。

4. 扩展应用(15分钟)a. 教师给出一些勾股定理的应用问题,如建筑中的测量、导弹轨迹等,并引导学生分析问题并运用勾股定理进行求解。

b. 学生分组合作解决一些实际问题,鼓励学生进行创新思维,提出更多有关勾股定理的应用。

5. 总结归纳(10分钟)教师让学生回顾整个教学过程,对勾股定理的概念和应用进行总结归纳。

并提醒学生复习巩固所学知识。

四、教学评价1. 教师观察学生在掌握勾股定理的概念和应用方面的表现,及时给予肯定和指导。

2. 学生通过课堂练习及实际应用问题的解答,进行学业的自我评价和总结。

五、教后反思本节课通过引导学生发现和验证勾股定理的正确性,巧妙地培养了学生的探索精神,培养了学生对数学的兴趣。

通过实际应用问题的分析和解答,进一步加深了学生对勾股定理的理解和运用能力。

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
1.使学生认识到数学在生活中的广泛应用,增强学生学习数学的信心和兴趣。
2.培养学生严谨、细致的学习态度,养成科学的学习方法。
3.引导学生体会数学的简洁美、逻辑美,提高学生的审美情趣。
4.培养学生团队合作意识,学会倾听、尊重他人的意见,形成良好的沟通能力。
二、学情分析
八年级下册的学生已经具备了一定的数学基础,掌握了直角三角形的基本概念和性质,能够进行简单的几何图形的推理和计算。在此基础上,他们对勾股定理这一章节的学习将更加深入地理解直角三角形的内在联系。然而,学生在解决实际问题时,可能仍存在以下困难:对勾股定理的理解不够深入,不能灵活运用;在计算过程中容易出现粗心大意的情况;对于定理的证明过程,可能感到困惑。因此,在教学过程中,教师应关注学生的个体差异,提供充足的实践机会,引导学生通过自主探究、合作交流等方式,逐步提高解决问题的能力,增强数学思维能力。同时,注重激发学生的学习兴趣,培养他们面对困难的勇气和毅力,使学生在轻松愉快的氛围中学习数学。
3.拓展提高题:针对学有余力的学生,设计一道涉及勾股定理与其他数学知识相结合的题目,鼓励学生进行思考和探究。
4.小组合作作业:布置一道小组合作完成的作业,要求学生相互讨论、分工合作,共同解决一个较为复杂的勾股定理问题。培养学生团队合作意识,提高交流沟通能力。
5.思考题:提出一个关于勾股定理的思考题,引导学生深入思考定理的本质和内涵,激发学生的求知欲。
2.创设情境:展示一个实际情境,如一块直角三角形的土地,要求学生计算斜边的长度。让学生意识到勾股定理在实际生活中的应用,为新课的学习奠定基础。
(二)讲授新知
1.勾股定理的概念:通过导入环节的实际问题,引导学生观察直角三角形的边长关系,发现勾股定理。用数学符号表示勾股定理,并解释定理的含义。

勾股定理优质课一等奖教案

勾股定理优质课一等奖教案

勾股定理优质课一等奖教案一、教学目标1、知识与技能目标让学生理解勾股定理的内容,掌握勾股定理的证明方法。

能够运用勾股定理解决简单的几何问题,如求直角三角形的边长。

2、过程与方法目标通过观察、猜想、验证等过程,培养学生的探究能力和逻辑推理能力。

经历勾股定理的探索过程,让学生体会从特殊到一般的数学思想方法。

3、情感态度与价值观目标激发学生对数学的兴趣,培养学生勇于探索的精神和合作交流的意识。

通过了解勾股定理的历史,感受数学文化的魅力,增强民族自豪感。

二、教学重难点1、教学重点勾股定理的内容及证明。

运用勾股定理解决实际问题。

2、教学难点勾股定理的证明。

勾股定理在实际问题中的应用。

三、教学方法讲授法、探究法、讨论法四、教学过程1、导入新课展示一张直角三角形的图片,提问:“同学们,你们知道直角三角形的三条边之间有什么关系吗?”引发学生的思考和讨论。

讲述勾股定理的历史背景,如毕达哥拉斯发现勾股定理的故事,激发学生的学习兴趣。

2、探索新知让学生画几个直角三角形,测量其三边的长度,并计算两直角边的平方和与斜边的平方。

引导学生观察计算结果,提出猜想:直角三角形两直角边的平方和等于斜边的平方。

证明勾股定理:方法一:利用赵爽弦图证明。

展示赵爽弦图,引导学生观察图形,讲解证明思路。

方法二:利用面积法证明。

通过将直角三角形拼成一个正方形,利用面积相等来证明勾股定理。

3、巩固练习给出一些简单的直角三角形,让学生运用勾股定理求出未知边的长度。

设计一些实际问题,如测量旗杆的高度、求两点之间的距离等,让学生运用勾股定理进行解决。

4、课堂小结与学生一起回顾勾股定理的内容和证明方法。

总结运用勾股定理解决问题的思路和注意事项。

5、布置作业书面作业:课本上的相关习题。

拓展作业:让学生查阅资料,了解勾股定理在其他领域的应用。

五、教学反思在本节课的教学中,通过引导学生自主探究和合作交流,让学生亲身经历勾股定理的发现和证明过程,培养了学生的探究能力和逻辑推理能力。

认识勾股定理 公开课获奖【一等奖教案】

认识勾股定理  公开课获奖【一等奖教案】

第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望. 2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1 图2 图3 学生的方法可能有: 方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形,13132214=+⨯⨯⨯=C S .方法二:如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,133221452=⨯⨯⨯-=C S .方法三:如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,13542=+⨯=C S .(4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议内容:(1)你能用直角三角形的边长a ,b ,c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用内容:例题 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?弦股勾(教师板演解题过程) 练习:1.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):2.生活中的应用:小明妈妈买了一部29 in (74 cm )的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm 长和46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容: 教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.2.方法:(1) 观察—探索—猜想—验证—归纳—应用; (2)“割、补、拼、接”法.3.思想:(1) 特殊—一般—特殊; (2) 数形结合思想.225100x1517意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动. 效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.第五环节:布置作业内容:布置作业:1.教科书习题1.1.2.观察下图,探究图中三角形的三边长是否满足222c b a =+?意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.教学设计反思 (一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.a bcabc4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.1勾股定理第1课时勾股定理
1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)
2.掌握勾股定理,并运用它解决简单的计算题;(重点)
3.了解利用拼图验证勾股定理的方法.(难点)
一、情境导入
如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?
二、合作探究
探究点一:勾股定理
【类型一】直接运用勾股定理
如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:
(1)AC的长;
(2)S△ABC;
(3)CD的长.
解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.
解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;
(2)S△ABC=
1
2CB·AC=
1
2×5×12=30(cm2);
(3)∵S△ABC=
1
2AC·BC=
1
2CD·AB,∴CD =
AC·BC
AB=
60
13cm.
方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.
【类型二】分类讨论思想在勾股定理中的应用
在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.
解:此题应分两种情况说明:
(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;
(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=
152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.
方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.
【类型三】勾股定理的证明
探索与研究:
方法1:如图:
对任意的符合条件的直角三角形ABC 绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;
方法2:如图:
该图形是由任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?
解析:方法1:根据四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.
解:方法1:S正方形ACFD=S四边形ABFE=S△BAE
+S△BFE,即b2=1
2c
2+
1
2(b+a)(b-a),整理
得2b2=c2+b2-a2,∴a2+b2=c2;
方法2:此图也可以看成Rt△BEA绕其直角顶点E顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD =S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即
1
2b
2+
1
2ab=
1
2c
2+
1
2a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.
方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.
探究点二:勾股定理与图形的面积
如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.
解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D 的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.
方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、
B、C、D的面积和即是最大正方形的面积.
三、板书设计
1.勾股定理
如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
2.勾股定理的证明
“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.
3.勾股定理与图形的面积
课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从
形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.。

相关文档
最新文档