最新高中数学必修五第一章《解三角形》知识点

合集下载

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

最新高中数学必修五第一章《解三角形》知识点

最新高中数学必修五第一章《解三角形》知识点

高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B .5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解) 7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

第一章 解三角形知识点

第一章 解三角形知识点

高中数学必修5第一章 解三角形知识点1、(1)正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆半径) (2)正弦定理变形:①2sin a R A =,2sin b R B =,2sin c R C = ②sin 2a A R =,sin 2b B R =,sin 2c C R= ③::sin :sin :sin a b c A B C =; ④sin sin sin sin sin sin a b c a b c A B C A B C++===++ (3)正弦定理主要用来解决两类问题:A 、已知两边和其中一边所对的角,求其余的量。

B 、已知两角和一边,求其余的量。

2、三角形的面积:22221111sin sin sin 2sin sin sin 22224sin sin sin sin sin sin 2sin 2sin 2sin a abc S a h ab C bc A ac B R A B C Ra B Cb A Cc A B pr A B C =⋅==========(其中)(21c b a p ++=,r 为三角形内切圆半径) 3、(1)余弦定理:2222cos a b c bc A =+- bca cb A 2cos 222-+= 2222cos b a c ac B =+- 222cos 2a c b B ac +-= 2222cos c a b ab C =+- 222cos 2a b c C ab +-= (2)余弦定理主要解决的问题:A 、已知两边和夹角,求其余的量。

B 、已知三边求角。

4、如何判断三角形的形状:设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >。

5、附:三角形的五个“心”:重心:三角形三条中线交点;外心:三角形三边垂直平分线相交于一点; 内心:三角形三内角的平分线相交于一点; 垂心:三角形三边上的高相交于一点。

高中数学必修5__第一章_解三角形复习知识点总结与练习

高中数学必修5__第一章_解三角形复习知识点总结与练习

高中数学必修5__第一章_解三角形复习知识点总结与练习高中数学必修5第一章解三角形复习一、知识点总结【正弦定理】1.正弦定理:ainAbinBcinC2RR为三角形外接圆的半径2正弦定理的一些变式:iabcinAinBinC;iiinAa2R,inBb2R,inCc2R;2Riiia2RinA,b2RinB,b2RinC;(4)3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角abcinAinBinC(2)已知两边和其中一边的对角,求其他边角(可能有一解,两解,无解)中,已知a,b及A时,解得情况:解法一:利用正弦定理计算解法二:图形一解两解一解一解无解A 为锐角A为钝角或直角关系式解的个数【余弦定理】a2b2c22bccoA2221.余弦定理:bac2accoB2推论:设a、b、c是C的角、、C的对边,则:①若abc,则C90;②若abc,则C90;③若abc,则C90.3两类余弦定理解三角形的问题:(1)已知三边求三角(2)已知两边和他们的夹角,求第三边和其他两角12222222【面积公式】已知三角形的三边为a,b,c,1.S1aha1abinC1rabc(其中r为三角形内切圆半径)12abc,S/h的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B点观测灯塔A的方位角为110°,航行半小时到达C点观测灯塔A的方位角是65°,则货轮到达C点时,与灯塔A的距离是多少?扩展阅读:高中数学必修5第一章解三角形知识点复习及经典练习高中数学必修五第一章解三角形知识点复习及经典练习一、知识点总结abc2R或变形:a:b:cinA:inB:inC1.正弦定理:inAinBinC推论:①定理:若α、β>0,且αβ<,则α≤βinin,等号当且当α=β时成立。

②判断三角解时,可以利用如下原理:inA>inBA>Ba>bcoAcoBAB(co在0,上单调递减)b2c2a2coA2bca2b2c22bccoA2a2c2b2222.余弦定理:bac2accoB或coB2acc2b2a22bacoCb2a2c2coC2ab3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角2、已知两角和其中一边的对角,求其他边角(2)两类余弦定理解三角形的问题:1、已知三边求三角2、已知两边和他们的夹角,求第三边和其他两角4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式5.三角形中的基本关系:inABinC,coABcoC,tanABtanC,in已知条件一边和两角(如a、B、C)ABCABCABCco,coin,tancot222222一般解法由ABC=180,求角A,由正弦定理求出b与c,在有解时有一解。

数学必修5第一章解三角形知识梳理

数学必修5第一章解三角形知识梳理

第一章 解三角形1.1 正弦定理(一)1.在△ABC 中,A +B +C=π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,b c =sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =bsin B=csin C,这个比值是三角形外接圆的直径2R .1.利用正弦定理可以解决两类有关三角形的问题: (1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.A 为锐角a <b sin A a =b sin A b sin A<a <b a ≥b无解 一解(直角) 两解(一锐角, 一钝角)一解(锐角)A 为直角或钝角 a ≤b a >b 无解 一解(锐角) 1.2正弦定理(二)1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .1.在△ABC 中,有以下结论: (1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ;(3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tanC 2. 2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.2.1 余弦定理(一)1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°;(2)若c 2=a 2+b 2-ab ,则C =60°; (3)若c 2=a 2+b 2+2ab ,则C =135°.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.2.2 余弦定理(二)1.正弦定理及其变形(1)a sin A =b sin B =c sin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C 2.解三角形 复习1.在解三角形时,常常将正弦定理、余弦定理结合在一起用,要注意恰当的选取定理,简化运算过程.2.应用正、余弦定理解应用题时,要注意先画出平面几何图形或立体图形,再转化为解三角形问题求解,即先建立数学模型,再求解.。

(完整版)高中数学必修五解三角形知识点归纳,推荐文档

(完整版)高中数学必修五解三角形知识点归纳,推荐文档
a a0
的距离 ; 代数意义: | a | 0 a 0
a a0
2、 如果 a 0, 则不等式:
(1)
|x| a |x| a (3) | x | a
x a 或x a ;(2)
x a 或x a
axa

(4) | x | a
axa
注意 : 上式中的 x 可换成 f(x)
3、解含有绝对值不等式的主要方法:解含绝对
注意:
使用均值不等式的条件:一正、二定、三相等
3、平均不等式:( a、b 为正数),即
a2 b2 2
ab 2
2 ab
1 1 (当 a = b 时取等)
ab
4、常用的基本不等式:
① a2
b2
2ab a, b
R ;② ab
a2 b2 a,b R
2
; ③ ab .
2
ab
2
a
0,b
0 ;④ a2 b2
2
ab a, b R
d n2 2
(a1
d )n 2
(2) 找到通项的正负分界线
s a1 0
若 d 0 则 n 有最大值,当 n=k 时取到的
最大值 k 满足
ak 0 ak 1 0
a1 0 d0

则sn 有最大值,当 n=k 时取到的最

值 k 满足
ak 0 ak 1 0
等比数列
一.定义、如果一个数列从第 2 项起,每一项与
a f ( x ) a g( x ) (0 a 1) f ( x ) g( x )
③对数不等式:
log a f ( x ) log a g( x )( a 1)
f (x) 0
g( x) 0

必修五 第一章 解三角形知识与方法

必修五 第一章 解三角形知识与方法

高中数学 知识与方法必修五 第一章 解三角形(一)ABC ∆中,三内角为,,A B C ,它们所对的边分别为,,a b c ,三角形的边角关系有:1、角:A B C π++=()()()sin sin ,cos cos ,tan tan A B C A B C A B C +=+=-+=- , , ,…… 1sin cos ,cos sin ,tan 22222tan 2A B C A B C A B C +++=== ,…… tan tan tan tan tan tan A B C A B C ++=⋅⋅2、边:三角形两边之和大于第三边,两边之差小于第三边,即 b c a b c -<<+。

定理一般这样运用:三角形较短两边之和大于最长边⇔最长边与最短边之差小于中间边。

3、边角:(1)正弦定理:2sin sin sin a b c R A B C===, 正弦定理的变形:① 2sin a R A =,2sin b R B =,2sin c R C =(化边为角)②sin 2a A R =,sin 2b B R=,sin 2c C R =(化角为边) ③ 2sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a b ma nb a b c R A B C A B A B m A n B A B C +--++==========+--++ (其中分母都不为0);④::sin :sin :sin a b c A B C =⑤sin sin a b A B A B >⇔>⇔>利用正弦定理,可以解决以下两类问题:①已知两角和任一边,解三角形;②已知两边和其中一边的对角,解三角形。

注意:已知,,a b A ,当A 为锐角时,三角形的解可能不确定:若sin a b A <,三角形无解;若sin a b A =或a b ≥,三角形有一解;若sin b A a b <<,三角形有两解。

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。

作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。

必修5解三角形知识清单

必修5解三角形知识清单

a2
推论: cos B c2 a2 b2

2ac
cos C

a2
b2 2ab
c2
剖析:①用余弦定理解三角形时,适用的题型有三种:第一种是已知三边求三角,用余弦定理的推论,
有解时只有一解;第二种是已知两边和它们的夹角,求第三边和其他的角,用余弦定理,必有一解。第三
种是特殊用法,即知道三角形的两边和其中一边的对角求第三边时,一般用余弦定理好,求角度时用正弦

0

C

2
一般判断三角形的形状时可用到上述结论,但是要注意一定要计算最大的角的余弦值。假设三角形中
最大的角为 C,则 cosC<0,可得出三角形是钝角三角形;cosC>0,三角形是锐角三角形;cosC=0,三角
形是直角三角形。
④在△ABC 中, A B C , A B C , A B C ,常用的结论有: 2 22
sin( A B) sin C , cos( A B) cos C , sin A B cos C ,利用此诱导公式可实现△ABC 中
2
2
A,B,C 三个角之间的转化。
ih l h
5、测量问题中的有关定义:

①坡角:坡面与水平面的夹角,如图所示, 为坡角。
l
②坡比:坡面的铅直高度与水平宽度之比,即 i h tan ,如图所示 l
好成绩才是硬道理
4、余弦定理 定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍。
a2 b2 c2 2bc cos A
即:
b
2

c2

必修5 第一章解三角形 知识点详解

必修5 第一章解三角形 知识点详解

必修5 第一章解三角形1.1 正弦定理和余弦定理1. 三角形三角关系:A+B+C=180°;常用:C=180°—(A+B);2.三角形三边关系: a+b>c; 即 三角形任意两边之和大于第三边;a-b<c ;即 三角形任意两边之差小于第三边。

3.大边对大角,大角对大边;即B A B A b a sin sin >⇔>⇔>(只有三角形中才有此性质)4.三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== 5.正弦定理:2sin sin sin a b cR C===A B .其中R 为C ∆AB 的外接圆的半径,主要变形: ①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2cC R=;③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B6.余弦定理: 2222cos a b c bc =+-A , 2222cos b a c ac =+-B , 2222cos c a b ab C =+-.推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=1.2 应用列举1. 三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=ah/2(已知三角形底a ,高h ,)(以下公式作为了解内容) =2R 2sinAsinBsinC =Rabc 4 =2)(c b a r ++ (r 为内切圆半径)=))()((c p b p a p p ---(海伦公式)(p=(a+b+c)/2)2. 余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

必修5第一章解三角形知识点全面 总结

必修5第一章解三角形知识点全面 总结

必修5第一章解三角形 知识总结1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin a b A B =sin cC==2R (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数2R ,即2sin =a R A , 2sin =b R B ,2sin =c R C ;(2)sin sin a b A B =sin c C =等价于sin sin a b A B =变形:sin sin a Ab B =, (3)正弦定理的基本作用为:①已知三角形的两角及其一边可以求其他边,即先用内角和求第三角,再用正弦定理求另外两边;②已知三角形的两边与一边的对角可以先求另一对角的正弦值,然后用内角和定理求第三角,再用正弦定理求第三边如先求sin sin aA B b=——A ——C ——c2、余弦定理:三角形中任何一边的平方等于其它两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即:2222cos a b c bc A =+- 或 2222cos b c a bc A +-= 2222cos =+-b a c ac B 或 2222cos a c b ac B +-= 2222cos c a b ab C =+- 或 2222cos a b c ab C +-= 从余弦定理,又可得到以下推论:222cos 2b c a A bc +-=222cos 2a c b B ac +-= 222cos 2a b c C ab+-= 在△ABC 中,由222cos 2a b cC ab+-=得:若222a b c +=,则cosC=0, 角C 是直角;若222a b c +<,则cos C <0, 角C 是钝角; 若222a b c +>,则cos C >0, 角C 是锐角.3、三角形面积公式:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半.S =12ab sin C =12bc sin A=12ac sin B4、三角形中的三角变换 ,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

高中数学必修5第一章:解三角形

高中数学必修5第一章:解三角形

外接圆法
A
BOb CFra bibliotekB`B a
c
O
C
b
A
C′
A
ObC B` B
A O bC
B
一.正弦定理: 在一个三角形中,各边和它所对角的正弦
的比相等,即
注意:
(1)正弦定理指出了任意三角形中三条边与对应角的正弦 之间的一个关系式.由正弦函数在区间上的单调性可知, 正弦定理非常好地描述了任意三角形中边与角的一种数 量关系.
2.在△ABC中,已知下列条件,解三角形(角度精确到1o, 边长精确到1cm): (1) a=20cm,b=11cm,B=30o; (2) c=54cm,b=39cm,C=115o.
3.判断满足下列条件的三角形的个数:
(1)b=11, a=20, B=30o 两解
(2)c=54, b=39, C=120o 一解
由此可知余弦定理是勾股定理的推广,勾股定理是余 弦定理的特例.
余弦定理及其推论的基本作用是什么? ①已知三角形的任意两边及它们的夹角可以求出第三边; ②已知三角形的三条边就可以求出其他角.
例1 在△ABC中,已知b=60 cm,c=34 cm,A=41° ,解三 角形(角度精确到1°,边长精确到1 cm). 解:方法一: 根据余弦定理,
用正弦定理试求,发现因A、B均
A
未知,所以较难求边c.
由于涉及边长问题,从而可以
考虑用向量来研究这个问题.
C
B
.

A

,
C
B
,
.
一、余弦定理: 三角形中任何一边的平方等于其他两边的平方的和减
去这两边与它们的夹角的余弦的积的两倍,即
注:利用余弦定理,可以从已知的两边及其夹角求出三角 形的第三条边.

必修5-解三角形知识点归纳总结

必修5-解三角形知识点归纳总结

第一章 解三角形一.正弦定理:1.正弦定理:R C cB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b cC C++===A +B +A B R 2=.2)化边为角:C B A c b a sin :sin :sin ::=;;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin caC A = 5)化角为边: RcC R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角(唯一解); 例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a =;sin sin C B c b = ;sin sin CAc a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。

(解不定,需要讨论) 例:已知边a,b,A,解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CAc a sin sin =求出c 边4.(i )△ABC 中,已知锐角A ,a ,边b ,则先求B sin ,⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧≥<==>解解解无解1,2,,1sin 1,1sin ,1sin b a b a B B B如:①已知32,2,60===O b a A ,求B (有一个解)②已知32,2,60===O a b A ,求B (有两个解) 注意:由正弦定理求角时,注意解的个数。

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。

必修5-解三角形知识要点

必修5-解三角形知识要点

《解三角形》知识要点1.内角和定理A B C π++= 2.正弦定理2sin sin sin a b c R A B C===(R 为三角形外接圆的半径⑴变形公式:(1)2sin ,2sin ,2sin (2)sin ,sin ,sin 222(3)::sin :sin :sin a R A b R B c R Ca b c A B C R R Ra b c A B C======= ⑵应用①已知两边和其中一边的对角,求另一边的对角 ②已知两角和任一边,求其它两边和角 (3)注意:已知三角形两边及一边对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.3.余弦定理22222222222222222222()2cos cos 1222cos cos 22cos cos 2b c a b c a a b c bc A A bc bc c a b b c a ca B B ca a b cc a b ab C C ab +-+-=+-⇔==-+-=+-⇔=+-=+-⇔=应用:①已知两边与它们的夹角,求第三边和其它两角 ②已知三边,求三角4.三角形面积公式 1(1)2111(2)sin sin 2221(3)()2(4),()(5)4aS ah S ab C bc A casimBS p a b c S pr r abcS R======++==是内切圆的半径.6.ABC ∆形状的判定(1)锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.(2)直角三角形⇔有一角等于090⇔有一角的余弦值为零⇔勾股定理(3)钝角三角形⇔有一角090> ⇔有一角的余弦值0<⇔任意两边的平方和小于第三边的平方. (4)等腰三角形⇔有两边相等或两角相等 (5)利用余弦定理判定①锐角三角形222222222a b c b c a c a b ⎧+>⎪⇔+>⎨⎪+>⎩②直角三角形222a b c ⇔+=或222a cb +=或222b c a += ③钝角三角形222a b c ⇔+<或222a c b +<,或222b c a +< 总之,求最大的角α的余弦值 cos α0>⇔锐角三角形;cos 0α<⇔钝角三角形; cos 0α=⇔直角三角形.7.在ABC ∆中,有以下常用结论⑴三角恒等变形:22sin cos 1αα+=⑵两角和差公式:sin()sin cos cos sin cos()cos cos sin sin αβαβαβαβαβαβ±=±±=⑶0000sin15cos 7575sin105cos15===== ⑷sin sin sin a b c A B C A B C >>⇔>>⇔>>⑸sin sin(),sin sin(),sin sin()A B C B A C C A B =+=+=+⑹sin cos ,cos sin2222A B C A B C ++== ⑺tan tan tan tan tan tan A B C A B C ++= ⑻sin sin a b A B A B =⇔=⇔=⑼ABC ∆中三内角,,A B C 成等差数列060B ⇔=⑽锐角三角形中任两角之和090>8.在实际问题中的有关术语⑴仰角与俯角:在同一铅直平面(与水平面或海平面垂直的平面)内,视线与水平线的夹角.视线在水平线之上时,称为仰角;视线在水平线之下时,称为俯角⑵方向角:从指定方向线到目标方向线的水平角,如北偏东030. ⑶坡角:坡面与水平面的夹角,坡角α的正切值叫坡度tan α.9. 解三角形的应用⑴距离问题 ⑵高度问题 ⑶角度问题10.2011年江西高考题在ABC ∆中,C B A ,,的对边分别是c b a ,,,已知C b B c A a cos cos cos 3+=.(1)求A cos 的值; (2)若332cos cos ,1=+=C B a ,求边c 的值. 解:(1)由 C b B c A a cos cos cos 3+=,正弦定理得:)sin(cos sin cos sin cos sin 3C B C B B C A A +=+=sin A =, 所以31cos =A 。

人教B版必修5第一章解三角形知识总结

人教B版必修5第一章解三角形知识总结

必修5 第一章:解三角形
1、正弦定理:sin sin sin a b c A B C
==2R =(R 是ABC ∆外接圆半径) 注1:一般在已知两角一边(包括两角夹边和两角及其中一角的对边)和已知两边及其中一边的对角时使用正弦定理;
注2:使用正弦定理可以把次数相等时的所有边转化为对应角的正弦值或把正弦值转化为其对应边;
注3:利用正弦定理,我们得到:111sin sin sin 222ABC S ab C ac B bc A ∆===4abc R
=; 注4:利用正弦定理的结构,我们可以判断满足已知两边及其中一边的对角时,三角形解的个数,如图:
已知角A 为锐角时 (1)当它的对边sin a b A =,一个 (2)当它的对边sin a b A <,没有 (3)当它的对边sin b A a b <<,两个 (4)当它的对边a b ≥,一个 已知角A 为直角或钝角时 (1)当它的对边a b ≤,没有
(2)当它的对边a b >,一个
注5:三角形中sin sin A B A B >⇔>
2、余弦定理:222
2cos a b c bc A =+-,222
cos 2b c a A bc +-= 注1:一般在已知两边及夹角或已知三边时常用余弦定理,如果是两边及其中一边的对角,可以建立一元二次方程求解;
注2:判断三角形是锐角、直角或钝角时可以利用两边的平方和减第三边的平方的正负来考虑;
注3:一个常见的结论:sin 2sin 2A B A B =⇒=或90A B +=︒
注4:正余弦定理可以实现边和角的互化。

(完整版)高中数学必修五解三角形知识点归纳

(完整版)高中数学必修五解三角形知识点归纳

a
t i m
e a
n d
A
l l t h i n
g s
i n
t h
e i r
b e
i n g
a
d
o
o
g
e
r
a
同侧的点代入后符号相同,异
0x y C A +B +=侧的点相反
2.由A 的符号来确定:先把x 的系数A 化为正
后,看不等号方向:
①若是“>”号,则所表示的区
0x y C A +B +>域为直线:的右边部分。

0x y C A +B +=②若是“<”号,则所表示的区0x y C A +B +<域为直线 的左边部分。

0x y C A +B +=注意:
不包括边界;
)0(0<>++或C By Ax 包括边界
)0(0≤≥++C By Ax 3.求解线性线性规划问题的步骤
(1)画出可行域(注意实虚)
(2)将目标函数化为直线的斜截式(3)看前的系数的正负.若为正时则上大下小,若
为负则上小下大
4.非线性问题:
(1)看到比式想斜率
(2)看到平方之和想距离四、均值不等式。

高中数学必修五第一章解三角形知识点复习及经典练习

高中数学必修五第一章解三角形知识点复习及经典练习
3 1
C. 3
D. 2 3
5.在△ABC 中,若 b =2asinB,则 A 等于( ) A.30°或 60° B.45°或 60° C.60°或 120°D.30°或 150° 6.边长为 5、7、8 的三角形的最大角与最小角的和是( ) A.90 °B.120 °C.135° D.150° 二、填空题 1.在 Rt △ABC 中,C=90°,则 sinAsin B 的最大值是_______________。 2.在△ABC 中,若������2 = ������2 + ������������ + ������ 2 ,则 A=_________。 3.在△ABC 中,若 b=2,B=30°,C=135°,则 a=_________。 4.在△ABC 中,若 sin A ∶ sinB ∶ sinC = 7∶8∶13,则 C = _____________。 5.在△ABC 中,AB= 6 − 2,C=30°,则 AC +BC 的最大值是________。 三、解答题 1. 在△ABC 中,若 acosA+ bcosB= ccosC,则△ABC 的形状是什么?
高中数学必修五第一章解三角形知识点复习及经典练习
第一部分 知识点总结 1.正弦定理:
������ sin ������
=
������ sin ������
=
������ sin ������
= 2R或变形:a:b:c=sinA:sinB:sinC.
推论:①定理:若α 、β >0,且α +β <π ,则α ≤β ⟺sinα ≤sinβ ,等号当且仅当α =β 时 成立。 ②判断三角形时,可以利用如下原理:sinA>sinB ⇔A>B⇔ a> b ,cosA>cosB⇔A<B(y=cosx 在(0,π )上单调递减)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修五 第一章 解三角形知识点归纳1 1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2 2、三角形三边关系:a+b>c; a-b<c3 3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-4sincos ,cos sin ,tan cot 222222A B C A B C A B C+++=== 5 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外6 接圆的半径,则有2sin sin sin a b cR C===A B . 7 5、正弦定理的变形公式:8 ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; 9②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; 10③::sin :sin :sin a b c C =A B ;11④sin sin sin sin sin sin a b c a b cC C++===A +B +A B . 126、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角. 13 ②已知两角和其中一边的对角,求其他边角.(对14于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解) 157、三角形面积公式:16111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=17))()((c p b p a p p ---18 8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,192222cos c a b ab C =+-.209、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.2110、余弦定理主要解决的问题:22 ①已知两边和夹角,求其余的量。

23②已知三边求角)2411、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,25统一成边的形式或角的形式。

设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: 26①若222a b c +=,则90C =; 27②若222a b c +>,则90C <; 28③若222a b c +<,则90C >. 2912、三角形的五心:30垂心——三角形的三边上的高相交于一点 31重心——三角形三条中线的相交于一点 32外心——三角形三边垂直平分线相交于一点33内心——三角形三内角的平分线相交于一点34 旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点353637第一章 解三角形单元测试38一 选择题:391.已知△ABC 中,30A =,105C =,8b =,则等于 ( ) 40A 4B 41 2. △ABC 中,45B =,60C =,1c =,则最短边的边长等于 ( )42A 3B 2C 12 D 2433.长为5、7、8的三角形的最大角与最小角之和为 ( )44 A 90° B 120° C 135° D 150°454. △ABC 中,cos cos cos a b cA B C ==,则△ABC 一定是 ( )46A 直角三角形B 钝角三角形C 等腰三角形D 等边三角形47 5. △ABC 中,60B =,2b ac =,则△ABC 一定是 ( )48A 锐角三角形B 钝角三角形C 等腰三角形D 等边三角形496.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( )50 A 有 一个解 B 有两个解 C 无解 D 不能确定 517. △ABC 中,8b =,83c =,163ABCS=,则A ∠等于 ( )52A 30B 60C 30或150D 60或120538.△ABC 中,若60A =,3a =,则sin sin sin a b cA B C +-+-等于 ( )54A 2B 12 C3 D 32559. △ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =56 ( )57A 13B 12C 34D 0 5810.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 59 ( )60A 锐角三角形B 直角三角形C 钝角三角形D 由增加的长度决定616211 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为63( )64A. 3400米 B. 33400米 C. 2003米 D. 200米6512 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 66 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是 ( )67A.10 海里B.5海里C. 56 海68里 D.53 海里 69二、填空题:7013.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 。

7114.在△ABC 中,已知b =,150c =,30B =,则边长a = 。

7215.在钝角△ABC 中,已知1a =,2b =,则最大边c 的取值范围是 。

7316.三角形的一边长为14,这条边所对的角为60,另两边之比为8:5,则这个三角形74的75面积为 。

767778三、解答题:7917(本题10分)在△ABC 中,已知边c=10, 又知cos 4cos 3A b B a ==,求边a 、b 的长。

8081 18(本题12分)在△ABC 中,已知2a b c =+,2sin sin sin A B C =,试判断△ABC 的形82状。

838419(本题12分)在锐角三角形中,边a、b是方程x2-2 3 x+2=0的两根,角A、B满85足:862sin(A+B)- 3 =0,求角C的度数,边c的长度及△ABC的面积。

878820(本题12分)在奥运会垒球比赛前,C国教练布置战术时,要求击球手以与连结89本垒及游击手的直线成15°的方向把球击出,根据经验及测速仪的显示,通常情况下90球速为游击手最大跑速的4倍,问按这样的布置,游击手能不能接着球?(如图所示)919293949596979899000102第一章解三角形单元测试参考答案03一、选择题04BABDD CCACA C05二、填空题(44⨯)061314- 14、1003或353c<< 16、307三、解答题 080915、(本题8分)10解:由cos cos A b B a =,sinB sinA b a =,可得 cos sin cos sin A BB A=,变形为sinAcosA=sinBcosB 11∴sin2A=sin2B, 又∵a ≠b, ∴2A=π-2B, ∴A+B=2π. ∴△ABC 为直角三角形. 12 由a 2+b 2=102和43b a =,解得a=6, b=8。

13 16、(本题8分)14 解:由正弦定理2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2bB R=, 15 sin 2cC R=。

16 所以由2sin sin sin A B C =可得:2()222a b cR R R=⋅,即:2a bc =。

17又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 18因而b c =。

故由2a b c =+得:22a b b b =+=,a b =。

所以a b c ==,△ABC 19为等边三角形。

2017、(本题9分)21解:由2sin(A+B)- 3 =0,得sin(A+B)=32, ∵△ABC 为锐角三角形22∴A+B=120°, C=60°, 又∵a 、b 是方程x 2-2 3 x+2=0的两根,∴a+b=2 3 ,23∴c= 6 , 1sin 2ABCSab C ==12 ×2×32 =32 。

24 a ·b=2, ∴c 2=a 2+b 2-2a ·bcosC=(a+b)2-3ab=12-6=6,25 ∴c= 6 , 1sin 2ABCSab C ==12 ×2×32 =32 。

26 2728 18、(本题9分)29解: 设游击手能接着球,接球点为B ,而游击手从点A 跑出,本垒为O 点(如图所30示).设从击出球到接着球的时间为t ,球速为v ,则∠AOB=15°,OB =vt ,4vAB t ≤⋅。

31在△AOB 中,由正弦定理,得sin sin15OB ABOAB =∠,32 ∴62sin sin1562/44OB vt OAB AB vt ∠=≥⋅=而33 262)8384 1.741=->-⨯>,即sin∠OAB>1,∴这样的∠OAB 不存在,因此,游34击手不能接着球.3536 37 3839。

相关文档
最新文档