统计分析与方法-第四章 总体参数的估计

合集下载

统计推断与参数估计的基本理论与方法

统计推断与参数估计的基本理论与方法

统计推断与参数估计的基本理论与方法统计推断是统计学中的一门重要的研究领域,它主要关注如何通过样本数据对总体特征进行推断。

参数估计则是统计推断的一个重要组成部分,它通过样本数据来估计总体参数。

本文将介绍统计推断和参数估计的基本理论和方法。

一、统计推断的基本理论统计推断的基本理论包括抽样理论、似然函数和假设检验等。

1. 抽样理论抽样理论是统计推断的基础,它研究的是如何从总体中抽取样本以便对总体进行推断。

通过合理的抽样方法,可以保证样本对总体的代表性。

2. 似然函数似然函数是参数估计的基本工具,它是样本观测值关于参数的函数。

通过最大似然估计可以得到参数的最优估计值。

3. 假设检验假设检验是统计推断的重要方法,用于检验某个关于总体参数的假设。

它包括构造检验统计量和确定拒绝域两个步骤,从而进行参数推断。

二、参数估计的基本方法参数估计是统计推断中的核心内容,它通过样本数据来估计总体参数。

参数估计的基本方法包括点估计和区间估计。

1. 点估计点估计是一种直接估计总体参数的方法,它通过样本数据来估计总体参数的具体值。

最常用的点估计方法是最大似然估计和矩估计。

2. 区间估计区间估计是一种间接估计总体参数的方法,它给出了参数的估计区间。

通过给出一个置信区间,可以对总体参数进行估计,并给出估计的精度。

三、常用的统计推断方法在实际应用中,统计学家们发展了许多常用的统计推断方法,包括假设检验、方差分析、回归分析等。

1. 假设检验假设检验是统计推断中最常用的方法之一,它用于检验某个关于总体参数的假设。

例如,检验某种药物对疾病的治疗效果是否显著。

2. 方差分析方差分析是一种用于比较多个总体均值的方法,它通过分析不同组之间的方差来判断各组均值是否有显著差异。

例如,在新产品开发中,可以通过方差分析评估不同市场的销售情况。

3. 回归分析回归分析是一种用于建立变量之间关系的方法,它可以推断自变量对因变量的影响程度。

通过回归分析可以得到回归方程,从而进行预测和解释。

参数估计知识点总结

参数估计知识点总结

参数估计知识点总结一、参数估计的基本概念参数估计是统计学中的一个重要问题,它是指从样本数据中估计总体参数的值。

在实际问题中,我们往往对总体的某个特征感兴趣,比如总体的均值、方差等,而这些特征通常是未知的。

参数估计就是利用样本数据来估计这些未知的总体参数值的方法。

在参数估计中,有两种主要的估计方法:点估计和区间估计。

点估计是指利用样本数据来估计总体参数的一个具体值,它通常用一个统计量来表示。

而区间估计则是利用样本数据来估计总体参数的一个区间范围,通常用一个区间来表示。

二、点估计点估计是参数估计中的一种方法,它是利用样本数据来估计总体参数的一个具体值。

在点估计中,我们通常使用一个统计量来表示参数的估计值,这个统计量通常是样本数据的函数。

1. 无偏估计无偏估计是指估计量的期望值等于所估计的总体参数的真实值。

对于一个无偏估计而言,平均来说,估计值和真实值是相等的。

无偏估计是统计学中一个很重要的性质,在实际问题中,我们希望能够得到一个无偏估计。

2. 一致估计一致估计是指当样本大小趋于无穷时,估计量收敛于真实参数的概率接近于1。

一致性是估计量的另一个重要性质,它保证了在样本较大的情况下,估计值能够越来越接近真实值。

3. 最大似然估计最大似然估计是一种常用的参数估计方法,它是利用样本数据来选择最有可能产生观测数据的参数值。

最大似然估计的原理是选择一个参数值,使得样本数据出现的概率最大。

最大似然估计的优点在于它的统计性质良好,且通常具有较好的渐近性质。

4. 贝叶斯估计贝叶斯估计是另一种常用的参数估计方法,它是基于贝叶斯定理的一种参数估计方法。

贝叶斯估计将参数视为随机变量,通过引入先验分布和后验分布来对参数进行估计。

贝叶斯估计的优点在于它能够利用先验知识对参数进行更为准确的估计。

三、区间估计区间估计是另一种常用的参数估计方法,它是利用样本数据来估计总体参数的一个区间范围。

区间估计的优点在于它能够提供参数值的估计范围,同时也能够反映估计的不确定性。

总体参数的假设检验

总体参数的假设检验

社会学研究数据分析
要点一
总结词
社会学研究中的假设检验主要用于探究社会现象、行为和 社会关系等。
要点二
详细描述
在社会学研究中,假设检验被广泛应用于社会调查、实验 研究和准实验研究中。研究者通过收集和分析数据,检验 关于社会现象、行为和社会关系的假设。例如,可以检验 教育程度与收入水平的关系、政策实施对居民生活的影响 等假设。这有助于深入了解社会现象,为政策制定和社会 发展提供科学依据。
P值是假设检验中的重要指标,表示观察到的数据或更极端情况出现的 概率。P值越小,表明观察到的数据越不可能发生,从而支持拒绝原假 设。
P值的解读
在解读P值时,应注意其与临界值的关系。通常,当P值小于显著性水 平(如0.05)时,我们拒绝原假设。
03
决策与P值
虽然P值提供了一定的决策依据,但不应过分依赖P值进行决策。在某
两个总体参数的假设检验
两个总体参数的假设检验的定义
对两个总体的参数提出假设,并利用样本数据对该假设进 行检验,以判断两个参数之间是否存在显著差异。
提出假设
根据研究目的或问题,提出关于两个总体参数的假设。
选择检验统计量
根据总体分布和假设,选择适当的统计量进行检验。
确定临界值
根据统计量的性质和显著性水平,确定临界值。
选择检验统计量
根据总体分布和假设,选择适当的统计量进行检验。
确定临界值
根据统计量的性质和显著性水平,确定临界值。
计算检验统计量的值
根据样本数据计算检验统计量的值。
做出决策
将计算出的检验统计量的值与临界值进行比较,做出接受 或拒绝假设的决策。
非参数假设检验
03
符号检验
总结词

统计推断与参数估计方法

统计推断与参数估计方法

统计推断与参数估计方法统计推断是统计学中的一个重要分支,它的目标是通过对样本数据进行分析和推断,从而对总体进行推断和做出统计决策。

参数估计是统计推断的核心内容之一,它涉及到对总体的参数进行估计和推断。

本文将介绍统计推断的概念、方法以及参数估计的原理和常见方法。

一、统计推断概述统计推断是通过样本信息对总体进行推断的一种方法。

在现实生活中,很难获得总体数据,因此我们通常通过抽样来获取样本数据,然后根据样本数据对总体进行推断和做出统计判断。

统计推断可以分为两大类:参数推断和非参数推断。

参数推断是基于总体分布的假设,利用样本数据对总体参数进行推断。

非参数推断则不对总体分布做出假设,通过样本数据对总体分布进行推断。

二、参数估计原理参数估计是统计推断的一种重要方法,它的目标是通过样本数据对总体参数进行估计。

参数估计的核心思想是通过样本数据得到一个估计量,使得估计量与总体参数值尽可能接近。

常用的参数估计方法有最大似然估计、矩估计和贝叶斯估计等。

最大似然估计是根据样本数据的含量,通过计算总体参数最可能出现的取值,来估计总体参数值。

矩估计是通过样本矩的函数与总体矩的函数相等来估计总体参数值。

贝叶斯估计则是利用贝叶斯定理,根据已有信息和先验概率对总体参数进行估计。

三、常用的参数估计方法1. 最大似然估计最大似然估计是参数估计中最常用的方法之一。

最大似然估计的核心思想是选取一组参数值,使得给定样本数据出现的可能性最大。

最大似然估计可以简化为求解似然函数的最大值所对应的参数值。

2. 矩估计矩估计是通过样本矩的函数与总体矩的函数相等来进行参数估计。

矩估计的基本思想是利用样本矩估计总体矩,然后通过总体矩的函数得到对总体参数的估计。

3. 贝叶斯估计贝叶斯估计是基于贝叶斯定理的一种参数估计方法。

贝叶斯估计将参数估计问题转化为给定样本数据下参数的后验分布的估计问题。

通过引入先验分布和似然函数,可以得到对总体参数的估计。

四、参数估计的应用参数估计在各个领域中都有广泛的应用。

统计学参数估计

统计学参数估计

统计学参数估计参数估计是统计学中的一个重要概念,它是指在推断统计问题中,通过样本数据对总体参数进行估计的过程。

这一过程是通过样本数据来推断总体参数的未知值,从而进行总体的描述和推断。

在统计学中,参数是指总体的其中一种特征的度量,比如总体均值、总体方差等。

而样本则是从总体中获取的一部分观测值。

参数估计的目标就是基于样本数据来估计总体参数,并给出估计的精确程度,即估计的可信区间或置信区间。

常见的参数估计方法包括点估计和区间估计。

点估计是一种通过单个数值来估计总体参数的方法。

点估计的核心是选择合适的统计量作为估计量,并使用样本数据计算出该统计量的具体值。

常见的点估计方法包括最大似然估计和矩估计。

最大似然估计是一种寻找参数值,使得样本数据出现的概率最大的方法。

矩估计则是通过样本矩的函数来估计总体矩的方法。

然而,点估计只能提供一个参数的具体值,无法提供该估计值的精确程度。

为了解决这个问题,区间估计被引入。

区间估计是指通过一个区间来估计总体参数的方法。

该区间被称为置信区间或可信区间。

置信区间是在一定置信水平下,总体参数的真值落在该区间内的概率。

置信区间的计算通常涉及到抽样分布、标准误差和分位数等概念。

在实际应用中,参数估计经常用于统计推断、统计检验和决策等环节。

例如,在医学研究中,研究人员可以通过对患者进行抽样调查来估计其中一种药物的有效性和不良反应的发生率。

在市场调研中,市场研究人员可以通过抽取部分样本来估计一些产品的市场份额或宣传效果。

参数估计的准确性和可靠性是统计分析的关键问题。

估计量的方差和偏倚是影响估计准确性的主要因素,通常被称为估计量的精确度和偏倚性。

经典的参数估计要求估计量是无偏且有效的,即估计量的期望值等于真值,并且方差最小。

总之,参数估计是统计学中的一个重要概念,它通过样本数据对总体参数进行估计,并给出估计值的精确程度。

参数估计在统计推断、统计检验和决策等领域具有广泛的应用。

估计量的准确性和可靠性是参数估计的关键问题,通常通过方差和偏倚的分析来评价估计量的性质。

统计学方法_课后 习题 答案

统计学方法_课后  习题  答案

思考与练习参考答案第1章绪论一、选择题1. 研究中的基本单位是指( D)。

A.样本 B. 全部对象C.影响因素D. 个体E. 总体2. 从总体中抽取样本的目的是( B )。

A.研究样本统计量 B. 由样本统计量推断总体参数C.研究典型案例 D. 研究总体统计量E. 计算统计指标3. 参数是指( B )。

A.参与个体数 B. 描述总体特征的统计指标C.描述样本特征的统计指标 D. 样本的总和 E. 参与变量数4. 下列资料属名义变量的是(E)。

A.白细胞计数B.住院天数C.门急诊就诊人数D.患者的病情分级 E. ABO血型5.关于随机误差下列不正确的是(C)。

A.受测量精密度限制B.无方向性 C. 也称为偏倚D.不可避免 E. 增加样本含量可降低其大小二、名称解释(答案略)1. 变量与随机变量2. 同质与变异3. 总体与样本4. 参数与统计量5. 误差6. 随机事件7. 频率与概率三、思考题1. 生物统计学与其他统计学有什么区别和联系?答:统计学可细分为数理统计学、经济统计学、生物统计学、卫生统计学、医学统计学等,都是关于数据的学问,是从数据中提取信息、知识的一门科学与艺术。

而生物统计学是统计学原理与方法应用于生物学、医学的一门科学,与医学统计学和卫生统计学很相似,其不同之处在于医学统计学侧重于介绍医学研究中的统计学原理与方法,而卫生统计学更侧重于介绍社会、人群健康研究中的统计学原理与方法。

2. 某年级甲班、乙班各有男生50人。

从两个班各抽取10人测量身高,并求其平均身高。

如果甲班的平均身高大于乙班,能否推论甲班所有同学的平均身高大于乙班?为什么?答:不能。

因为,从甲、乙两班分别抽取的10人,测量其身高,得到的分别是甲、乙两班的一个样本。

样本的平均身高只是甲、乙两班所有同学平均身高的一个点估计值。

即使是按随机化原则进行抽样,由于存在抽样误差,样本均数与总体均数一般很难恰好相等。

因此,不能仅凭两个样本均数高低就作出两总体均数熟高熟低的判断,而应通过统计分析,进行统计推断,才能作出判断。

参数估计的介绍

参数估计的介绍

参数估计的介绍一、总体参数估计概述统计推断(Statistical inference)就是根据样本的实际数据,对总体的数量特征作出具有一定可靠程度的估计和判断。

统计推断的基本内容有参数估计和假设检验两方面。

概括地说,研究一个随机变量,推断它具有什么样的数量特征,按什么样的模式来变动,这属于估计理论的内容,而推测这些随机变量的数量特征和变动模式是否符合我们事先所作的假设,这属于检验理论的内容。

参数估计和假设检验的共同点是它们都对总体无知或不很了解,都是利用部分观察值所提供的信息,对总体的数量特征作出估计和判断,但两者所要解决问题的着重点的所有方法有所不同。

本节先研究总体参数估计的问题。

总体参数估计是以样本统计量(即样本数字特征)作为未知总体参数(即总体数字特征)的估计量,并通过对样本单位的实际观察取得样本数据,计算样本统计量的取值作为被估计参数的估计值。

不论社会经济活动还是科学试验,人们作出某种决策之前总是要对许多情况进行估计。

例如商品推销人员要估计新式时装可能为消费者所学好的程度,自选商场经理要估计附近居民的购买能力,民意调查机构要估计竞选者的得票率,医药生产部门要推广某种药品的新配方,必须估计新药疗效的提高程度等等。

这些估计通常是在信息不完全、结果不确定的情况下作出。

参数估计为我们提供一套在满足一定精确度要求下根据部分信息来估计总体参数的真值,并作出同这个估计相适应的误差说明的科学方法。

科学的抽样估计方法要具备三个基本条件。

首先是要有合适的统计量作为估计量。

我们知道统计量是样本随机变量的函数,根据样本随机变量可以构造许多统计量,但不是所有的统计量都能够充当良好的估计量。

例如,从一个样本可以计算平均数、中位数、众数等等,现在要用来估计总体平均数,究竟以哪个样本统计量作为估计量更合适,如果采用样本平均数作为估计量,这就需要回答样本平均数和总体平均数存在什么样的内在联系,以样本平均数作为良好估计量的标准是什么等等。

参数估计方法

参数估计方法

参数估计方法参数估计是统计学中的一个重要概念,它是指根据样本数据推断总体参数的过程。

在实际应用中,我们往往需要利用已知数据来估计总体的各种参数,比如均值、方差、比例等。

参数估计方法有很多种,其中最常用的包括最大似然估计和贝叶斯估计。

本文将对这两种参数估计方法进行详细介绍,并分析它们的优缺点。

最大似然估计是一种常用的参数估计方法,它是建立在似然函数的基础上的。

似然函数是关于总体参数的函数,它衡量了在给定参数下观察到样本数据的概率。

最大似然估计的思想是寻找一个参数值,使得观察到的样本数据出现的概率最大。

换句话说,就是要找到一个参数值,使得观察到的样本数据出现的可能性最大化。

最大似然估计的优点是计算简单,且在大样本情况下具有较好的渐近性质。

但是,最大似然估计也有一些局限性,比如对于小样本情况下可能会出现估计不准确的问题。

另一种常用的参数估计方法是贝叶斯估计。

贝叶斯估计是建立在贝叶斯定理的基础上的,它将参数看作是一个随机变量,而不是一个固定但未知的常数。

在贝叶斯估计中,我们需要先假设参数的先验分布,然后根据观察到的样本数据,利用贝叶斯定理来计算参数的后验分布。

贝叶斯估计的优点是能够充分利用先验信息,尤其在小样本情况下具有较好的稳定性。

但是,贝叶斯估计也存在一些问题,比如对于先验分布的选择比较敏感,且计算复杂度较高。

在实际应用中,我们需要根据具体的问题和数据特点来选择合适的参数估计方法。

对于大样本情况,最大似然估计可能是一个不错的选择,因为它具有较好的渐近性质。

而对于小样本情况,贝叶斯估计可能更适合,因为它能够充分利用先验信息,提高估计的稳定性。

当然,除了最大似然估计和贝叶斯估计之外,还有很多其他的参数估计方法,比如矩估计、区间估计等,每种方法都有其特点和适用范围。

总之,参数估计是统计学中的一个重要概念,它涉及到如何根据已知数据来推断总体的各种参数。

最大似然估计和贝叶斯估计是两种常用的参数估计方法,它们各有优缺点,适用于不同的情况。

统计学参数估计PPT课件

统计学参数估计PPT课件
实际应用中需要注意的问题
在应用参数估计时,需要注意样本的代表性、数据的准确性和可靠性等问题, 以保证估计的准确性和可靠性。
对未来研究的建议
01
进一步探讨参数估计的理论基础
可以进一步探讨参数估计的理论基础,如大数定律和中心极限定理等,
以更好地理解和掌握参数估计的方法和原理。
02
探索新的估计方法
随着统计学的发展,可以探索新的参数估计方法,以提高估计的准确性
指导决策
评估效果
基于参数估计结果,制定科学合理的 决策。
利用参数估计,评估政策、项目等实 施效果。
预测未来
通过参数估计,预测未来的趋势和变 化。
02
参数估计的基本概念
点估计
定义
点估计是用一个单一的数值来估 计未知参数的值。
举例
在调查某班级学生的平均身高时, 我们可能使用所有学生身高的总 和除以人数来估计平均身高,这 里的总和除以人数就是点估计。
最小二乘法的缺点是假设误差项独立 同分布,且对异常值敏感,可能影响 估计的稳定性。
最小二乘法的优点是简单易行,适用 于线性回归模型,且具有优良的统计 性质。
贝叶斯估计法
贝叶斯估计法是一种基于贝叶 斯定理的参数估计方法,通过 将先验信息与样本数据相结合 来估计参数。
贝叶斯估计法的优点是能够综 合考虑先验信息和样本数据, 给出更加准确的参数估计。
高维数据的参数估计问题
1 2 3
高维数据对参数估计的影响
随着数据维度的增加,参数估计的复杂度和难度 也会相应增加,容易出现维度诅咒等问题。
高维数据参数估计的方法
针对高维数据,可以采用降维、特征选择、贝叶 斯推断等方法进行参数估计,以降低维度对估计 的影响。

参数估计的一般步骤

参数估计的一般步骤

参数估计的一般步骤
参数估计是统计学中的一种方法,用于根据样本数据估计总体参数的值。

它是一个重要的统计推断技术,可以帮助我们了解和描述总体的特征。

参数估计的一般步骤如下:
1. 确定研究对象和目标参数:首先,我们需要明确研究对象是什么,需要估计的是哪个参数。

例如,我们可能希望估计某个产品的平均寿命,那么研究对象是产品,目标参数是平均寿命。

2. 收集样本数据:为了进行参数估计,我们需要收集一定数量的样本数据。

样本应该能够代表总体,并且必须是随机选择的,以避免抽样偏差。

3. 选择合适的估计方法:根据研究对象和目标参数的不同,我们可以选择不同的估计方法。

常见的估计方法包括点估计和区间估计。

点估计给出一个单一的数值作为参数的估计值,而区间估计给出一个范围,以表明参数估计值的不确定性。

4. 计算估计值:根据选择的估计方法,我们可以使用样本数据计算出参数的估计值。

例如,对于平均寿命的估计,我们可以计算样本的平均值作为总体平均寿命的估计值。

5. 评估估计的准确性:估计值的准确性可以通过计算估计的标准误
差或置信区间来评估。

标准误差反映了估计值与真实参数值之间的差异,而置信区间提供了参数估计值的不确定性范围。

6. 解释和应用估计结果:最后,我们需要解释估计结果并应用于实际问题中。

根据估计结果,我们可以得出结论,做出决策或提出建议。

参数估计是一种重要的统计推断方法,可以帮助我们了解总体特征并做出准确的推断。

通过正确的步骤和方法,我们可以获得可靠的参数估计结果,并将其应用于实际问题中。

第4章参数估计和假设检验

第4章参数估计和假设检验

第4章参数估计和假设检验第四章参数估计与假设检验掌握参数估计和假设检验的基本思想是正确理解和应⽤其他统计推断⽅法的基础,后⾯将要学习的⽅差分析、⾮参数检验、回归分析、时间序列等统计推断⽅法都是在此基础上展开的。

需要特别指出的是,所有的统计推断都要以随机样本为基础。

如果样本是⾮随机的,统计推断⽅法就不适⽤了。

由于相关知识在先修课程中已经学习过,本章主要在回顾相关知识的基础上,补充讲解必要样本容量的计算、p值、参数估计和假设检验⽅法的软件操作和结果分析等内容。

本章的主要内容包括:(1)参数估计的基本思想和软件实现。

(2)简单随机抽样情况下样本容量的计算。

(3)假设检验的基本原理。

(4)假设检验中的p值。

(5)⼏种常⽤假设检验的软件实现。

第⼀节参数估计⼀、参数估计的基本概念参数估计是指利⽤样本信息对总体数字特征作出的估计。

例如,我们可以通过估计⼀部分产品的合格率对整批产品的合格率作出估计,通过调查⼀个样本的⼈⼝数来对全国的⼈⼝数作出估计,等等。

参数估计可以分为点估计和区间估计。

点估计是指根据样本数据给出的总体未知参数的⼀个估计值。

对总体参数进⾏估计的⽅法可以有多种,例如矩估计法、极⼤似然估计法等,得到的估计量(样本统计量)并不是唯⼀的。

例如我们可以使⽤样本均值对总体均值作出估计,也可以使⽤样本中位数对总体均值进⾏估计。

因此,在参数估计中我们需要对估计量的好坏作出评价,这就涉及到估计量的评价准则问题。

常⽤的估计量评价准则包括⽆偏性、有效性、⼀致性等。

⽆偏性是指估计量的数学期望与总体参数的真实值相等;有效性的含义是,在两个⽆偏估计量中⽅差较⼩的估计量较为有效,⽅差越⼩越有效;⼀致性是指随着样本容量的增⼤,估计量的取值应该越来越接近总体参数。

样本的随机性决定了估计结果的随机性。

由于每⼀个点估计值都来⾃于⼀个随机样本,所以总体参数真值刚好等于⼀个具体估计值的可能性极⼩。

区间估计的⽅法则以概率论为基础,在点估计的基础上给出了⼀个置信区间,并给出了这⼀区间包含总体真值的概率,⽐点估计提供了更多的信息。

spss统计分析及应用教程-第4章 参数检验

spss统计分析及应用教程-第4章 参数检验
文件—打开”命令将数据调入SPSSl7.0的工作文件窗 口。
(2)依次选择“分析—比较均值—单样本T检验”命令 ,打开t检验对话框 ,如图所示
(3)在图所示的单样本T检验对话框中,相关内容介绍如下: 检验变量列表:用于选择所需检验的变量。 检验值:用于输入检验值。
本例在图对话框左端的变量列表将要检验的变量“旅游投资” 添加到右边的检验变量列表中,检验值后面的文本框中输入 1480。
SPSS会根据单因素分析的方法计算出F值和伴随概率p值,以及根据样 本信息自动计算出t统计量的观测值和对应的伴随概率p值。
❖ 两独立样本t检验基本原理和步骤
4
检验判断显著性水平 ɑ
① 方差齐次性检验:给定显著性水平以后,SPSS会先利用F检验判断 两总体的方差是否相等,并由此决定抽样分布方差和自由度的计算方 法和计算结果。
•单一样本t检验基本原理和步骤
提出原假设
单一样本t检验的原假设:总体均值与
1
检验值之间不存在显著差异,即:=,为
总体均值,为检验值。
•单一样本t检验基本原理和步骤
选择检验统计量 2
当总体分布为正态分布
时,样本均值的抽样分布仍是正态分布,
该正态分布的均值为 , 方差为 2,其中 为总体均值, 2为总体方差,n
2
选择检验统计量
由于 度为
(原假设),所以可以略去。这里的t统计量服从自由 的t分布。
当两总体方差未知且不同的情况下,即
,分别用样本方差代
替总体方差,此时两样本均值差的抽样分布的方差为
定义t统计量的计算公式为:
❖ 两独立样本t检验基本原理和步骤
2
选择检验统计量
其中、分别为第一组和第二组样本的样本方差, 、 分别为第一组和 第二组的样本容量。此时两样本均值差的抽样分布的方差为:

参数估计值

参数估计值

参数估计值参数估计值是一种统计学技术,它使用从给定的样本中统计分析抽取的信息来估计某个参数的值。

在工程和科学研究中,参数估计是一种常见的方法,用于从观测数据中推断总体参数的值。

参数估计可以使用精确的数学和统计方法来估计参数的值,也可以采用人工智能和机器学习方法来实现。

参数估计的具体方法参数估计使用三种技术来估计参数的值:最小二乘法,最大概率法和贝叶斯估计。

最小二乘法是一种经典的参数估计方法,它使用一种在概率论领域经常被称为“最小均方误差”的度量方法来估计参数的值,以达到最小的误差率。

最大概率估计是一种基于概率论的参数估计法,它实现通过形式化概率模型来估计参数的值。

贝叶斯估计是一种统计方法,用于评估认知假设的参数值,而不是估计概率模型的参数值。

参数估计的应用参数估计在工程和科学研究中有着重要的应用。

在工程领域,参数估计技术是进行工程诊断和处理的必要工具,它可以为机械及其他复杂系统提供实施优化方法的基础,也可以用于建模机械运动的精确性。

在科学研究中,参数估计可以用来帮助研究者对特定实验的结果进行解释,以便更好地理解研究背景。

此外,参数估计还可以用于设计控制系统,使系统具有更高的精确性和效率。

参数估计的局限性尽管参数估计方法可以提供精确的参数值,但它也有一些局限性,而且参数估计的结果也可能是不精确的。

尽管参数估计可以使用多种技术来估计参数的值,但它仍然受到噪音和计算误差的影响。

由于参数估计基于样本,因此它可能不能完全反映总体参数的实际情况。

此外,参数估计的具体方法及其细节实现也是极其复杂的,可能难以让不懂统计学或计算机科学的普通人理解。

结论总的来说,参数估计是一种重要的统计学方法,它可以为工程和科学领域的研究和设计提供有用的信息。

然而,参数估计也存在一定的局限性,这些局限性可能影响它的应用,同时也会增加计算复杂性,使其难以理解和使用。

统计学参数估计

统计学参数估计

统计学参数估计统计学参数估计是统计学中一种重要的方法,它通过观察样本数据来估计总体参数的值。

参数是描述总体特征的数值,例如总体均值、总体比例等。

参数估计的目的是根据样本信息对总体参数进行推断,从而得到总体特征的近似值。

参数估计的过程通常分为点估计和区间估计两种方法。

点估计是指根据样本数据求出总体参数的一个数值估计量,例如样本均值、样本比例等。

点估计的基本思想是用样本统计量作为总体参数的估计值,它是参数的无偏估计量时,表示点估计是一个良好的估计。

区间估计是指根据样本数据求出一个区间,这个区间包含总体参数的真值的概率较高,通常用置信区间表示。

区间估计的基本思想是总体参数位于一个区间中的可能性,而不是一个确定的值。

置信区间的构造依赖于样本统计量的分布以及总体参数的估计量的抽样分布。

点估计和区间估计的方法有很多,其中最常用的是最大似然估计和矩估计。

最大似然估计是指根据已知样本观测值,选择使样本观测值出现的概率最大的总体参数作为估计值。

最大似然估计的基本思想是找到一个参数值,使得已观测到的样本结果出现的概率尽可能大。

矩估计是指根据样本矩的观测值,选择使样本矩的偏差与总体矩的偏差最小的总体参数作为估计值。

矩估计的基本思想是利用样本矩估计总体矩,从而近似估计总体参数。

参数估计在实际应用中具有广泛的应用价值。

例如,在医学研究中,需要对患者的疾病概率进行估计,以帮助医生做出正确的诊断和治疗决策。

在经济学研究中,需要对经济指标(如GDP、通胀率等)进行估计,以帮助政府制定宏观经济政策。

在市场调研中,需要对消费者行为进行估计,以帮助企业确定产品定价和市场策略。

然而,参数估计也存在一些局限性。

首先,参数估计的结果仅仅是对总体参数的估计,并不是总体参数的确切值。

其次,参数估计的结果受到样本容量的影响,样本容量越大,估计结果越可靠。

另外,参数估计还需要满足一些假设条件,如总体分布的形式、样本的独立性等,如果这些假设条件不满足,估计结果可能会失效。

参数估计的一般步骤

参数估计的一般步骤

参数估计的一般步骤
参数估计是通过从总体中抽取一个样本,利用样本数据对总体未知参数进行估计的过程。

参数估计的一般步骤如下:
1. 确定总体参数:首先需要明确要估计的总体参数,例如总体均值、总体比例、总体方差等。

2. 选择样本:从总体中抽取一个合适的样本。

样本的选择应该具有代表性,能够反映总体的特征。

3. 收集样本数据:对选择的样本进行观测或测量,收集样本数据。

4. 选择估计方法:根据所收集的样本数据和要估计的总体参数,选择合适的估计方法。

常见的估计方法包括点估计和区间估计。

5. 计算估计量:使用所选择的估计方法,根据样本数据计算出估计量。

估计量是用于估计总体参数的统计量。

6. 评估估计量的性质:评估所计算出的估计量的性质,如无偏性、有效性、一致性等。

这些性质可以帮助判断估计量的优劣。

7. 计算置信区间或置信水平:如果进行的是区间估计,根据估计量和置信水平,计算出总体参数的置信区间。

8. 解释估计结果:根据估计量或置信区间,对总体参数进行推断和解释。

同时,需要考虑估计结果的统计显著性和实际意义。

9. 分析误差和不确定性:考虑样本大小、抽样方法等因素对估计结果的影响,分析可能存在的误差和不确定性。

10. 结论和应用:根据参数估计的结果,得出结论并将其应用于实际问题中,例如进行决策、预测或进一步的研究。

需要注意的是,参数估计的具体步骤和方法会根据不同的统计问题和数据类型而有所差异。

在进行参数估计时,应根据实际情况选择合适的方法,并结合统计学原理和专业知识进行分析和解释。

统计学 第四章 参数估计

统计学 第四章  参数估计

由样本数量特征得到关于总体的数量特征 统计推断(statistical 的过程就叫做统计推断 的过程就叫做统计推断 inference)。 统计推断主要包括两方面的内容一个是参 统计推断主要包括两方面的内容一个是参 数估计(parameter estimation),另一个 数估计 另一个 假设检验 。 是假设检验(hypothesis testing)。
ˆ P(θ )
无偏 有偏
A
B
θ
ˆ θ
估计量的无偏性直观意义
θ =µ



• •
• • • •

2、有效性(efficiency)
有效性:对同一总体参数的两个无偏点估计 有效性: 量,有更小标准差的估计量更有效 。
ˆ P(θ )
ˆ θ1 的抽样分布
B A
ˆ θ2 的抽样分布
θ
ˆ θ
பைடு நூலகம்
3、一致性(consistency)
置信区间与置信度
1. 用一个具体的样本 所构造的区间是一 个特定的区间, 个特定的区间,我 们无法知道这个样 本所产生的区间是 否包含总体参数的 真值 2. 我们只能是希望这 个区间是大量包含 总体参数真值的区 间中的一个, 间中的一个,但它 也可能是少数几个 不包含参数真值的 区间中的一个
均值的抽样分布
总体均值的区间估计(例题分析)
25, 95% 解 : 已 知 X ~N(µ , 102) , n=25, 1-α = 95% , zα/2=1.96。根据样本数据计算得: x =105.36 96。 总体均值µ在1-α置信水平下的置信区间为 σ 10 x ± zα 2 = 105.36 ±1.96× n 25 = 105.36 ± 3.92

统计学简答题参考答案

统计学简答题参考答案

统计学简答题参考答案第一章绪论1.什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。

统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。

2.简要说明统计数据的来源。

答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。

间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得。

3.简要说明抽样误差和非抽样误差。

答:统计调查误差可分为非抽样误差和抽样误差。

非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。

抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。

4.解释描述统计和推断统计的概念?(P5)答:描述统计是用图形、表格和概括性的数字对数据进行描述的统计方法。

推断统计是根据样本信息对总体进行估计、假设检验、预测或其他推断的统计方法。

第二章统计数据的描述1描述次数分配表的编制过程。

答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。

按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。

按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组。

统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表。

2. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。

常用的指标有均值、中位数、众数、极差、方差、标准差、离散系数、偏态系数和峰度系数。

3.怎样理解均值在统计中的地位?答:均值是对所有数据平均后计算的一般水平的代表值,数据信息提取得最充分,具有良好的数学性质,是数据误差相互抵消后的客观事物必然性数量特征的一种反映,在统计推断中显示出优良特性,由此均值在统计中起到非常重要的基础地位。

统计学第四章的教材

统计学第四章的教材

几个直观的结论
1. 样本均值的均值(数学期望)等于总体均值(式中:M为样本 n 数目); xi 22 23 28 i 1 25 X M 16 2. 抽样误差是随样本不同而不同的随机变量。抽样误差均值 等于0; xX 0


3. 样本均值的方差等于总体方差的1/n。
3
(二)抽样估计的一般步骤 1、设计抽样方案 2、 随机抽取样本(从总体随机抽取部分单位构成样本) 3、搜集样本资料(对样本单位进行调查登记) 4、整理样本资料(审查、分组汇总、计算样本指标的
数值,即计算估计量的具体数值)
5、估计总体指标(即估计总体参数)
总体参数与样本估计量的关系——对于特定的目 的,总体是惟一的,所以参数也是惟一的;而由 于样本是随机的,所以样本估计量是随机变量。
(3)抽样方法。相同条件下,重复抽样的抽样平均误 差大比不重复抽样的抽样平均误差大。
(4)抽样组织方式。由于不同抽样组织方式有不同的 抽样误差,所以,在误差要求相同的情况下,不同抽 样组织方式所必需的抽样数目也不同。
21
不知道总体方差时如何计算
用样本方差代替计算 用过去(总体或样本)方差代替计算 用同类现象(当前 或过去、总体或样本) 方 代替计算 有若干个方差可选择时,选方差最大者 (注意:对比率,即选择最接近0.5的值所 得的方差最大)
进无偏估计量。
29
二、区间估计
(一)区间估计的原理 区间估计就是根据样本估计量以一定 可靠程度推断总体参数所在的区间范围。 特点:考虑了估计量的分布,所以它能 给出估计精度,也能说明估计结果的把握 程度(置信度)。
30
(一)总体均值的置信区间
(1)假定条件

总体服从正态分布,且总体方差(2)已知

分析统计中的抽样与总体

分析统计中的抽样与总体

分析统计中的抽样与总体在统计学中,抽样和总体是两个重要的概念。

抽样是指从总体中选择一部分个体进行研究或调查的过程,而总体则表示研究对象的全部个体或事项。

本文将从各个角度分析统计中的抽样与总体的相关内容。

一、抽样的概念和目的抽样是统计学中常用的数据收集方法,其目的在于通过对样本的研究来推断总体的特征和规律。

通过恰当地选择样本,可以准确、高效地推断总体的信息,从而节省研究成本和时间,提高研究的可行性和效果。

抽样方法有多种,如简单随机抽样、系统抽样、分层抽样等,根据具体的研究目的和条件,选择适用的抽样方法十分重要。

二、抽样误差在进行抽样调查时,由于样本的随机性等因素,样本结果可能与总体结果有所偏差,这就是抽样误差。

抽样误差是不可避免的,但可以通过增加样本容量和合理控制其他偏倚因素来减小误差。

其中,样本容量的大小对抽样误差的控制至关重要,较大的样本容量可以提高结果的可靠性和稳定性。

三、抽样方法的选择选择适当的抽样方法是保证研究结果准确性的关键。

常见的抽样方法包括简单随机抽样、系统抽样和分层抽样等。

简单随机抽样是最基本、最常见的抽样方法,其特点是每个个体都有相同的被选中概率。

系统抽样是按照固定的规则从总体中选取样本,相对简单但可能引入一些偏倚。

分层抽样将总体划分为若干层次,从每层中抽取一定数量的样本,能够更好地反映总体的特征。

四、总体参数的估计通过对样本的观察与分析,可以对总体参数进行估计。

常见的总体参数包括均值、比例和方差等。

而样本均值、样本比例和样本方差等统计量可以作为总体参数的估计量,通过合理计算和推断,可以得到对总体参数的有一定程度的准确估计。

在进行参数估计时,需要考虑样本容量的大小和抽样方法的选择。

五、抽样调查的优缺点抽样调查是一种常用的统计研究方法,具有一定的优点和局限性。

其优点包括节约时间和成本、提高调查效率、减少数据量等。

而缺点主要表现在可能引入抽样误差、样本代表性不足、样本容量不大等方面。

总体参数的假设检验

总体参数的假设检验

多元统计分析——假设检验⏹如果一个人说他从来没有骂过人。

他能够证明吗?⏹要证明他没有骂过人,他必须出示他从小到大每一时刻的录音录像,所有书写的东西等等,还要证明这些物证是完全的、真实的、没有间断的。

这简直是不可能的。

⏹即使他找到一些证人,比如他的同学、家人和同事,那也只能够证明在那些证人在场的某些片刻,他没有被听到骂人。

⏹反过来,如果要证明这个人骂过人很容易,只要有一次被抓住就足够了。

⏹看来,企图肯定什么事物很难,而否定却要相对容易得多。

这就是假设检验背后的哲学。

⏹科学总往往是在否定中发展⏹在假设检验中,一般要设立一个原假设(上面的“从来没骂过人”就是一个例子);⏹而设立该假设的动机主要是企图利用人们掌握的反映现实世界的数据来找出假设与现实之间的矛盾,从而否定这个假设。

⏹在多数统计教科书中(除理论探讨外)假设检验都是以否定原假设为目标。

⏹如否定不了,说明证据不足,无法否定原假设。

但不能说明原假设正确。

⏹就像一两次没有听过他骂人还远不能证明他从来没有骂过人。

假设检验的过程和逻辑⏹先要提出个原假设,比如某正态总体的均值等于5(m=5)。

这种原假设也称为零假设(null hypothesis),记为H 0。

⏹与此同时必须提出备选假设(或称为备择假设,alternative hypothesis),比如总体均值大于5(m>5)。

备选假设记为H 1或H a 。

形式上,这个关于总体均值的H 0相对于H 1的检验记为01:5:5H H μμ=⇔>⏹备选假设应该按照实际世界所代表的方向来确定,即它通常是被认为可能比零假设更符合数据所代表的现实。

⏹比如上面的H1为m>5;这意味着,至少样本均值应该大于5;⏹至于是否显著,依检验结果而定。

⏹检验结果显著(significant)意味着有理由拒绝零假设。

因此,假设检验也被称为显著性检验(significant test)。

⏹有了两个假设,就要根据数据来对它们进行判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 8 9 10 11 12 13 14 15 16 17
8 9 10 11 12 13 14 15 16 17 18
9 10 11 12 13 14 15 16 17 18 19
10 11 12 13 14 15 16 17 18 19 20
平均值 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 Total
区间估计(interval estimation) 区间估计
这时我们知道为什么以抽样平均误差来 直接估计总体参数不合适 即:
总体均值 = 样本均值 ± 抽样平均误差 X = x ± µx
因为如果这样估计,只有 因为如果这样估计,只有68.27%的概率可以认为总 的概率可以认为总 体参数在这个范围内! 体参数在这个范围内!
关于置信区间的注意点
一个描述性例子: 一个描述性例子 : 一个有10000个人回答的调 查显示,同意某种观点的人的比例为70%(有 7000人同意),可以算出总体中同意该观点的 比例的95%置信区间为(0.691,0.709); 另一个调查声称有70%的比例反对该种观点, 还说总体中反对该观点的置信区间也是(0.691, 0.709)。 到底相信谁呢?
σ
n
,X +
σ
n
)范围内
1
68.27%
样本均值( x )在( X − 2 的概率为95.45%
σ
n
,X +2
σ
n
)范围内
2
95.45%
样本均值( x )在( X − 3 的概率为99.73%
σ
n
, X +3
σ
n
)范围内
3
ห้องสมุดไป่ตู้
99.73%
样本均值的分布
同样我们可对样本均值的正态分布进行 标准化:
样本均值 - 总体均值 x − X 标准化公式 :t = = σ 样本均值标准差 n 当 x − X )= ± σ ( 当 x − X )= ±2σ ( 当 x − X )= ±3σ ( n 时, = 1 ⇒ 68.27% t 时, = 2 ⇒ 95.45% t 时, = 3 ⇒ 99.73% t
为什么要研究抽样平均误差? 为什么要研究抽样平均误差? 实际误差未知: 实际误差未知: 未知
(x − X )
而且,由于样本均值是随机的, 而且,由于样本均值是随机的,每次的 误差也不一样。 误差也不一样。
基本概念: 基本概念:抽样平均误差
抽样平均误差:是指所有可能组成的样 本的抽样指标与总体指标的平均误差程 度。 以均值为例:
Spss输出结果汇总 输出结果汇总
449.0104-1.96*0.794 449.0104+1.96*0.794
关于置信区间的注意点
置信区间的论述是由区间和置信度两部分组成。 有些新闻媒体报道一些调查结果只给出百分比 和误差(即置信区间),并不说明置信度,也 不给出被调查的人数,这是不负责的表现。 因为降低置信度可以使置信区间变窄(显得 “精确”),有误导读者之嫌。 在公布调查结果时给出被调查人数是负责任的 表现。这样则内行可以由此推算出置信度(由 后面给出的公式),反之亦然。
误差的平方 20.25 16.00 12.25 9.00 6.25 4.00 2.25 1.00 0.25 0 0.25 1.00 2.25 4.00 6.25 9.00 12.25 16.00
所有可能样本平均 值的平均值=5.50 值的平均值 =总体的平均值 总体的平均值
基本概念: 基本概念:抽样平均误差
与总体均值5.5之间的误差 与总体均值5.5之间的误差 5.5 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
频数 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 100
Spss选项 Spss选项
Analyze-Descriptive Statistics-Explore, 再选中x1和x2到Dependent List; 然后在Statistics中选中 中选中Descriptives,选 然后在 中选中 , 置信度(默认值就是95%); 然后Continue-OK。
n n
以95.45%的置信度推断总体比例P的置信 区间为:
( p − 2 p (1 − p ) , p + 2 p (1 − p ) ) n n
以99.73%的置信度推断总体比例P的置信 区间为: p (1 − p ) p (1 − p )
(p −3 n , p+3 n )
总体参数的估计
例5.1 某厂家生产的挂面包装上写明“净含 量450克”。在用天平称量了商场中的48包 挂面之后,得到样本量为48的关于挂面重量 (单位:克)的一个样本: 利用计算机,可以很容易地得到挂面重量的 样本均值、总体均值的置信区间等等。下面 是SPSS的输出。 SPSS数据noodle.sav
( ( 均值 x )= X , 标准差 x )=
σ
n
样本均值( x )服从正态分布N ( X,
σ
n
)
正态分布的 3σ 准则
P=68.27%
P=95.45%
P=99.73%
样本均值的分布
并且不管我们研究的总体是否服从正态分布, 并且不管我们研究的总体是否服从正态分布, 样本均值一定服从正态分布。 样本均值一定服从正态分布。 同前面我们介绍的正态分布的性质一样: 同前面我们介绍的正态分布的性质一样: 样本均值 x在总体均值 X 一个正负标准差的
抽样平均误差 = ( x − X )2 ∑ 所有可能的抽样数目
因此,抽样平均误差就是样本均值的标准 差,即我们在前面介绍过的标准误差。
基本概念:抽样平均误差 基本概念:
平均数的抽样误差: 重置抽样 σ µx =
2
n
=
σ
n
总体参数的估计
由样本统计量来估计总体参数有两种方 法:点估计和区间估计 点估计(point estimation):也就是用样本 点估计 统计量的实现值来近似相应的总体参数。 即: x → X , p → P
总体参数的估计
以同样的原理和方法可以估计总体比例P。 虽然总体比例P不服从正态分布,但是我 们前面已知,其样本均值(样本比例的 均值就等于样本比例,即:E(p)=p) 都服从正态分布。 因此我们可以得到对总体比例P的估计:
总体参数的估计
以68.27%的置信度推断总体比例P的置信 区间为: ( p − p(1 − p) , p + p(1 − p) )
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8 9 10 11 12 13
4 5 6 7 8 9 10 11 12 13 14
5 6 7 8 9 10 11 12 13 14 15
6 7 8 9 10 11 12 13 14 15 16
答案是:否。?
样本均值的分布
为了回答这个问题,我们必须来看样本 均值的分布。
样本均值的分布
根据中心极限定理,当样本足够大时, 根据中心极限定理,当样本足够大时, 所有可能组成的样本( 所有可能组成的样本(样本数目将会很 的均值服从正态分布。 大)的均值服从正态分布。 由于样本均值的均值等于总体的均值, 样本均值的均值等于总体的均值 由于样本均值的均值等于总体的均值,样 本均值的标准差等于抽样平均误差, 本均值的标准差等于抽样平均误差,即:
总体参数的估计
例如: 例如:人们想知道到底有多大比例的北京人同 意北京大力发展轨道交通; 意北京大力发展轨道交通; 由于不大可能询问所有的一千多万北京市民, 由于不大可能询问所有的一千多万北京市民, 人们只好进行抽样调查以得到样本 抽样调查以得到样本, 人们只好进行抽样调查以得到样本,并用样本 中同意发展轨道交通的比例来估计真实的比例。 中同意发展轨道交通的比例来估计真实的比例。 从不同的样本得到的结论也不会完全一样。 从不同的样本得到的结论也不会完全一样。 虽然真实的比例在这种抽样过程中永远也不知 道;但可以知道估计出来的比例和真实的比例 大致差多少。 大致差多少。
基本概念: 基本概念:抽样误差
抽样误差:就是指按照随机原则抽样时, 抽样误差:就是指按照随机原则抽样时, 在没有登记误差的条件下样本指标与总 体指标之间存在的误差。 体指标之间存在的误差。
基本概念: 基本概念:抽样误差
例如: 例如: 有一个总体: 有一个总体:1,2,3,4,5,6,7,8, 10共十个数 平均值=5.5 共十个数, 9,10共十个数,平均值=5.5 从其中抽取2个数,组成一个样本, 从其中抽取2个数,组成一个样本, 样本容量=2 样本容量=2 可能组成的样本个数=10*10=100 可能组成的样本个数=10*10=100
区间内的概率为68.27%。 区间内的概率为68.27%。 68.27%
样本均值在总体均值两个正负标准差的区间内 的概率为95.45% 95.45%。 的概率为95.45%。 样本均值在总体均值三个正负标准差的区间内 的概率为99.37% 99.37%。 的概率为99.37%。
样本均值( x )在( X − 的概率为68.27%
总体参数的估计
从数据得到对现实世界的结论的过程就 叫做统计推断(statistical inference) 统计推断( inference)。 统计推断 这个调查例子是估计总体参数(某种意 见的比例)的一个过程。 估计( estimation)是统计推断的重要内 估计 ( estimation) 容之一。统计推断的另一个主要内容是 下 一 章 要 引 进 的 假 设 检 验 ( hypothesis testing)。 testing)
相关文档
最新文档