斜拉桥索力测试方法及原理综述

合集下载

斜拉桥原理

斜拉桥原理

斜拉桥原理斜拉桥是一种利用斜拉索来支撑桥梁结构的特殊桥梁形式。

它的设计原理是通过斜拉索将桥面的荷载传递到桥墩上,从而实现桥梁的稳定和安全。

斜拉桥的设计和建造需要考虑许多因素,包括桥梁跨度、荷载、斜拉索的布置和张力等。

在本文中,我们将深入探讨斜拉桥的原理,以及它在桥梁工程中的应用。

首先,让我们来了解一下斜拉桥的结构特点。

斜拉桥通常由桥面、桥塔和斜拉索组成。

桥面承载车辆和行人的荷载,桥塔则起到支撑和稳定的作用,而斜拉索则连接桥面和桥塔,承担着荷载传递的重要任务。

斜拉索的布置和张力的调节对于桥梁的稳定性和安全性至关重要。

通过合理设计和施工,斜拉桥可以实现大跨度、大荷载的要求,成为现代桥梁工程中的重要形式之一。

斜拉桥的原理主要是利用斜拉索来传递桥面荷载到桥塔上。

斜拉索呈一定角度与桥面相交,通过张力将桥面的荷载传递到桥塔上,从而使桥梁保持稳定。

在设计斜拉桥时,工程师需要考虑斜拉索的数量、位置、张力等因素,以确保桥梁的安全性和稳定性。

此外,斜拉桥的桥塔也需要经过精密计算和设计,以承受来自斜拉索的复杂力学作用。

斜拉桥在桥梁工程中有着广泛的应用。

它可以实现大跨度、大荷载的要求,适用于河流、湖泊、海峡等跨越水体的场合。

与悬索桥相比,斜拉桥的主梁结构更为灵活,可以适应更多变化的场地条件。

因此,在现代桥梁工程中,斜拉桥成为了跨越水域的重要选择,例如著名的金门大桥、东京湾大桥等都采用了斜拉桥的结构形式。

总的来说,斜拉桥是一种利用斜拉索来支撑桥梁结构的特殊形式,它的设计原理是通过斜拉索将桥面的荷载传递到桥塔上,从而实现桥梁的稳定和安全。

斜拉桥在桥梁工程中有着广泛的应用,可以实现大跨度、大荷载的要求,适用于跨越水域的场合。

通过合理的设计和施工,斜拉桥成为了现代桥梁工程中的重要形式之一,为人们的出行和交通运输提供了便利。

斜拉桥索力测试方法

斜拉桥索力测试方法

斜拉桥索力测试方法作者:项沛来源:《科技探索》2013年第04期1.引言索力测试无论是在斜拉桥的建设过程中还是在其日常维护检测中都具有举足轻重的地位。

索力是否处在合理的范围内将直接影响结构的整体受力状态和线形的平顺程度,所以对拉索的索力进行定时的测试是斜拉桥、下承式拱桥和悬索桥等带索桥梁日常维护的重要内容。

经实践验证,进行索力测试时,不同的测试方法和不同的工程也存在较大的差异,这是由于不同的索力测试方法所需的计算参数不能准确测定,不同工程也因其具有自身特点和各异的环境因素所致。

索力测试前必须选定合适的测试方法,考虑到影响测试精度的各种因素,例如影响振动法测试精度的因素有:仪器、计算模式、边界条件、索长、外界环境、斜度以及垂度等。

当这些因素在索力测试时如果处理不当则会对测试结果造成不小的误差。

所以,对不同的索力测试方法及其影响因素进行分析显得格外重要。

2.索力测试方法2.1千斤顶压力表测定法现阶段斜拉桥的施工现场,斜拉索均使用千斤顶张拉,其原理为:千斤顶张拉油缸中的液压和斜拉索的拉力有直接的关系,所以我们可以根据精密压力表或液压传感器测定油缸的液压,然后就可根据液压反推出索力。

但此法现阶段还存在以下缺陷:(1)当拉索安装完成后,若还想用此法来测试索力将会变的十分困难和不便,工程量也很大。

(2)千斤顶在张拉过程中对拉索的锚杆螺纹会产生很大的损害。

(3)此法所得到的索力值只能代表张拉端的局部索力,不能代表整跟拉索的索力大小。

(4)在测试之前需要事先标定,如果标定粗糙,误差将会很难控制。

2.2 压力传感器测定法该方法一般与振动法联合使用,可作为对振动法测定索力结果的一种校核,已安装的传感器还可以在成桥后的运营阶段连续测定索力值,还适用于成桥后运营状态下的索力长期监控。

压力传感器测定法的原理是永久安装压力传感器在斜拉索的锚固端或张拉端,传感器的感应锚头的压力与斜拉索的索力成一定的比例关系,所以可通过传感器感应锚头的压力来反算斜拉索的索力,此法测量结果精度高,而且索力在索中的位置明确。

斜拉索索力检测方法 原理 数据处理

斜拉索索力检测方法 原理 数据处理

斜拉索索力检测方法原理数据处理斜拉索是现代桥梁结构中常见的承重构件,其安全稳定的运行对桥梁的使用寿命和安全性至关重要。

因此,斜拉索的力学性能检测是桥梁维护保养的重要工作之一。

目前,常用的斜拉索的检测方法有振动法、光纤光栅传感器法、静荷载法等。

本文将介绍常用的静荷载法检测斜拉索的原理、数据处理方法和应用。

一、静荷载法原理静荷载法是通过施加外力测量斜拉索的变形,进而计算出斜拉索下挂载的主梁的受力状态。

斜拉索检测通常使用的是龙门式起重机,通过千斤顶或液压缸施加大约10%-15%的荷载变形程度测定斜拉索各处的竖向和水平变形,得到斜拉索变形量后采用反演法或其他数值分析方法,计算出斜拉索的受力状态。

二、数据处理方法(一)反演法反演法首先要建立适当的模型,在进行斜拉索检测时,常用的模型有螺旋夹杂法、结构参数法、常数对数变化法等。

其中,螺旋夹杂法是最常用的方法,其原理是将斜拉索当做弹性体,通过静负荷实验测定斜拉索下端各处的竖向和水平位移值,得到斜拉索下端的位移函数,根据弹性理论和能量原理,推导出斜拉索的受力状态。

具体流程如下:1. 采集斜拉索下端各处的位移值,并绘制荷载- 位移曲线;2. 将实验数据输入计算机,得到斜拉索的弹性模量、截面积等参数;3. 建立斜拉索的数值模型,包括斜拉索的材料、断面形状、支座约束情况等;4. 将实验数据和数值模型进行对应计算,对模型进行优化,调整所用的弹性系数、部件尺寸等;5. 依据斜拉索的边界条件和受力平衡原理,得到斜拉索所受的拉力和受力分布规律。

反演法能够根据斜拉索的实际变形数据来计算其受力状态,但需要建立复杂的数值模型,数据处理较为繁琐。

(二)数值分析法数值分析法常用的工具是有限元分析软件,它可以基于静荷载实验数据,构建出有限元模型,通过有限元计算,得到斜拉索的受力状态。

与反演法相比,数值分析法上手快,操作简便,计算结果也具有较高的精度。

具体流程如下:1. 根据斜拉索的实际结构特点,建立有限元模型,划分为若干个小单元;2. 输入静荷载实验数据,并确定模型的约束和荷载;3. 运用有限元软件,采用线性静力学分析,进行模拟运算;4. 根据计算结果,得到斜拉索所受的拉力和受力分布规律。

斜拉桥的原理

斜拉桥的原理

斜拉桥的原理斜拉桥是一种常见的桥梁结构,其独特的设计原理使得它在现代桥梁工程中得到了广泛的应用。

斜拉桥的原理主要包括桥梁结构、受力特点和设计理念三个方面。

首先,斜拉桥的结构主要由桥塔、主梁和斜索组成。

桥塔是承受桥梁荷载的支撑结构,通常呈塔形或者斜塔形状,能够有效地承受水平和垂直方向的荷载。

主梁是桥面的支撑结构,负责承载行车荷载和自重荷载,通常采用钢箱梁或者钢桁梁结构。

斜索是连接桥塔和主梁的重要构件,它通过拉力将桥塔和主梁紧密地连接在一起,使得整个桥梁结构能够达到平衡和稳定。

其次,斜拉桥的受力特点主要体现在斜索的作用上。

斜索通过拉力将桥塔和主梁连接在一起,使得桥梁结构能够有效地承受荷载并传递到地基上。

斜索的拉力是根据桥梁设计荷载和结构形式来确定的,它能够有效地分担桥梁荷载,减小主梁的受力,从而降低了桥梁结构的自重和成本。

同时,斜索的设计也要考虑到风荷载和地震荷载等外部因素,以保证桥梁在各种复杂环境下都能保持稳定和安全。

最后,斜拉桥的设计理念主要包括经济性、美观性和可持续性三个方面。

斜拉桥的设计要尽可能减小结构自重,提高结构的承载能力,以达到经济、高效的设计目的。

同时,斜拉桥的外观设计也要考虑到美观性,使得桥梁在城市中能够成为一道风景线,展现出现代化的城市形象。

此外,斜拉桥的可持续性设计也是十分重要的,要考虑到桥梁的维护和保养,延长桥梁的使用寿命,减小对环境的影响,实现资源的可持续利用。

综上所述,斜拉桥的原理主要包括桥梁结构、受力特点和设计理念三个方面。

通过对斜拉桥的原理进行深入的理解和研究,能够更好地指导斜拉桥的设计和施工,提高桥梁的安全性和经济性,推动桥梁工程的发展和进步。

斜拉桥斜拉索索力测试方法综述

斜拉桥斜拉索索力测试方法综述
铁 道 建 Ri 盯 E g a w l n i
A r,(7 pl X i2 )
文章编号 : 319((70一 1一 1 一 52 ) 0 8 3 ) X ( 9 X 4 0 0 )
斜拉桥斜拉索索力测试方法综述
刘志勇
( 石家庄铁道学院 土木工程分院, 石家庄 0加4 ) 5 3
摘要 : 文章介绍了 抖拉桥科拉索张拉和索力测试过程中, 常用的几种测试方法( 压力表法、 压力传感器测
计算方法 } 能量法 } 力法 } 有限元法 } 积分法 简支梁
连续梁
3 4 }3 7 1 2 8 0. 8 0.5 9.7 8. 1 ! 7. 5 34 9 31 8.2 16
多, 或者越接近于其真实挠曲线方程的位形模式时, 能 量法的计算精度就越高。按能量法求解无粘结预应力 筋的应力增量不但适用于直线配筋荷载对称的结构 , 还适用于曲线配筋、 分段配筋 、 变刚度和任意荷载情况 下的结构, 对于解决超静定结构问题则会带来很大的 方便。很显然, 当求解超静定结构无粘结预应力筋的 应力增量时, 积分法和粘结降低系数法就显得无能为 力; 力法虽可以解决超静定结构问题, 但当超静定次数 较多或配筋和荷载情况较为复杂时, 用力法计算就非 常繁琐。与此相比, 能量法不但计算简单 , 而且推导过 程清晰 , 逻辑严密, 其计算结果也是很可靠的。
足设计要求, 需对斜拉桥的索力进行调整。而索力量 测效果将直接对结构 的施工质量和施工状态产生影 响, 要在施工过程中比较准确地了解索力的实际状态 , 选择适 当的量测方法和仪器, 并设法消除现场量测 中 各种因素的影响非常关键。 迄今为止, 可供现场测定索力的方法主要有 4 种: ) 1压力表测定法; 压力传感器测定法; 频率法; ) 2 ) 3 ) 4

斜拉桥索力检测磁通量法

斜拉桥索力检测磁通量法

斜拉桥索力检测磁通量法斜拉桥是一种通过索力将桥面悬吊在桥塔上的特殊桥梁结构,能够有效地减小桥梁自重,并且能够承受较大跨度的桥梁。

而为了确保斜拉桥的结构安全和稳定,需要对斜拉索力进行定期检测。

目前,斜拉桥索力检测常用的方法之一就是磁通量法。

磁通量法是一种应用电磁原理进行斜拉索力测量的技术。

它是基于法拉第电磁感应定律,通过测量磁感应强度的变化来求解斜拉索力。

具体的测量原理和步骤如下:1.原理:斜拉索力会导致桥墩中的变形,进而改变桥墩中磁线的通量密度。

根据法拉第电磁感应定律,当磁通量发生变化时,感应线圈中会产生电动势。

因此,通过测量感应线圈中的电动势变化,可以间接反映斜拉索力的变化。

2.测量步骤:-将感应线圈安装在桥墩上,并与测量仪器相连;-当索力产生变化时,桥墩中的变形会导致磁场的变化,产生感应电动势;-使用测量仪器测量感应电动势的变化,并记录数据;-根据测量数据计算出斜拉索力的变化。

磁通量法在斜拉桥索力检测中具有以下的优势和特点:1.无损检测:磁通量法不需要对桥梁结构进行改变或者破坏性的施工,可以实现无损检测。

这对于保护斜拉桥的结构完整性和安全性非常重要。

2.准确度高:通过精确测量感应线圈中的电动势变化,可以获得较为准确的斜拉索力变化。

这对于斜拉桥的运行和维护具有重要意义。

3.实时性好:磁通量法能够实时监测斜拉索力的变化,及时发现异常情况,提高了桥梁的安全性能。

4.适用性强:磁通量法适用于不同类型和不同材质的斜拉桥,具有较好的适用性。

然而,磁通量法也存在一些局限性和挑战:1.测量精度受限:由于磁通量法是间接测量方法,测量精度受到很多因素的影响,如磁场的均匀性、感应线圈的位置等。

因此,在实际应用中需要根据实际情况进行调整和修正。

2.设备要求高:磁通量法需要使用专业的测量设备,并且对设备的性能要求较高,包括感应线圈的选取、设备的灵敏度等。

3.用户技术要求高:磁通量法需要有一定的电磁原理和测量知识的用户来操作和解读测量结果。

简述斜拉桥的受力原理

简述斜拉桥的受力原理

简述斜拉桥的受力原理
斜拉桥是一种利用斜拉索(钢索或预应力混凝土束)将桥梁的自重和荷载传递到桥塔上的桥梁结构。

其受力原理如下:
1. 自重作用:斜拉桥梁本身的重量通过斜拉索传递到桥塔上。

斜拉索在桥塔之间形成一个斜角,使桥梁悬挑在桥塔之间。

桥梁的自重通过斜拉索分散到多个桥塔上,减小了各桥塔的承载力。

2. 荷载作用:斜拉桥梁上的车辆、行人以及其他运载物品的重力通过桥面传递到桥梁结构上。

斜拉索在桥塔上形成张力,并将荷载分担到多个桥塔上。

3. 桥塔作用:桥塔是斜拉桥的支承点,通过其稳定的基础将斜拉索受力传递到地面。

桥塔根据斜拉索的角度和长度,以及所受荷载的大小,承受拉力和压力。

4. 斜拉索作用:斜拉索是连接桥塔和桥面之间的重要组成部分。

斜拉索承受来自桥面的荷载,将荷载的力通过预应力传递到桥塔上,并向两侧分散。

总之,斜拉桥通过斜拉索将桥梁的自重和荷载传递给桥塔,将荷载分散到多个桥塔上,实现了桥梁结构的平衡和稳定。

同时,斜拉桥的受力特点降低了桥塔的承载压力,减小了桥梁结构的材料消耗。

拉索索力测试综述

拉索索力测试综述

拉索索力测试综述刘晨凯重庆交通大学土木工程学院(400041)摘要:文章介绍现有桥梁拉索索力测定的方法,阐述了各种测试方法的原理,分析了各种方法的适用范围;着重介绍了频率法索力测试的国内外研究进展。

关键词:拉索;索力测试;综述拉索是现代桥梁的一个重要组成部分,包括斜拉桥的拉索、拱桥吊杆及部分梁桥的体外预应力等,都属于同一类结构。

而对桥梁结构状态的判定需要对拉索索力进行测试。

以下是几种常用的测试方法。

1压力表测定法目前工程上采用液压千斤顶来张拉拉索。

压力表测定法的原理就是在假设千斤顶的张拉力等于拉索索力的前提下,根据千斤顶张拉油缸中的液压来推算千斤顶的张拉力,从而获得拉索索力。

此法测得索力的误差范围为1%~2%。

该方法拥有简单、直观的优点,但只适用于施工阶段,而对于运营阶段的拉索索力无法使用该方法测得[1]。

2压力传感器测定法压力传感器测定法的原理是:将应变片粘贴到张拉连杆上或者安装穿心式压力传感器,也可在张拉拉索时将测力传感器安装在锚头和锚座之间,进而可得到千斤顶的张拉力。

压力传感器测定法测得索力的误差范围为0.5%~1.0%。

由于这种方法使用时必须与千斤顶配合使用,所以只能用于施工阶段[1]。

3磁通量法磁通量法是一种对拉索无损的索力测定方法,但是现阶段该方法在国外应用的较多,且数据表明测试效果良好,对于国内来说,应用磁通量法的实例还很少,并且技术上还不够成熟。

经研究表明,索力、温度与磁通量变化存在一定的相关性,磁通量法就是利用它们之间的关系来推算索力。

测通量法测试索力需要两个步骤,即标定和测量。

首先要进行标定,在台座上进行张拉与待测构件同种材料的构件,通过确定不同情况下标准拉力与温度和输出电压的率定关系,可以得到一些中间参数,然后建立构件内力和温度与磁导率的对应关系,得到对应关系后即可用来测量同种材料制造的待测构件。

磁通量法除了技术不够成熟外,针对不同的索均要求进行标定,相对繁琐[2]。

4基于FBG的索力测试方法光纤测试技术目前主要与传统索力测试方法结合起来,主要有:轴压式测力环。

斜拉桥索塔测量方法

斜拉桥索塔测量方法

斜拉桥索塔测量方法 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】目录一、概述永宁黄河公路大桥全长3743.37m,共十八联、由东、西引桥、副桥和主桥组成。

主桥跨为110+260+110m钻石型双塔双索面斜拉桥。

主塔为钻石型钢筋混凝土结构,塔柱为单箱单室预应力钢筋混凝土箱形结构。

斜拉索采用扇形密索布置,梁上索距6m、塔顶8根斜拉索紧向索距2.5m,其下索距均2.2m。

承台顶高程为1105.211m,塔顶高程为1207.361m,由1.5m高塔座、18.5m高下塔柱、下横梁、82.15m高上塔柱和上横梁组成,总塔高102.15m。

其中41#、42#墩为主塔墩,40#、43#墩为过渡墩,主梁采用预应力钢筋混凝土双边箱四室结构。

1.1索塔施工测量主要技术指标塔柱底允许偏差:10mm。

塔柱倾斜度允许偏差:≤1/3000且不大于30mm。

塔柱外轮廓尺寸允许偏差:±20mm。

塔顶高程允许偏差:±20mm。

斜拉索锚具轴线允许偏差:±5mm;拉索锚固点高程允许偏差:±10mm。

1.2施工测量主要应用标准《公路桥涵施工技术规范》(JTG/TF50-2011)。

《工程测量规范》(GB50026-2007)。

《公路工程质量检验评定标准》(JTGF80/1-2004)。

《国家三、四等水准测量规范》(GB/T12898-2009)。

《)。

《全球定位系统(GPS)测量规范》(GB/T18314-2009)。

二、施工控制网的建立2.1施工控制网的等级设计院对本工程移交了10个平面控制点和10个高程控制点,等级均为国家二等。

平面控制点为西安80坐标系、中央子午线106度00分、投影面高程950米,高程为85国家高程系统。

2.2施工控制网的复测及加密平面控制网复测及主桥平面控制网加密采用GPS静态测量方式按二等精度要求进行测设,采用4台天宝SPS780型GPS接收机(标称精度为±5mm+1ppm)进行作业,采用边连接方式,按静态相对定位模式观测。

索力检测方案

索力检测方案

索力检测方案随着科技的不断进步,现代社会对于工程安全性和可靠性的要求越来越高。

在工程建设中,索力检测是一个至关重要的环节。

索力(也称为张力)是指在索具、钢缆等物体上产生的内部力,其大小对于工程结构的安全运行至关重要。

本文就索力检测方案进行探讨,并分析其在不同领域的应用。

一、索力检测的原理和方法索力检测的核心在于测量索具或钢缆上的内部力的大小。

目前常用的方法有几种,如应变检测法、超声波检测法以及光纤传感器检测法。

应变检测法是一种比较传统且常用的方法,其原理是利用应变计测量索具或钢缆上的应变量,从而推导出索力的大小。

这种方法需要在索具表面粘贴应变计,记录应变数据后再经过计算得出索力。

虽然该方法准确性较高,但是在安装过程中会对结构产生影响,并且需要周期性校准。

超声波检测法是利用超声波在索具内部传播的速度和受到的索力大小之间的关系,通过超声波传感器探测索具内部的状态并计算出索力。

这种方法不仅准确可靠,而且对结构影响较小,适用于长距离监测,但是对于复杂形状的索具有一定的局限性。

光纤传感器检测法是一种新型的检测方法,其原理是利用光纤中的光信号受到索力变化而引起的光纤长度和折射率的变化来测量索具上的索力。

这种方法具有高灵敏度和无电磁干扰的优势,并且适用于长距离监测以及复杂环境中的应用。

二、索力检测的应用领域1. 桥梁工程桥梁作为重要的交通基础设施,其结构的安全性直接关系到人们的出行安全。

索力检测在桥梁工程中的应用尤为重要。

通过对桥梁中各处索具的索力进行检测和监测,可以及时发现是否存在索力不均衡或过大的情况,从而提前采取相应的维修和加固措施,确保桥梁的安全可靠性。

2. 高楼建筑在高楼建筑中,索力检测有助于确保建筑物的结构稳定性。

通过对建筑物各处索具的张力进行检测和监测,可以根据数据分析建筑物的受力情况,避免出现结构承载力不足或过载的情况,以保证建筑物的安全运行。

3. 航空航天在航空航天领域,索力检测方案广泛应用于飞行器的连接件和控制系统。

两种特殊构造斜拉索的索力测试方法分析

两种特殊构造斜拉索的索力测试方法分析

重庆交通大学硕士毕业论文第四章主梁一拉索一阻尼器耦合振动对索力影响4.1本章思路本章主要是分析主梁.拉索.阻尼器耦合振动对拉索面内振动频率的影响,文中首先介绍了主梁.拉索.阻尼器耦合振动的研究发展状况,对本文研究的具体拉索,通过有限元分析软件建立单根拉索的主梁.拉索.阻尼器模型并进行瞬态分析,引入索力测试时拉索与阻尼器端部实际存在的外界环境激励,分析该种激励对基于频率法测试拉索索力的影响。

第二、通过对拉索模型瞬态分析采集数据的对比,说明外置阻尼器对拉索的明显减振作用。

第三、在拉索阻尼器附近布置多个信号采集点,对比拉索频率的识别效果,为现场索力测试拾振器安放位置进行优化选择提供参考。

第四、讨论了安装阻尼器前后,拉索频率的变化。

最后以厦漳跨海大桥的2根斜拉索为例,分别讨论了拉索垂度、外置减振阻尼器的刚度和阻尼系数、主梁.拉索.阻尼器耦合振动3个因素对拉索索力测试的影响程度,并给出相应的修正方法。

4.2主梁一拉索一阻尼器耦合振动介绍随着有限元计算方法的不断发展,以前很复杂的耦合振动问题,已成为现在一个很热的研究领域,包括公路工程中考虑汽车.桥面耦合振动分析,来研究桥梁本身的动力性能和改善桥面状况来提高乘车的舒适性。

随着高铁行业的快速发展,轨道交通领域的铁轨.车辆的耦合振动研究也取得了丰富的成果。

国内在桥面.拉索.阻尼器耦合振动的研究很多,但是大多集中在理论研究,以及对这种系统的简化处理。

桥面.拉索.阻尼器耦合振动对基于频率法测试索力影响的研究较少,没有结合相关的实例进行数值分析。

本章主要以安装外置阻尼器减振设备的长短斜拉索为对象,初步讨论桥面振动对拉索索力测量的影响,通过建立有限元分析模型,在模型中施加白噪声激励来模拟现场的环境激励,分以下几种情况下讨论:(1)、不考虑桥面对拉索端部的外界时程激励;(2)、只考虑桥面对拉索端部的外界时程激励;(3)、只考虑桥面对阻尼器安装端部的外界时程激励;(4)、同时考虑桥面对拉索端部和阻尼器安装端部的外界时程激励。

索力测量

索力测量

索力测量实验背景拉索是斜拉桥和悬索桥的重要承重构件,设计和施工时通过调整拉索的索力:使塔、梁处于最佳受力状态。

实验背景在运营过程中,亦应不断监测索力变化,及时调整索力,使之处于设计要求的状态。

因此,无论施工过程还是运营过程中均需准确地测知索力。

实验目的•1、学习索力测试的原理;2、学习索力测试方法。

实验仪器安装示意图实验原理•频率法目前是斜拉桥测索力的普遍应用方法,索的边界条件为两端固定,索的质量均匀分布,在本程序模块中,索力计算公式为:其中,T:索的拉力(N);M:索单位长度的质量(kg/m);L:缆索的长度(m):第n阶自振频率实验原理•在该试验中采用钢丝模拟索力的测试过程,钢丝的质量可以忽略不计,在钢丝上加一块质量块,形成集中的单自由度系统,激励质量块,产生自由衰减振动,测得其频率,就可通过以下公式来计算:实验原理•当采用三个集中质量块均匀分布,并且三个质量块质量相等为m 时,激励质量块,产生自由衰减振动,测得其三阶频率,就可通过以下公式来计算:•m:小质量块质量(kg)L:钢丝两端支承间距(m)•n:为频率阶数。

实验方法1、仪器安装按示意图安装配重块和钢丝质量块组成的三自由度悬索系统,电涡流位移传感器安装在质量块上面,距离约为4mm,电涡流传感器的输出接入数采仪的应变通道。

2、打开仪器电源进入控制分析软件,新建一个项目(文件名自定),设置采样频率、量程范围、工程单位和灵敏度等参数,在数据显示窗口内点击鼠标右键,选择信号,选择时间波形,另一窗口显示实时谱。

开始采集数据,数据同步采集显示在图形窗口内。

实验方法•3、用手在垂直方向使质量块离开平衡位置,放开手后,系统做自由衰减振动,在谱窗口读取共振频率,计算索力值。

•5、改变配重块质量,重复以上步骤。

实验结果和分析•实验结果和分析。

斜拉桥索力测试分析

斜拉桥索力测试分析

交通科技与管理127工程技术1 绪论 斜拉索是斜拉桥的主要受力结构,需定期对拉索进行导波检测和索力测试,且索力值的大小直接影响全桥受力状态。

该斜拉桥的斜拉索采用平行钢丝索,双索面,每侧50根,对称分布。

通过分析本次试验结果,得出影响索力测试值的因素。

通过对该桥100根斜拉索和锚固端的检查与导波检测,可知斜拉索PE护套完好,斜拉索上、下锚头性状良好,钢索基本无锈蚀,初步判断斜拉索整体性状良好,实测索力与计算理论索力比较符合。

2 索力测试研究 本次斜拉索索力测试采用JMM-268动测仪,除考虑仪器主频阶次修正外,还应考虑温度、测试位置的影响。

2.1 仪器主频阶次修正 测试时仪器频谱图形中出现多个峰值点,每个峰值代表一个自振频率,理论下两相邻峰值点间距离相等,且每两相邻自振频率的间距与基频相等。

实际中多数情况下某些阶次信号微弱,不会显示在频谱图上,造成两相邻峰值点间距离不相等。

此时,以相邻两峰点之间的频率最小值作为基频,以主振频率f n除以该基频值作为主振频率的阶次n。

列举实测基频波形图说明相邻峰值点间距不同时,判断主频阶次n,见图1所示。

图1 实测基频波形图 频谱图中共出现了七个峰值频率,第四峰值频率最大,作为主振动频率f n而间隔最小值为 f4-f3,f n(即f4)大致应为f4-f3的三倍,确定主振频率的阶次为n = 3而非n = 4。

仪器测量分析后会自动给出一个n值,需分析确定后键入正确的n值。

斜拉桥索力测试分析苏 雯(石家庄铁道大学四方学院,石家庄 050000)摘 要:斜拉索对斜拉桥受力、线型影响大,因此准确的进行索力测试,对评定在役斜拉桥的整体状态具有重要作用。

本文一斜拉索采用JMM-268动测仪测试索力,对仪器主频阶次修正、温度和测试位置对基频影响进行了分析,并给出索力测试建议,为类似斜拉桥拉索索力测试提供实测和理论依据。

关键词:斜拉索;索力测试;基频表1 不同温度和测试位置下斜拉索基频测试表凌晨(温度18℃~21℃)中午(30℃~33℃)不同温度同测点差值百分率理论基频不同测点与理论值差值百分率拉索编号距索端3 m处拉索1/2处差值百分率距索端3 m处拉索1/2处差值百分率距索端3 m处拉索1/2处距索端3 m处拉索1/2处L1 3.988 3.957 3.1 3.980 3.957 2.30.80 6.56 258260.3 L2 3.343 3.326 1.7 3.341 3.322 1.90.20.4 5.76 241.9243.8 L3 3.020 3.009 1.1 3.014 2.998 1.60.6 1.1 5.14 212.6214.2 L4 3.018 3.005 1.3 3.010 2.997 1.30.80.8 4.59 158159.3 L5 2.428 2.4200.8 2.423 2.38 4.30.54 4.13 170.7175 L6 2.240 2.24 2.243 2.18 6.3-0.32 3.76 151.7158 L7 1.879 1.842 3.7 1.876 1.815 6.10.3 2.7 3.44 156.4162.5 L8 1.732 1.687 4.5 1.729 1.675 5.40.3 1.2 2.93 120.1125.5 L10 1.643 1.5935 1.631 1.586 4.5 1.20.7 2.55 91.996.4 L12 1.578 1.5017.7 1.560 1.4897.1 1.8 1.2 2.73 117124.1 L14 1.422 1.368 5.4 1.398 1.354 4.4 2.4 1.4 2.2585.289.6 L190.9780.922 5.60.9730.920 5.30.50.2 2.12114.7120 L210.9660.921 4.50.9660.919 4.700.2 1.98 101.4106.1 L220.9570.910 4.70.9560.899 5.70.1 1.1 1.8690.496.1 L240.9110.854 5.70.9060.849 5.70.50.5 1.7584.490.1 L250.9170.852 6.50.9090.846 6.30.80.6 1.6675.181.4作者简介:苏雯(1986-),女,河北邢台人,硕士,工程师,研究方向:桥梁施工控制、工程检测。

斜拉索索力实验报告

斜拉索索力实验报告

斜拉索索力实验报告
斜拉索是斜拉桥结构重要的组成部分,对结构的受力状态及主梁的线形有着重要的影响,斜拉桥索力测试的准确与否直接关系到斜拉桥施工控制的顺利实施,是斜拉桥能否成功修建的关键。

问题之一,在工程实际中,常用的索力测定方法有压力表测定法,压力传感器测定法以及频率法。

由于前两种方法-般仅适用于在张拉斜拉索时的索力测定,当需要对已施工完毕的斜拉索进行索力复核时,频率法几乎是唯一的选择。

由于频率的测试精度可以达到10000所以频率法所确定的索力精度在很大程度取决于索本身参数的可靠性。

诸如索的刚度,索的计算长度索的线密度,索的边界条件,索的物理环境等本工程背景,对施工过程,成桥验收,运营过程中的大直径高吨位斜拉索索力进行了测试,并对影响斜拉索索力的诸多因素进行了探讨。

为了了解桥梁使用状况下斜拉索的真实索力,在不中断运营荷载的状况下对斜拉索索力进行了测试与分析,以期对大直径高吨位斜拉索的索力测试以及斜拉索运营过程中的实际索力评估提供一定的借鉴意义。

斜拉桥索力实测及分析

斜拉桥索力实测及分析

斜拉桥索力实测及分析欧文春(广西生态工程职业技术学院,广西柳州545000)摘要:对某座特大跨径斜拉桥的索力进行索力测试,并与几次历史记录进行比较,分析结果表明,该斜拉索的受力性能良好。

关键词:斜拉桥;索力测试;基频法中图分类号:U448.27文献标识码:A文章编号:1672—1144(2009)O和一0146—舵CableForceMeasurementandAnalysisofCable-stayedBridgeOUWell.churl(仇哪痧Vocat/ona/andTechn/ca/嘶of西幽咖zEn咖ser/ng,/hEhou,仇吲痧545004,CTdna)Abstract:Thecableforcetestof8largespancable-stayedbIidgeismade。

andanumberofhistoricalrecordsarecomparedwiththistestresult.Theanalysisresultsshowthatthemechanicalbehaviordtheslayedcableisgood.Keywords:cable-stayedbridge;cabletest;frequency-basedmethod0前言斜拉索是斜拉桥的主要受力构件,由于拉索布置在梁体外部并长期处于高应力状态下,其截面尺寸小,故对腐蚀非常敏感,斜拉索的锈蚀程度会直接影响到它的工作性能。

早期的斜拉桥拉索外部没有护套,拉索为链杆或粗钢筋,其防护措施同普通钢结构桥梁一样采用油漆防护。

斜拉桥拉索索力的变化是衡量斜拉桥是否处于正常运营状态的重要标志,通过对斜拉索索力的测试u_5J,可以了解斜拉桥的内力分布,从总体上把握斜拉桥的受力状况。

1索力测试基本原理斜拉索的后期索力测试是基于弦振动理论,先测定拉索的固有频率,然后根据索力与固有频率的关系换算得到张力。

对于张紧的斜拉索,其自由振动微分方程为:n雾+EzⅣe--Z—r骞=0(1)式中:菇为沿索长方向坐标;Y为垂直于索长方向坐标;Pf为拉索的线密度;E1为索的抗弯刚度;T为索的张力[6j。

斜拉桥索力测试方法及原理综述

斜拉桥索力测试方法及原理综述

斜拉桥索力测试方法及原理综述摘要 斜拉索的索力大小直接决定着斜拉桥的工作状态,采用准确的方法进行合理的索力测试是保证斜拉桥顺利施工和安全运营的必要手段。

本文针对目前斜拉桥索力测试中常用的方法及其原理进行了阐述和比较,并指出了各种方法的特点和适用场合。

关键词 斜拉桥 索力 测试 综述Summary of Methods and Theories to Cable ForceMeasurement of Cable —Stayed BridgesAbstract Cable force decides the working state of the cable-stayed bridge directly. Measuring the cable force of the cable-stayed bridge through some exact method is the guarantee to construction and operation. This paper summarises the methods and their theories usually uesed in cable force of cable-stayed bridge measuring. Furthermore, Features and their applying places are pointed out.Keywords cable —stayed bridges cable force measurement summary斜拉索是斜拉桥的一个重要组成部分,斜拉索的工作状态是斜拉桥是否处于正常状态的主要决定因素,所以,能否对斜拉索索力进行精确的测量,在很大程度上决定着斜拉桥施工的成败和正常的运营。

斜拉桥索力测试的方法很多,经过近年来的实践,许多方法已经被淘汰(如“扭力扳手测试法”,误差较大),目前常用的有以下几种:1. 压力表测定法目前,斜拉索均使用液压千斤顶张拉。

斜拉索测试分析

斜拉索测试分析

() 1
频谱 图表 现为间距 完全 相等 的谱线 , 完全可以判断出哪些谱
线是索 的 自振频率 . 及其阶数 因此索力计算公式简化为:
I - 、2
其 中, 为沿索 向的坐标 ; ( t 为索在 t时刻垂直于索 的 T a Y , ) 挠度 , 为时间 ; l为索的抗弯刚度 ; t E T为索力 , 假定 沿索均匀分 布, 并不随时问而变化 ; 为索单位长度的质量。 州
2 可得 : 法、 拉索伸 长量法 、 力垂度关 系法 、 索 张拉 千斤顶法 、 压力传感 器 挠曲长度。由式 ( ) 高的特点 , 已成为索力测试中最 常用 的方法之一。
1 频 率法测试原 理
根据索长而细 的结构特点( 长度一般都是其直径 的 5 0倍 以 0
, g , 在 频率法是一种问接方法 , 是在 已知索长 、 两端约束情况 、 分布 上)索的抗弯刚度与索 长的 4次方相 t ̄4 。那么 , 阶次 n不 根 对 质量等参数的情况下 , 高灵敏度的加速度传感 器固定在斜拉索 太 大 的 情 况 下 , 号 内 的 第 二 项 比第 一 项 要 小 得 多 , 频 率 的 影 将 上, 拾取拉索在振动激励 下的振动信 号, 经过滤波 、 号放 大 、 / 信 AD 转换和频谱分析 即可测出斜拉索 的 自振频率 , 进而获得索力。 对于张紧的斜 拉索 , 当其垂 度的影 响忽略不计 时 , 在其无 阻
本 文从 自 己从 事 隧 道 质 量 检测 的实 际 经 验 出 发 , 要 介 绍 了 简
7 钢拱架异常地质雷达剖面图见图 8 ) 。
地质雷达检测铁路隧道 的基本原理 和主机 主要指标 应满足 的要 求, 探讨 了铁路隧道质 量检测 的现场施 工工艺 , 归纳 了隧道质量 检测中常见的几种病 害地 质雷达 剖面图 , 旨在抛砖 引玉 , 引起 同 行们的兴趣 , 共同讨论 , 提高应 用地质雷 达在铁 路隧道无 损检测

斜拉桥运用的数学原理

斜拉桥运用的数学原理

斜拉桥运用的数学原理
斜拉桥是一种通过斜拉索将桥面承载荷重的桥梁结构。

它运用了以下几个数学原理来实现桥梁的稳定和安全:
1. 阿基米德原理:斜拉桥的吊索和桥塔的设计需要考虑桥面上的承载荷重。

根据阿基米德原理,吊索和桥塔的重力需要与桥面上的荷重平衡,以确保桥梁的平衡和稳定。

2. 三角函数:斜拉桥中的吊索和桥塔形成了一系列三角形,三角函数在计算吊索的张力和角度时起到了重要作用。

根据桥梁的几何形状和物理力学原理,可以使用正弦、余弦和正切函数来计算吊索的张力和角度。

3. 力学平衡方程:斜拉桥的设计需要考虑各个部件之间的力平衡。

力学平衡方程通过考虑受力点处的合力和合力矩为零来计算各个部件的受力情况。

这是斜拉桥设计和计算的重要数学原理之一。

4. 结构力学:斜拉桥的结构需要经受不同方向和大小的力,包括水平拉力、垂直荷载和桥塔的压力等。

结构力学涉及材料力学、弹性力学和静力学等方面的数学原理,通过计算和分析这些力的分布和作用,可以确保斜拉桥的结构稳定和安全。

综上所述,斜拉桥运用了阿基米德原理、三角函数、力学平衡方程和结构力学等
数学原理来实现桥梁的稳定和安全。

这些数学原理为斜拉桥的设计、计算和分析提供了重要的理论支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斜拉桥索力测试方法及原理综述
王玉田
(青岛理工大学土木工程学院青岛266033)
摘要斜拉索的索力大小直接决定着斜拉桥的工作状态,采用准确的方法进行合理的索力测试是保证斜拉桥顺利施工和安全运营的必要手段。

本文针对目前斜拉桥索力测试中常用的方法及其原理进
行了阐述和比较,并指出了各种方法的特点和适用场合。

关键词斜拉桥索力测试综述
Summary of Methods and Theories to Cable Force
Measurement of Cable—Stayed Bridges
Wang Yu-tian
(School of Civil Engineering, Qingdao Technological University, Qingdao, 266033) Abstract Cable force decides the working state of the cable-stayed bridge directly. Measuring the cable force of the cable-stayed bridge through some exact method is the guarantee to construction and operation. This paper summarises the methods and their theories usually uesed in cable force of cable-stayed bridge measuring. Furthermore, Features and their applying places are pointed out.
Keywords cable—stayed bridges cable force measurement summary
斜拉索是斜拉桥的一个重要组成部分,斜拉索的工作状态是斜拉桥是否处于正常状态的主要决定因素,所以,能否对斜拉索索力进行精确的测量,在很大程度上决定着斜拉桥施工的成败和正常的运营。

斜拉桥索力测试的方法很多,经过近年来的实践,许多方法已经被淘汰(如“扭力扳手测试法”,误差较大),目前常用的有以下几种:
1. 压力表测定法
目前,斜拉索均使用液压千斤顶张拉。

该方法的原理就是根据千斤顶张拉油缸中的液压推算千斤顶的张拉力,并认为千斤顶的张拉力就等于拉索索力。

所以,只要通过精密压力表或液压传感器测定油缸的液压,就可求得索力。

通常使用0.3~0.5级的精密压力表,并应事先对液压系统进行标定,测得索力的精度可达到1%~2%。

压力表测定法简单易行,比较直观、可靠,是施工中控制索力最适用的方法。

但该法所用仪器较笨重,移动不便,且经常有油不回零的情况,影响测试精度。

并且不适合于已张拉好的斜拉索,如运营中的索力测试。

2. 压力传感器测定法
张拉时,在张拉连杆上粘贴应变片或利用穿心式压力传感器,也可在锚头和锚座之间安装测
力传感器,进而通过二次仪表的读数得到千斤顶的张拉力。

选择恰当的传感器除可以满足施工控制监测要求外,还可用于桥梁使用过程中的索力测量。

这种方法精度可达0.5%~1.0%。

压力传感器测定法精度相对较高。

但使用时传感器必须与千斤顶配合使用,所以该方法也只限于施工阶段的索力测试。

另外,压力传感器售价相当昂贵,只能在特定场合下使用。

3. 磁通量法
用磁通量法测定斜拉桥的索力,国外应用较多,多座实际桥梁结构的安全检测表明效果很好,但我国斜拉桥上采用此法的实例还很少,技术也不够成熟。

磁通量法是利用放置在索中的小型电磁传感器,测定磁通量变化,根据索力、温度与磁通量变化的关系,推算索力。

该法所用的关键仪器是电磁传感器(E —M 传感器),这种传感器由两层线圈组成,除磁化拉索外,它不会影响拉索的力学及物理特性。

对任一种铁磁材料,在实验室进行几组应力、温度下的试验,建立磁通量变化与结构应力、温度的关系后,即可用来测定由该种材料制造的拉索索力。

铁磁材料磁通量密度B 与有效磁场H 的关系为:
H B ⋅=μ (4)
其中:H ——有效磁场,)(内部外加M H H H +=,内部H 为磁化程度M 的函数;
B ——磁通量密度;
μ——磁通量渗透系数,是应力σ、温度T 、有效磁场H 的函数。

材料中的应力变化时,磁滞曲线也发生变化。

测定磁通量渗透系数μ就可推算出拉索的应力。

4. 频率法
频率法是依据索力与索的振动频率之间存在对应关系的特点,在已知索长度、两端约束情况、分布质量等参数时,将高灵敏度的拾振器绑在斜拉索上,拾取拉索在环境振动激励下的振动信号,经过滤波、信号放大、A/D 转换和频谱分析即可测出斜拉索的自振频率,进而由索力与拉索自振频率之间的关系获得索力。

这是一种间接方法。

现有仪器及分析手段,测定频率精度可达到0.005Hz 。

对于张紧的斜拉索,当其垂度的影响忽略不计时,在其无阻尼时的自由振动微分方程为:
0222244=∂∂+∂∂-∂∂x
y m x y F x y EI (1) 其中:x 为沿索向的坐标;y (x ,t )为斜拉索在t 时刻垂直于索向的挠度;EI 为索的抗弯刚度;t 为时间,F 为索内拉力,假定沿索均匀分布,并不随时间而变化;m 为索单位长度的质量。

假定索的两端为铰支,则该微分方程的解为:
222224l EI n n f ml F n π-⎪⎭
⎫ ⎝⎛= (2) 其中:n 为索自振频率的阶数(即拉索长度内的半波个数);n f 为索的第n 阶自振频率(s -1);l 为拉索的自由或挠曲长度。

由式(2)可得:
42
2244ml
EI n ml F n f n π+= (3) 这样,在频域里,斜拉索的频谱就是一个个间距逐渐加大的谱线。

而根据索长而细的结构特征(长度一般都是其直径的500倍以上),索的抗弯刚度与索长的平方相比很小。

那么,在阶次n 不太大的情况下,根号内的第二项比第一项要小得多,对频率的影响很小,所以谱线接近等间距。

大多数情况下,可以忽略不计,则(3)式简化为:
124nf ml
F n
f n == (4) 其中,1f 为斜拉索自由振动的第一自振频率,频谱图从而完全成为等间距的谱线。

由谱线图可以准确地判断出哪些谱线是索的自振频率
n f 及其自振频率的阶数n ,再进一步求得索力。

用频率法进行索力测试,具有快速、方便、实用、可重复测试的特点,精确度较高(测试精度可以达到万分之一)。

但频率法所确定的索力精度在很大程度上取决于索本身参数的可靠性(诸如索的弯曲刚度、索的计算长度、索的线密度等),各参数的偏差会影响到索力计算的精度。

另外,拉索的斜度、垂度及边界条件等因素也有相应的影响。

文献[1]中提出了综合考虑拉索斜度、垂度、弯曲刚度影响的拉索索力测试方法,该方法提高了索力测试的精度,使得频率法在实际工程中能得到更为有效的应用。

5. 综评
压力表测定法和压力传感器测定法一般仅适用于正在张拉的斜拉索的索力测定,很难用于对已张拉斜拉索的索力进行测试。

磁通量法是测定斜拉桥索力的非破坏性方法,可以用于已张拉斜拉索的索力测试,但我国当前无论在技术上,还是经验上都很不完善。

因此,当需要对已施工完毕的斜拉索进行索力复测时,频率法几乎是唯一的选择。

参考文献
1. 罗宁安,王伟锋,韩大建.广州体育馆拉索索力测试方法及其应用,华南理工大学学报(自然科学版),2002,
30(2):21—24.
2. 王伟锋,韩大建.斜拉桥的索力测试及其参数识别[J] .华南理工大学学报,2001,29(1):18—21.
3. 方志,张志勇.斜拉桥的索力测试[J] .中国公路学报,1997,10(1):18—21.
4. 郭良友等.武汉长江二桥的索力、温度和应力测量.铁道部大桥局桥梁研究院论文集,1999.11.。

相关文档
最新文档