曲线曲面从参数表示的基础知识

曲线曲面从参数表示的基础知识
曲线曲面从参数表示的基础知识

曲线曲面从参数表示的基础知识

连续性

设计一条复杂曲线时,常常通过多段曲线组合而成,这需要解决曲线段之间如何实现光滑连接的问题。

曲线间连接的光滑度的度量有两种:一种是函数的可微性,把组合参数曲线构造成在连接处具有直到n阶连续导矢,即n阶连续可微,这类光滑度称之为C n或n阶参数连续性。另一种称为几何连续性,组合曲线在连接处满足不同于C n的某一组约束条件,称为具有n阶几何连续性,简记为G n。曲线光滑度的两种度量方法并不矛盾,C n连续包含在G n连续之中。下面我们来讨论两条曲线的

若要求在结合处达到G0连续或C0连续,即两曲线在结合处位置连续:

P(1)=Q(0) (3.1.6) 若要求在结合处达到G1连续,就是说两条曲线在结合处在满足G0连续的条件下,并有公共的切矢:

当a=1时,G1连续就成为C1连续。

若要求在结合处达到G2连续,就是说两条曲线在结合处在满足G1连续的条件下,并有公共的曲率矢:

代入(3.1.7)得:

这个关系式为:

图3.1.7 两条曲线的连续性

我们已经看到,C1连续保证G2连续,C1连续能保证G2连续,但反过来不行。也就是说C n连续的条件比G n连续的条件要苛刻。

极坐标和参数方程基础知识及重点题型word版本

高中数学回归课本校本教材24 (一)基础知识 参数极坐标 1.极坐标定义:M 是平面上一点,ρ表示OM 的长度,θ是MOx ∠,则有序实数实数对(,)ρθ,ρ叫极径,θ叫极角;一般地,[0,2)θπ∈,0ρ≥。 2.常见的曲线的极坐标方程 (1)直线过点M 00(,)ρθ,倾斜角为α常见的等量关系: 正弦定理 sin sin OP OM OMP OPM =∠∠,0OMP παθ∠=-+OPM αθ∠=-; (2)圆心P 00(,)ρθ半径为R 的极坐标方程的等量关系:勾股定理或余弦定理; (3)圆锥曲线极坐标:1cos ep e ρθ = -,当1e >时,方程表示双曲线;当1e =时,方程表示抛物线;当01 e <<时,方程表示椭圆.提醒:极点是焦点,一般不是直角坐标下的坐标原点。极坐标方程3 24cos ρθ =-表示的曲线 是 双曲线 3.参数方程:(1)圆222()()x a x b r -+-=的参数方程:cos ,sin x a r x b r θθ-=-= (2)椭圆22 221x y a b +=的参数方程:cos ,sin x a x b θθ== (3)直线过点M 00(,)x y ,倾斜角为α的参数方程:00tan y y x x α-=-即00 cos sin x x y y t θθ --==, 即00cos sin x x t y y t α α =+?? =+?注:0cos x x t θ-= ,0 sin y y t θ-=据锐角三角函数定义,T 几何意义是有向线段MP u u u r 的数量00000()00. t l M M x y M M M M M M t M M t >? =?=抛物线的参数方程为:为参数.由于,因此参数的几何意义是抛物线上的点与抛物线的顶点连线的斜率的倒数.

4.5常见曲面的参数方程

§4.5 常见曲面的参数方程 本节重点:掌握空间中的三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面的参数方程的建立。 掌握直纹面的参数方程。 本节难点:旋转曲面的参数方程。直纹面的参数方程。 在第二章中,我们已经引进一般曲面与曲线的参数方程的概念、并给出简单曲面与曲线的参数表示,例如球面与圆柱螺旋线,直线的参数方程。现在再介绍旋转曲面、直纹面的参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面的参数方程,球坐标与柱坐标 设旋转曲面的轴为Z 轴,母线Γ的参数方程是 )()()()(b t a t h Z t g Y t f X ≤≤=== 则此旋转曲面可由Γ上每一点生成的纬圆所构成的。由于这纬圆上动点),,(Z Y X P 与它在坐标面XOY 上的投影' P 具有相同的Y X ,坐标,所以Γ上任一点),,(1111Z Y X P 生成的纬圆的参数方程是 ??? ????=+=+=121212121sin cos Z Z Y X Y Y X X θθ )20(πθ<≤ 其中2121Y X +是纬圆半径,即1P 到Z 轴的距离,而参数θ是X 轴到1OP 的转角。设1P 对应的参数是1t ,则 )())(())((112 1212121t h Z t g t f Y X =+=+ 再让1t 在其取值范围内变动,即得这旋转曲面的参数方程 ??? ????=+=+=)(sin ))(())((cos ))(())((2222t h Z t g t f Y t g t f X θθ ???? ??<≤≤≤πθ20b t a (4.5.1) 特别地,当母线P 为坐标面XOZ 上的径线 )(0) (t h Z Y t f X === 时,(4.5.1)成为

2.2常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程 一椭圆的参数方程 1、中心在坐标原点,焦点在x 轴上,标准方程是22 221(0)x y a b a b +=>>的椭圆的参数方程 为cos (sin x a y b ? ??=??=? 为参数) 同样,中心在坐标原点,焦点在y 轴上,标准方程是22 221(0)y x a b a b +=>>的椭圆的参 数方程为cos (sin x b y a ? ??=??=? 为参数) 2、椭圆参数方程的推导 如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,和小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。 设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有 cos cos ,sin sin x OA a y OB b ????==== 3 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ? ?? =??=?为 参数) 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ θθ =?? =?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆 的参数方程cos (sin x a y b ? ?? =?? =?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点 (,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋 转角,通常规定[)0,2?π∈ 4、椭圆参数方程和普通方程的互化

高考数学极坐标与参数方程(基础精心整理)教师版

第7讲 极坐标与参数方程(教师版 ) 【基础知识】 一.平面直角坐标系中的伸缩变换:设点(,)P x y 在变换?://,(0) ,(0) x x y y λλμμ?=>??=>??的作用下对应到点 ///(,)P x y ,则称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 二.极坐标知识点 1.极坐标系的概念:在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴. ①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐 标系的四要素,缺一不可. 2.极坐标与直角坐标的互化: 三.参数方程知识点 1.参数方程的概念:在平面直角坐标系中,若曲线C 上的点满足,该方程叫曲 线C 的参数方程,变量t 是参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。 2.曲线的参数方程 (1)圆的参数方程可表示为. (2)椭圆的参数方程可表示为. (3)抛物线的参数方程可表示为. (4)经过点,倾斜角为的直线的参数方程可表示为(为参数). 注意:t 的几何意义 3.在建立曲线的参数方程时,要注明参数及参数的取值范围。在参数方程与普通方程的互化中,必须使的取值范围保持一致. 规律方法指导: 1.把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法. 常见的消参方法有: (,)P x y () () x f t y f t =?? =?2 2 2 )()(r b y a x =-+-)(.sin , cos 为参数θθθ? ??+=+=r b y r a x 122 22=+b y a x )0(>>b a )(. sin ,cos 为参数??????==b y a x px y 22 =)(.2, 22为参数t pt y pt x ? ? ?==),(o o O y x M αl ? ? ?+=+=.sin , cos o o ααt y y t x x t y x , ) 0(n t , sin , cos , 222≠===+=x x y a y x y x θθρθρρ

参数方程题型大全

参数方程 1.直线、圆、椭圆的参数方程 (1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为????? x =x 0+t cos α, y =y 0+t sin α(t 为参数). (2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为????? x =x 0+r cos θ, y =y 0+r sin θ(θ为参数). (3)椭圆x 2a 2+y 2 b 2=1(a >b >0)的参数方程为? ???? x =a cos φ,y =b sin φ (φ为参数). (4)双曲线x 2 a 2-y 2 b 2=1(a >0,b >0)的参数方程为????? x =a 1cos θ,y =b tan θ (θ为参数). (5)抛物线px y 22 =的参数方程可表示为)(. 2, 22为参数t pt y pt x ?? ?==. 基础练习 1.在平面直角坐标系中,若曲线C 的参数方程为?? ? x =2+22t , y =1+2 2 t (t 为参数),则其普通方程为 ____________. 2.椭圆C 的参数方程为? ???? x =5cos φ, y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点, 则|AB |min =________. 3.曲线C 的参数方程为? ???? x =sin θ, y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________. 4.在平面直角坐标系xOy 中,已知直线l 的参数方程为??? x =1+1 2t , y =3 2t (t 为参数),椭圆C 的方程 为x 2 +y 2 4 =1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ^ ? ? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; > (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

坐标系与参数方程-知识点总结

坐标系与参数方程 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0) x x y y λλ?μμ'=>?? '=>?的 作用下,点P(x,y)对应到点(,)P x y ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示, 在平面取一个定点O ,叫做极点, 自极点O 引一条射线Ox ,叫做极轴; 再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:(i)极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景; (ii)平面直角坐标系的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标 设M 是平面一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ; 以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ. 有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ. 一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面一个点的极坐标有无数种表示. 如果规定0,02ρθπ>≤<,那么除极点外,平面的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.

3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴 作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设M 是坐标平面任意一点,它的直角 坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与 直角坐标的互化公式如下: 极坐标(,)ρθ 直角坐标(,)x y : cos sin x y ρθ ρθ=??=? 直角坐标(,)x y 极坐标(,)ρθ: 222 tan (0) x y y x x ρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人教B版选修44

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人 教B 版选修44 学习目标:1.了解圆的渐开线和摆线的参数方程.(重点)2.了解渐开线与摆线的参数方程的推导过程.(难点) 1.摆线 (1)定义 一圆周沿一直线作无滑动滚动时,圆周上的一定点M 的轨迹称为摆线. (2)参数方程 ????? x =a (t -sin t )y =a (1-cos t ) (t 是参数). 2.圆的渐开线 (1)定义 把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆. (2)参数方程 ? ?? ?? x =a (cos t +t sin t )y =a (sin t -t cos t )(t 是参数). 思考:圆的渐开线和摆线的参数方程中,参数t 的几何意义是什么? [提示] 根据渐开线的定义和求解参数方程的过程,可知其中的字母a 是指基圆的半径,而参数t 是指绳子外端运动时绳子与基圆的切点B 转过的角度,如图,其中的∠AOB 即是角 t .显然点M 由参数t 惟一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐 标转化为与三角函数有关的问题,使求解过程更加简单. 同样,根据圆的摆线的定义和建立参数方程的过程,可知其中的字母a 是指定圆的半径,参数t 是指圆上定点相对于定直线与圆的切点所张开的角度.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.

1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线 B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 C .正方形也可以有渐开线 D .对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状就不同 [解析] 不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同. [答案] C 2.半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( ) A .π B .2π C .12π D .14π [解析] 根据条件可知圆的摆线的参数方程为? ?? ?? x =3t -3sin t y =3-3cos t (t 为参数),把y =0代 入可得cos t =1,所以t =2k π(k ∈Z ).而x =3t -3sin t =6k π(k ∈Z ).根据选项可知应选C. [答案] C 3.半径为4的圆的渐开线的参数方程是________. [解析] 将a =4代入圆的渐开线方程即可. [答案] ? ?? ?? x =4(cos t +t sin t ) y =4(sin t -t cos t ) 4.给出某渐开线的参数方程? ?? ?? x =3cos t +3t sin t y =3sin t -3t cos t (t 为参数),根据参数方程可以看 出该渐开线的基圆半径是______,当参数t 取π 2 时,对应的曲线上的点的坐标是________. [解析] 与渐开线的参数方程进行对照可知,a =3,即基圆半径是3,然后把t =π 2代入, 可得????? x =3π2,y =3. [答案] (3π 2 ,3)

第三章 常见曲面球面和旋转面

第三章 常 见 曲 面 §3.1 球面和旋转面 1.1球面的普通方程 球面方程的建立 首先建立球心在点()0000,,z y x M ,半径为0R ≥的球面方程。根据以下充分必要条件 (,,)M x y z 在球面上0M M R ?=, 得 ()()()2 2 2 2 000x x y y z z R -+-+-=, (3.1) 展开得 2221232220,x y z b x b y b z c ++++++= (3.2) 其中, 2222102030,000,,b x b y b z c x y z R =-=-=-=++-。 (3.1)或(3.2)就是所求球面方程,它是一个三元二次方程,没有交叉项(yz xz xy ,,项),平方项的系数相同。反之,任一形如(3.2)的方程经过配方后可写成: ()()(),0232221232221=---++++++b b b c b z b y b x 当c b b b >++2 32 22 1时,它表示一个球心在()321,,b b b ---,半径为c b b b -++2 32 22 1的 球面;当c b b b =++2 32221时,它表示一个点() 32,1,b b b ---;当c b b b <++2 32221时,它没有轨迹(或者说它表示一个虚球面)。 1.2球面的参数方程,点的球面坐标 如果球心在原点,半径为R ,在球面上任取一点()z y x M ,,,从M 作xOy 面的垂线,垂

足为N N ,连,O M O N 。设x 轴到ON 的角度为?,ON 到OM 的角度为θ(M 在xOy 面上方时,θ为正,反之为负),则有 cos cos ,cos sin ,02,.2 2 sin ,x R y R z R θ?π π θ??πθθ=?? =≤<- ≤≤ ??=? (3.3) (3.3)称为球心在原点,半径为R 的球面的参数方程,有两个参数θ?,,其中?称为经度,θ称为纬度。 球面上的每一个点(除去它与z 轴的交点)对应唯一的对实数()?θ,,因此()?θ,称为球面上点的曲纹坐标。 因为空间中任一点()z y x M ,,必在以原点为球心,以R OM =为半径的球面上,而球面上点(除去它与z 轴的交点外)又由它的曲纹坐标()?θ,唯一确定,因此,除去z 轴外,空间中的点M 由有序三元实数组()?θ,,R 唯一确定。我们把()?θ,,R 称为空间中点M 的球面坐标(或空间极坐标),其中0R ≥,,022 2 π π θ?π-≤≤ ≤≤。 点M 的球面坐标()?θ,,R 与M 的直角坐标()z y x ,,的关系为 cos cos , 0,cos sin , - ,22 sin , 02x R R y R z R θ?π π θ?θθ?π =≥??? =≤≤ ??=≤≤?? (3.4) 1.3曲面和曲线的普通方程、参数方程 从球面的方程(3.2)和球面的参数方程(3.3)看到,一般来说,曲面的普通方程是一个三元方程()z y x F ,,=0,曲面的参数方程是含有两个参数的方程: (,),(,), ,,(,),x x u v y y u v a u b c v d z z u v =?? =≤≤≤≤??=? (3.5) 其中,对于()v u ,的每一对值,由(3.5)确定的点()z y x ,,在此曲面上;而此曲面上任一点的坐标都可由()v u ,的某一对值(3.5)表示。于是通过曲面的参数方程(3.5),曲面上的

高中数学选修极坐标与参数方程知识点与题型

选做题部分 极坐标系与参数方程 一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化 点M 直角坐标(x ,y ) 极坐标(ρ,θ) 互化公式 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为)4 ,2(π ,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( ) A .3(32, )4π B .5(32,)4π- C .5(3,)4π D .3(3,)4 π- 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标.

(完整)高中数学参数方程大题(带答案)

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 考点:参数方程化成普通方程;直线与圆锥曲线的关系. 专题:坐标系和参数方程. 分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程; (Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以 sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值. 解答: 解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ, 故曲线C的参数方程为,(θ为参数). 对于直线l:, 由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0; (Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ). P到直线l的距离为. 则,其中α为锐角. 当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为. 当sin(θ+α)=1时,|PA|取得最小值,最小值为. 点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 考点:参数方程化成普通方程. 专题:坐标系和参数方程. 分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可; (2)首先,化简曲线C的参数方程,然后,根据直线与圆的位置关系进行转化求解. 解答: 解:(1)∵直线l的极坐标方程为:, ∴ρ(sinθ﹣cosθ)=,

5常见曲面的参数方程

§ 常见曲面的参数方程 本节重点:掌握空间中的三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面的参数方程的建立。 掌握直纹面的参数方程。 本节难点:旋转曲面的参数方程。直纹面的参数方程。 在第二章中,我们已经引进一般曲面与曲线的参数方程的概念、并给出简单曲面与曲线的参数表示,例如球面与圆柱螺旋线,直线的参数方程。现在再介绍旋转曲面、直纹面的参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面的参数方程,球坐标与柱坐标 设旋转曲面的轴为Z 轴,母线Γ的参数方程是 )()()()(b t a t h Z t g Y t f X ≤≤=== 则此旋转曲面可由Γ上每一点生成的纬圆所构成的。由于这纬圆上动点),,(Z Y X P 与它在坐标面XOY 上的投影' P 具有相同的Y X ,坐标,所以Γ上任一点),,(1111Z Y X P 生成的纬圆的参数方程是 ??? ????=+=+=121212121sin cos Z Z Y X Y Y X X θθ )20(πθ<≤ 其中2121Y X +是纬圆半径,即1P 到Z 轴的距离,而参数θ是X 轴到1OP 的转角。设1P 对应的参数是1t ,则 )())(())((112 1212121t h Z t g t f Y X =+=+ 再让1t 在其取值范围内变动,即得这旋转曲面的参数方程 ??? ????=+=+=)(sin ))(())((cos ))(())((2222t h Z t g t f Y t g t f X θθ ???? ??<≤≤≤πθ20b t a (4.5.1) 特别地,当母线P 为坐标面XOZ 上的径线

4.5常见曲面的参数方程

§4.5 常见曲面的参数方程 本节重点:掌握空间中的三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面的参数方程的建立。 掌握直纹面的参数方程。 本节难点:旋转曲面的参数方程。直纹面的参数方程。 在第二章中,我们已经引进一般曲面与曲线的参数方程的概念、并给出简单曲面与曲线的参数表示,例如球面与圆柱螺旋线,直线的参数方程。现在再介绍旋转曲面、直纹面的参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面的参数方程,球坐标与柱坐标 设旋转曲面的轴为Z 轴,母线Γ的参数方程是 )()()()(b t a t h Z t g Y t f X ≤≤=== 则此旋转曲面可由Γ上每一点生成的纬圆所构成的。由于这纬圆上动点),,(Z Y X P 与它在坐标面XOY 上的投影' P 具有相同的Y X ,坐标,所以Γ上任一点),,(1111Z Y X P 生成的纬圆的参数方程是 ??? ????=+=+=121212121sin cos Z Z Y X Y Y X X θθ )20(πθ<≤ 其中2121Y X +是纬圆半径,即1P 到Z 轴的距离,而参数θ是X 轴到1OP 的转角。设1P 对应的参数是1t ,则 )())(())((1121212121t h Z t g t f Y X =+=+ 再让1t 在其取值范围内变动,即得这旋转曲面的参数方程 ???????=+=+=)(sin ))(())((cos ))(())((2222t h Z t g t f Y t g t f X θθ ??? ? ??<≤≤≤πθ20b t a (4.5.1) 特别地,当母线P 为坐标面XOZ 上的径线 )(0) (t h Z Y t f X === 时,(4.5.1)成为

直线的参数方程教案

直线的参数方程 教学目标: 1. 联系数轴、向量等知识,推导出直线的参数方程,并进行简单应用,体会直线参数方程在解决问题中的作用. 2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、类比等数学思想. 3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度. 教学重点:联系数轴、向量等知识,写出直线的参数方程. 教学难点:通过向量法,建立参数t(数轴上的点坐标)与点在直角坐标系中的坐标,x y之间的联系. 教学方式:启发、探究、交流与讨论. 教学手段:多媒体课件. 教学过程: 一、回忆旧知,做好铺垫 教师提出问题: 1.曲线参数方程的概念及圆与椭圆的参数方程. 2.直线的方向向量的概念. 3.在平面直角坐标系中,确定一条直线的几何条件是什么? 4.已知一条直线的倾斜角和所过的一个定点,请写出直线的方程.

5.如何建立直线的参数方程? 这些问题先由学生思考,回答,教师补充完善,问题5不急于让学生回答,先引起学生的思考. 【设计意图】通过回忆所学知识,为学生推导直线的参数方程做好准备. 二、直线参数方程探究 1.回顾数轴,引出向量 数轴是怎样建立的?数轴上点的坐标的几何意义是什么? 教师提问后,让学生思考并回答问题. 教师引导学生明确:如果数轴原点为O ,数1所对应的点为A ,数轴上点M 的坐标为t ,那么: ①OA u u u r 为数轴的单位方向向量,OA u u u r 方向与数轴的正方向一致,且OM tOA =u u u u r u u u r ;②当OM u u u u r 与OA u u u r 方向一致时(即OM u u u u r 的方向与数轴正方向一致时),0t >; 当OM u u u u r 与OA u u u r 方向相反时(即OM u u u u r 的方向与数轴正方向相反时),0t <; 当M 与O 重合时,0t =; ③||OM t =u u u u r .教师用几何画板软件演示上述过程. 【设计意图】回顾数轴概念,通过向量共线定理理解数轴上的数的几何意义,为选择参数做准备. 2.类比分析,异曲同工 问题:(1)类比数轴概念,平面直角坐标系中的任意一条直线能否定义成数轴? (2)把直线当成数轴后,直线上任意一点就有两种坐标.怎样选取单位长度和方向才有利于建立这两种坐标之间的关系?

极坐标和参数方程-一轮复习

教学内容 【知识结构】 知识点一:极坐标 1.极坐标系 平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。 2.极坐标系内一点的极坐标 平面上一点到极点的距离称为极径,与轴的夹角称为极角,有序实数对 就叫做点的极坐标。 3. 极坐标与直角坐标的互化 当极坐标系与直角坐标系在特定条件下(①极点与原点重合;②极轴与轴正半轴重合;③长度单位相同),平面上一个点的极坐标和直角坐标有如下关系: 直角坐标化极坐标:; 极坐标化直角坐标:. 此即在两个坐标系下,同一个点的两种坐标间的互化关系. 知识点三:参数方程 1. 概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数: ,并且对于的每一个允许值,方程所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).

相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。 知识点四:常见曲线的参数方程 1.直线的参数方程 (1)经过定点,倾斜角为的直线的参数方程为: (为参数); 其中参数的几何意义:,有,即表示直线上任一点M到定点的距离。(当在上方时,,在下方时,)。 (2)过定点,且其斜率为的直线的参数方程为: (为参数,为为常数,); 其中的几何意义为:若是直线上一点,则。 2.圆的参数方程 (1)已知圆心为,半径为的圆的参数方程为: (是参数,); 特别地当圆心在原点时,其参数方程为(是参数)。 (2)参数的几何意义为:由轴的正方向到连接圆心和圆上任意一点的半径所成的角。 (3)圆的标准方程明确地指出圆心和半径,圆的一般方程突出方程形式上的特点,圆的参数方程则直接指出圆上点的横、纵坐标的特点。 3. 椭圆的参数方程

参数方程的概念(教学设计)

曲线的参数方程(孙雷) 教材人民教育出版社高中数学选修4-4第二讲第一节 授课教师孙雷 教学目标 1、理解曲线参数方程的概念,能选取适当的参数建立参数方程; 2、通过对圆和直线的参数方程的研究,了解某些参数的几何意义和物理意义; 3、初步了解如何应用参数方程来解决某些具体问题,在问题解决的过程中,形 成数学抽象思维能力,初步体验参数的基本思想。 教学重点 曲线参数方程的概念。 教学难点 曲线参数方程的探求。 教学过程 (一)曲线的参数方程概念的引入 引例: 当两个齿轮接触时,蓝色齿轮会带动红色齿轮转动,当两个齿轮没有接触时,蓝齿轮要带动红色齿轮转动,有一种方法是加入一个新的齿轮,使之与红蓝两个齿轮同时接触。 (上述过程让学生感受中间变量的作用,为参数方程中的参变量的引出作铺垫。) 思考1: 若齿轮A、B、C的半径相等,他们转动时的角速度分别是x、y、t,方向忽略不计 (1)第一组图中,A与B角速度之间的关系是_______________; (2)第二组图中,A与C角速度之间的关系是_______________; B与C角速度之间的关系是________________; 思考2: 思考: 若齿轮A、B、C的半径分别为4、1、2,他们转动时的角速度分别是x、y、t,方向忽略不计 (1) 第一组图中,它们角速度之间的关系是_________________;

(2) 第二组图中,它们角速度之间的关系是_________________; 引导学生建立平面直角坐标系,把实际问题抽象到数学问题,并加以解决 (1、通过生活中的实例,引发学生研究的兴趣;2、通过引例明确学习参数方程的现实意义;3、通过对问题的解决,使学生体会到仅仅运用一种方程来研究往往难以获得满意的结果,从而了解学习曲线的参数方程的必要性;4、通过具体的问题,让学生找到解决问题的途径,为研究圆的参数方程作准备。) (二)曲线的参数方程 例1、圆的参数方程的推导 (1)一般的,设⊙O 的圆心为原点,半径为r ,0OP 所在直 线为x 轴,如图,以0OP 为始边绕着点O 按逆时针方向绕原点以 匀角速度ω作圆周运动,则质点P 的坐标与时刻t 的关系该如 何建立呢?(其中r 与ω为常数,t 为变数) 结合图形,由任意角三角函数的定义可知: ),0[sin cos +∞∈???==t t r y t r x ωω t 为参数 ① (2)点P 的角速度为ω,运动所用的时间为t ,则角位移t ωθ=,那么方程组①可以改写为何种形式? 结合匀速圆周运动的物理意义可得:),0[sin cos +∞∈???==θθ θr y r x θ为参数 ② (在引例的基础上,把原先具体的数据一般化,为圆的参数方程概念的形成作准备,同时也培养了学生数学抽象思维能力) (3)方程①、②是否是圆心在原点,半径为r 的圆方程?为什么? 由上述推导过程可知:对于⊙O 上的每一个点),(y x P 都存在变数t (或θ)的值,使t r x ωcos =,t r y ωsin =(或θsin r y =,θcos r x =)都成立。 对于变数t (或θ)的每一个允许值,由方程组所确定的点),(y x P 都在圆上; (1、对曲线的方程以及方程的曲线的定义进行必要的复习;2、学生从曲线的方程以及方程的曲线的定义出发,可以说明以上由变数t (或θ)建立起来的方程是圆的方程;) (4)若要表示一个完整的圆,则t 与θ的最小的取值范围是什么呢? ? )2,0[sin cos ωπωω∈???==t t r y t r x , )2,0[sin cos πθθ θ∈???==r y r x (5)圆的参数方程及参数的定义 我们把方程①(或②)叫做⊙O 的参数方程,变数t (或θ)叫做参数。 (6)圆的参数方程的理解与认识 (ⅰ)参数方程)2,0[sin 3cos 3πθθ θ∈???==y x 与]2,0[sin 3cos 3πθθθ∈???==y x 是否表示同一曲线?为什么?

常见曲面的参数方程

§4、5 常见曲面得参数方程 本节重点:掌握空间中得三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面得参数方程得建立。 掌握直纹面得参数方程、 本节难点:旋转曲面得参数方程。直纹面得参数方程。 在第二章中,我们已经引进一般曲面与曲线得参数方程得概念、并给出简单曲面与曲线得参数表示,例如球面与圆柱螺旋线,直线得参数方程。现在再介绍旋转曲面、直纹面得参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面得参数方程,球坐标与柱坐标 设旋转曲面得轴为轴,母线得参数方程就是 则此旋转曲面可由上每一点生成得纬圆所构成得、由于这纬圆上动点与它在坐标面上得投影具有相同得坐标,所以上任一点生成得纬圆得参数方程就是 其中就是纬圆半径,即到轴得距离,而参数就是轴到得转角、设对应得参数就是,则 再让在其取值范围内变动,即得这旋转曲面得参数方程 (4、5.1) 特别地,当母线为坐标面上得径线 时,(4。5、1)成为 (4.5.2) 例1、如图,以原点为中心,为半径得球面可瞧作就是由坐标面上得半圆, ()绕轴旋转所生成得,由(4.5。2)得其参数方程为 (4、5。3) 它与§2。1中得球面参数方程得形式就是相同得。 (4、5、3)中得参数分别叫做经度与纬度,序对叫做地理坐标、显然,除两极外,球面上得点与序对一一对应。这种利用曲面参数方程中得两个参数来表示曲面上得点得坐标叫做曲纹坐标,它对于曲面理论得进一步研究有着重要得作用。 利用球面得这种曲纹坐标还可以引入空间得另一种坐标系。设为空间任意一点,它到原点得距离为,过作以原点为中心,以为半径得球面,则在这球面上具有地理坐标,可令点P对应有序数组;反之,由非负实数可确定所在得球面,再由在这球面上确定点。空间中点得这种坐标叫做球坐标。显然,轴上点得球坐标可取任意值、 把(4.5。3)中得常数换为变数,就成为球坐标与直角坐标得变换式,即 (4、5。4) 反之,有 (4。5.5) 当时,=0,于就是,对坐标面上得点,只需序对即可确定、这里不就是别得,正就是大家熟知得极坐标。这时原点就是极点,轴就是极轴,因此,球坐标可以瞧作就是平面极坐标在空间中得一种推广。 例2、如图4-17,以轴为对称轴,半径为得圆柱面可瞧作就是由坐标面上得直线: ,

坐标系与参数方程(文科基础)-学生版

吴老师2015一对一辅导教案 学生姓名 年级 高三 上课时间 学科 数学 教学课题 坐标系与参数方程(4-4) 教学目标 1. 掌握定义及应用公式 教学重点与难点 结合考点特点,灵活应用 1.直角坐标与极坐标的互化 把直角坐标系的原点作为极点,x 轴正半轴作为极轴,并在两坐标系中取相同的长度单位.设M 是平面内任 意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则? ?? ?? x =ρcos θ, y =ρsin θ,? ??? ? ρ2=x 2+y 2,tan θ=y x (x ≠0). 2.圆的极坐标方程 若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20 -r 2=0. 几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ; (2)当圆心位于M (a,0),半径为a :ρ=2a cos θ; (3)当圆心位于M ??? ?a ,π 2,半径为a :ρ=2a sin θ.

(1)将参数方程化为普通方程,再利用相关知识解决,注意消参后x ,y 的取值范围. (2)观察参数方程有什么几何意义,利用参数的几何意义解题. 2.已知直线l 的参数方程为? ???? x =4-2t ,y =t -2(t 为参数),P 是椭圆x 24+y 2 =1上任意一点,求点P 到直线l 的距 离的最大值. [例3] (2013·辽宁高考)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ??? ?θ-π 4=2 2. (1)求C 1与C 2交点的极坐标; (2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为???? ? x =t 3+a ,y =b 2t 3+1(t ∈R 为参数), 求a ,b 的值. 3.在直角坐标系xOy 中,曲线C 1的参数方程为??? x =3cos α, y =sin α (α为参数),以原点O 为极点,以x 轴正半 轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin ??? ?θ+π 4=4 2. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程; (2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标. 一、解答题 1 1 .已知直线l 的参数方程为?? ?=+=t y t x 32 (t 为参数),曲线C 的极坐标方程为12cos 2 =θρ (1)求曲线C 的普通方程;(2)求直线l 被曲线C 截得的弦长.

相关文档
最新文档