极坐标和参数方程-一轮复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容
【知识结构】
知识点一:极坐标
1.极坐标系
平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。
2.极坐标系内一点的极坐标
平面上一点到极点的距离称为极径,与轴的夹角称为极角,有序实数对就叫做点的极坐标。
3. 极坐标与直角坐标的互化
当极坐标系与直角坐标系在特定条件下(①极点与原点重合;②极轴与轴正半轴重合;③长度单位相同),平面上一个点的极坐标和直角坐标有如下关系:
直角坐标化极坐标:;
极坐标化直角坐标:.
此即在两个坐标系下,同一个点的两种坐标间的互化关系.
知识点三:参数方程
1. 概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数:
,并且对于的每一个允许值,方程所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).
相对于参数方程来说,前面学过的直接给出曲线上点的坐标关系的方程,叫做曲线的普通方程。
知识点四:常见曲线的参数方程
1.直线的参数方程
(1)经过定点,倾斜角为的直线的参数方程为:
(为参数);
其中参数的几何意义:,有,即表示直线上任一点M到定点的距离。(当在上方时,,在下方时,)。
(2)过定点,且其斜率为的直线的参数方程为:
(为参数,为为常数,);
其中的几何意义为:若是直线上一点,则。
2.圆的参数方程
(1)已知圆心为,半径为的圆的参数方程为:
(是参数,);
特别地当圆心在原点时,其参数方程为(是参数)。
(2)参数的几何意义为:由轴的正方向到连接圆心和圆上任意一点的半径所成的角。
(3)圆的标准方程明确地指出圆心和半径,圆的一般方程突出方程形式上的特点,圆的参数方程则直接指出圆上点的横、纵坐标的特点。
3. 椭圆的参数方程
(1)椭圆()的参数方程(为参数)。
(2)参数的几何意义是椭圆上某一点的离心角。
如图中,点对应的角为(过作轴,
交大圆即以为直径的圆于),切不可认为是。
(3)从数的角度理解,椭圆的参数方程实际上是关于椭圆的一组三角代换。
椭圆上任意一点可设成,
为解决有关椭圆问题提供了一条新的途径。
4. 双曲线的参数方程
双曲线(,)的参数方程为(为参数)。
5. 抛物线的参数方程
抛物线()的参数方程为(是参数)。
参数的几何意义为:抛物线上一点与其顶点连线的斜率的倒数,即。
【例题精讲】
类型一:极坐标方程与直角坐标方程
例1.在极坐标系中,点关于极点的对称点的坐标是_____ ,关于极轴的对称点的坐标是
_____,关于直线的对称点的坐标是_______,
思路点拨:画出极坐标系,结合图形容易确定。
解析:它们依次是或;;().
示意图如下:
总结升华:应用数形结合,抓住对称点与已知点之间的极径与极角的联系,同时应注意点的极坐标的
多值性。
举一反三:
【变式】已知点,则点
(1)关于对称点的坐标是_______,
(2)关于直线的对称点的坐标为________。
【答案】
(1) 由图知:,,所以
;
(2) 直线即,所以或()
例2. 化下列极坐标方程为直角坐标方程,并说明它是什么曲线。
(1) ;(2) ;
(3) ;(4) .
思路点拨:依据关系式,对已有方程进行变形、配凑。
解析:
(1)方程变形为,
∴或,即或,
故原方程表示圆心在原点半径分别为1和4的两个圆。
(2) 变形得,即,
故原方程表示直线。
(3) 变形为, 即,
整理得,
故原方程表示中心在,焦点在x轴上的双曲线。
(4)变形为,
∴,即,
故原方程表示顶点在原点,开口向上的抛物线。
总结升华:极坐标方程化为直角坐标方程,关键是依据关系式,把极坐标方程中的用x、y表示。
举一反三:
【变式1】把下列极坐标方程化为直角坐标方程,并说明它们是什么曲线.
(1);(2), 其中;
(3)(4)
【答案】:
(1)∵,∴即,
故原方程表示是圆.
(2)∵, ∴,
∴,∴或,
∴或
故原方程表示圆和直线.
(3)由,得即,整理得
故原方程表示抛物线.
(4)由得,
∴,即
故原方程表示圆.
【变式2】圆的直角坐标方程化为极坐标方程为_______________.
【答案】将代入方程得.
例3. 求适合下列条件的直线的极坐标方程:
(1)过极点,倾斜角是;(2)过点,并且和极轴垂直。
思路点拨:数形结合,利用图形可知过极点倾斜角为的直线为.过点垂直于极轴的直线为;或者先写出直角坐标方程,然后再转化成极坐标方程。
解析:
(1)由图知,所求的极坐标方程为;
(2)(方法一)由图知,所求直线的方程为,即.
(方法二)由图知,所求直线的方程为,即.
总结升华:抓住图形的几何性质,寻找动点的极径与极角所满足的条件,从而可以得到极坐标方程.也可以先求出直角坐标方程运用所得的方程形式,可以更简捷地求解.
举一反三:
【变式1】已知直线的极坐标方程为,则极点到该直线的距离是______。
【答案】:。
(方法一)把直线的极坐标方程化为直角坐标方程:,
则原点(极点)到该直线的距离是;