求轨迹方程例题方法解析
求与圆有关的轨迹方程的方法及例题
求与圆有关的轨迹方程[概念与规律]求轨迹方程的基本方法。
(1)直接法:这是求动点轨迹最基本的方法,在建立坐标系后,直接根据等量关系式建立方程。
(2)转移法(逆代法):这方法适合于动点随已知曲线上点的变化而变化的轨迹问题,其步骤是:设动点M (x, y),已知曲线上的点为N (x o, y o),求出用x,y表示x o, y o的关系式,将(x o,y o)代入已知曲线方程,化简后得动点的轨迹方程。
(3)几何法:这种方法是根据已知图形的几何性质求动点轨迹方程。
(4)参数法:这种方法是通过引入一个参数来沟通动点(x,y)中x,y之间的关系,后消去参数,求得轨迹方程。
(5)定义法:这是直接运用有关曲线的定义去求轨迹方程。
[讲解设计]重点和难点例1 已知定点A (4, 0),点B是圆x2+y2=4上的动点,点P分AB的比为2: 1,求点P的轨迹方程例2自A (4, 0)引圆x2+y2=4的割线ABC ,求弦BC中点P的轨迹方程例3 已知直角坐标平面上的点Q (2, 0)和圆C :x2+y2=1,动点M到圆C的切线长与|MQ|的比等于常数・c 0),求动点M的轨迹方程,并说明它表示什么曲线。
(1994年全国高考文科题)例4 如图,已知两条直线l i:2x-3y+2=0,I2: 3x-2y+3=0,有一动圆(圆心和半径都在变化)与l i,I2都相交,并且l i与I2被截在圆内的两条线段的长度分别是26和24,求圆心M的轨迹方程。
(1983年全国高考题)练习与作业1.已知圆C1:(x+1)2 + y2=1 和C2:(x-1)2 + (y-3)2=10,过原点O的直线与C i交于P,与C2交于Q,求PQ线段的中点M的轨迹方程。
2 •已知点A (-1 , 0)与点B (1 , 0) , C是圆x2+y2=1上的动点,连接BC并延长到D,使|CD|=|BC| ,求AC 与OD(O 为坐标原点)的交点P 的轨迹方程。
轨迹方程的五种求法例题
动点轨迹方程的求法一、直接法按求动点轨迹方程的一般步骤求;其过程是建系设点;列出几何等式;坐标代换;化简整理;主要用于动点具有的几何条件比较明显时.例1已知直角坐标平面上点Q 2;0和圆C :122=+y x ;动点M 到圆C 的切线长与MQ 的比等于常数()0>λλ如图;求动点M 的轨迹方程;说明它表示什么曲线. 解析:设Mx ;y ;直线MN 切圆C 于N ;则有λ=MQ MN ;即λ=-MQ ON MO 22;λ=+--+2222)2(1y x y x .整理得0)41(4)1()1(222222=++--+-λλλλx y x ;这就是动点M 的轨迹方程.若1=λ;方程化为45=x ;它表示过点)0,45(和x 轴垂直的一条直线;若λ≠1;方程化为2222222)1(3112-+=+-λλλλy x )-(;它表示以)0,12(22-λλ为圆心;13122-+λλ为半径的圆.二、代入法若动点Mx;y 依赖已知曲线上的动点N 而运动;则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件;从而求得动点M 的轨迹方程;此法称为代入法;一般用于两个或两个以上动点的情况.例2 已知抛物线12+=x y ;定点A 3;1;B 为抛物线上任意一点;点P 在线段AB 上;且有BP :PA =1:2;当点B 在抛物线上变动时;求点P 的轨迹方程;并指出这个轨迹为哪种曲线.解析:设),(),,(11y x B y x P ;由题设;P 分线段AB 的比2==PBAP λ;∴ .2121,212311++=++=y y x x 解得2123,232311-=-=y y x x .又点B 在抛物线12+=x y 上;其坐标适合抛物线方程;∴ .1)2323()2123(2+-=-x y 整理得点P 的轨迹方程为),31(32)31(2-=-x y 其轨迹为抛物线. 三、定义法若动点运动的规律满足某种曲线的定义;则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程;在高考中常填空、选择题的形式出现.例3 若动圆与圆4)2(22=++y x 外切且与直线x =2相切;则动圆圆心的轨迹方程是A 012122=+-x yB 012122=-+x yC 082=+x yD 082=-x y解析:如图;设动圆圆心为M ;由题意;动点M 到定圆圆心-2;0的距离等于它到定直线x =4的距离;故所求轨迹是以-2;0为焦点;直线x =4为准线的抛物线;并且p =6;顶点是1;0;开口向左;所以方程是)1(122--=x y .选B .例4 一动圆与两圆122=+y x 和012822=+-+x y x 都外切;则动圆圆心轨迹为 A 抛物线 B 圆 C 双曲线的一支 D 椭圆解析:如图;设动圆圆心为M ;半径为r ;则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1;由双曲线定义知;其轨迹是以O 、C 为焦点的双曲线的左支;选C .四、参数法若动点Px ;y 的坐标x 与y 之间的关系不易直接找到;而动点变化受到另一变量的制约;则可求出x 、y 关于另一变量的参数方程;再化为普通方程.例5设椭圆中心为原点O ;一个焦点为F 0;1;长轴和短轴的长度之比为t .1求椭圆的方程;2设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ;点P 在该直线上;且12-=t t OQ OP ;当t 变化时;求点P 的轨迹方程;并说明轨迹是什么图形. 解析:1设所求椭圆方程为).0(12222>>b a b x a y =+由题意得⎪⎩⎪⎨⎧==-,,122t b a b a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-.2设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或 其中t >1.消去t ;得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x .其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分. 五、交轨法一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数;求出二动曲线的方程或动点坐标适合的含参数的等式;再消去参数;即得所求动点轨迹的方程.例6 已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ;设长为2的线段AB 在直线λ上移动;求直线PA 和QB 交点M 的轨迹方程.解析:PA 和QB 的交点Mx ;y 随A 、B 的移动而变化;故可设)1,1(),,(++t t B t t A ;则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ;得.082222=+-+-y x y x 当t =-2;或t =-1时;PA 与QB 的交点坐标也满足上式;所以点M 的轨迹方程是.0822222=+--+-y x x y x以上是求动点轨迹方程的主要方法;也是常用方法;如果动点的运动和角度有明显的关系;还可考虑用复数法或极坐标法求轨迹方程.但无论用何方法;都要注意所求轨迹方程中变量的取值范围.。
轨迹问题方法与例题大全
轨迹问题一、什么是轨迹?轨迹就是目标点的横纵坐标之间的一个等量关系 二、求轨迹的一般方法: 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法。
用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
3.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x’,y’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x’,y’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。
4.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y 之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
5.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。
可以说是参数法的一种变种。
6.几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。
三、注意事项:1.直接法是基本方法;定义法要充分联想定义、灵活动用定义;化入法要设法找到关系式x’=f(x,y), y’=g(x,y);参数法要合理选取点参、角参、斜率参等参数并学会消参;交轨法要选择参数建立两曲线方程;几何法要挖掘几何属性、找到等量关系。
2.要注意求得轨迹方程的完备性和纯粹性。
在最后的结果出来后,要注意挖去或补上一些点等。
3.求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
高考数学轨迹方程的求解知识点归纳整理-圆的轨迹方程例题
高考数学轨迹方程的求解知识点归纳整理|圆的轨迹方程例题符合一定条的动点所形成的图形,或者说,符合一定条的点的全体所组成的集合,叫做满足该条的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条,也就是符合给定条的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条的动点轨迹方程。
轨迹方程的求法
解:以BC所在的直线为x轴,BC中点为坐标
原点,建立如图所示的直角坐标系,则B
(一a/2,0),C(a/2,0),设A(x,y)
则
由sinC- sinB=
∴c-b=
1 2
a
1 2
sinA
A
B
C
即|AB|-|AC|=
1 2
a(定值)
些密如发丝的暗青色珠粒被烟一晃,立刻变成皎洁辉映的珠光,不一会儿这些珠光就闪烁着飞向罕见异绳的上空,很快在四金砂地之上 变成了隐隐约约的凸凹飘动的摇钱树……这时,宝石状的物体,也快速变成了树皮模样的湖青色胶状物开始缓缓下降……只见女政客
4、参数法 例题4、已知线段AB的长为a,P分AB为
AP∶PB= 2∶l两部分,当A点在y轴上运动时, B点在x轴上运动,求动点P的轨迹方程。
解 : 设 动 点 P ( x , y ) , AB 和 x 轴 的 夹 角 为 θ ,
|θ|≤
2
,作PM⊥x于M,
PN⊥y轴于N
∵|AB|= a, | AP | 2
皮肤时浓时淡渗出水睡朦胧般的晃动!接着玩了一个,飞蟒吊灯翻一千零八十度外加狐嚎排骨旋七周半的招数,接着又来了一出,怪体 牛蹦海飞翻七百二十度外加笨转四百周的尊贵招式……紧接着异常的如同原木一样的脚立刻蠕动变形起来……鲜红色酒罐耳朵闪出水绿 色的团团明烟……深灰色麦穗样的嘴唇闪出中灰色的点点神响。最后摆起多变的深黄色土堆模样的卷发一嚎,飘然从里面涌出一道佛光, 她抓住佛光冷峻地一颤,一件银晃晃、黄澄澄的咒符『蓝鸟骨怪火腿宝典』便显露出来,只见这个这件东西儿,一边转化,一边发出“咝 咝”的神响。骤然间女政客T.克坦琳叶女士急速地弄了一个侧卧扭曲炸蛤蟆的怪异把戏,,只见她修长的淡灰色怪石一样的脑袋中,威
六、点差法求轨迹方程(高中数学解题妙法)
六、点差法求轨迹方程本内容主要研究点差法法求轨迹方程.圆锥曲线中与弦的中点有关的轨迹问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+,122y y y =+且直线AB 的斜率为2121y y x x --,由此可求得弦AB 中点的轨迹方程.先看例题:例:已知椭圆2212x y +=,求斜率为2的平行弦中点的轨迹方程.①-②得()()()()022*******=-++-+y y y y x x x x . 由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x将③④代入得022121=--+x x y y yx .⑤将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分)已知椭圆2212x y +=,过()2,1A 引椭圆的割线,求截得的弦的重点的轨迹方程.(3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分) 整理:圆锥曲线中与弦的中点有关的轨迹问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+, 122y y y =+且直线AB 的斜率为2121y y x x --,由此可求得弦AB 中点的轨迹方程.再看一个例题,加深印象例:已知椭圆2212x y +=,过()2,1A 引椭圆的割线,求截得的弦的中点的轨迹方程.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则221122221212222222x y x y x x x y y y ⎧+=⎪+=⎪⎨+=⎪⎪+=⎩,①,②,③,④①-②得()()()()022*******=-++-+y y y y x x x x .总结:1.圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+,122y y y =+且直线AB 的斜率为2121y y x x --,由此可求得弦AB 中点的轨迹方程.2.求轨迹方程时,最后要注意它的完备性与纯粹性,多余的点要去掉,遗漏的点要补上. 练习:1.抛物线24x y =的焦点为F ,过点(0,1)-作直线l 交抛物线A 、B 两点,再以AF 、BF 为邻边作平行四边形AFBR ,试求动点R 的轨迹方程.2.抛物线y =2x 2截一组斜率为2的平行直线,所得弦中点的轨迹方程是3.已知抛物线y 2=2x 的弦AB 所在直线过定点P (-2,0),则弦AB 中点的轨迹方程是答案:而P 为AB 的中点且直线l 过点(0,1)-,所以1211322,22l y x y x x x k x x ++++=⨯===代入③可得34y x x +=⨯,化简可得22124124x x y y -=+⇒=④由点1(,)22x y P +在抛物线口内,可得221()48(1)22x y x y +<⨯⇒<+⑤将④式代入⑤可得222128(1)16||44x x x x -<+⇒>⇒>故动点R 的轨迹方程为24(3)(||4)x y x =+>.2.解:设弦为AB ,A(x 1,y 1),B(x 2,y 2)AB 中点为(x ,y),则y 1=2x 12,y 2=2x 22,y 1-y 2=2(x 12-x 22)∴)(2212121x x x x y y +=-- ∴2=2·2x ,21=x将21=x 代入y=2x 2得21=y ,轨迹方程是21=x (y>21) 答案:)21(21>=y x又弦中点在已知抛物线内P ,即y 2<2x ,即x+2<2x ,∴x>2 答案:y 2=x+2(x>2)。
圆的一般方程(轨迹问题)
(P124,B3) 已知一曲线是与定点O(0,0),A(3,0)距离的
比是 1 的点的轨迹,求此曲线的轨迹方程,并画出曲线.
2
解:在给定的坐标系里,设点M(x,y)是曲线上的任意一点,
也就是点M属于集合
{M
|
|
OM|
1 }
| AM| 2 由两点间的距离公式,得
y
M
x2 y2 1 (x 3)2 y2 2
CO
Ax
化简得
x2+y2+2x3=0
①
这就是所求的曲线方程.
直译法
把方程①的左边配方,得(x+1)2+y2=4.
所以方程②的曲线是以C(1,0)为圆心,2为半径的圆.
(P124,B2)长为2a的线段AB的两个端点分别在相互 垂直的两条直线上滑动,则线段AB的中点轨迹为?
x2 y2 a2
轨迹的常用求法:
1.直译法; 2.定义法;
y
B
M
O
A
x
【课堂练习】
1.已知Rt△ABC中,A(-1,0),B(3,0),
复习引入
【思考1】平面内到一定点A的距离等于定长的
点M的轨迹是什么?
M r
|MA|=r
A
【答】以定点A为圆心,定长r为半径的圆。
【思考2】平面内与两定点A、 B距离相等的点
M的轨迹是什么?
M
|MA|= |MB|
【答】线段AB的垂直平分线。 A
B
典型例题
【例1】已知线段AB的端点B的坐标是(4,3),端点A在圆 (x+1)2+y2=4上运动,求线段AB的中点M的轨迹方程.
3.求轨迹方程的步骤:①建系设点(x,y); ②列式代入; ③化简检验.
求轨迹方程的常用方法及例题
求解轨迹方程的常用方法主要有以下几种:
参数方程法:通过引入参数,将轨迹上的点的坐标表示为参数的函数形式,然后通过给定参数的取值范围,确定轨迹上的点的位置关系。
隐式方程法:将轨迹方程中的自变量与因变量通过一个方程联系起来,形成一个隐式方程,然后通过对方程进行求解和化简,得到轨迹的几何性质。
极坐标方程法:对于某些曲线,使用极坐标系可以更方便地描述其轨迹。
通过将轨迹上的点的极坐标表示,可以得到轨迹的极坐标方程。
下面是一个例题:
例题:求解椭圆的轨迹方程。
解答:椭圆是一个平面上的闭合曲线,其定义特点是到两个焦点的距离之和恒定。
我们可以使用参数方程法来求解椭圆的轨迹方程。
假设椭圆的焦点为F1和F2,长轴长度为2a,短轴长度为2b。
取参数θ,定义点P在椭圆上的坐标为(x, y)。
那么根据椭圆的定义,可以得到以下参数方程:
x = a * cos(θ) y = b * sin(θ)
其中,θ的取值范围为0到2π。
通过给定θ的取值范围,我们可以得到椭圆上的点的坐标关系。
进一步化简参数方程,可以得到椭圆的隐式方程:
(x^2 / a^2) + (y^2 / b^2) = 1
这就是椭圆的轨迹方程,其中a和b分别为椭圆的长轴和短轴长度。
以上是求解轨迹方程的常用方法和一个椭圆轨迹方程的例题。
根据具体的问题和曲线类型,选择合适的方法进行求解和推导。
高中数学轨迹方程经典例题
轨迹方程一.解答题(共4小题)1.已知点P到A(﹣2,0)的距离是点P到B(1,0)的距离的2倍.(1)求点P的轨迹方程;(2)若点P与点Q关于点B对称,过B的直线与点Q的轨迹Γ交于E,F两点,探索是否为定值?若是,求出该定值;若不是,请说明理由.2.已知动点M在x2+y2=4上,过M作x轴的垂线,垂足为N,若H为MN中点.(1)求点H的轨迹方程;(2)过作直线l交H的轨迹于P、Q两点,并且交x轴于B点.若,,求证:为定值.3.已知抛物线C上的点到F(1,0)的距离等于到直线x=﹣1的距离.(1)求抛物线C的标准方程;(2)过点D(6,0)的直线l与C交于A,B两点,且以AB为直径的圆过F点,求直线l的方程.4.已知圆O:x2+y2=1,点A(0,2),动点P与点A的距离等于过点P所作圆O切线的长的倍.(1)求点P的轨迹;(2)过点Q(1,﹣1)的直线交点P的轨迹于B,C两点,且弦BC被Q点平分,求直线BC的方程.圆锥曲线---轨迹方程参考答案与试题解析一.解答题(共4小题)1.已知点P到A(﹣2,0)的距离是点P到B(1,0)的距离的2倍.(1)求点P的轨迹方程;(2)若点P与点Q关于点B对称,过B的直线与点Q的轨迹Γ交于E,F两点,探索是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)设点P(x,y),由题意可得|PA|=2|PB|,即,化简可得(x﹣2)2+y2=4.(2)设点Q(x0,y0),由(1)P点满足方程:(x﹣2)2+y2=4,,代入上式消去可得,即Q的轨迹方程为x2+y2=4,当直线l的斜率存在时,设其斜率为k,则直线l的方程为y=k(x﹣1),由,消去y,得(1+k2)x2﹣2k2x+k2﹣4=0,显然Δ>0,设E(x1,y1),F(x2,y2)则,,又,,则==.当直线l的斜率不存在时,,,.故是定值,即.2.已知动点M在x2+y2=4上,过M作x轴的垂线,垂足为N,若H为MN中点.(1)求点H的轨迹方程;(2)过作直线l交H的轨迹于P、Q两点,并且交x轴于B点.若,,求证:为定值.【解答】解:(1)设H(x,y),M(x0,y0),由题意得,∴,由M在圆x2+y2=4,得x2+4y2=4,即,∴点H的轨迹方程为;(2)证明:当PQ斜率存在时,设直线PQ的方程为,令y=0,可得B(﹣,0),设P(x1,y1),Q(x2,y2),∵,∴,同理,,由,得(4k2+1)x2+4kx﹣3=0,∴由韦达定理可得,∴=2+=2+=,当PQ斜率不存在时,P(0,1),Q(0,﹣1),B(0,0),此时,∴,∴,∴;综上所述,为定值.3.已知抛物线C上的点到F(1,0)的距离等于到直线x=﹣1的距离.(1)求抛物线C的标准方程;(2)过点D(6,0)的直线l与C交于A,B两点,且以AB为直径的圆过F点,求直线l的方程.【解答】解:(1)由题意抛物线的焦点F(1,0),准线方程是x=﹣1,则,故抛物线C的标准方程为y2=4x;(2)显然l的斜率不为0,设l:x=my+6,A(x1,y1),B(x2,y2),联立,得y2﹣4my﹣24=0,Δ=16m2+4×24=16(m2+6)>0,y1+y2=4m,y1y2=﹣24,又AF⊥BF,所以,又,则(x1﹣1,y1)•(x2﹣1,y2)=(x1﹣1)(x2﹣1)+y1y2=0,即,即﹣24(m2+1)+5m×4m+25=0,解得,所以直线l的方程为,即2x﹣y﹣12=0或2x+y﹣12=0.4.已知圆O:x2+y2=1,点A(0,2),动点P与点A的距离等于过点P所作圆O切线的长的倍.(1)求点P的轨迹;(2)过点Q(1,﹣1)的直线交点P的轨迹于B,C两点,且弦BC被Q点平分,求直线BC的方程.【解答】解:(1)设P(x,y),A(0,2),则|PA|2=x2+(y﹣2)2,又过点P的直线与圆O相切,设切点为M,则|PO|2=|OM|2+|MP|2,即x2+y2=1+|MP|2,∴切线长为|MP|2=x2+y2﹣1,由题意得x2+(y﹣2)2=2(x2+y2﹣1),即x2+(y+2)2=10,故点P的轨迹为以(0,﹣2)为圆心,半径为的圆,且方程为x2+(y+2)2=10;(2)由(1)得点P的轨迹方程为x2+(y+2)2=10,圆心(0,﹣2),半径为,当直线BC的斜率不存在时,此时直线BC的方程为x=1,当x=1时,y=1或﹣5,则B(1,1),C(1,﹣5),此时BC的中点坐标为(1,﹣2),与Q(1,﹣1)矛盾,不符合题意;则直线BC的斜率存在,此时圆心(0,﹣2)与点Q(1,﹣1)所在直线的斜率k==1,则直线BC的斜率为﹣1,∴直线BC的方程为y+1=﹣(x﹣1),即x+y=0.。
轨迹方程的求法及典型例题含答案
轨迹方程的求法及典型例题(含答案) 轨迹方程是描述一条曲线在平面上的运动轨迹的方程。
在二维平面上,轨迹方程通常由一元二次方程、三角函数方程等形式表示。
在三维空间中,轨迹方程可能会更加复杂,可以由参数方程或参数化表示。
一、轨迹方程的求解方法:1. 根据题目给出的条件,确定轨迹上的点的特点或特殊性质。
2. 将轨迹上的点的坐标表示为一般形式。
3. 将坐标表示代入到方程中,消去多余的变量,得到轨迹方程。
二、典型例题及其解答:【例题1】已知点P(x,y)到坐标原点O的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,根据勾股定理,可以得到点P到原点O的距离公式:d = √(x^2 + y^2)3. 将坐标表示代入到距离公式中,得到轨迹方程:d^2 = x^2 + y^2【例题2】已知点P(x,y)到直线Ax+By+C=0的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,点P到直线Ax+By+C=0的距离公式为:d = |Ax+By+C| / √(A^2 + B^2)3. 将点P的坐标表示代入到距离公式中,得到轨迹方程:(Ax+By+C)^2 = d^2(A^2 + B^2)【例题3】已知点P(x,y)满足|x|+|y|=a,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,可以得到两种情况下的轨迹方程:当x≥0,y≥0时,有x+y=a,即y=a-x;当x≥0,y<0时,有x-y=a,即y=x-a;当x<0,y≥0时,有-x+y=a,即y=a+x;当x<0,y<0时,有-x-y=a,即y=-a-x。
3. 将上述四种情况合并,得到轨迹方程:|x|+|y|=a【例题4】已知点P(x,y)满足y = a(x^2 + b),求点P的轨迹方程。
一、直接法求轨迹方程(高中数学解题妙法)
一、直接法求轨迹方程本内容主要研究直接法求轨迹方程.根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,将关系式坐标化,从而求得轨迹方程。
例:已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.求曲线C 的方程.归纳整理:当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.再看一个例题,加深印象例:在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F .设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、22N (x ,y ),其中m >0,0,021<>y y .设动点P 满足22PF PB 4-=,求点P 的轨迹.总结:1.用直接法求轨迹方程的步骤:建系,设点,列方程化简,其关键是根据条件建立x ,y 之间的关系F (x ,y )=0.2.求轨迹方程时,最后要注意它的完备性与纯粹性,多余的点要去掉,遗漏的点要补上.练习:1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程.2.已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2x =⋅,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线3.动点P (x ,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即|PA |2|PB |=),求动点P 的轨迹方程?4. 已知三点O (0,0),A (-2,1),B (2,1),曲线c 上任意一点M (x ,y )满足 ||()2MA MB OM OA OB +=⋅++ .(Ⅰ)求曲线C 的方程;(Ⅱ)点Q (x 0,y 0)(-2<x 0<2)是曲线C 上的动点,曲线C 在点Q 处的切线为l ,点P 的坐标是(0,-1),l 与P A ,PB 分别交于点D ,E ,求△QAB 与△PDE 的面积之比.5. 在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(Ⅰ)求曲线C 1的方程;(Ⅱ)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆(C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.答案:(3)3AM y k x x =≠- 由已知有4(3)339y y x x x ∙=≠±+- 化简,整理得点M 的轨迹方程为221(3)94x y x -=≠±此即点P 的轨迹方程,所以P 的轨迹为抛物线,选D.3.解 ∵|PA|= PB |=代入|PA |2|PB |=得222222224)3(4)3(2)3()3(y x y x y x y x +-=++⇒=+-++化简得22(x-5)y 16+=,轨迹是以(5,0)为圆心,4为半径的圆.。
解析几何题型方法归纳(配例题)
解析几何解题方法归纳一.求轨迹方程(常出现在小题或大题第一问): 1.【待定系数法】(1)已知焦点在x 轴上的椭圆两个顶点的坐标为(4,0±),离心率为12,其方程为 .2211612x y += 提示:2a c =,且24,2,12a c b =∴==.(2)已知椭圆中心在原点,焦距为2倍,则该椭圆的标准方程是 .提示:已知2222242,16b a b c a a b c⎧⎧===⎪⎪⇒⇒⇒⎨⎨=-=⎪⎪⎩⎩221164x y +=与221416x y +=为所求. (3)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; 解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x2. 【定义法】由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为 .解:设(,)P x y ,连结OP ,则90,30PAO APO ∠=︒∠=︒, 所以22OP OA ==. 3.【几何性质代数化】与圆2240x y x +-=外切,且与y 轴相切的动圆圆心的轨迹方程是____________.y 2=8x (x >0)或y =0(x <0) 提示:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.4.【相关点法】P 是抛物线2210x y -+=上的动点,点A 的坐标为(0,1-),点M 在直线PA 上,且2PM MA =,则点M 的轨迹方程为解:设点(,)M x y ,由2PM MA =,()3,32P x y ∴+,代入2210x y -+=得22(3)3210x y --+=即218310x y --=5.【参数法】一元二次函数22()(21)1()f x x m x m m R =+++-∈的图象的顶点的轨迹方程是提示:设22(21)1()y x m x m m R =+++-∈顶点坐标为(,)x y ,则22211224(1)(21)544m x m m m y m +⎧=-=--⎪⎪⎨--+⎪==--⎪⎩,消去m ,得顶点的轨迹方程34x y -= 二.常见几何关系转化与常见问题类型 (1)中点问题:韦达定理、点差法变式:A 、B 、C 、D 共线且AB =CD 问题,可以转化为共中点问题,或者弦长相等; 例1:已知双曲线中心在原点且一个焦点为F,0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 。
求轨迹的几种求法
A C
O O2
x
探索与定圆相切的动圆圆心轨迹要抓牢动 圆圆心到两定点的距离的和与差不放。
S A B
C A S B A B
例3: 变式 2:
经过点 A(5,0)且与 圆 C ( x 5) y 49 相 外切的圆的圆心 P 的轨迹方程
2 2
169
M
P
13-r C
r r A
问题2
程是________.
解析:设P(x,y), ∵点P是线段AQ垂直平分线上的一点, ∴|PA|=|PQ|, ∴|PA|+|PC|=|PC|+|PQ|=4>2,
∴点P的轨迹是以点A、C为焦点的椭圆,
且a=2,c=1,b2=3, ∴点P的轨迹方程为 . x2 y 2 1 4 3
例2:求下列动圆圆心M的轨迹 (1)与圆C:(x+2)2 +y2 =4内切,且过点A(2,0);
1、如图,圆C:(x+1)2+y2=9内一点A(1,0),与圆 上一动点Q的连线AQ的垂直平分线交CQ于P.当Q在 圆C上运动一周时,则动点P的轨迹方程为________.
Q
y
P C A
x
问题2
2、已知椭圆的焦点是F1、F2,P是椭圆上的一 个动点,如果延长F1P到Q,使得|PQ|=|PF2|,那 么动点Q的轨迹是 ( ) (A)圆 (B)椭圆 (C)双曲线的一支 (D)抛物线 Q y
M N A
5
x2 y2 点P的 轨 迹 方 程 为 1( x 2) 4 5
-20
-10
B
P
-5
8. (能力题,中) 设Q是圆C:(x+1)2+y2=16上的动点,另有A(1,0),线段
高考数学复习---轨迹方程规律方法及典型例题
高考数学复习---轨迹方程规律方法及典型例题【规律方法】求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.【典型例题】例1.(2022·全国·高三专题练习)双曲线2222:1(0,0)x y C a b a b−=>>的一条渐近线为y =,(1)求双曲线方程;(2)过点()0,1的直线l 与双曲线交于异支两点,,P Q OM OP OQ =+,求点M 的轨迹方程. 【解析】(1)由渐近线为y知,ba=(),0c 到直线y ==2c =,224a b +=②,联立①②,解得21a =,23b =,则双曲线方程为2213y x −=.(2)因为直线l 与双曲线交于异支两点,P Q ,所以直线l 的斜率必存在,且经过()01,点,可设直线:1l y kx =+,与双曲线联立得:()223240kxkx −−−=,设()()()1122,,,,,M x y P x y Q x y ,则有122122Δ023403k x x k x x k ⎧⎪>⎪⎪+=⎨−⎪−⎪⋅=<⎪−⎩解得k <由OM OP OQ =+uuu r uu u r uuu r 知,()1221212223623k x x x k y y y k x x k ⎧=+=⎪⎪−⎨⎪=+=++=⎪−⎩两式相除得3x k y =,即3x k y =代入263y k=−得22230y y x −−=,又k <2y …, 所以点M 的轨迹方程为()222302y y x y −−=…. 例2.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知过定点()01P ,的直线l 交曲线2214y x −=于A ,B 两点.(1)若直线l 的倾斜角为45︒,求AB ;(2)若线段AB 的中点为M ,求点M 的轨迹方程.【解析】(1)由题得l 方程为:1y x =+,将其与2214yx −=联立有22114y x y x =+⎧⎪⎨−=⎪⎩,消去y 得:23250x x −−=,解得=1x −或53x =. 则令A ()1,0−,B 5833⎛⎫ ⎪⎝⎭,,则AB=. (2)由题,直线l 存在,故设l 方程为:1y kx =+.将其与2214y x −=联立有:22114y kx y x =+⎧⎪⎨−=⎪⎩,消去y 得:()224250k x kx −−−= 因l 与双曲线有两个交点,则2240Δ80160k k ⎧−≠⎨=−>⎩, 得205k ≤<且24k ≠.设()()1122,,A x y B x y ,. 又设M 坐标为()00x y ,,则12120022,x x y y x y ++==. 因A ,B 在双曲线上,则有()221112012212120222144414y x x x x y y k y y x x y y x ⎧−=⎪+−⎪⇒=⇒=⎨+−⎪−=⎪⎩. 又M ,()01P ,在直线l 上,则001y k x −=.故000014y x x y −=2200040x y y ⇒−+= 由韦达定理有,12224k x x k +=−,12284y y k +=−. 则M 坐标为22444,k k k ⎛⎫ ⎪−−⎝⎭.又0244y k=−,205k ≤<且24k ≠,则01y ≥或04y <−. 综上点M 的轨迹方程为:2240x y y −+=,其中()[)41y ⋃∞∈−∞−+,,. 例3.(2022·全国·高三专题练习)在学习数学的过程中,我们通常运用类比猜想的方法研究问题.(1)已知动点P 为圆222:O x y r +=外一点,过P 引圆O 的两条切线PA 、PB ,A 、B 为切点,若0PA PB ⋅=,求动点P 的轨迹方程;(2)若动点Q 为椭圆22:194x y M +=外一点,过Q 引椭圆M 的两条切线QC 、QD ,C 、D 为切点,若0QC QD ⋅=,求出动点Q 的轨迹方程;(3)在(2)问中若椭圆方程为22221(0)x y a b a b +=>>,其余条件都不变,那么动点Q 的轨迹方程是什么(直接写出答案即可,无需过程).【解析】(1)由切线的性质及0PA PB ⋅=可知,四边形OAPB 为正方形, 所以点P 在以O 为圆心,||OP长为半径的圆上,且|||OP OA , 进而动点P 的轨迹方程为2222x y r += (2)设两切线为1l ,2l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为0(Q x ,0)y 则03x ≠±, 设1l 的斜率为k ,则0k ≠,2l 的斜率为1k−,1l 的方程为00()y y k x x −=−,联立22194x y +=, 得2220000(49)18()9()360k x k y kx x y kx ++−+−−=,因为直线与椭圆相切,所以Δ0=,得22222000018()4(49)9[()4]0k y kx k y kx −−+⋅−−=, 化简,2222200009()(49)()(49)40k y kx k y kx k −−+−++=,进而2200()(49)0y kx k −−+=,所以2220000(9)240−−+−=x k x y k y 所以k 是方程222000(9)240−−+−=x k x y k y 的一个根, 同理1k−是方程222000(9)240−−+−=x k x y k y 的另一个根, 202041()9y k k x −∴⋅−=−,得220013x y +=,其中03x ≠±,②当1l 与x 轴垂直或平行时,2l 与x 轴平行或垂直, 可知:P 点坐标为:(3,2)±±,P 点坐标也满足220013x y +=,综上所述,点P 的轨迹方程为:220013x y +=.(3)动点Q 的轨迹方程是222200x y a b +=+以下是证明: 设两切线为1l ,2l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为0(Q x ,0)y 则0x a ≠±, 设1l 的斜率为k ,则0k ≠,2l 的斜率为1k−,1l 的方程为00()y y k x x −=−,联立22221x y a b+=, 得2222222220000()2()()0b a k x a k y kx x a y kx a b ++−+−−=,因为直线与椭圆相切,所以Δ0=,得()222222220000222()4()[()]0a k y kx k y kx b a a b −−+⋅−−=,化简,222220002222202()()()()0a b a b a k y kx k y kx b k −−+−++=, 进而220220()()0y x b k a k −−+=,所以222000022()20x k x y k y a b −−+−= 所以k 是方程22200022()20x k x y k y a b −−+−=的一个根, 同理1k−是方程222000022()20x k x y k y a b −−+−=的另一个根,2020221()y k ax b k −∴⋅−=−,得222200x y a b +=+,其中0x a ≠±, ②当1l 与x 轴垂直或平行时,2l 与x 轴平行或垂直, 可知:P 点坐标为:(,)a b ±±,P 点坐标也满足222200x y a b +=+,综上所述,点P 的轨迹方程为:222200x y a b +=+.。
高二数学 上学期巧用直接法求轨迹方程例题解析
巧用直接法求轨迹方程 用直接法求轨迹方程就是根据轨迹的条件,能够直接找到动点坐标之间的关系,从而得到所求的轨迹方程.其步骤为:建立坐标系,写出动点P (x,y )的坐标,然后根据已知条件写出等式,得出x 、y 之间的关系,化简后即得所求的轨迹方程,而已知条件是指题设的要求,有时要借助平面几何的有关定理,分析出数量关系.一、代入题设中的已知等式若动点的规律由题设中的已知等式明显给出,则采用直接将数量关系代数化的方法求其轨迹.例1 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?解:∵|P A |=2222)3(||,)3(y x PB y x +-=++代入2||||=PB PA 得222222224)3(4)3(2)3()3(y x y x y x y x +-=++⇒=+-++ 化简得(x -5)2+y 2=16,轨迹是以(5,0)为圆心,4为半径的圆.二、列出符合题设条件的等式有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程.例2 动点P 到一高为h 的等边△ABC 两顶点A 、B 的距离的平方和等于它到顶点C 的距离平方,求点P 的轨迹?解 以C 为原点,AB 上的高线CD 所在直线为x 轴建立直角坐标系设动点P (x,y ),则A (3,hh ),B (3,hh -)列出等式222222222)3()()3()(y x h y h x h y h x PC PB PA +=++-+-+-⇒=+ 化简得22234)2(h y h x =+- 三、运用有关公式有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程. 例3 △ABC 的两顶点是B (-3,0),(3,0),两底角B 、C 之和恒为135°,求第三顶点A 的轨迹方程.解 ∵∠B +∠C =135°,∴∠P =45°,3,3-=+=x y k x y k PC PB 代入二直线交角公式2296 33133tg45y x yx y x y x y x y +-=+⋅-++--=︒化简得)0(18)3()0(18)3(2222 y y x y y x =-+=++或轨迹是两条优弧,B 、C 两点是轨迹的极限点.四、借助平几中的有关定理和性质有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.例4 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?解 由平几的中线定理:在直角三角形AOB 中,OM=,22121a a AB =⨯=22222,a y x a y x =+=+∴M 点的轨迹是以O 为圆心,a 为半径的圆周.。
求动点轨迹方程的常用方法
参考答案:x2
y2
4(
7 2
x
4)
求动点轨迹方程方法:
1.直接法:是通法,适用性强,但要尽量避免复杂计算.
2.定义法:要准确判断轨迹形状.
3.代入法:要有双动点和已知其一动点轨迹方程.
4.向量法:要能找到垂直或平行的动向量.
5.参数法:已知特殊曲线方程.
相应习题
1.动点P到定点(-1,0)的距离与到点(1,0)距离之差为2,则 P点的轨迹方程是____y_=_0_(_x_≥_1_)___.
弦OA的中点M的轨迹方程.
yA M
O C(1,0)
方法二 定义法(公式法):先判断并证明轨 迹形状,再根据特殊曲线定义写出方程.
由垂径定理可知: CM OA x OMC为直角三角形
直角顶点M的轨迹为以斜边
OC为直径的圆.
圆的圆心为OC的中点(
1 2
,0),
半径
r
1 2
|
OC
|
1 2
2
x0 y0
2x 2y
由于点A在圆C上, 则 (x0 1)2 y02 1
(2x 1)2 (2y)2 1
(x
1 2
)
2
y2
1 4
所求轨迹方程为:(x
-
1 2
)2
y2
1 4
(舍去原点(0,0))
例:已知圆C的方程为: (x -1)2 y2 1,过原点O作任一弦OA,求
x
0 xA 2
y
0 ya 2
1cos 2 sin 2
圆锥曲线中的轨迹方程问题-(解析版)
专题1 圆锥曲线的轨迹方程问题轨迹与轨迹方程高考题中在选择题或填空题中单独考查,在解答题中也会出现轨迹与轨迹方程的问题.本文主要研究圆锥曲线中关于轨迹方程求法。
首先正确理解曲线与方程的概念,会用解析几何的基本思想和坐标法研究几何问题,用方程的观点实现几何问题的代数化解决,并能根据所给条件选择适当的方法求曲线的轨迹方程,常用方法有:直译法、定义法、相关点法、参数(交轨)法等方法1、直译法:若动点运动的条件是一些已知(或通过分析得出)几何量的等量关系,可转化成含x,y 的等式,就得到轨迹方程。
直译法知识储备:两点间距离公式,点到直线的距离公式,直线的斜率(向量)公式。
经典例题:1.(2020·江苏徐州市·高三月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点P 满足12PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA = D .在C 上存在点N ,使得224NO NA += 【答案】ABD【分析】设点P 的坐标,利用12PA PB =,即可求出曲线C 的轨迹方程,然后假设曲线C 上一点坐标,根据BCD 选项逐一列出所满足条件,然后与C 的轨迹方程联立,判断是否有解,即可得出答案.【详解】设点P (x ,y ),()2,0A -、()4,0B ,由12PA PB =,12=,化简得x 2+y 2+8x =0,即:(x +4)2+y 2=16,故A 选项正确;曲线C 的方程表示圆心为(﹣4,0),半径为4的圆,圆心与点(1,1)=﹣4,+4,而3∈﹣4,故B 正确;对于C 选项,设M (x 0,y 0),由|MO |=2|MA |,=又 ()2200416x y ++=,联立方程消去y 0得x 0=2,解得y 0无解,故C 选项错误;对于D 选项,设N (x 0,y 0),由|NO |2+|NA |2=4,得 ()2222000024x y x y ++++=,又()2200416x y ++=,联立方程消去y 0得x 0=0,解得y 0=0,故D 选项正确.2.(2020·湖南省高三期末)点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. 求点P 的轨迹方程;【答案】22143x y +=12=,化简即可求出;12=,化简得:223412x y +=,故1C 的方程为22143x y +=.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点是动点轨迹方程的求解.3.(2021年湖南省高三月考)已知动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54,求P 点的轨迹方程.【答案】轨迹方程是221169x y -=.【分析】利用动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54可得方程,化简由此能求出轨迹M 的方程.【详解】由题意,设P (x ,y ),则()22252516165x y x -+=⎛⎫- ⎪⎝⎭,化简得轨迹方程是221169x y -=. 故答案为221.169x y -=【点睛】本题主要考查轨迹方程的求法,属于基础题.由2、3题推广:圆锥曲线统一定义(第二定义):到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求轨迹方程的常用方法知识梳理:(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。
(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。
检验方法:研究运动中的特殊情形或极端情形。
热身:1. P 是椭圆5922y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:( )A 、159422=+y xB 、154922=+y xC 、120922=+y x D 、53622y x +=1【答案】:B【解答】:令中点坐标为),(y x ,则点P 的坐标为()2,y x 代入椭圆方程得154922=+y x ,选B 2. 圆心在抛物线)0(22>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( )A 041222=---+y x y x B 01222=+-++y x y x C 01222=+--+y x y xD 041222=+--+y x y x 【答案】:D【解答】:令圆心坐标为(),22a a ,则由题意可得2122+=a a ,解得1=a ,则圆的方程为041222=+--+y x y x ,选D 3: 一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是:A :抛物线B :圆C :椭圆D :双曲线一支 【答案】:D【解答】令动圆半径为R ,则有⎩⎨⎧-=+=1||1||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。
故选D 。
4: 点P(x 0,y 0)在圆x 2+y 2=1上运动,则点M (2x 0,y 0)的轨迹是 ( ) A.焦点在x 轴上的椭圆 B. 焦点在y 轴上的椭圆 C. 焦点在y 轴上的双曲线 D. 焦点在X 轴上的双曲线 【答案】:A【解答】:令M 的坐标为),,(y x 则⎪⎩⎪⎨⎧==⇒⎩⎨⎧==y y x x y y x x 000022代入圆的方程中得1422=+y x一:用定义法求曲线轨迹求曲线轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程。
例1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
【解析】由,sin 45sin sin C A B =+可知1045==+c a b ,即10||||=+BC AC ,满足椭圆的定义。
令椭圆方程为12'22'2=+b y a x ,则34,5'''=⇒==bc a ,则轨迹方程为192522=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。
【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。
(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (4)到定点与定直线距离相等。
【变式1】: 1:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
解:设动圆的半径为R ,由两圆外切的条件可得:,。
∴动圆圆心P 的轨迹是以M 1、M 2为焦点的双曲线的右支,c=4,a=2,b 2=12。
故所求轨迹方程为2:一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆的圆心M 的轨迹是:A :抛物线B :圆C :椭圆D :双曲线一支【解答】令动圆半径为R ,则有⎩⎨⎧-=+=1||1||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。
故选D 。
二:用直译法求曲线轨迹方程 此类问题重在寻找数量关系。
例2: 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?解 设M 点的坐标为),(y x 由平几的中线定理:在直角三角形AOB 中,OM=,22121a a AB =⨯= 22222,a y x a y x =+=+∴M 点的轨迹是以O 为圆心,a 为半径的圆周.【点评】此题中找到了OM=AB 21这一等量关系是此题成功的关键所在。
一般直译法有下列几种情况:1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。
2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。
3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。
4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.【变式2】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?【解答】∵|PA |=2222)3(||,)3(y x PB y x +-=++代入2||||=PB PA 得222222224)3(4)3(2)3()3(y x y x y x y x +-=++⇒=+-++ 化简得(x -5)2+y 2=16,轨迹是以(5,0)为圆心,4为半径的圆.三:用参数法求曲线轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。
注意参数的取值范围。
例3.过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。
【解析】分析1:从运动的角度观察发现,点M 的运动是由直线l 1引发的,可设出l 1的斜率k 作为参数,建立动点M 坐标(x ,y )满足的参数方程。
解法1:设M (x ,y ),设直线l 1的方程为y -4=k (x -2),(k ≠0) )2(14221--=-⊥x ky l ,l l 的方程为则直线由 ,,A x l )0k 42(1-∴的坐标为轴交点与 ,k,B y l )240(2+的坐标为轴交点与∵M 为AB 的中点,)(1222421242为参数k k k y k k x ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=-=-=∴消去k ,得x +2y -5=0。
另外,当k =0时,AB 中点为M (1,2),满足上述轨迹方程; 当k 不存在时,AB 中点为M (1,2),也满足上述轨迹方程。
综上所述,M 的轨迹方程为x +2y -5=0。
分析2:解法1中在利用k 1k 2=-1时,需注意k 1、k 2是否存在,故而分情形讨论,能否避开讨论呢?只需利用△PAB 为直角三角形的几何特性: ||21||AB MP =解法2:设M (x ,y ),连结MP ,则A (2x ,0),B (0,2y ), ∵l 1⊥l 2,∴△PAB 为直角三角形 ||21||AB MP ,=由直角三角形的性质 2222)2()2(·21)4()2(y x y x +=-+-∴ 化简,得x +2y -5=0,此即M 的轨迹方程。
分析3::设M (x ,y ),由已知l 1⊥l 2,联想到两直线垂直的充要条件:k 1k 2=-1,即可列出轨迹方程,关键是如何用M 点坐标表示A 、B 两点坐标。
事实上,由M 为AB 的中点,易找出它们的坐标之间的联系。
解法3:设M (x ,y ),∵M 为AB 中点,∴A (2x ,0),B (0,2y )。
又l 1,l 2过点P (2,4),且l 1⊥l 2 ∴PA ⊥PB ,从而k PA ·k PB =-1,02242204--=--=y,k x k PB PA 而 0521224·224=-+-=--∴y x yx ,化简,得 注意到l 1⊥x 轴时,l 2⊥y 轴,此时A (2,0),B (0,4)中点M (1,2),经检验,它也满足方程x +2y -5=0 综上可知,点M 的轨迹方程为x +2y -5=0。
【点评】1) 解法1用了参数法,消参时应注意取值范围。