人教版小学五年级数学上册知识点
人教五年级数学上册必背知识点
人教五年级数学上册的必背知识点包括:
1.分数乘法:理解分数乘法的意义,掌握分数乘法的基本计算方
法。
2.长方形的面积公式:理解长方形面积的概念,掌握长方形面积
的计算方法。
3.除法的意义和计算方法:理解除法的意义,掌握除法的基本计
算方法。
4.平行四边形的面积公式:理解平行四边形面积的概念,掌握平
行四边形面积的计算方法。
5.三角形的面积公式:理解三角形面积的概念,掌握三角形面积
的计算方法。
6.梯形的面积公式:理解梯形面积的概念,掌握梯形面积的计算
方法。
7.组合图形的面积:理解组合图形面积的概念,掌握组合图形面
积的计算方法。
以上知识点需要学生熟练掌握,并能灵活运用。
同时,还需要注意一些细节问题,例如单位换算、小数点移动等。
人教版小学五年级上册数学第一单元知识点【三篇】
小學五年級上冊數學第一單元知識點一小數乘法1、小數乘整數:意義——求幾個相同加數的和的簡便運算。
如:1.5×3表示1.5的3倍是多少或3個1.5的和的簡便運算。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
2、小數乘小數:意義——就是求這個數的幾分之幾是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0占位。
3、規律:一個數(0除外)乘大於1的數,積比原來的數大;一個數(0除外)乘小於1的數,積比原來的數小。
4、求近似數的方法一般有三種:⑴四捨五入法;⑵進一法;⑶去尾法5、計算錢數,保留兩位小數,表示計算到分。
保留一位小數,表示計算到角。
6、小數四則運算順序跟整數是一樣的。
7、運算定律和性質:加法:加法交換律:a+b=b+a加法結合律:(a+b)+c=a+(b+c)減法:減法性質:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性質:a÷b÷c=a÷(b×c)小學五年級上冊數學第一單元知識點二1、小數乘整數(P2、3):意義--求幾個相同加數的和的簡便運算。
如:1.5×3表示1.5的3倍是多少或3個1.5的和的簡便運算。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
人教版五年级数学上册(全)复习知识点【精品】
小学数学五年级上册期末复习知识点归纳第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版小学五年级数学上册知识点归纳
人教版小学五年级数学上册知识点归纳第一单元《小数乘法》一.小数乘整数1.计算小数加法先把小数点对齐,再把相同数位上的数相加2.计算小数乘法末尾对齐,按整数乘法法则进行计算.3.积中小数末尾有0的乘法. 先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0.如:3.60 “0”应划去 .如果乘得的积的小数位数不够要在前面用0补足,再点上小数点.如0.02×2=0.044.计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐.二.小数乘小数1.因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数.2.小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.)乘得的积的小数位数不够要在积的前面用0补足,在点小数点.3.规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数.一个数(0除外)乘小于1的数(0除外),积小于这个数.一个数(0除外)乘1,积等于这个数.4.小数乘法的验算方法(1).把因数的位置交换相乘. (2).用计算器来验算三.积的近似数1.先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示.2. 如果求得的近似数所求数位的数字是9而后一位数字又大于等于5需要进1,这是就要依次进一用0占位.如6.597 保留两位为6.60.四.连乘.乘加.乘减1.小数乘法要按照从左到右的顺序计算2.小数的乘加运算与整数的乘加运算顺序相同,先乘除,后加减.五.简便运算整数乘法的交换律.结合律和分配律,同样适用于小数乘法.常见乘法计算(敏感数字):25×4=100 125×8=1000第二单元位置1.行和列的意义:竖排叫做列,横排叫做行.2.数对可以表示物体的位置,也可以确定物体的位置.3.数对表示位置的方法:先表示列,再表示行.用括号把代表列和行的数字或字母括起来,再用逗号隔开.例如:(7,9)表示第七列第九行.4.两个数对,前一个数相同,说明它们所表示物体位置在同一列上.如:(2,4)和(2,7)都在第2列上.5.两个数对,后一个数相同,说明它们所表示物体位置在同一行上.如:(3,6)和(1,6)都在第6行上.6.物体向左.右平移,行数不变,列数减去或加上平移的格数.物体向下.上平移,列数不变,行数减去或加上平移的格数.第三单元《小数除法》1.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算.2.小数除法的计算方法:(可以先写商的小数点,再写商)(1)除数是整数的小数除法:按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,如果被除数的整数部分比除数小,不够商1,要在商的个位上写0,然后点上小数点,再继续除;如果除到被除数的末尾仍有余数时,就在余数的后面添0再继续除.(2)除数是小数的除法:先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算.3.商不变的性质:两数相除,被除数与除数同时扩大或缩小相同的倍数(0除外),商不变.4.商的变化规律:两数相除,除数不变,被除数扩大或缩小几倍,商也随着扩大或缩小几倍.两数相除,被除数不变,除数扩大或缩小几倍,商也随着缩小或扩大几倍.5.除法中比较大小时的规律:一个数(0除外)除以大于1的数,商小于被除数一个数(0除外)除以1,商等于被除数一个数(0除外)除以小于1的数(0除外),商大于被除数6.取近似数的方法:取近似数的方法有三种:①四舍五入法②进一法③去尾法一般情况下,按要求取近似数时用四舍五入法,进一法.去尾法在解决实际问题的时候选择应用.取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数.没有要求时,除不尽的一般保留两位小数.7.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.依次不断重复出现的数字,叫做这个循环小数的的循环节.8.循环小数的表示方法:(1)一种是用省略号表示,要写出两个完整的循环节,后面标上省略号.如:0.3636… 1.587587….(2)另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点.如:0.3。
(人教版)小学五年级数学上册各单元重要知识点梳理详解汇总
(人教版)小学五年级数学上册各单元重要知识点梳理详解汇总第一单元 小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:@意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大:一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(1)四舍五入法;(2)进一法: (3)去尾法 5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:@加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@减法:{a −bc =a −(b +c )a −(b +c )=a −b −c@乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c -b×c】@除法:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右分别为列数和行数,即“先列后行”。
{a ÷b ÷c =a ÷(b ×c )a ÷(b ×c )=a ÷b ÷c1、数对:第二单元位置2、作用:一组数对确定唯一一个点的位置。
数学五年级上册知识点总结(人教版)
数学五年级上册知识点总结(人教版)第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置1、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版五年级上册数学知识点梳理
人教版五年级上册数学知识点梳理一、小数乘法。
1. 小数乘整数。
- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
例如:2.5×3表示3个2.5相加的和是多少。
- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
如果积的末尾有0,要先点上小数点,再把0去掉。
例如:2.5×3 = 7.5,先算25×3 = 75,因数2.5有一位小数,所以从75右边起数出一位点上小数点得7.5。
2. 小数乘小数。
- 意义:表示一个数的十分之几、百分之几、千分之几……是多少。
例如:2.5×0.3表示2.5的十分之三是多少。
- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
例如:2.5×0.3 = 0.75,先算25×3 = 75,因数2.5有一位小数,0.3有一位小数,共两位小数,从75右边起数出两位点上小数点得0.75。
3. 积的近似数。
- 求积的近似数的方法:先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”的方法求出近似数。
例如:2.5×0.3 = 0.75,如果保留一位小数,看百分位上的5,向十分位进1,0.75≈0.8。
4. 整数乘法运算定律推广到小数。
- 乘法交换律:a×b = b×a;乘法结合律:(a×b)×c=a×(b×c);乘法分配律:(a + b)×c=a×c + b×c。
这些运算定律在小数乘法中同样适用。
例如:2.5×0.4×0.3=(2.5×0.4)×0.3 = 1×0.3 = 0.3(运用乘法结合律);(2.5+0.3)×0.4 =2.5×0.4+0.3×0.4 = 1 + 0.12 = 1.12(运用乘法分配律)。
人教版小学五年级数学上册知识点
人教版小学五年级数学上册知识点第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版五年级上册数学知识点汇总
人教版五年级上册数学知识点汇总第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版小学数学五年级上册【重点知识点】_及复习
(人教课标版)五年级数学上册【知识点】第一单元《小数乘法》第二单元《小数除法》第三单元 《观察物体》具体内容 重 点 知 识观察物体(一) 1.从不同方向观察同一物体,看到的形状可能是不同的。
2.站在任一位置都不能同时看到长方体所有的面,最多只能看到它的三个面。
3.辨认从不同方向看立体图形得到的平面图形时,可以假设自己是观察者,站在不同方向看到的图形是什么形状,从而判断给出的图形是从哪个方向看到的。
观察物体(二) 1.从同一角度观察不同形状的立体图形,得到的平面图形可能是相同的,也可能是不同的。
2.观察两个简单立体图形,要注意两个图形的位置关系。
第四单元 《四简易方程》具体内容 重 点 知 识用字母表示数 1.用字母表示数。
在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
数和字母相乘时,省略乘号后,一律将数写在字母前面。
2.用字母表示运算定律。
加法交换律是 a+b=b+a ;加法结合律是 (a+b)+c=a+(b+c); 乘法交换律是 ab=ba ; 乘法结合律是 (ab)c=a(bc);乘法分配律是 (a+b)c=ac+bc 。
3.用字母表示常见的数量关系及计算公式。
用含有字母的式子表示指定的数量,再把字母的取值代入式子中求值,只要在答旬中写出得数即可。
方程的意义 1.方程与等式的区别。
含有未知数的等式叫做方程;方程一定是等式,而等式不一定是方程。
2.等式的性质。
等式两边同时加上或减去相同的数,同时乘或除以相同的数(0除外),左右两边仍然相等。
解方程1.方程的解与解方程。
“方程的解”是一个数,是使等号左右两边相等的未知数的值;“解方程”是指演算过程。
2.解形如 ±a=b 和 a =b 的方程。
依据等式性质来解此类方程。
解方程时要注意写清步骤,等号对齐。
3.验算。
把未知数的值代人原方程,看等号左边的值是否等于等号右边的值。
稍复杂的方程1.列方程解决问题的步骤。
人教版五年级上册全册数学知识点归纳
人教版五年级上册全册数学知识点归纳第一单元:小数乘法。
、小数乘整数------重点:理解小数乘整数的算理。
2、小数乘小数------重点:小数乘小数的计算方法。
3、积的近似数------重点:会用“四舍五入”法取积是小数的近似数。
难点:根据实际情况取近似值。
4、连乘、乘加、乘减------重点:小数连乘、乘加、乘减的运算顺序。
难点:引导学生理解解决问题中出现的解题思路。
、整数乘法运算定律推广到小数------重点:理解整数乘法的运算定律在小数乘法中同样适用。
第二单元:小数除法。
、小数除以整数------重点:小数除以整数的计算方法。
难点:让学生理解商的小数点是如何确定的。
2、一个数除以小数------重点:掌握除数是小数除法的计算方法。
3、商的近似数------重点:求商的近似数时,商中的小数位数要比要求保留的小数位数多一位。
4、循环小数------重点:理解循环小数的意义,会用简便方法读写循环小数。
难点:怎样判断除得的商是循环小数。
、解决问题------重点:训练学生解决问题的思路,让学生掌握分析问题的基本步骤。
第三单元:观察物体。
观察物体(一)------重点:从不同位置观察物体,所看到的形状是不同的。
观察物体(二)------重点:正确辨认从上面、侧面、正面观察到的立体组合图形。
第四单元:简易方程。
、用字母表示数------重点:会用字母表示数、运算定律及计算公式。
2、用含有字母的式子表示数量及数量关系------重点:用含有字母的式子表示数量。
3、方程的意义------重点:初步理解方程的意义。
4、解方程------重点:利用天平平衡的道理理解解比较简单的方程的方法。
、稍复杂的方程(一)------重点:学生自主探索通过列方程解决较复杂应用题的方法。
6、稍复杂的方程(二)------重点:分析数量关系。
难点:列方程和解方程。
7、稍复杂的方程(三)------重点:正确设未知数,找出等量关系列方程并解决问题。
人教版五年级(上册)数学知识点汇总-暑假预习必备
人教版五年级(上册)数学知识点汇总,暑假预习必备第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
人教版五年级上册数学全册知识点整理
人教版五年级数学上册知识点整理(完整版)第一单元小数乘法一、小数乘整数(一)小数乘整数与整数乘法的联系1、小数乘整数的意义和整数乘法的意义相同,都是求几个相同加数的和的简便运算。
2、计算小数乘整数,可以根据计量单位间的关系进行单位转化,先把小数转化成整数,再按照整数乘法的计算方法进行计算。
(二)小数乘整数的算理和算法1、算理(1)小数点移动引起小数大小变化的规律小数点向右①移动一位,相当于把原数乘10,小数就扩大到原数的10倍;②移动两位,相当于把原数乘100,小数就扩大到原数的100倍;③移动三位,相当于把原数乘1000,小数就扩大到原数的1000倍;小数点向左:①移动一位,相当于把原数除以10,小数就缩小到原数的110。
②移动两位,相当于把原数除以 100,小数就缩小到原数的1100;③移动三位,相当于把原数除以1000,小数就缩小到原数的11000;(2)积的变化规律:两个数相乘,一个因数不变,另一个因数乘几或除以几(0除外),积也乘(或除以)几。
2、算法(1)用竖式计算小数乘整数的要点:①把小数乘整数转化成整数乘法进行计算。
小数乘法中一般右端要对齐,不必把相同数位对齐。
②处理好积中小数点的位置。
因数中共有几位小数,积中也应该有几位小数。
注意:当积的小数部分末尾有0 时,要依据小数的性质进行化简。
二、小数乘小数(一)小数乘小数的算理和算法1、算理因数的变化引起积的变化规律:一个因数扩大到原来的a倍,另一个因数扩大到原来的 b 倍,积扩大到原来的(a×b)倍。
2、算法(1)小数乘小数的计算方法①先按照整数乘法算出积,再点小数点,小数乘法中一般右端要对齐,不必把相同数位对齐。
②点小数点时,看两个因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(2)积的小数位数不够的小数乘法的计算方法:计算小数乘法,乘得的积的小数位数如果不够,要在前面用0补足,再点小数点。
三、探究因数和积之间的大小关系(一)一个数(0 除外)乘大于1的数,积比原来的数大。
人教版小学数学五年级(上册)各单元知识点归纳
人教版小学数学五年级(上册)各单元【知识点】第一单元《小数乘法》一、小数乘整数的计算方法:1、先将小数转化成整数2、再按照整数乘法的计算方法算出积3、最后确定积的小数点的位置。
4、如果积的小数部分末尾若出现0,要去掉小数末尾的0,使小数成为最简形式。
二、小数乘小数的算理及计算方法:(1)按照整数乘法算出积,再点小数点;(2)点小数点时,看因数中一共有几位小数,有几位小数就从积的右边起数出几位,点上小数点;(3)积的小数位数如果不够,在前面用0补足,再点小数点;(4)积的小数部分末尾有0的要把0去掉。
三、积与因数的关系一个因数(0除外)乘大于1的数,积比原来的因数大;一个因数(0除外)乘小于1的数,积比原来的因数小。
四、求一个数的小数倍数是多少的问题的解题方法:用乘法计算,即用这个数乘小数倍数。
五、小数乘法的常用验算方法:(1)根据因数与积的大小关系检验;(2)交换两个因数的位置,重新计算;(3)用计算器验算。
六、用“四舍五入”法求积的近似数:1、先算出积,然后看要保留数位的下一位,再按“四舍五入法”求出结果,用“≈”表示;2、用四舍五入法保留一定的小数位数。
四舍五入法:小于5,把它和右边的数全舍去,改写成0大于5,向前进1,再把它和右面的数全舍去,改写成0由于小数的末尾去掉0和加上0,小数的大小不变,所以取小数的近似数时不用把数改写成0,直接去掉。
2.205≈2 (保留整数)2.205≈2.2 (保留一位小数)2.205≈2.21 (保留两位小数)3、如果求得的近似数要保留数位的数字是9而后一位数字又大于5需要进1,这时就要依次进一用0占位。
如6.597 保留两位小数为6.60。
特别注意:在保留整数、(一位、两位、三位)小数、省略(亿···万···十分位、百分位···)后面的尾数、精确到(亿···万···十分位、百分位···)这类题目,都可以用划圆圈的方法来完成。
人教版五年级上册数学知识点汇总
人教版五年级上册数学知识点汇总一、小数乘法1.小数乘整数:o理解小数乘整数的意义,掌握计算方法。
o会用小数乘整数解决简单的实际问题。
2.小数乘小数:o掌握小数乘小数的计算方法,理解积的小数位数与乘数小数位数的关系。
o能进行小数乘法的简便计算。
3.积的近似数:o理解近似数的概念,学会用四舍五入法求积的近似数。
4.连乘、乘加、乘减:o掌握小数连乘、乘加、乘减的运算顺序和计算方法。
5.整数乘法运算定律推广到小数:o理解并应用加法交换律、结合律,乘法交换律、结合律和分配律进行小数计算。
二、位置1.用数对表示位置:o理解数对的概念,能用数对表示具体情境中物体的位置。
o能在方格纸上根据数对确定物体的位置。
三、小数除法1.小数除以整数:o理解小数除以整数的意义,掌握计算方法。
o能进行小数除以整数的估算和精确计算。
2.一个数除以小数:o掌握除数是小数的除法计算方法,理解商的变化规律。
3.商的近似数:o理解近似数的必要性,学会用四舍五入法求商的近似数。
4.循环小数:o认识循环小数,能用简便方法表示循环小数。
5.用计算器探索规律:o学会使用计算器进行复杂的小数计算,并通过计算探索数学规律。
四、可能性1.简单事件发生的可能性:o理解可能性的概念,能用“一定”、“可能”、“不可能”等词语描述简单事件发生的可能性。
2.游戏规则的公平性:o理解游戏规则的公平性,能设计简单的公平游戏。
五、简易方程1.用字母表示数:o理解用字母表示数的意义和作用,能用字母表示简单的数量关系。
2.方程的意义:o理解方程的概念,知道等式与方程的关系。
3.解简易方程:o掌握解简易方程的基本步骤和方法,如等式两边同时加、减、乘、除同一个数(不为0)。
4.列简易方程解决问题:o学会根据问题中的等量关系列简易方程,并解方程求解。
六、多边形的面积1.平行四边形的面积:o掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。
2.三角形的面积:o掌握三角形的面积计算公式,理解等底等高的三角形面积相等。
人教版小学五年级数学上册知识点总结和复习要点
人教版小学五年级数学上册知识点总结和复习要点一、数与代数1整数的认识概念:整数包括正整数、零和负整数,不包括小数和分数。
性质:整数可以进行加减乘除四则运算,但除以零没有意义。
特点:整数在数轴上表示为离散的点。
举例:1、2、3、0、-1、-2等都是整数。
2小数的认识概念:小数是由整数部分、小数点和小数部分组成的数。
性质:小数可以进行加减乘除四则运算,但小数点要对齐。
特点:小数可以表示比整数更精确的数量。
举例:0.5、1.23、4.567等都是小数。
3分数的认识概念:分数表示整体的一部分,由分子、分母和分数线组成。
性质:分数可以进行加减乘除四则运算,运算时需要通分或约分。
特点:分数可以表示不可分割的数量关系。
举例:1/2、3/4、5/6等都是分数。
4因数与倍数概念:一个整数能被另一个整数整除,则后者是前者的因数,前者是后者的倍数。
性质:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的。
特点:一个数的所有因数中,1和它本身总是因数;一个数的倍数总是比这个数大。
举例:12的因数有1、2、3、4、6、12;12的倍数有12、24、36、48等。
5奇数与偶数概念:能被2整除的整数是偶数,不能被2整除的整数是奇数。
性质:奇数与偶数的和或差是奇数;奇数与偶数的积是偶数。
特点:除2外,任何偶数都是合数;任何奇数都不能被2整除。
举例:2、4、6、8等都是偶数;1、3、5、7等都是奇数。
二、空间与几何1图形的变换概念:图形的变换包括平移、旋转和轴对称等。
性质:平移不改变图形的大小和形状;旋转不改变图形的大小和形状,但改变图形的方向;轴对称图形关于对称轴对称。
特点:平移和旋转是图形位置的变化;轴对称是图形形状的对称性。
举例:推拉窗户是平移;旋转门是旋转;蝴蝶的翅膀是对称的。
2图形的面积概念:面积是指一个物体表面或平面图形所占的大小。
性质:面积可以用平方单位来衡量,如平方厘米、平方米等。
人教版五年级上册数学知识点汇总
人教版五年级上册数学知识点第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。
1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学五年级数学上册复习教学知识点归纳总结
第一单元小数乘法
1、小数乘整数:
@意义——求几个相同加数的和的简便运算。
如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数:
@意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。
3、规律:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:
⑴四舍五入法;⑵进一法;⑶去尾法
5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
6、小数四则运算顺序和运算定律跟整数是一样的。
7、运算定律和性质:
@ 加法:
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
@ 减法:
a-b-c=a-(b+c)
a-(b+c)=a-b-c
@ 乘法:
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
@ 除法:
a÷b÷c=a÷(b×c)
a÷(b×c) =a÷b÷c
第二单元位置
1、数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右分别为列数和行数,即“先列后行”。
2、作用:一组数对确定唯一一个点的位置。
经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。
如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。
(有一个数不确定,不能确定一个点)
2、图形左右平移行数不变;图形上下平移列数不变。
第三单元小数除法
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。
商的小数点要和被除数的小数点对齐。
整数部分不够除,商0,点上小数点。
如果有余数,要添0再除。
3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。
5、除法中的变化规律:
①商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
@ 循环节:一个循环小数的小数部分,依次不断重复出现的数字。
如
6.3232……的循环节是32.
7、小数部分的位数是有限的小数,叫做有限小数。
小数部分的位数是无限的小数,叫做无限小数。
第四单元可能性
1、有些事件的发生是确定的,有些是不确定的。
可能
(不能确定)
可能性不可能
一定
2、事件发生的机会(或概率)有大小。
大数量多
小数量少
第五单元简易方程
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
注:加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a2读作a的平方。
注:2a表示a+a ;a2表示a×a
(确定)
3、方程:含有未知数的等式称为方程。
4、使方程左右两边相等的未知数的值,叫做方程的解。
5、求方程的解的过程叫做解方程。
6、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
7、10个数量关系式:
@ 加法;
和=加数+加数;
一个加数=和-两一个加数
@ 减法:
差=被减数-减数;
被减数=差+减数;
减数=被减数-差
@乘法:
积=因数×因数;
一个因数=积÷另一个因数
@ 除法:
商=被除数÷除数;
被除数=商×除数;
除数=被除数÷商
第六单元多边形的面积
1、长方形:
@ 周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】字母表示:C=(a+b)×2
@面积=长×宽
字母表示:S=ab
2、正方形:
@周长=边长×4
字母表示:C=4a
@面积=边长×边长
字母表示:S=a2
3、平行四边形的面积=底×高
字母表示:S=ah
4、三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】字母表示:S=ah÷2
5、梯形的面积=(上底+下底)×高÷2
字母表示:S=(a+b)h÷2
上底=面积×2÷高-下底,
下底=面积×2÷高-上底;
高=面积×2÷(上底+下底)
6、平行四边形面积公式推导:剪拼、平移、割补法
7、三角形面积公式推导:旋转、拼凑法
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,
平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高。
因为平行四边形面积=底×高,所以三角形面积=底×高÷2
8、梯形面积公式推导:旋转、拼凑法
9、两个完全一样的梯形可以拼成一个平行四边形;
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
10、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
11、长方形框架拉成平行四边形,周长不变,面积变小。
12、组合图形面积(或阴影部分面积):转化成已学的简单图形,通过加、减进行计算(整体-部分=另一部分)。
第七单元数学广角——植树问题
1、
如图:
间隔数=棵树 间隔长×间隔数=全长
全长÷间隔长=间隔数 全长÷间隔数=间隔长
2、 两端都载:
如图:
间隔数
+1=棵树 间隔长×间隔数=全长
全长÷间隔长=间隔数 全长÷间隔数=间隔长
全长÷间隔长+1=棵数 全长÷(棵树-1)=间隔长
3、 两端都不载
如图:
间隔数-1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长
全长÷间隔长-1=棵数 全长÷(棵树+1)=间隔长。