高中数学选择填空答题技巧
成考资讯:高等数学考试技巧!
成考资讯:高等数学考试技巧!
在成人高考中,高数可能是大部分考生比较担忧的一个科目。
但其实,高数只是在原有的高中数学的基础上增加了微积分,对原来的函数、极限、直线等的基础概念进行了更深层次的剖析。
在考前最后的冲刺时间,在捉紧复习的同时,考试技巧也很重要:
1、熟悉考试题型,合理安排做题时间
高数一共分为三大题型,其中选择题40分,填空题40分,解答题70分。
选择题、填空题都是由浅到深,第一道选择题一般都是几何题,难度是8到9,80%的人都能通过。
2、巧解选择填空题
对于基础不太好的同学,选择填空题是一个得分重点。
选择填空题解题方法一般有:排除法、数形结合法、画图法、代入验证法等。
特别是选择题,遇到实在不会的,可以把4个选项都代入到题目中验证。
3、学会取舍
考试时,一定要根据自己的情况进行取舍,不懂的题目直接跳过,因为这不但会耗费时间,而且很大程度上会影响答题心情,妨碍正常发挥。
就像第一点所说的,所有题型都是由浅到深的,基础较差的考生建议优先做好选择填空1-8题,解答题前4道题,有空余时间再解决难题。
1。
高中数学考试答题技巧及方法
高中数学考试答题技巧及方法高中数学是一个让很多学生头痛的学科,那么,怎么应对高中数学考试呢?下面整理了一些高中数学考试答题技巧,供大家参考!如何学好高中数学高中数学解题方法与技巧怎样学好高中数学高中数学怎么学成绩提高快高中数学考试技巧掌握时间由于,基础中考能力,所以要注重解题的快法和巧法,能在30分钟左右,完成全部的选择填空题,这是夺取高分的关键。
在平时当中一定要求自己选择填空一分钟一道题。
用数学思想方法高速解答选择填空题。
先易后难所以,只做选择,填空和前三道大题是不够全面的。
因为,后“三难”题中的容易部分比前面的基础部分还要容易,所以我们应该志在必得。
在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。
然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分。
这样,你的总分就可以超过130分,向145分冲刺。
后三题尽量多得分第二段是解答题的前三题,分值不到40分。
这样前两个阶段的总分在110分左右。
第三段是最后“三难”题,分值不到40分。
“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。
首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。
后3题不是只做第一问的问题,而应该猜想评分标准,按步骤由前向后争取高分。
高中数学答题方法最强高考励志书,淘宝搜索《高考蝶变》购买!填空题填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。
不过填空题和选择题也有质的区别。
首先,表现为填空题没有备选项。
因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些。
选择题解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。
尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
高中数学考试题型解题技巧专题讲座
高中数学考试题型解题技巧专题讲座数学冲刺复习一定要把大纲中规定的核心重要考点进行梳理,结合做题来进一步的巩固,熟练把握。
下面是为大家整理的关于,希望对您有所帮助!高中数学选择题的解题方法方法一:直接法所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.方法二:特例法特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.注意:在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.方法三:排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.注意:排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重.方法四:数形结合法数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.方法五:估算法在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.方法六:综合法当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.高中数学的证明题的推理方法一、合情推理1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。
高中数学考试的答题技巧一览
高中数学考试的答题技巧一览数学解题方法1、剔除法利用题目给出的已知条件和选项提供的信息,从四个选项中选出三个错误答案,从而达到正确答案的目的。
当答案为定值时,一般采用这种方法,或者利用数值范围,取特殊点代入验证答案。
2、特殊值检验法对于一般的选择题,在答题的过程中,可以对题目进行具体的专门化。
如果特殊情况下题型不成立,可以利用一般情况下不成立的原则,达到去伪存真的目的。
3、顺推破解法利用数学公式、规则、问题、定理和定义,通过直接演算和推理获得答案的方法。
4、极端性原则把要回答的问题分析到极致状态,使因果关系更加清晰,达到快速解决问题的目的。
极值多用于值域、解析几何和极值。
很多计算量大、计算步骤复杂的问题,用极值来分析,可以瞬间解决。
5、直接法直接法是从题目的条件出发,通过正确的推理、判断或运算,直接得出结论,然后做出选择的方法。
采用这种方法的学生,往往数学基础比较扎实。
6、估算法就是把一个复杂的问题变成一个简单的问题,估计出答案的近似值,或者缩小或扩大相关值,从而对运算结果做出估计或确定一个范围,达到做出判断的效果。
高考数学答题方法整理1、函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4、选择与填空中出现不等式的题目,优选特殊值法;5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;数学解题方法1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
高考数学选择填空共多少分满分
高考数学选择填空共多少分满分高考数学选择填空共多少分满分高考作为中国教育制度中的重要组成部分,一直备受关注。
其中,数学选择填空部分是数学科目中的重要考点之一。
那么,数学选择填空共多少分满分呢?下面是教育专家的分析和建议。
标题一:数学选择填空部分的分值数学选择填空共有30道题目,每题1分,总分数为30分。
这部分的考试时间为40分钟。
标题二:数学选择填空部分的难度根据多地高考的情况,数学选择填空部分的难度大体上是适中。
题目中的知识点主要涉及到初中和高中的数学知识,但是也会有一些考察思维能力和解决实际问题的题目。
标题三:数学选择填空部分的备考建议备考数学选择填空部分,需要注意掌握数学的基本知识。
平时需要多做练习,加强对数学知识点的理解和记忆。
同时,也需要注重培养解决实际问题和思维能力,这样才能更好地应对考试中的题目。
标题四:数学选择填空部分的得分技巧在考试中,需要注重做题的速度和准确性。
可以通过分类练习,提高做题的效率。
对于一些较难的题目,可以先放过,等到后面再来解决。
同时,需要注意填写答题卡的规范性和正确性。
标题五:数学选择填空部分的解题思路在解题时,需要注意审题和分析题目。
对于一些比较复杂的题目,可以采取分步骤的方式解决。
同时,对于一些实际问题,需要注重解决问题的方法和步骤,而不只是单纯地计算答案。
高考建议:1. 要合理规划备考时间,充分利用假期和周末时间,提前进行复习和练习。
2. 选择适合自己的学习方式和方法,既要注重掌握基础知识,也要注重解决实际问题和培养思维能力。
3. 在考前要调整好心态,保持积极乐观的心态,避免过度焦虑和紧张。
4. 考试时要注意时间的分配,把握好做题的速度和准确性。
5. 在答题时要认真仔细,注意填写规范和正确性,避免因为抄错或漏填而丢分。
高考数学答题技巧与套路精选
高考数学答题技巧与套路精选高考数学答题技巧一、难题先跳过手热好得分周洁娴,毕业于华师一附中理科班,高考664分。
说到去年高考数学和理科综合,周洁娴仍心有余悸。
数学开考时不顺,她几道选择题拿不准,十几分钟后越做越慌。
她决定跳过这几题往后面做,没想到思路打开了,答题很顺利,之前拿不准的题也好上手了。
“我感觉脑袋也像机器,需要预热!”二、开头最易错回头可救分“基础题得分和丢分都很容易。
”去年毕业于武汉三中的黑马陈野介绍,越容易的题越要仔细。
陈野说,自己能超常发挥,很大程度因为考试时基础题得分高,特别是理科综合和数学两门。
做选填题时,无论题目多简单,都会保证做完后再检查一遍,确保能做的题目不出错。
“既然得不到难题分,一定要保证简单题不错。
”周洁娴回忆,考数学时,离交卷还剩10分钟,她开始回头检查。
结果重新算了算看上去不对劲的答案,发现真有错误,救回10多分。
三、时间很宝贵掐表做综合对于综合考试的时间,受访学生均认为,一定要学会合理分配时间。
周洁娴回忆,做综合试卷的物理部分时,最后一题有点难。
当时她做前面部分花的时间已超出预算,结果越做越急,无奈之下只得放弃物理最后一题。
好在自己做化学时挤出了一些时间,最后回头才完成物理这道压轴题。
毕业于武汉一中的黑马梁巾认为,综合科目的答题没必要刻意按照统一的答题模式,但最好分科进行,不交叉答题。
答题时,应先做自己最拿手的科目。
四、审题别偷懒用时别吝啬“不集中精力仔细审题,一不留神就丢分。
”去年全市理科状元,武汉三中学生徐懋祺以685分考入北大。
他建议考生,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。
“要留意题目的所有条件。
”毕业于武汉四中的黑马刘恋念说,物理题有时会给出很多物理量。
这时不妨把已知的物理量都圈起来,做题时如发现所给物理量没用,肯定是答题思路有问题,一定要重新思考。
“文科综合更是重在审题。
”毕业于武汉十二中的黑马佘晔介绍,文科综合里的选择题干扰项特别多。
高中数学选择题的答题方法和技巧
高中数学选择题的答题方法和技巧
高中数学选择题是高中数学考试中的一种常见题型,也是让许多学生感到头疼的难题。
在答题时,如何选择正确答案显得尤为重要。
以下是一些高中数学选择题的答题方法和技巧:
1. 仔细阅读题目
在做高中数学选择题时,首先需要认真阅读题目,理解题意。
对于难以理解的问题,可以反复阅读,并将重要信息和关键词标记出来。
在理解了题目后,可以开始进行解题。
2. 初步排除答案
在阅读完题目后,可以根据所学知识及题目中的条件和限制初步判断选择题中哪些选项是不可能的。
对于那些不可能是正确答案的选项,可以直接排除掉,这样可以大大缩小范围。
3. 适当画图
对于一些几何题,可以先画出图形来更好地理解问题。
在画图时,可以标注出给定的条件和需要求解的未知量,帮助自己更加清晰地理解题目。
4. 利用选项
在答题时,可以利用选项中的信息来判断哪些选项是可能的正确答案。
对于一些带有数量关系的问题,可以将选项带入公式进行计算。
对于一些不确定的问题,可以排除一些显然错误的选项,然后从剩余的选项中做出选择。
5. 注意细节
在做高中数学选择题时,需要注意细节。
一些小的关键词和条件可能会影响到最终的答案,因此需要认真仔细地读题,注意细节。
总之,做高中数学选择题需要认真阅读题目,初步排除答案,适当画图,利用选项和注意细节。
只有做到这些,才能更好地解决高中数学选择题。
高中数学答题模板全套整理
高中数学答题模板全套整理一、选择题1. 配方法:将各选择题中的函数解析式配成完全平方式,常用根式与二次根式有这密切关系。
2. 分离常数法:把常数与变量式分离,使问题更简单。
3. 判别式法:将不等式利用判别式转化为不等式组,求出结果。
4. 数形结合法:根据题意画出图形,使问题简单易懂。
5. 特殊值法:将特殊值代入题设条件进行检验,从而得出结论。
二、填空题1. 直接法:根据题目的已知条件,直接求解,得出结果。
2. 观察法:根据题目特点,通过观察得出解题思路。
3. 数形结合法:将问题转化为图形,用图形解答。
4. 变换法:通过变化已知条件,达到解决问题的目的。
三、解答题1. 通性通法解答:利用常见类型题的通性通法,即一般解题模式进行解答,要求熟练掌握各部分知识的常用方法、技巧。
对于抽象的函数、方程等问题,构建数学模型。
如:三角函数中一元二次方程的根及二次函数图象的应用。
圆锥曲线中的利用点差法求斜率。
直线方程中的数形结合等。
在求动点轨迹时注意点的坐标所满足的条件。
因此通性通法是解题的基础。
2. 特殊引路法:在解题陷入困境时,先采用简单的方法得出答案,再反推至一般情况,这种由特殊到一般的方法体现了思维的灵活性和创造性。
如:在求轨迹问题中常用此方法。
四、答题步骤及注意事项(一)答题步骤1. 将各题答案直接写在答题纸上(不必抄题)。
填空题把答案涂黑;选择题把所选答案的字母写在特定的位置;解答题写出最后结果。
答题时应认真仔细,注意卷面清晰。
对于一般的函数方程一般分两步去处理:一是求出所要求的未知数的取值范围;二是求出在所求范围内使等式成立的未知数的值。
最后一定要把题目中要求的内容全部答出,尤其注意一些细小的环节,不要因粗心而失分。
另外书写要工整规范,保留一些回头看的空间。
所以高三第一轮系统复习过程中要牢记这些要点,这样到考场上才能运用自如。
其实考试也是对自己心理素质的考验,同学们要学会抑制自己焦虑的心情,从容应考。
高中高考数学答题规范与技巧
20XX 年高考数学答题规范与技巧高考答题的规范化要求有好多方面:答题工具、答题规则与程序、答题地点、答题过程及书写格式要求等。
养成优秀的答题习惯,能够帮助考生多得分,最少不会失掉一些应得分。
1.答题工具①答选择题时,一定用合格的 2B 铅笔填涂,如需要对答案进行改正,应使用画图橡皮轻擦洁净,注意不要擦破答题卡。
②严禁使用涂改液、修正带或透明胶带改错。
③非选择题一定用 0.5 毫米黑色墨水署名笔作答,作图题可先用铅笔绘出,确认后,再用 0.5 毫米黑色墨水署名笔描清楚。
2.答题规则与程序⑴先选择题、填空题,再做解答题;⑵先填涂再解答;⑶先易后难。
3.答题地点按题号在指定的答题地区内作答,切不行高出黑色边框,高出黑色边框的答案无效。
如需对答案进行改正,可将需改正的内容划去,而后紧挨在其上方或其下方写出新的答案,改正部分在书写时与正文同样,不可以超出该题答题地区的黑色矩形边框,不然改正的答案无效。
一般先紧后松。
4.解题过程及书写格式要求⑴选择题的填涂⑵填空题的规范对于填空题,只需填写结果,省掠过程,并且所填结果应力求精练、归纳的正确。
常有错误或不规范的答卷方式有:笔迹不工整、不清楚、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数分析式书写正确但不注明定义域、要求结果写成会合的不用会合表示、会合的对象属性描绘不正确。
⑶解答题的规范第一,解答题应答时,考生不单要供给出最后的结论,还得写出或说出解答过程的主要步骤,供给合理、合法的说明。
答题过程要整齐雅观、逻辑思路清楚、观点表达正确、答出重点语句和重点词。
比方要将你的解题过程转变为得分点,主要靠正确完好的数学语言表述,这一点常常被一些考生忽略,所以,卷面上大批出现“会而不对”“对而不全”的状况。
如立体几何论证中的“跳步”,使好多人丢掉得分,代数论证中的“以图代证”,只管解题思路正确甚至很奇妙,可是因为不擅长把“图形语言”正确地转移为“文字语言”,只管考生“成竹在胸”却说不清楚,所以得分少。
数学选择题解题技巧
数学选择题解题技巧数学选择题解题技巧1直接法(推演法):定义:直接从题设条件出发,运用有关的概念、定义、公理、定理、性质、公式等,使用正确的解题方法,经过严密的推理和准确的运算,得出正确的结论,然后对照题目中给出的选择项“对号入座”,作出相应的选择,这种方法称之为直接法.是一种基础的、重要的、常用的方法,一般涉及概念、性质的辨析或运算较简单的题目常用直接法.排除法定义:利用选择题的特征:答案唯一,来去伪存真,舍弃不符合题目要求的错误答案。
途径有二种:1)从已知条件出发,通过观察分析或推理运算各选项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论,这种方法称为排除法.2)从选项入手,根据题设的条件与选项的关系,通过分析、推理、计算、判断,对选项进行筛选,逐步缩小范围,得到正确结果.称为反排法.排除法常应用于条件多于一个时,先根据一些已知条件,在选择项中找出与其相矛盾的选项,予以排除,然后再根据另一些已知条件,在余下的选项中,再找出与其矛盾的选项,再予以排除,直到得出正确的选项为止.等价转化法定义:根据题目的条件和要求,将题目等价转化为一个容易解答的方式进行解决。
在解决有关排列组合的的应用问题尤为突出.定义法定义:根据题目中涉及到的知识的定义出发进行解答,因此回归定义是解决问题的一种重要策略.总结:要注意定义的成立条件或约束条件,平时要掌握定义的推导和证明过程.直觉判断法定义:通过平时的练习积累,可根据直觉对题目中的答案进行判断.比如一个长方形面积最小时,长与宽的关系是什么样的?二点间的直线距离最短等.要点:需要平时多积累、多观察、多总结.数学选择题解题技巧2先易后难就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
先熟后生高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。
高三数学应试技巧合理利用中的各种技巧
高三数学应试技巧合理利用中的各种技巧高三阶段,数学考试对于很多同学来说是一项重大挑战。
然而,通过合理利用各种应试技巧,我们可以在考试中更加游刃有余,提高成绩。
以下是一些在高三数学应试中非常实用的技巧。
一、考前准备1、知识梳理在考前,对整个高中数学的知识体系进行系统梳理是至关重要的。
将各个章节的知识点、公式、定理等进行整理,形成清晰的知识框架。
可以通过制作思维导图或者列提纲的方式来帮助记忆。
2、错题回顾平时积累的错题是宝贵的复习资源。
在考前,认真回顾错题,分析出错的原因,总结解题的思路和方法,避免在考试中犯同样的错误。
3、模拟考试按照考试的时间和要求进行模拟考试,提前适应考试的节奏和氛围。
在模拟考试中,要注意时间的分配,找到自己在不同题型上的答题速度和效率,以便在正式考试中做出合理的安排。
二、考试中的答题技巧1、认真审题审题是解题的关键。
在拿到题目后,不要急于动笔,要仔细阅读题目,理解题目的意思,找出题目中的关键信息和条件。
对于一些复杂的题目,可以多读几遍,确保自己理解准确。
2、选择合适的解题方法根据题目所给的条件和要求,选择合适的解题方法。
高中数学的解题方法多种多样,如直接法、间接法、数形结合法、分类讨论法等。
在选择解题方法时,要综合考虑题目特点和自己的掌握程度,选择最简便、最有效的方法。
3、分步答题对于一些综合性较强的题目,可以采用分步答题的方法。
将题目分解成若干个小问题,逐步解决,这样可以降低解题的难度,也便于检查和纠错。
4、注意答题规范答题规范不仅可以让阅卷老师清晰地了解你的解题思路,还可以避免因为书写不规范而导致的扣分。
在答题时,要注意字迹工整、步骤清晰、符号使用正确。
三、时间管理技巧1、合理分配时间根据试卷的题型和分值,合理分配答题时间。
一般来说,选择题和填空题的答题时间不宜过长,要为后面的解答题留出足够的时间。
对于难度较大的题目,如果在规定时间内没有思路,可以先跳过,等完成其他题目后再回来思考。
高中数学各类题型解题技巧
一、选择填空题选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
二、解答题专题一:三角变换与三角函数的性质问题1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二:解三角形问题1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
《教材帮》帮你全面总结知识点,再也不用担心公式知识点记不住了!专题三:数列的通项、求和问题1.解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2.构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
高二数学填空题答题技巧
高二数学填空题答题技巧高二数学填空题答题技巧一、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
它是解填空题的最基本、最常用的方法。
使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。
二、特殊化法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。
这样可大大地简化推理、论证的过程。
三、数形结合法“数缺形时少直观,形缺数时难入微。
”数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。
我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到"形帮数"的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到"数促形"的目的。
对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
四、等价转化法通过"化复杂为简单、化陌生为熟悉",将问题等价地转化成便于解决的问题,从而得出正确的结果。
高中数学填空题答题技巧1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
高考数学选择题填空题答题技巧
高考数学选择题填空题答题技巧知识、能力是解决问题的前提和基础,方法、技巧则是解决问题的关键。
以下是百分网小编搜索整理的关于高考数学选择题填空题答题技巧,供参考复习,希望对大家有所帮助!“解题思路”在某种程度上来说,属于理论上的“定性”,要想解具体的题目,还得有科学、合理、简便的方法。
有关选择题的解法的研究,可谓是仁者见仁,智者见智。
其中不乏真知灼见,现选择部分实用性较强的方法。
高考数学选择题答题技巧1、直接法有些选择题是由计算题、应用题、证明题、判断题改编而成的。
这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法。
2、筛选法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。
可通过筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。
如筛去不合题意的以后,结论只有一个,则为应选项。
3、特殊值法有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。
4、验证法通过对试题的观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。
5、图象法在解答选择题的过程中,可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。
6、试探法对于综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。
高考数学填空题答题技巧闯过选择填空题的基础关需要全面全力夯实基础,切实掌握选择填空题的解题规律,确保基础部分得满分,也就是把该得的分数确实拿到手。
数学填空题解题技巧常用方法与答题思路
数学填空题解题技巧常用方法与答题思路数学填空题是高中数学考试中常见的题型之一,要求我们根据给定的条件,填写合适的数值或表达式,完成题目。
为了提高解题效率和准确度,我们需要掌握一些常用的解题技巧和思路。
本文将介绍数学填空题的解题方法,以帮助读者更好地应对考试。
一、常用方法与技巧1. 查漏补缺法有时候,题目给出的条件并不足以直接求解填空,这时我们可以通过查漏补缺法,从其他已知条件中联想,找到解题的线索。
例如,在解方程填空题时,如果只给出了一元一次方程的表达式,我们可以通过观察找到一些特殊值代入,然后通过计算得到其他项的值,从而求解填空。
2. 利用等式性质在填空题中,往往会给出一些等式或不等式的条件,我们可以利用这些等式性质来进行填空。
例如,在解三角函数填空题时,可以利用正弦、余弦等函数的周期性和对称性质来求解。
3. 利用特殊性质有些题目中会出现一些特殊的性质,我们可以利用这些性质来简化计算或者推导填空的解。
例如,在解几何填空题时,可以利用几何图形的对称性或者相似性质来求解。
4. 利用逆向思维有时候,我们可以利用逆向思维来解决填空题。
即从答案出发,反推回去寻找答案对应的条件。
例如,在解数列填空题时,可以从给出的答案逆推回去,得到数列的等差或者等比公式。
二、答题思路1. 仔细审题在解答数学填空题之前,我们必须仔细审题,理清题目的要求和条件。
特别需要注意的是,填空题通常会给出一些隐含条件,我们要善于发现这些条件,并且合理利用。
2. 分析解题条件在解答填空题时,我们要分析给出的条件,看是否可以通过已知条件直接求解填空。
如果无法直接求解,可以尝试利用已知条件与其他数学知识之间的联系,进行间接求解。
3. 使用合适的方法和技巧根据题目的不同特点,我们可以选择合适的解题方法和技巧进行求解。
比如,在解代数式填空题时,我们可以利用因式分解、配方法等技巧解题;在解几何填空题时,可以运用几何性质、相似三角形等方法。
4. 检查解答在填写答案之后,一定要仔细检查算式的正确性和合理性,确保填空的结果符合题目要求和已知条件。
高中各科选择题答题技巧例子
高中各科选择题答题技巧例子一、语文选择题答题技巧读懂题干:首先要仔细阅读题干,了解题目要求和考察的知识点。
注意题干中的关键词和限定词,确保自己理解了题目的意图。
排除法:对于一些较难判断的选择题,可以先排除一些明显不符合题意的选项,再根据剩下的选项进行比较和推理,提高答题的准确率。
语境理解:对于涉及到文本阅读的选择题,要注重对语境的理解。
根据上下文和句子结构,分析作者意图和情感色彩,从而判断正确答案。
日常积累:语文选择题往往涉及到文化常识、文学知识等方面。
平时要注意积累相关的基础知识,提高自己的文化素养。
二、数学选择题答题技巧仔细审题:数学选择题往往具有迷惑性,需要仔细审题,明确题目要求。
注意题目中的单位、正负号等细节,避免因疏忽而选错答案。
数形结合:对于一些几何或代数选择题,可以通过画图或构建模型来帮助理解题目。
将抽象的数学问题转化为直观的图形,有助于快速找到答案。
排除法与推理法结合:首先排除明显不符合题意的选项,然后利用已知条件进行推理和计算,逐步缩小答案范围,最终找到正确答案。
练习与反思:数学选择题需要不断的练习和反思。
通过分析错题,找出自己的知识盲点,并加强相关练习,提高解题能力。
三、英语选择题答题技巧词汇积累:英语选择题往往涉及到词汇和语法的运用。
平时要注意词汇的积累和语法的掌握,确保能够准确理解句子含义和上下文情境。
语法分析:对于涉及到语法的选择题,要进行深入的语法分析。
根据句子的时态、语态、从句等语法规则,判断正确的答案选项。
逻辑推理:英语选择题中有很多推理题,需要根据上下文和语境进行推理判断。
要善于捕捉关键信息,结合语境进行逻辑分析。
模拟练习与解析:模拟练习是提高英语选择题答题技巧的有效途径。
通过模拟试题的练习,熟悉题型和考点,并注重解析,掌握答题技巧。
四、其他科目选择题答题技巧知识点回顾:在答题前要快速回顾相关知识点,确保对题目涉及的内容有清晰的认识。
理解题目要求:仔细阅读题目要求,明确考察的知识点和答题方向。
高考数学选择题蒙题口诀
高考数学选择题蒙题口诀
有很多的同学是非常的关心,高考数学选择题有哪些蒙题口诀的,小编整理了相关信息,希望会对大家有所帮助!
如何学好高中数学高中数学解题方法与技巧怎样学好高中数学高中数学怎幺学成绩提高快
1数学蒙题技巧守则1、答案有根号的,不选
2、答案有1的,选
3、三个答案是正的时候,在正的中选
4、有一个是正x,一个是负x的时候,在这两个中选
5、题目看起来数字简单,那幺答案选复杂的,反之亦然
6、上一题选什幺,这一题选什幺,连续有三个相同的则不适合本条
7、答题答得好,全靠眼睛瞟
8、以上都不实用的时候选b
最适合高考学生的书,淘宝搜索《高考蝶变》购买
数学从易到难复查
填空题:慎重再慎重在数学的主观题当中,填空题并不像后面的大题,要求给出具体的解题步骤,它只要求考生给出一个最后的答案。
这就要求考生在答题时更加慎重,按部就班来进行解题。
大题:步骤需明确在大题(计算题和证明题)阅卷过程中,一般是过程分和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择题的解题方法与技巧题型特点概述选择题是高考数学试卷的三大题型之一.选择题的分数一般占全卷的40%左右,高考数学选择题的基本特点是:(1)绝大部分数学选择题属于低中档题,且一般按由易到难的顺序排列,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有较好区分度的基本题型之一.(2)选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点,且每一题几乎都有两种或两种以上的解法,能有效地检测学生的思维层次及观察、分析、判断和推理能力.目前高考数学选择题采用的是一元选择题(即有且只有一个正确答案),由选择题的结构特点,决定了解选择题除常规方法外还有一些特殊的方法.解选择题的基本原则是:“小题不能大做”,要充分利用题目中(包括题干和选项)提供的各种信息,排除干扰,利用矛盾,作出正确的判断.数学选择题的求解,一般有两条思路:一是从题干出发考虑,探求结果;二是从题干和选择支联合考虑或从选择支出发探求是否满足题干条件.解答数学选择题的主要方法包括直接对照法、概念辨析法、图象分析法、特例检验法、排除法、逆向思维法等,这些方法既是数学思维的具体体现,也是解题的有效手段.解题方法例析题型一 直接对照法直接对照型选择题是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支.这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解.例1 设定义在R 上的函数f(x)满足f(x)•f(x +2)=13,若f(1)=2,则f(99)等于( C )A .13B .2C.132 D.213思维启迪: 先求f(x)的周期. 解析 ∵f (x +2)=13f (x ),∴f (x +4)=13f (x +2)=1313f (x )=f (x ).∴函数f (x )为周期函数,且T =4. ∴f (99)=f (4×24+3)=f (3)=13f (1)=132.探究提高 直接法是解选择题的最基本方法,运用直接法 时,要注意充分挖掘题设条件的特点,利用有关性质和已有的结论,迅速得到所需结论.如本题通过分析条件得到f(x)是周期为4的函数,利用周期性是快速解答此题的关键.变式训练1 函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))的值为( D )A .5B .-5C.15D .-15解析 由f (x +2)=1f (x ),得f (x +4)=1f (x +2)=f (x ),所以f (x )是以4为周期的函数,所以f (5)=f (1)=-5,从而f (f (5))=f (-5)=f (-1)=1f (-1+2)=1f (1)=-15.例2 设双曲线x 2a 2-y 2b 2=1的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为( D ) A.54B .5C.52D.5思维启迪: 求双曲线的一条渐近线的斜率即ba 的值,尽而求离心率. 解析 设双曲线的渐近线方程为y =kx ,这条直线与抛物线y =x 2+1相切,联立⎩⎨⎧y =kx y =x 2+1,整理得x 2-kx +1=0,则Δ=k 2-4=0,解得k =±2,即ba =2,故双曲线的离心率e =ca =c 2a 2=a 2+b 2a 2=1+(b a )2= 5.探究提高 关于直线与圆锥曲线位置关系的题目,通常是联立方程解方程组.本题即是利用渐近线与抛物线相切,求出渐近线斜率. 变式训练2已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是( B ) A .aB .bC.abD.a 2+b 2解析 x 2a 2-y 2b 2=1的其中一条渐近线方程为:y =-ba x ,即bx +ay =0,而焦点坐标为(c,0),根据点到直线的距离d =|b ×a 2+b 2|a 2+b2=b .故选B题型二 概念辨析法概念辨析是从题设条件出发,通过对数学概念的辨析,进行少量运算或推理,直接选择出正确结论的方法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要考生在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时要多加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易误入命题者设置的“陷阱”.例3 已知非零向量a =(x 1,y 1),b =(x 2,y 2),给出下列条 件,①a =k b (k ∈R);②x 1x 2+y 1y 2=0;③(a +3b )∥(2a -b );④a ·b =|a ||b |;⑤x 21y 22+x 22y 21≤2x 1x 2y 1y 2.其中能够使得a ∥b 的个数是( D ) A .1B .2C .3D .4解析 显然①是正确的,这是共线向量的基本定理;②是错误的,这是两个向量垂直的条件;③是正确的,因为由(a +3b )∥(2a -b ),可得(a +3a )=λ(2a -b ),当λ≠12时,整理得a =λ+32λ-1b ,故a ∥b ,当λ=12时也可得到a ∥b ;④是正确的,若设两个向量的夹角为θ,则由a ·b =|a ||b |cos θ,可知cos θ=1,从而θ=0,所以a ∥b ;⑤是正确的,由x 21y 22+x 22y 21≤2x 1x 2y 1y 2,可得(x 1y 2-x 2y 1)2≤0,从而x 1y 2-x 2y 1=0,于是a ∥b .探究提高 平行向量(共线向量)是一个非常重要和有用的概念,应熟练掌握共线向量的定义以及判断方法,同时要将共线向量与向量中的其他知识(例如向量的数量积、向量的模以及夹角等)有机地联系起来,能够从不同的角度来理解共线向量. 变式训练3关于平面向量a ,b ,c ,有下列三个命题:①若a ·b =a ·c ,则b =c .②若a =(1,k ),b =(-2,6),a ∥b ,则k =-3.③非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为 60°.则假命题为( B ) A .①②B .①③C .②③D .①②③解析 ①a ·b =a ·c ⇔a ·(b -c )=0,a 与b -c 可以垂直,而不一定有b =c ,故①为假命题.②∵a∥b,∴1×6=-2k.∴k=-3.故②为真命题.③由平行四边形法则知围成一菱形且一角为60°,a+b为其对角线上的向量,a 与a+b夹角为30°,故③为假命题.题型三数形结合法“数”与“形”是数学这座高楼大厦的两块最重要的基石,二者在内容上互相联系、在方法上互相渗透、在一定条件下可以互相转化,而数形结合法正是在这一学科特点的基础上发展而来的.在解答选择题的过程中,可以先根据题意,做出草图,然后参照图形的做法、形状、位置、性质,综合图象的特征,得出结论.例4 用min{a,b,c}表示a,b,c三个数中的最小值.设f(x)=min{2x,x+2,10-x}(x≥0),则f(x)的最大值为( C) A.4 B.5 C.6 D.7思维启迪:画出函数f(x)的图象,观察最高点,求出纵坐标即可.本题运用图象来求值,直观、易懂.解析由题意知函数f(x)是三个函数y1=2x,y2=x+2,y3=10-x中的较小者,作出三个函数在同一个坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图象的最高点.变式训练4 设集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪x 24+y 216=1,B ={}(x ,y )|y =3x ,则A ∩B 的子集的个数是 ( A )A .4B .3C .2D .1解析 集合A 中的元素是椭圆x 24+y 216=1上的点,集合B 中的元素是函数y =3x 的图象上的点.由数形结合,可知A ∩B 中有2个元素,因此A ∩B 的子集的个数为4.例5 函数f (x )=1-|2x -1|,则方程f (x )·2x =1的实根的个数是 ( C) A .0B .1C .2D .3思维启迪:.若直接求解方程显然不可能,考虑到方程可转化为f (x )=⎝ ⎛⎭⎪⎫12x ,而函数y =f (x )和y =⎝ ⎛⎭⎪⎫12x 的图象又都可以画出,故可以利用数形结合的方法,通过两个函数图象交点的个数确定相应方程的根的个数.解析 方程f (x )·2x=1可化为f (x )=⎝ ⎛⎭⎪⎫12x,在同一坐标系下分别画出函数y =f (x )和y =⎝ ⎛⎭⎪⎫12x的图象,如图所示.可以发现其图象有两个交点,因此方程f (x )=⎝ ⎛⎭⎪⎫12x有两个实数根.变式训练5 函数y =|log 12x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度b -a 的最小值是 ( D )A .2B.32C .3D.34解析 作出函数y =|log 12x |的图象,如图所示,由y =0解得x =1;由y =2,解得x =4或x =14.所以区间[a ,b ]的长度b -a 的最小值为1-14=34.题型四 特例检验法特例检验(也称特例法或特殊值法)是用特殊值(或特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. 特例检验是解答选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.例6 已知A 、B 、C 、D 是抛物线y 2=8x 上的点,F 是抛物线的焦点,且FA →+FB →+FC →+FD →=0,则|FA →|+|FB →|+|FC →|+|FD →|的值为 ( D )A .2B .4C .8D .16解析 取特殊位置,AB ,CD 为抛物线的通径,显然F A →+FB →+FC →+FD →=0, 则|FA →|+|FB →|+|FC →|+|FD →|=4p =16,故选D.探究提高 本题直接求解较难,利用特殊位置法,则简便易行.利用特殊检验法的关键是所选特例要符合条件.变式训练6 已知P 、Q 是椭圆3x 2+5y 2=1上满足∠POQ =90°的两个动点,则1OP 2+1OQ 2等于 ( B )A .34B .8C.815D.34225解析 取两特殊点P (33,0)、Q (0,55)即两个端点,则1OP 2+1OQ 2=3+5=8.故选B例7 数列{a n }成等比数列的充要条件是 ( B ) A .a n +1=a n q (q 为常数)B .a 2n +1=a n ·a n +2≠0C .a n =a 1q n -1(q 为常数)D .a n +1=a n ·a n +2解析 考查特殊数列0,0,…,0,…,不是等比数列,但此数列显然适合A ,C ,D 项.故选B.探究提高 判断一个数列是否为等比数列的基本方法是定义法,也就是看a n +1a n 是否为常数,但应注意检验一个数列为等比数列的必要条件是否成立. 变式训练7 已知等差数列{a n }的前n 项和为S n ,若a 2n a n =4n -12n -1,则S 2nS n的值为( C ) A .2 B .3C .4D .8解析 方法一 (特殊值检验法)取n =1,得a 2a 1=31,∴a 1+a 2a 1=41=4,于是,当n =1时,S 2n S n =S 2S 1=a 1+a 2a 1=4.方法二 (特殊式检验法)注意到a 2n a n =4n -12n -1=2·2n -12·n -1,取a n =2n -1,S 2nS n =1+(4n -1)2·2n 1+(2n -1)2·n =4.方法三 (直接求解法)由a 2n a n =4n -12n -1,得a 2n -a n a n =2n 2n -1,即nd a n =2n 2n -1,∴a n =d (2n -1)2,于是,S 2nS n =a 1+a 2n2·2na 1+a n2·n=2·a 1+a 2na 1+a n=2·d 2+d2(4n -1)d 2+d2(2n -1)=4. 题型五 筛选法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论. 例8 方程ax 2+2x +1=0至少有一个负根的充要条件是( C )A .0<a≤1B .a<1C .a≤1D .0<a≤1或a<0解析 当a =0时,x =-12,故排除A 、D.当a =1时,x =-1,排除B.故选C. 探究提高 选择具有代表性的值对选项进行排除是解决本题的关键.对“至少有一个负根”的充要条件取值进行验证要比直接运算方便、易行.不但缩短时间,同时提高解题效率.变式训练8 已知函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是( D )A .(0,1)B .(0,1]C .(-∞,1)D .(-∞,1]解析 令m =0,由f (x )=0得x =13适合,排除A 、B.令m =1,由f (x )=0得:x =1适合,排除C. 题型六 估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.例9若A 为不等式组⎩⎪⎨⎪⎧x ≤0y ≥0y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为 ( C )A.34B .1C.74D .2解析 如图知区域的面积是△OAB 去掉一个小直角三角形.阴影部分面积比1大,比S △OAB =12×2×2=2小,故选C 项. 探究提高 “估算法”的关键是应该确定结果所在的大致范围,否则“估算”就没有意义.本题的关键在所求值应该比△AOB 的面积小且大于其面积的一半.变式训练9 已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积是( D )A.169π B.83π C.4πD.649π解析 ∵球的半径R 不小于△ABC 的外接圆半径r =233,则S 球=4πR 2≥4πr 2=163π>5π,故选D. 规律方法总结1.解选择题的基本方法有直接法、排除法、特例法、验证法和数形结合法.但大部分选择题的解法是直接法,在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法.2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向肯定、否定、筛选、验证,既谨慎选择,又大胆跳跃.3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.知能提升演练1.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩(∁N B )等于( A )A .{1,5,7}B .{3,5,7}C .{1,3,9}D .{1,2,3}解析 由于3∈∁N B ,所以3∈A ∩(∁N B )∴排除B 、C 、D ,故选A.2.已知向量a ,b 不共线,c =k a +b (k ∈R),d =a -b .如果c ∥d ,那么( D) A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向解析 当k =1时,c =a +b ,不存在实数λ,使得a =λb .所以c 与d 不共线,与c ∥d 矛盾.排除A 、B ;当k =-1时,c =-a +b =-(a -b )=-d ,所以c ∥d ,且c 与d 反向.故应选D.3.已知函数y =tan ωx 在⎝⎛⎭⎪⎫-π2,π2内是减函数,则( B )A .0<ω≤1B .-1≤ω<0C .ω≥1D .ω≤-1解析 可用排除法,∵当ω>0时正切函数在其定义域内各长度为一个周期的连续区间内为增函数,∴排除A 、C ,又当|ω|>1时正切函数的最小正周期长度小于π,∴y =tan ωx 在⎝ ⎛⎭⎪⎫-π2,π2内不连续,在这个区间内不是减函数,这样排除D ,故选B.4.已知函数f (x )=2mx 2-2(4-m )x +1,g (x )=mx ,若对于任一实数x ,f (x )与g (x )的值至少有一个为正数,则实数m 的取值范围是( B )A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)解析 当m =1时,f (x )=2x 2-6x +1,g (x )=x ,由f (x )与g (x )的图象知,m =1满足题设条件,故排除C 、D.当m =2时,f (x )=4x 2-4x +1,g (x )=2x ,由其图象知,m =2满足题设条件,故排除A.因此,选项B 正确.5.已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向量OB →的夹角的取值范围是( D )A .[0,π4]B .[5π12,π2]C .[π4,5π12]D .[π12,5π12]解析 ∵|CA →|=2,∴A 的轨迹是⊙C ,半径为2.由图可知∠COB =π4,设向量OA →与向量OB →的夹角为θ,则π4-π6≤θ≤π4+π6,故选D.6.设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间为( C )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析 函数f (x )=2-|x |=(12)|x |,作图f (x )≤K =12⇒x ∈(-∞,-1]∪[1,+∞),故在(-∞,-1)上是单调递增的,选C 项.7.设x ,y ∈R ,用2y 是1+x 和1-x 的等比中 项,则动点(x ,y )的轨迹为除去x 轴上点的( D )A .一条直线B .一个圆C .双曲线的一支D .一个椭圆解析 (2y )2=(1-x )(1+x )(y ≠0)得x 2+4y 2=1(y ≠0).8.设A 、B 是非空数集,定义A *B ={x |x ∈A ∪B 且x ∈A ∩B },已知集合A ={x |y =2x -x 2},B ={y |y =2x ,x >0},则A *B 等于( C )A .[0,1]∪(2,+∞)B .[0,1)∪(2,+∞)C .(-∞,1]D .[0,2]解析 A =R ,B =(1,+∞),故A *B =(-∞,1],故选C.9.若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为 ( B ) A .[3-23,+∞) B .[3+23,+∞)C .[-74,+∞)D .[74,+∞)解析 由c =2得a 2+1=4,∴a 2=3,∴双曲线方程为x 23-y 2=1.设P (x ,y )(x ≥3), OP →·FP →=(x ,y )·(x +2,y )=x 2+2x +y 2=x 2+2x +x 23-1=43x 2+2x -1(x ≥3). 令g (x )=43x 2+2x-1(x ≥3),则g (x )在[3,+∞)上单调递增.g (x )min =g (3)=3+2 3.10.已知等差数列{a n }满足a 1+a 2+…+a 101=0,则( C ) A .a 1+a 101>0 B .a 2+a 102<0C .a 3+a 99=0D .a 51=51解析 取满足题意的特殊数列a n =0,则a 3+a 99=0,故选C.11.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为 (C )A .4B .6C .8D .10解析 令等差数列{a n }为常数列a n =16.显然a 7-12a 8=16-8=8.故选C. 12.若1a <1b <0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +ab >2中,正确的不等式是 (C )A .①②B .②③C .①④D .③④解析 取a =-1,b =-2,则②、③不正确,所以A 、B 、D 错误,故选C. 13.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( C )解析 观察并联想P 运动轨迹与d 的关系,当t =0时,d =2,排除A 、D ;当开始运动时d 递减,排除B.14.若函数f (x )=⎪⎪⎪⎪⎪⎪x 2x 2+1-a +4a 的最小值等于3,则实数a 的值等于 (A )A. 34B .1 C. 34或1D .不存在这样的a解析 方法一 直接对照法令x 2x 2+1=t ,则t ∈[0,1).若a ≥1,则f (x )=|t -a |+4a =5a -t 不存在最小值;若0≤a <1,则f (x )=|t -a |+4a ,当t =a 时取得最小值4a ,于是4a =3,得a =34符合题意;若a <0,f (x )=|t -a |+4a =t +3a ,当t =0时取得最小值3a ,于是3a =3,得a =1不符合题意.综上可知,a =34. 方法二 试验法若a =1,则f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x 2x 2+1-1+4>4,显然函数的最小值不是3,故排除选项B 、C ;若a =34,f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x 2x 2+1-34+3,这时只要令x 2x 2+1-34=0,即x =±3,函数可取得最小值3,因此A 项正确,D 项错误.15.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于( D )A. m -39-mB .|m -39-m|C. 13D .5解析 由于受条件sin 2θ+cos 2θ=1的制约,故m 为一确定的值,于是sin θ,cos θ的值应与m 的值无关,进而tan θ2的值与m 无关,又π2<θ<π,π4<θ2<π2,∴tan θ2>1,故选D 项.16.已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )图象可能是( D )解析从导函数的图象可知两个函数在x0处斜率相同,可以排除B项,再者导函数的函数值反映的是原函数增加的快慢,可明显看出y=f(x)的导函数是减函数,所以原函数应该增加的越来越慢,排除A、C两项,最后只有D项,可以验证y=g(x)导函数是增函数,增加越来越快.。