c语言实现二叉树的代码

合集下载

判断一棵树是否为满二叉树的算法c语言

判断一棵树是否为满二叉树的算法c语言

判断一棵树是否为满二叉树的算法c语言判断一棵树是否为满二叉树的算法(C语言)满二叉树是一种特殊的二叉树,每个节点要么没有子节点,要么有两个子节点。

判断一棵树是否为满二叉树的算法可以通过以下步骤实现:1. 定义二叉树的数据结构在C语言中,可以使用结构体定义二叉树的节点。

每个节点包含一个数据域和两个指针域,分别指向左子节点和右子节点。

```cstruct TreeNode {int data;struct TreeNode* left;struct TreeNode* right;};```2. 实现判断函数编写一个递归函数,用于判断给定二叉树是否为满二叉树。

函数的输入参数为根节点指针,返回值为布尔类型。

```cint isFullBinaryTree(struct TreeNode* root) {// 如果根节点为空,则返回真if (root == NULL) {return 1;}// 如果只有一个子节点或没有子节点,则返回假if ((root->left == NULL && root->right != NULL) ||(root->left != NULL && root->right == NULL)) {return 0;}// 递归判断左子树和右子树return isFullBinaryTree(root->left) && isFullBinaryTree(root->right);}```3. 测试样例可以编写一些测试样例来验证判断函数的正确性。

例如,下面是一个满二叉树和一个非满二叉树的示例:```cint main() {// 满二叉树struct TreeNode* root1 = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->data = 1;root1->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->data = 2;root1->left->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->left->data = 4;root1->left->left->left = NULL;root1->left->left->right = NULL;root1->left->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->right->data = 5;root1->left->right->left = NULL;root1->left->right->right = NULL;root1->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->data = 3;root1->right->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->left->data = 6;root1->right->left->left = NULL;root1->right->left->right = NULL;root1->right->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->right->data = 7;root1->right->right->left = NULL;root1->right->right->right = NULL;// 非满二叉树struct TreeNode* root2 = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->data = 1;root2->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->left->data = 2;root2->left->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->left->left->data = 4;root2->left->left->left = NULL;root2->left->left->right = NULL;root2->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->right->data = 3;root2->right->left = NULL;root2->right->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->right->right->data = 7;root2->right->right->left = NULL;root2->right->right->right = NULL;// 判断是否为满二叉树if (isFullBinaryTree(root1)) {printf("root1是满二叉树\n");} else {printf("root1不是满二叉树\n");}if (isFullBinaryTree(root2)) {printf("root2是满二叉树\n");} else {printf("root2不是满二叉树\n");}return 0;}```运行上述代码,输出结果为:```root1是满二叉树root2不是满二叉树```根据以上算法和示例,我们可以判断一棵树是否为满二叉树。

数据结构c语言课设-二叉树排序

数据结构c语言课设-二叉树排序

题目:二叉排序树的实现1 内容和要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。

4)分别用二叉排序树和数组去存储一个班(50 人以上)的成员信息(至少包括学号、姓名、成绩3 项),比照查找效率,并说明在什么情况下二叉排序树效率高,为什么?2 解决方案和关键代码2.1 解决方案:先实现二叉排序树的生成、插入、删除,编写DisplayBST函数把遍历结果用树的形状表示出来。

前中后根遍历需要用到栈的数据构造,分模块编写栈与遍历代码。

要求比照二叉排序树和数组的查找效率,首先建立一个数组存储一个班的成员信息,分别用二叉树和数组查找,利用clock〔〕函数记录查找时间来比照查找效率。

2.2关键代码树的根本构造定义及根本函数typedef struct{KeyType key;} ElemType;typedef struct BiTNode//定义链表{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree, *SElemType;//销毁树int DestroyBiTree(BiTree &T){if (T != NULL)free(T);return 0;}//清空树int ClearBiTree(BiTree &T){if (T != NULL){T->lchild = NULL;T->rchild = NULL;T = NULL;}return 0;}//查找关键字,指针p返回int SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {if (!T){p = f;return FALSE;}else if EQ(key, T->data.key){p = T;return TRUE;}else if LT(key, T->data.key)return SearchBST(T->lchild, key, T, p);elsereturn SearchBST(T->rchild, key, T, p);}二叉树的生成、插入,删除生成void CreateBST(BiTree &BT, BiTree p){int i;ElemType k;printf("请输入元素值以创立排序二叉树:\n");scanf_s("%d", &k.key);for (i = 0; k.key != NULL; i++){//判断是否重复if (!SearchBST(BT, k.key, NULL, p)){InsertBST(BT, k);scanf_s("%d", &k.key);}else{printf("输入数据重复!\n");return;}}}插入int InsertBST(BiTree &T, ElemType e){BiTree s, p;if (!SearchBST(T, e.key, NULL, p)){s = (BiTree)malloc(sizeof(BiTNode));s->data = e;s->lchild = s->rchild = NULL;if (!p)T = s;else if LT(e.key, p->data.key)p->lchild = s;elsep->rchild = s;return TRUE;}else return FALSE;}删除//某个节点元素的删除int DeleteEle(BiTree &p){BiTree q, s;if (!p->rchild) //右子树为空{q = p;p = p->lchild;free(q);}else if (!p->lchild) //左子树为空{q = p;p = p->rchild;free(q);}else{q = p;s = p->lchild;while (s->rchild){q = s;s = s->rchild;}p->data = s->data;if (q != p)q->rchild = s->lchild;elseq->lchild = s->lchild;delete s;}return TRUE;}//整棵树的删除int DeleteBST(BiTree &T, KeyType key) //实现二叉排序树的删除操作{if (!T){return FALSE;}else{if (EQ(key, T->data.key)) //是否相等return DeleteEle(T);else if (LT(key, T->data.key)) //是否小于return DeleteBST(T->lchild, key);elsereturn DeleteBST(T->rchild, key);}return 0;}二叉树的前中后根遍历栈的定义typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int InitStack(SqStack &S) //构造空栈{S.base = (SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackint Push(SqStack &S, SElemType e) //插入元素e为新栈顶{if (S.top - S.base >= S.stacksize){S.base = (SElemType*)realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//Pushint Pop(SqStack &S, SElemType &e) //删除栈顶,应用e返回其值{if (S.top == S.base) return ERROR;e = *--S.top;return OK;}//Popint StackEmpty(SqStack S) //判断是否为空栈{if (S.base == S.top) return TRUE;return FALSE;}先根遍历int PreOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);if (!Visit(p->data)) return ERROR;p = p->lchild;}else{Pop(S, p);p = p->rchild;}}return OK;}中根遍历int InOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);p = p->lchild;}else{Pop(S, p);if (!Visit(p->data)) return ERROR;p = p->rchild;}}return OK;}后根遍历int PostOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S, SS;BiTree p;InitStack(S);InitStack(SS);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);Push(SS, p);p = p->rchild;}else{if (!StackEmpty(S)){Pop(S, p);p = p->lchild;}}}while (!StackEmpty(SS)){Pop(SS, p);if (!Visit(p->data)) return ERROR;}return OK;}利用数组存储一个班学生信息ElemType a[] = { 51, "陈继真", 88,82, "黄景元", 89,53, "贾成", 88,44, "呼颜", 90,25, "鲁修德", 88,56, "须成", 88,47, "孙祥", 87, 38, "柏有患", 89, 9, " 革高", 89, 10, "考鬲", 87, 31, "李燧", 86, 12, "夏祥", 89, 53, "余惠", 84, 4, "鲁芝", 90, 75, "黄丙庆", 88, 16, "李应", 89, 87, "杨志", 86, 18, "李逵", 89, 9, "阮小五", 85, 20, "史进", 88, 21, "秦明", 88, 82, "杨雄", 89, 23, "刘唐", 85, 64, "武松", 88, 25, "李俊", 88, 86, "卢俊义", 88, 27, "华荣", 87, 28, "杨胜", 88, 29, "林冲", 89, 70, "李跃", 85, 31, "蓝虎", 90, 32, "宋禄", 84, 73, "鲁智深", 89, 34, "关斌", 90, 55, "龚成", 87, 36, "黄乌", 87, 57, "孔道灵", 87, 38, "张焕", 84, 59, "李信", 88, 30, "徐山", 83, 41, "秦祥", 85, 42, "葛公", 85, 23, "武衍公", 87, 94, "范斌", 83, 45, "黄乌", 60, 67, "叶景昌", 99, 7, "焦龙", 89, 78, "星姚烨", 85, 49, "孙吉", 90, 60, "陈梦庚", 95,};数组查询函数void ArraySearch(ElemType a[], int key, int length){int i;for (i = 0; i <= length; i++){if (key == a[i].key){cout << "学号:" << a[i].key << " 姓名:" << a[i].name << " 成绩:" << a[i].grade << endl;break;}}}二叉树查询函数上文二叉树根本函数中的SearchBST()即为二叉树查询函数。

一种二叉树非递归遍历算法的C语言实现

一种二叉树非递归遍历算法的C语言实现

T e l : + 8 6 — 5 5 1 - 6 5 6 9 0 9 6 3 6 5 6 9 0 9 6 4

种 二 叉树 非 递 归 遍历 算 法 的 C语 言实 现
龚 佳 , 袁 赘 , 刘 远 军
( 邵阳学院 信息工程系 , 湖南 邵阳 4 2 2 0 0 4 )
摘要 : 针对二叉树 的链 式存储 结构 , 分析 了二叉树 的各种遍 历算法 , 探 讨 了递 归算 法的递推 消除问题 , 提 出了一种改进的 非递归遍 历算法并用C语言 予以实现。
收 稿 日期 : 2 0 1 3 — 1 1 — 1 5
me nt e d i n C l a ng ua ge . Ke y wo r ds :bi na y r t r e e ; t r a ve r s a l a l g or i t h m; non— — r e c u r s i ve ;C l a ng ua ge
GONG J i a , Y UA N Y u n , L I U Y u n - j t i n
( I n f o r ma t ip a r t me n t , S h a o y a n g Un i v e r s i t y , S h a o y a n g 4 2 2 0 0 4 , C h i n a )

个结点 至少 由3 个 域组成 , 即数据域 、 左子结点域和右子结点域 ( 如图1 所示 ) 。
图1
为了更好 的对树结构进行计算和处理 , 我们 可以加上一个 双亲结点域( 如 图2 所示 ) 。
!f l ! !
图2

_
! I ! 二 ! J
I D a t e

c语言哈夫曼树的构造及编码

c语言哈夫曼树的构造及编码

c语言哈夫曼树的构造及编码一、哈夫曼树概述哈夫曼树是一种特殊的二叉树,它的构建基于贪心算法。

它的主要应用是在数据压缩和编码中,可以将频率高的字符用较短的编码表示,从而减小数据存储和传输时所需的空间和时间。

二、哈夫曼树的构造1. 哈夫曼树的定义哈夫曼树是一棵带权路径长度最短的二叉树。

带权路径长度是指所有叶子节点到根节点之间路径长度与其权值乘积之和。

2. 构造步骤(1) 将待编码字符按照出现频率从小到大排序。

(2) 取出两个权值最小的节点作为左右子节点,构建一棵新的二叉树。

(3) 将新构建的二叉树加入到原来排序后队列中。

(4) 重复上述步骤,直到队列只剩下一个节点,该节点即为哈夫曼树的根节点。

3. C语言代码实现以下代码实现了一个简单版哈夫曼树构造函数:```ctypedef struct TreeNode {int weight; // 权重值struct TreeNode *leftChild; // 左子节点指针struct TreeNode *rightChild; // 右子节点指针} TreeNode;// 构造哈夫曼树函数TreeNode* createHuffmanTree(int* weights, int n) {// 根据权值数组构建节点队列,每个节点都是一棵单独的二叉树TreeNode** nodes = (TreeNode**)malloc(sizeof(TreeNode*) * n);for (int i = 0; i < n; i++) {nodes[i] = (TreeNode*)malloc(sizeof(TreeNode));nodes[i]->weight = weights[i];nodes[i]->leftChild = NULL;nodes[i]->rightChild = NULL;}// 构建哈夫曼树while (n > 1) {int minIndex1 = -1, minIndex2 = -1;for (int i = 0; i < n; i++) {if (nodes[i] != NULL) {if (minIndex1 == -1 || nodes[i]->weight < nodes[minIndex1]->weight) {minIndex2 = minIndex1;minIndex1 = i;} else if (minIndex2 == -1 || nodes[i]->weight < nodes[minIndex2]->weight) {minIndex2 = i;}}}TreeNode* newNode =(TreeNode*)malloc(sizeof(TreeNode));newNode->weight = nodes[minIndex1]->weight + nodes[minIndex2]->weight;newNode->leftChild = nodes[minIndex1];newNode->rightChild = nodes[minIndex2];// 将新构建的二叉树加入到原来排序后队列中nodes[minIndex1] = newNode;nodes[minIndex2] = NULL;n--;}return nodes[minIndex1];}```三、哈夫曼编码1. 哈夫曼编码的定义哈夫曼编码是一种前缀编码方式,它将每个字符的编码表示为二进制串。

二叉排序树c语言代码实现

二叉排序树c语言代码实现
printf ("是否继续输入?\n 1.是 2.否(其他键 退出)\n");
if ((*n) != NULL) {
free (*n);
*n = NULL;
}
}
/* 查找结点 */
PNODE find_node (PNODE n, int value) {
in_order_traversal ( n->right);
}
}
int main() {
char buf[50],a[1000];
int i,n,option,s[80],p;
PNODE tree = NULL;/*树的第一个结点*/
PNODE node = NULL;
{
r = (PNODE)malloc(sizeof(NODE));
if(!r)
{
printf("内存分配失败!");
exit(0);
zjm3:fgets (buf, sizeof(buf), stdin);
sscanf (buf, "%i", &option);
printf ("\n\n");
if(option<0) {
printf ("输入错误,请重新输入该元素\n",n);
goto zjm3;}
if(find_node (tree, option))
{
(*n)->value = value;
(*n)->left = NULL;
(*n)->right = NULL;
}
}

二叉树c语言实现完整代码

二叉树c语言实现完整代码

二叉树c语言实现完整代码二叉树是一种非常常见的数据结构,它由节点和边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。

在计算机科学中,二叉树被广泛应用于搜索、排序、编译器等领域。

本文将介绍如何使用C语言实现二叉树的完整代码。

我们需要定义二叉树的节点结构体。

每个节点包含三个成员变量:数据、左子节点和右子节点。

代码如下:```struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;};```接下来,我们需要实现二叉树的基本操作,包括创建节点、插入节点、删除节点、查找节点等。

这些操作可以通过递归实现。

代码如下:```// 创建节点struct TreeNode* createNode(int val) {struct TreeNode* node = (struct TreeNode*)malloc(sizeof(struct TreeNode));node->val = val;node->left = NULL;node->right = NULL;return node;}// 插入节点struct TreeNode* insertNode(struct TreeNode* root, int val) {if (root == NULL) {return createNode(val);}if (val < root->val) {root->left = insertNode(root->left, val);} else {root->right = insertNode(root->right, val);}return root;}// 删除节点struct TreeNode* deleteNode(struct TreeNode* root, int val) {if (root == NULL) {return NULL;}if (val < root->val) {root->left = deleteNode(root->left, val);} else if (val > root->val) {root->right = deleteNode(root->right, val);} else {if (root->left == NULL) {struct TreeNode* temp = root->right;free(root);return temp;} else if (root->right == NULL) {struct TreeNode* temp = root->left;free(root);return temp;}struct TreeNode* temp = findMin(root->right); root->val = temp->val;root->right = deleteNode(root->right, temp->val); }return root;}// 查找节点struct TreeNode* searchNode(struct TreeNode* root, int val) {if (root == NULL || root->val == val) {return root;}if (val < root->val) {return searchNode(root->left, val);} else {return searchNode(root->right, val);}}// 查找最小节点struct TreeNode* findMin(struct TreeNode* root) {while (root->left != NULL) {root = root->left;}return root;}```我们需要实现二叉树的遍历操作,包括前序遍历、中序遍历和后序遍历。

c语言二叉树的先序,中序,后序遍历

c语言二叉树的先序,中序,后序遍历

c语言二叉树的先序,中序,后序遍历1、先序遍历先序遍历可以想象为,一个小人从一棵二叉树根节点为起点,沿着二叉树外沿,逆时针走一圈回到根节点,路上遇到的元素顺序,就是先序遍历的结果先序遍历结果为:A B D H I E J C F K G2、中序遍历中序遍历可以看成,二叉树每个节点,垂直方向投影下来(可以理解为每个节点从最左边开始垂直掉到地上),然后从左往右数,得出的结果便是中序遍历的结果中遍历结果为:H D I B E J A F K C G3、后序遍历后序遍历就像是剪葡萄,我们要把一串葡萄剪成一颗一颗的。

还记得我上面提到先序遍历绕圈的路线么?(不记得翻上面理解)就是围着树的外围绕一圈,如果发现一剪刀就能剪下的葡萄(必须是一颗葡萄)(也就是葡萄要一个一个掉下来,不能一口气掉超过1个这样),就把它剪下来,组成的就是后序遍历了。

后序遍历中,根节点默认最后面后序遍历结果:H I D J E B K F G C A4、口诀先序遍历:先根再左再右中序遍历:先左再根再右后序遍历:先左再右再根这里的根,指的是每个分叉子树(左右子树的根节点)根节点,并不只是最开始头顶的根节点,需要灵活思考理解5、代码展示#include<stdio.h>#include<stdlib.h>typedef struct Tree{int data; // 存放数据域struct Tree *lchild; // 遍历左子树指针struct Tree *rchild; // 遍历右子树指针}Tree,*BitTree;BitTree CreateLink(){int data;int temp;BitTree T;scanf("%d",&data); // 输入数据temp=getchar(); // 吸收空格if(data == -1){ // 输入-1 代表此节点下子树不存数据,也就是不继续递归创建return NULL;}else{T = (BitTree)malloc(sizeof(Tree)); // 分配内存空间T->data = data; // 把当前输入的数据存入当前节点指针的数据域中printf("请输入%d的左子树: ",data);T->lchild = CreateLink(); // 开始递归创建左子树printf("请输入%d的右子树: ",data);T->rchild = CreateLink(); // 开始到上一级节点的右边递归创建左右子树return T; // 返回根节点}}// 先序遍历void ShowXianXu(BitTree T) // 先序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}printf("%d ",T->data);ShowXianXu(T->lchild); // 递归遍历左子树ShowXianXu(T->rchild); // 递归遍历右子树}// 中序遍历void ShowZhongXu(BitTree T) // 先序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}ShowZhongXu(T->lchild); // 递归遍历左子树printf("%d ",T->data);ShowZhongXu(T->rchild); // 递归遍历右子树}// 后序遍历void ShowHouXu(BitTree T) // 后序遍历二叉树{if(T==NULL) //递归中遇到NULL,返回上一层节点{return;}ShowHouXu(T->lchild); // 递归遍历左子树ShowHouXu(T->rchild); // 递归遍历右子树printf("%d ",T->data);}int main(){BitTree S;printf("请输入第一个节点的数据:\n");S = CreateLink(); // 接受创建二叉树完成的根节点printf("先序遍历结果: \n");ShowXianXu(S); // 先序遍历二叉树printf("\n中序遍历结果: \n");ShowZhongXu(S); // 中序遍历二叉树printf("\n后序遍历结果: \n");ShowHouXu(S); // 后序遍历二叉树return 0;}。

C语言实现创建二叉树,先序遍历、中序遍历、后序遍历输出

C语言实现创建二叉树,先序遍历、中序遍历、后序遍历输出

C语⾔实现创建⼆叉树,先序遍历、中序遍历、后序遍历输出# include <stdio.h># include <stdlib.h># include <string.h># include <iostream># define OK 0;# define ERROR -1;typedef int TElemType;typedef char DataType;typedef int Status;typedef struct BiNode {DataType data;//存⾃定义类型的值struct BiNode *lchild, *rchild;//左右⼩孩指针}BiNode,*BiTree;void CreatBiNode(BiNode **Node)//此处应注意传递的参数(⼆重指针){char data;scanf_s("%c", &data);*Node = (BiTree)malloc(sizeof(BiNode));if (data == '#'){*Node = NULL;}else if ((data != '#') && (*Node)){(*Node)->data = data;(*Node)->lchild = NULL;(*Node)->rchild = NULL;CreatBiNode(&(*Node)->lchild);CreatBiNode(&(*Node)->rchild);}}Status PreOrderTraverse(BiTree T) {if (T == NULL) {return OK;}else {printf("%c", T->data);PreOrderTraverse(T->lchild);PreOrderTraverse(T->rchild);}}Status InOrderTraverse(BiTree T) {if (T == NULL) {return OK;}else {InOrderTraverse(T->lchild);printf("%c", T->data);InOrderTraverse(T->rchild);}}Status PostOrderTraverse(BiTree T) {if (T == NULL) {return OK;}else {PostOrderTraverse(T->lchild);PostOrderTraverse(T->rchild);printf("%c", T->data);}}int main(){printf("先序输⼊⼆叉树(空结点⽤'#'表⽰):");BiTree T=NULL;CreatBiNode(&T);printf("先序遍历⼆叉树:");PreOrderTraverse(T);printf("\n中序遍历⼆叉树:");InOrderTraverse(T);printf("\n后序遍历⼆叉树:");PostOrderTraverse(T);system("pause");return 0;}解决思想:⼩⽣⽤的是递归创建⼆叉树,递归遍历⼆叉树,因为使⽤递归会⽐较简洁。

关于树的各种C语言代码

关于树的各种C语言代码

集合了树的各种算法,已经运行过,本人亲自所写,先序,后序,等全包括#include<stdio.h>#include<malloc.h>#define Max 100typedef int Status;typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;int count;Status CreatBiTree(BiTree *bt) /*1.按先序遍历序列创造二叉树的二叉链表*/ {char ch;getchar();scanf("%c",&ch);if (ch == ' '){*bt = NULL;}else{*bt = (BiTree)malloc(sizeof(BiTNode));(*bt)->data = ch;printf("\n\t请输入%c结点的左孩子:",(*bt)->data);CreatBiTree(&((*bt)->lchild));printf("\n\t请输入%c结点的右孩子:",(*bt)->data);CreatBiTree(&((*bt)->rchild));}return 1;}void PreOrder(BiTree bt) /*2.先序遍历二叉树*/{if (bt != NULL){printf("%c\n",bt->data);PreOrder(bt->lchild);PreOrder(bt->rchild);}}void InOrder(BiTree bt) /*3.中序遍历二叉树*/{if (bt != NULL){InOrder(bt->lchild);printf("%c\n",bt->data);InOrder(bt->rchild);}}void PostOrder(BiTree bt) /*4.后序遍历二叉树*/{if (bt != NULL){PostOrder(bt->lchild);PostOrder(bt->rchild);printf("%c\n",bt->data);}}void PreOrderLeaf(BiTree bt) /*5.输出所有的叶子结点*/{if (bt != NULL){if ((bt->lchild == NULL) && (bt->rchild == NULL)){printf("%c\n",bt->data);}PreOrderLeaf(bt->lchild);PreOrderLeaf(bt->rchild);}}Status Leaf(BiTree bt) /*6.统计叶子结点数目,即度为零的结点数目*/ {if (bt == NULL){count = 0;}else if ((bt->lchild == NULL) && (bt->rchild == NULL)){count = 1;}else{count = Leaf(bt->lchild) + Leaf(bt->rchild);}return count;}void Degree1Node(BiTree bt) /*7.输出度为一的结点*/{if (bt != NULL){if (((bt->lchild != NULL) || (bt->rchild != NULL))&& (!((bt->lchild != NULL) && (bt->rchild != NULL)))) {printf("%c\n",bt->data);}Degree1Node(bt->lchild);Degree1Node(bt->rchild);}}void Degree2Node(BiTree bt) /*8.输出度为二的结点*/{if ( bt != NULL){if ((bt->lchild != NULL) && (bt->rchild != NULL)){printf("%c\n",bt->data);}Degree2Node(bt->lchild);Degree2Node(bt->rchild);}}Status CountNode(BiTree bt) /*9.统计二叉树中结点的总数*/{if (bt == NULL){return 0;}else{count++;CountNode(bt->lchild);CountNode(bt->rchild);return count;}}Status TreeDepth(BiTree bt) /*10.求二叉树的深度*/{int ldep, rdep;if (bt == NULL){return 0;}else{ldep = TreeDepth(bt->lchild);rdep = TreeDepth(bt->rchild);if (ldep > rdep){return (ldep +1);}else{return (rdep + 1);}}}void PrintTree(BiTree bt, int nlayer) /*11.按树状打印二叉树*/ {if (bt == NULL) /*如果是空则直接退出函数*/{return;}PrintTree(bt->rchild,nlayer + 1);for ( int i = 0; i < nlayer; i++){printf("----");}printf("%c\n",bt->data);PrintTree(bt->lchild,nlayer + 1);}void PreOrderTree(BiTree bt) /*12.非递归先序遍历*/BiTree Stack[Max];BiTree p = bt;int top = 0;while (p != NULL || top != 0){if (p != NULL){printf("%c",p->data);top++;Stack[top] = p;p = p->lchild;}else{p = Stack[top];top--;p = p->rchild;}}}void InOrderTree(BiTree bt) /*13.非递归中序遍历*/ {BiTree Stack[Max];BiTree p = bt;int top = 0;do{while (p != NULL){top++;Stack[top] = p;p = p->lchild;}if (top != 0){p = Stack[top];top--;printf("%c",p->data);p = p->rchild;}}while ((p != NULL) || (top != 0));void PostOrderTree(BiTree bt) /*14.非递归后序遍历*/ {BiTree p, q;int top = 0;BiTree Stack[Max];q = NULL;p = bt;while ((p != NULL) || (top != 0)){while (p != NULL){top++;Stack[top] = p;p = p->lchild;}if (top > 0){p = Stack[top];if ((p->rchild == NULL) || (p->rchild == q)){printf("%c",p->data);q = p;p = NULL;top--;}else{p = p->rchild;}}}}void LayerOrder(BiTree bt) /*15.层次遍历*/{int front,rear;BiTree Q[Max];front = 0;rear = front;BiTree r, s, p;r = s = p = bt;if (p == NULL) return;Q[rear] = p;rear++;while (front != rear){s = r = Q[front];printf("%c",Q[front]->data);front++;if (r->lchild){Q[rear] = r->lchild;rear++;}if (s->rchild){Q[rear] = s->rchild;rear++;}}}int main(){BiTree bt;int choice;int i,j,k;int nlayer = 1;printf("请用数字选择操作:\n");printf("1.按先序序列创建二叉树(二叉链表)\n");printf("2.递归先序遍历二叉树\n");printf("3.递归中序遍历二叉树\n");printf("4.递归后序遍历二叉树\n");printf("5.输出叶子结点(即度为零的结点)\n");printf("6.统计叶子结点数目\n");printf("7.输出度为一的结点\n");printf("8.输出度为二的结点\n");printf("9.统计二叉树中结点总数\n");printf("10.求二叉树的高度(即深度)\n");printf("11.按树状打印二叉树\n");printf("12.非递归先序遍历二叉树\n");printf("13.非递归中序遍历二叉树\n");printf("14.非递归后序遍历二叉树\n");printf("15.层次遍历二叉树\n");printf("0.则退出\n");while (1){printf("请输入你要执行的操作(0-15):");scanf("%d",&choice);if (choice == 0){break;}else switch (choice){case 1 : printf("\n请输入按先序建立二叉树的结点序列:");printf("\n说明:逐个输入,输入空格代表后继结点为空,按回车输入下一个结点。

c语言二叉树代码

c语言二叉树代码

c语言二叉树代码以下是一个简单的C语言二叉树代码,包括二叉树的创建、插入、遍历、删除等操作:```#include<stdio.h>#include<stdlib.h>//定义二叉树节点类型typedef struct node{int data;struct node *left;struct node *right;}Node;//创建二叉树Node* create_tree(){int value;printf('请输入节点的值(-1表示结束):');scanf('%d', &value);if(value == -1){return NULL;}else{Node *p = (Node*)malloc(sizeof(Node));p->data = value;printf('请输入%d的左子节点:', value);p->left = create_tree();printf('请输入%d的右子节点:', value);p->right = create_tree();return p;}}//插入节点Node* insert_node(Node *root, int value){if(root == NULL){Node *p = (Node*)malloc(sizeof(Node));p->data = value;p->left = NULL;p->right = NULL;return p;}else if(value < root->data){root->left = insert_node(root->left, value);}else if(value > root->data){root->right = insert_node(root->right, value); }return root;}//先序遍历void preorder_traversal(Node *root){if(root != NULL){printf('%d ', root->data);preorder_traversal(root->left);preorder_traversal(root->right);}}//中序遍历void inorder_traversal(Node *root){if(root != NULL){inorder_traversal(root->left);printf('%d ', root->data);inorder_traversal(root->right);}}//后序遍历void postorder_traversal(Node *root){if(root != NULL){postorder_traversal(root->left);postorder_traversal(root->right);printf('%d ', root->data);}}//查找节点Node* search_node(Node *root, int value){ if(root == NULL){return NULL;}else if(root->data == value){return root;}else if(value < root->data){return search_node(root->left, value);}else{return search_node(root->right, value); }}//删除节点Node* delete_node(Node *root, int value){if(root == NULL){return NULL;}else if(value < root->data){root->left = delete_node(root->left, value); }else if(value > root->data){root->right = delete_node(root->right, value); }else{//情况一:被删除节点没有子节点if(root->left == NULL && root->right == NULL){ free(root);root = NULL;}//情况二:被删除节点只有一个子节点else if(root->left == NULL){Node *temp = root;root = root->right;free(temp);}else if(root->right == NULL){Node *temp = root;root = root->left;free(temp);}//情况三:被删除节点有两个子节点else{Node *temp = root->right;while(temp->left != NULL){temp = temp->left;}root->data = temp->data;root->right = delete_node(root->right, temp->data); }}return root;}//主函数int main(){Node *root = NULL;int choice, value;while(1){printf('请选择操作: ');printf('1.创建二叉树 ');printf('2.插入节点');printf('3.遍历二叉树 ');printf('4.查找节点');printf('5.删除节点');printf('6.退出程序');scanf('%d', &choice); switch(choice){case 1:root = create_tree(); break;case 2:printf('请输入要插入的节点值:');scanf('%d', &value);root = insert_node(root, value);break;case 3:printf('先序遍历:');preorder_traversal(root);printf('中序遍历:');inorder_traversal(root);printf('后序遍历:');postorder_traversal(root);printf('');break;case 4:printf('请输入要查找的节点值:');scanf('%d', &value);Node *result = search_node(root, value);if(result != NULL){printf('找到节点:%d', result->data);}else{printf('未找到节点:%d', value);}break;case 5:printf('请输入要删除的节点值:');scanf('%d', &value);root = delete_node(root, value); break;case 6:printf('程序已退出。

C语言 二叉树的建立,撤销与遍历

C语言 二叉树的建立,撤销与遍历

C语言二叉树的建立,撤销与遍历二叉树是一种特殊的树,每个节点只能有最多二个孩子节点,或者没有孩子节点。

建立,与撤销或遍历二叉树主要是靠递归的方法。

#include<stdio.h>#include<stdlib.h>typedef struct stud/*定义二叉树的结构,只有一个数据项,和两个孩子节点*/{char data;struct stud *left;struct stud *right;} bitree;void destroy(bitree **root)/*撤销二叉树,这里用的是递归和二级指针*/ {if(*root!=NULL&&(*root)->left!=NULL)/*当前结点与左子树不空,递归撤销左子树*/destroy(&(*root)->left);if(*root!=NULL&&(*root)->right!=NULL)/*当前结点与右子树不空,递归撤销右子树*/destroy(&(*root)->right);free(*root);/*左右子树都为空,撤销该节点,并递归撤销其上的所有节点*/ }void inititate(bitree **root)/*初始化二叉树的头结点,并分配空间*/ {*root=(bitree *)malloc(sizeof(bitree ));(*root)->left=NULL;(*root)->right=NULL;}bitree *insert_left(bitree *curr,char x)/*在左子树插入数据*/{bitree *s,*t;if(curr==NULL)return NULL;t=curr->left;/*保存当前左子树的数据*/s=(bitree *)malloc(sizeof(bitree));s->data=x;s->left=t;/*新结点指向原来的左子树*/s->right=NULL;curr->left=s;/*原来的节点指向新结点*/return curr->left;}bitree *insert_right(bitree *curr,char x)/*在这个节点的右子树插入数据*/{bitree *s,*t;if(curr==NULL)return NULL;t=curr->right;s=(bitree *)malloc(sizeof(bitree));s->data=x;s->left=NULL;s->right=t;curr->right=s;return curr->right;}bitree *delete_left(bitree *curr)/*删除当前结点的左子树*/{if(curr!=NULL&&curr->left!=NULL)destroy(&curr->left);/*删除左子树本身及其以后的所有节点*/curr->left=NULL;return curr;}bitree *delete_right(bitree *curr)/*删除右子树*/{if(curr!=NULL&&curr->right!=NULL)destroy(&curr->right);curr->right=NULL;return curr;}void preorder(bitree *root)/*递归先序遍历根节点*/ {if(root!=NULL){printf("%c ",root->data);preorder( root->left);preorder( root->right);}}void midorder(bitree *root)/*递归中序遍历根节点*/ {if(root!=NULL){midorder( root->left);printf("%c ",root->data);midorder(root->right);}}void postorder(bitree *root))/*递归后序遍历根节点*/ {if(root!=NULL){postorder(root->left);postorder( root->right);printf("%c ",root->data);}}bitree *search(bitree *root,char x))/*递归某一数值*/ {bitree *find=NULL;if(root!=NULL){if(root->data==x)find=root;else{find=search (root->left,x);)/*在左子树查找*/ if(find==NULL))/*左子树没有找到的话*/find=search (root->right,x);/*右子树找*/}}return find;}void main(){bitree *root,*s,*p,*find;int i,j,k;char c='E';inititate(&root);p=insert_left(root,'A');p=insert_left(p,'B');p=insert_left(p,'D');p=insert_right(p,'G');p=insert_right(root->left,'C');insert_left(p,'E');insert_right(p,'F');printf("前序遍历为\n");preorder(root->left);printf("\n中序遍历为\n");midorder(root->left);printf("\n后序遍历为\n");postorder(root->left);find=search(root->left,c);if(find)printf("这个元素%c在二叉树中\n",c);elseprintf("这个元素%c不在二叉树中\n",c);printf("撤销根节点的左子树为\n");delete_left(root->left);printf("\n前序遍历为\n");preorder(root->left);printf("\n中序遍历为\n");midorder(root->left);printf("\n后序遍历为\n");postorder(root->left);printf("\n撤销根节点的右子树为\n"); delete_right(root->left);printf("前序遍历为\n");preorder(root->left);printf("\n中序遍历为\n");midorder(root->left);printf("\n后序遍历为\n");postorder(root->left);destroy(&root);}。

c语言二叉树代码

c语言二叉树代码

c语言二叉树代码对于c语言的二叉树代码,我们可以先了解一下二叉树的性质。

二叉树是一种树形结构,每个节点最多有两个子节点。

根据二叉树的性质,我们可以定义一个结构体来表示二叉树的节点。

struct TreeNode {int val; // 节点的值struct TreeNode *left; // 左子节点struct TreeNode *right; // 右子节点};接下来就是实现二叉树的增删改查:1. 增加节点void addNode(struct TreeNode **node, int val) {if (*node == NULL) {struct TreeNode *newNode = (structTreeNode*)malloc(sizeof(struct TreeNode));newNode->val = val;newNode->left = NULL;newNode->right = NULL;*node = newNode;} else {if (val < (*node)->val) {addNode(&((*node)->left), val);} else {addNode(&((*node)->right), val);}}}2. 删除节点void deleteNode(struct TreeNode **node, int val) {if (*node == NULL) {return;}if ((*node)->val == val) {if ((*node)->left != NULL && (*node)->right != NULL) { struct TreeNode *minNode = (*node)->right;while (minNode->left != NULL) {minNode = minNode->left;}(*node)->val = minNode->val;deleteNode(&((*node)->right), minNode->val);} else {struct TreeNode *temp = *node;if ((*node)->left != NULL) {*node = (*node)->left;} else {*node = (*node)->right;}free(temp);}} else if (val < (*node)->val) {deleteNode(&((*node)->left), val);} else {deleteNode(&((*node)->right), val);}}3. 查找节点struct TreeNode* searchNode(struct TreeNode* node, int val) { if (node == NULL) {return NULL;}if (node->val == val) {return node;} else if (val < node->val) {return searchNode(node->left, val);} else {return searchNode(node->right, val);}}以上就是c语言实现二叉树的基本代码。

二叉树c语言的程序代码

二叉树c语言的程序代码

# include "stdio.h"# include "stdlib.h"# include "malloc.h"typedef struct Node{char data; //定义根结点struct Node *lchild; //定义左子树struct Node *rchild; //定义右子树}Node,*BiTree;int JianShu(BiTree &T) { //构造二叉链表表示的二叉树T,按先序遍历输入二//叉树中结点的值(一个字符),空格字符表示空树.char e;T=(Node *)malloc(sizeof(Node)); //开辟一个以sizeof(Node)为单位的空间if(!T) //开辟失败exit (-2);fflush(stdin); //清空缓存scanf ("%c",&e);if(e==' ')T=NULL;else {T->data=e; // 生成根结点printf ("请输入%c的左孩子:",e);JianShu(T->lchild); // 构造左子树printf ("请输入%c的右孩子:",e);JianShu(T->rchild); // 构造右子树}return 1;}int DLR_P(BiTree &T) { //先序遍历打印二叉树中所有数据if (T!=NULL) { //非空二叉树printf ("%c ",T->data); //访问TDLR_P(T->lchild); //递归遍历左子树DLR_P(T->rchild); //递归遍历右子树}return 1;}int LDR_P(BiTree &T) { //中序遍历打印二叉树中所有数据if (T!=NULL) { //非空二叉树LDR_P(T->lchild); //递归遍历左子树printf ("%c ",T->data); //访问TLDR_P(T->rchild); //递归遍历右子树}return 1;}int LRD_P(BiTree &T) { //后序遍历打印二叉树中所有数据if (T!=NULL) { //非空二叉树LRD_P(T->lchild); //递归遍历左子树LRD_P(T->rchild); //递归遍历右子树printf ("%c ",T->data); //访问T}return 1;}int DLR_0(BiTree &T,int &s_0) { //用先序遍历求二叉树T中所有叶子总数if (T!=NULL) { //非空二叉树if(!T->lchild&&!T->rchild) { //判断该结点是否为叶子s_0++; //是叶子则计数并打印printf ("%c ",T->data);}DLR_0(T->lchild,s_0); //递归遍历左子树,直到叶子处DLR_0(T->rchild,s_0); //递归遍历右子树,直到叶子处}return s_0;}int DLR_1(BiTree &T,int &s_1) { //用先序遍历求二叉树T中所有1度结点总数if (T!=NULL) { //非空二叉树if(T->lchild&&!T->rchild) { //判断该结点是否为1度结点s_1++; //是1度结点则计数并打印printf ("%c ",T->data);}if(!T->lchild&&T->rchild) { //判断该结点是否为1度结点s_1++; //是1度结点则计数并打印printf ("%c ",T->data);}DLR_1(T->lchild,s_1); //递归遍历左子树,直到1度结点处DLR_1(T->rchild,s_1); //递归遍历右子树,直到1度结点处}return s_1;}int DLR_2(BiTree &T,int &s_2) { //用先序遍历求二叉树T中所有2度结点总数if (T!=NULL) { //非空二叉树if(T->lchild&&T->rchild) { //判断该结点是否为2度结点s_2++; //是2度结点则计数并打印printf ("%c ",T->data);}DLR_2(T->lchild,s_2); //递归遍历左子树,直到2度结点处DLR_2(T->rchild,s_2); //递归遍历右子树,直到2度结点处}return s_2;}int ShenDu(BiTree &T,int l,int &h) { //用递归求二叉树的深度if (T!=NULL) { //非空二叉树l=l+1;if (l>h) h=l;ShenDu(T->lchild,l,h); //递归遍历左子树ShenDu(T->rchild,l,h); //递归遍历右子树}return 1;}int QingKong(BiTree &T) { //清空二叉树if (T!=NULL) {QingKong(T->lchild); //遍历清空左子树free(T->lchild);QingKong(T->rchild); //遍历清空右子树free(T->rchild);}return 1;}int main () { //主函数int i,a=0;Node *T; //定义一个二叉树Twhile(1) {system("cls");printf("\t|===========================================================|\t\n");printf ("\t| |\t\n");printf ("\t| 二叉树的链式存储|\t\n");printf ("\t| |\t\n");printf("\t|===========================================================|\t\n");printf ("\n\t【1】建立二叉树及先序输入!\t 【2】遍历二叉树打印!\n");printf ("\n\t【3】打印各结点并统计! \t 【4】求二叉树的深度!\n");printf ("\n\t【5】清空二叉树!\t\t 【0】退出程序!\n");system("color F0");printf ("\n\n\t\t\t请输入你的选择:"); //输入选择的功能序号scanf ("%d",&i);switch(i) {case 1: //建立二叉树T并输入数据printf ("请输入二叉树T的根:");JianShu(T);a=1;system("pause");break;case 2: //遍历打印二叉树中所有数据if(a==1) {if(T!=NULL) { //非空二叉树Tprintf ("先序遍历打印结果:"); //执行先序遍历并打印DLR_P(T);printf ("\n\n中序遍历打印结果:"); //执行中序遍历并打印LDR_P(T);printf ("\n\n后序遍历打印结果:"); //执行后序遍历并打印LRD_P(T);printf ("\n");}elseprintf ("二叉树T为空树!\n");}else //未建立二叉树printf ("未建立二叉树!\n");system("pause");break;case 3: //先序遍历打印二叉树中0度1度2度结点if(a==1) {if(T!=NULL) { //非空二叉树Tint s_0=0,s_1=0,s_2=0;printf ("二叉树中叶子:");DLR_0(T,s_0); //执行先序遍历打印叶子并统计printf ("共有%d个叶子!\n",s_0);printf ("\n二叉树中1度结点:");DLR_1(T,s_1); //执行先序遍历打印1度结点并统计printf ("共有%d个1度结点!\n",s_1);printf ("\n二叉树中2度结点:");DLR_2(T,s_2); //执行先序遍历打印2度结点并统计printf ("共有%d个2度结点!\n",s_2);}elseprintf ("二叉树T为空树!\n");}else //未建立二叉树printf ("未建立二叉树!\n");system("pause");break;case 4: //用递归求二叉树的深度if(a==1) {if(T!=NULL) { //非空二叉树Tint l=0,h=0;ShenDu(T,l,h);printf ("二叉树的深度为%d.\n",h);}elseprintf ("二叉树T为空树!\n");}else //未建立二叉树printf ("未建立二叉树!\n");system("pause");break;case 5: //清空二叉树if(a==1) {if(T!=NULL) { //非空二叉树QingKong(T); //清空二叉树T=NULL;printf ("二叉树已清空!\n");}elseprintf ("二叉树T为空树,既不用清空!\n");}else //未建立二叉树printf ("未建立二叉树,既不用清空!\n");system("pause");break;case 0: //退出程序printf ("退出程序!\n");return 1;default: //重新输入选择的功能序号printf ("输入有误,请重新输入!\n");system("pause");break;}}}。

c++实现树(二叉树)的建立和遍历算法(一)(前序,中序,后序)

c++实现树(二叉树)的建立和遍历算法(一)(前序,中序,后序)

c++实现树(⼆叉树)的建⽴和遍历算法(⼀)(前序,中序,后序)最近学习树的概念,有关⼆叉树的实现算法记录下来。

不过学习之前要了解的预备知识:树的概念;⼆叉树的存储结构;⼆叉树的遍历⽅法。

⼆叉树的存储结构主要了解⼆叉链表结构,也就是⼀个数据域,两个指针域,(分别为指向左右孩⼦的指针),从下⾯程序1,⼆叉树的存储结构可以看出。

⼆叉树的遍历⽅法:主要有前序遍历,中序遍历,后序遍历,层序遍历。

(层序遍历下⼀篇再讲,本篇主要讲的递归法)下篇主要是,之后会有c++模板实现和。

如这样⼀个⼆叉树:它的前序遍历顺序为:ABDGHCEIF(规则是先是根结点,再前序遍历左⼦树,再前序遍历右⼦树)它的中序遍历顺序为:GDHBAEICF(规则是先中序遍历左⼦树,再是根结点,再是中序遍历右⼦树)它的后序遍历顺序为:GHDBIEFCA(规则是先后序遍历左⼦树,再是后序遍历右⼦树,再是根结点)如果不懂的话,可以参看有关数据结构的书籍。

1,⼆叉树的存储结构(⼆叉链表)//⼆叉树的⼆叉链表结构,也就是⼆叉树的存储结构,1个数据域,2个指针域(分别指向左右孩⼦)typedef struct BiTNode{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree;2,⾸先要建⽴⼀个⼆叉树,建⽴⼆叉树必须要了解⼆叉树的遍历⽅法。

//⼆叉树的建⽴,按前序遍历的⽅式建⽴⼆叉树,当然也可以以中序或后序的⽅式建⽴⼆叉树void CreateBiTree(BiTree *T){ElemType ch;cin >> ch;if (ch == '#')*T = NULL; //保证是叶结点else{*T = (BiTree)malloc(sizeof(BiTNode));//if (!*T)//exit(OVERFLOW); //内存分配失败则退出。

c语言实现构造哈夫曼树代码

c语言实现构造哈夫曼树代码

c语言实现构造哈夫曼树代码一、哈夫曼树简介哈夫曼树是一种特殊的二叉树,其每个叶子节点都对应一个权值,而非叶子节点则没有权值。

哈夫曼树的构造过程中,将权值较小的节点放在左子树,权值较大的节点放在右子树,这使得哈夫曼树的带权路径最短。

哈夫曼编码就是利用这种特性实现对数据进行压缩。

二、C语言实现构造哈夫曼树1. 定义结构体首先需要定义一个结构体来表示哈夫曼树中的节点。

结构体中包含了该节点的权值以及指向左右子节点的指针。

```typedef struct TreeNode {int weight;struct TreeNode *left;struct TreeNode *right;} TreeNode;2. 构造哈夫曼树接下来需要实现构造哈夫曼树的函数。

该函数接收一个数组作为输入,数组中存储了每个叶子节点的权值。

首先需要将数组中所有元素转化为TreeNode类型,并将它们存储在一个链表中。

```TreeNode *createTreeNodes(int weights[], int size) {TreeNode *nodes[size];for (int i = 0; i < size; i++) {nodes[i] = (TreeNode *)malloc(sizeof(TreeNode));nodes[i]->weight = weights[i];nodes[i]->left = NULL;nodes[i]->right = NULL;}return nodes;}```接下来,需要实现一个函数来找到权值最小的两个节点。

该函数接收一个链表作为输入,并返回该链表中权值最小的两个节点。

```void findMinNodes(TreeNode **nodes, int size, TreeNode**minNode1, TreeNode **minNode2) {*minNode1 = *minNode2 = NULL;for (int i = 0; i < size; i++) {if (*minNode1 == NULL || (*nodes)[i].weight <(*minNode1)->weight) {*minNode2 = *minNode1;*minNode1 = &(*nodes)[i];} else if (*minNode2 == NULL || (*nodes)[i].weight < (*minNode2)->weight) {*minNode2 = &(*nodes)[i];}}}```接下来,需要实现一个函数来构造哈夫曼树。

c语言中求二叉树的最大值

c语言中求二叉树的最大值

C语言中如何求二叉树的最大值?二叉树是计算机科学中常用的数据结构之一,它在很多应用中都有广泛的应用。

本文将介绍在C语言中如何求解二叉树的最大值。

首先我们需要了解二叉树。

二叉树是一种树形数据结构,它由一个根节点和一些有序的子节点组成。

每个节点最多有两个子节点:一个左子节点和一个右子节点。

我们可以使用递归的方式遍历整个二叉树,来查找最大值。

在遍历二叉树过程中,我们需要记录当前的最大值,每次遍历到一个新的节点时,比较该节点的值是否大于当前最大值,如果是,则更新当前最大值。

接下来,我们使用C语言编写代码实现求解二叉树最大值的算法。

以下是代码示例:include <stdio.h>include <stdlib.h>// 定义二叉树节点结构体struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;};// 求解二叉树最大值的函数int getMaxValue(struct TreeNode* root) {if (root == NULL) {return INT_MIN;}int left_max = getMaxValue(root->left);int right_max = getMaxValue(root->right);return fmax(root->val, fmax(left_max, right_max));}int main(){// 构建二叉树struct TreeNode *root = (structTreeNode*)malloc(sizeof(struct TreeNode));root->val = 5;root->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root->left->val = 3;root->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root->right->val = 6;root->left->left = (structTreeNode*)malloc(sizeof(struct TreeNode));root->left->left->val = 2;root->left->right = (structTreeNode*)malloc(sizeof(struct TreeNode));root->left->right->val = 4;root->right->right = (structTreeNode*)malloc(sizeof(struct TreeNode));root->right->right->val = 7;// 求解二叉树最大值int max_val = getMaxValue(root);printf("the max value of binary tree is %d\n",max_val);return 0;}在上面的代码中,我们首先定义了一个名为TreeNode的结构体,用于描述二叉树的节点。

数据结构C语言版_二叉树的三叉链表存储表示

数据结构C语言版_二叉树的三叉链表存储表示
TElemType RightSibling(BiPTree T,TElemType e)
{
BiPTree a;
if(T) // 非空树
{
a=Point(T,e); // a是结点e的指针
// T中存在结点e且e存在右兄弟
if(a&&a!=T&&a->parent->rchild&&a->parent->rchild!=a)
int BiTreeEmpty(BiPTree T)
{
if(T)
return 0;
else
return 1;
}
// 返回T的深度
int BiTreeDepth(BiPTree T)
{
int i,j;
if(!T)
return 0;
if(T->lchild)
{
QElemType data; //数据域
struct QNode *next; //指针域
}QNode,*QueuePtr;
typedef struct
{
QueuePtr front,//队头指针,指针域指向队头元素
rear; //队尾指针,指向队尾元素
}LinkQueue;
int DeQueue(LinkQueue *Q,QElemType *e) f((*Q).front==(*Q).rear)
return 0;
p=(*Q).front->next; //队头元素
*e=p->data;
(*Q).front->next=p->next;

用C语言编写二叉树的建立与遍历

用C语言编写二叉树的建立与遍历

用C语言编写二叉树的建立与遍历1.对题目要有需求分析在需求分析中,将题目中要求的功能进行叙述分析,并且设计解决此问题的数据存储结构,设计或叙述解决此问题的算法。

给出实现功能的一组或多组测试数据,程序调试后,将按照此测试数据进行测试的结果列出来。

如果程序不能正常运行,写出实现此算法中遇到的问题和改进方法;2.对题目要有相应的源程序源程序要按照写程序的规则来编写。

要结构清晰,重点函数的重点变量,重点功能部分要加上清晰的程序注释。

(注释量占总代码的四分之一)程序能够运行,要有基本的容错功能。

尽量避免出现操作错误时出现死循环;3.最后提供的主程序可以象一个应用系统一样有主窗口,通过主菜单和分级菜单调用课程设计中要求完成的各个功能模块,调用后可以返回到主菜单,继续选择其他功能进行其他功能的选择。

二叉树的建立与遍历[问题描述]建立一棵二叉树,并对其进行遍历(先序、中序、后序),打印输出遍历结果。

[基本要求]从键盘接受输入,以二叉链表作为存储结构,建立二叉树,并对其进行遍历(先序、中序、后序),将遍历结果打印输出。

以下是我的数据结构实验的作业:肯定好用,里面还包括了统计树的深度和叶子数!记住每次做完一个遍历还要重新输入你的树哦!#include "stdio.h"#include "string.h"#define NULL 0typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;BiTree Create(BiTree T){char ch;ch=getchar();if(ch=='#')T=NULL;else{if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))printf("Error!");T->data=ch;T->lchild=Create(T->lchild);T->rchild=Create(T->rchild); }return T;}void Preorder(BiTree T){if(T){printf("%c",T->data); Preorder(T->lchild); Preorder(T->rchild);}}int Sumleaf(BiTree T){int sum=0,m,n;if(T){if((!T->lchild)&&(!T->rchild)) sum++;m=Sumleaf(T->lchild);sum+=m;n=Sumleaf(T->rchild);sum+=n;}return sum;}void zhongxu(BiTree T){if(T){zhongxu(T->lchild);printf("%c",T->data); zhongxu(T->rchild);}}void houxu(BiTree T){if(T){houxu(T->lchild);houxu(T->rchild);printf("%c",T->data);}}int Depth(BiTree T){int dep=0,depl,depr;if(!T) dep=0;else{depl=Depth(T->lchild);depr=Depth(T->rchild);dep=1+(depl>depr?depl:depr);}return dep;}main(){BiTree T;int sum,dep;T=Create(T);Preorder(T);printf("\n");zhongxu(T);printf("\n");houxu(T);printf("\n");sum=Sumleaf(T);printf("%d",sum);dep=Depth(T);printf("\n%d",dep);}在Turbo C的环境下,先按Ctrl+F9运行程序,此时就是建立二叉树的过程,例如输入序列ABC##DE#G##F###(其中的“#”表示空,并且输入过程中不要加回车,因为回车也有对应的ASCII码,是要算字符的,但是输入完之后可以按回车退出),然后再按ALT+F5显示用户界面,这时候就能够看到结果了。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1,2两问的程序代码如下:#include "stdio.h"#include"malloc.h"typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;BiTree Create(BiTree T){char ch;ch=getchar();if(ch=='#')T=NULL;else{T=(BiTNode *)malloc(sizeof(BiTNode)); T->data=ch;T->lchild=Create(T->lchild);T->rchild=Create(T->rchild);}return T;}int node(BiTree T){int sum1=0,a,b;if(T){if(T!=NULL)sum1++;a=node(T->lchild);sum1+=a;b=node(T->rchild);sum1+=b;}return sum1;}int mnode(BiTree T){int sum2=0,e,f;if(T){if((T->lchild!=NULL)&&(T->rchild!=NULL)) sum2++;e=mnode(T->lchild);sum2+=e;f=mnode(T->rchild);sum2+=f;}return sum2;void Preorder(BiTree T){if(T){printf("%c",T->data); Preorder(T->lchild); Preorder(T->rchild);}}int Sumleaf(BiTree T){int sum=0,m,n;if(T){if((!T->lchild)&&(!T->rchild)) sum++;m=Sumleaf(T->lchild);sum+=m;n=Sumleaf(T->rchild);sum+=n;}return sum;}void zhongxu(BiTree T){{zhongxu(T->lchild);printf("%c",T->data);zhongxu(T->rchild);}}void houxu(BiTree T) {if(T){houxu(T->lchild);houxu(T->rchild);printf("%c",T->data);}}main(){BiTree T;int sum,sum1,sum3; printf("请输入字符串:\n");T=Create(T);printf("前序遍历:\n");Preorder(T);printf("\n");printf("中序遍历:\n");zhongxu(T); printf("\n");printf("后序遍历:\n");houxu(T);printf("\n");sum=Sumleaf(T); printf("树叶数为:\n");printf("%d",sum); printf("\n");printf("树结点数为:\n");sum1=node(T); printf("\n");printf("%d",sum1); printf("\n");printf("树满结点数为:\n");sum3=mnode(T); printf("%d",sum3); printf("\n");}3,4两问的程序代码如下:#include<stdio.h> J K#include <malloc.h>#define NULL 0#define MAX 100/*定义二叉树*/typedef struct bitnode{ char data;struct bitnode *lchild,*rchild;}bitnode;/*定义栈元素的类型*/typedef struct node{ struct bitnode *p;}node;/*定义栈*/typedef struct stack{ node *base;node *top;int size;}stack;/*全局变量*/struct bitnode *T;stack *s;int i=0,a; /*a为二叉树的结点总数;i为访问结点时的计数*//*构建空栈*/stack *initstack(){s->base=(struct node *)malloc(MAX*sizeof(node));if(!s->base) exit(0);s->top=s->base;s->size=MAX;return s;}/*判断栈是否为空栈*/int stackempty(stack *s){ if(s->top==s->base) return 1;else return 0;}/*入栈*/stack *push(stack *s,struct bitnode *t){ if(s->top-s->base==s->size){s->base=(struct node *)realloc(s->base,(s->size+10)*sizeof(node));if(!s->base) exit(0);s->top=s->base+s->size;s->size+=10;}(*s->top).p=t;s->top++;return s;}/*出栈*/struct bitnode *pop(stack *s){if(s->top==s->base){ printf("这是一个空栈\n");return 0;}else{s->top--;return ((*s->top).p);}}/*取栈顶的元素*/struct bitnode *getpop(stack *s){if(s->top==s->base){printf("这是一个的空栈!\n");return NULL;}elsereturn (*(s->top-1)).p;}/*先序递归构建二叉树*/struct bitnode *creatbitree(struct bitnode *r){char a;scanf("%c",&a);if(a==' ') return r=NULL;else{ r=(struct bitnode*)malloc(sizeof(bitnode));r->data=a;r->lchild=creatbitree(r->lchild);r->rchild=creatbitree(r->rchild);}return r;}/*访问元素*/void visit(char ch){ if(i!=(a-1)){ printf("%c->",ch);i++;}else{ printf("%c",ch);printf("\n");}}/*中序非递归遍历二叉树*/void inorder(struct bitnode *T){ struct bitnode *p,*q;p=T;s=initstack();if(p){ while(p){ push(s,p);p=p->lchild;}while(!stackempty(s)){ p=pop(s);visit(p->data);if(p->rchild!=NULL){ q=p->rchild;while(q){ push(s,q);q=q->lchild;}}}}}/*求二叉树的结点总数*/int counter(struct bitnode *T){ int num1,num2,num;if(T==NULL) return 0;else{ num1=counter(T->lchild);num2=counter(T->rchild);num=num1+num2+1;return num;}}/*求二叉树的单分支的结点数*/int onecount(struct bitnode *T){ int s1,s2;if(T==NULL) return(0);else{ s1=onecount(T->lchild);s2=onecount(T->rchild);if((T->lchild!=NULL&&T->rchild==NULL)||(T->rchild!=NULL&&T->lchild==NULL)) return (s1+s2+1);else return (s1+s2);}}/*主函数*/main(){ int sum;printf("xian xu shu ru bitree:\n");T=creatbitree(T); /*创建二叉树*/a=counter(T); /*求结点总数*/printf("\na=%d\n",a);printf("\nzhong xu bian li bitree:\n");inorder(T); /*中序遍历二叉树*/sum=onecount(T); /*求单分支的结点数*/printf("\n\nthe bitree dan fen zhi jie dian shu:\nSUM=%d\n",sum);getch();}。

相关文档
最新文档