A.31010
B.1010
C.510
D.515
EB =EA +AB =2,EC =EB 2+BC 2=
4+1=5,
∠EDC =∠EDA +∠ADC =π4+π2=3π4
. 由正弦定理,得sin ∠CED sin ∠EDC =DC CE
=15=55, 所以sin ∠CED =
55sin ∠EDC =55sin 3π4=1010
. 3.(2016·新课标卷Ⅲ)在△ABC 中,B =π4,BC 边上的高等于13
BC ,则sin A =(D) A.310 B.1010
C.55
D.31010 如图,AD 为△ABC 中BC 边上的高.
设BC =a ,由题意知AD =13BC =13a ,B =π4,易知BD =AD =13a ,DC =23
a . 在Rt △ABD 中,由勾股定理得,
AB =(13a )2+(13a )2=23a . 同理,在Rt △ACD 中,AC =
(13a )2+(23a )2=53
a . 因为S △ABC =12AB ·AC ·sin ∠BAC =12
BC ·AD , 所以12×23a ×53a ·sin ∠BAC =12a ·13
a , 所以sin ∠BAC =310=31010. 4.(2017·新课标卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,
b ,
c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =(B)
A.π12
B.π6
C.π4
D.π3
因为a =2,c =2,
所以由正弦定理可知,2sin A =2sin C , 故sin A =2sin C . 又B =π-(A +C ),
故sin B +sin A (sin C -cos C )
=sin(A +C )+sin A sin C -sin A cos C =sin A cos C +cos A sin C +sin A sin C -sin A cos C
=(sin A +cos A )sin C
=0.
又C 为△ABC 的内角,故sin C ≠0,
则sin A +cos A =0,即tan A =-1.
又A ∈(0,π),所以A =3π4
. 从而sin C =12
sin A =22×22=12. 由A =3π4知C 为锐角,故C =π6
. 5.(2016·北京卷)在△ABC 中,∠A =2π3,a =3c ,则b c
= 1 . 在△ABC 中,∠A =2π3
, 所以a 2=b 2+c 2-2bc cos 2π3
,即a 2=b 2+c 2+bc . 因为a =3c ,所以3c 2=b 2+c 2+bc ,所以b 2+bc -2c 2=0,
所以(b +2c )(b -c )=0,所以b -c =0,所以b =c ,
所以b c
=1. 6.(2015·重庆卷)在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC = 6 .
如图,在△ABD 中,由正弦定理,得
AD sin B =AB sin ∠ADB
, 所以sin ∠ADB =22
. 所以∠ADB =45°,
所以∠BAD =180°-45°-120°=15°.
所以∠BAC =30°,∠C =30°,所以BC =AB =2, 所以AC = 6.
7.(2015·安徽卷)在△ABC 中,∠A =3π4
,AB =6,AC =32,点D 在BC 边上,AD =BD ,求AD 的长.
设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,
由余弦定理得
a 2=
b 2+
c 2-2bc cos A
=(32)2+62-2×32×6×cos 3π4
=18+36-(-36)=90. 所以a =310. 又由正弦定理得sin B =b sin A a =3310=1010, 由题设知0<B <π4
, 所以cos B =1-sin 2B = 1-110=31010. 在△ABD 中,因为AD =BD ,所以∠ABD =∠BAD ,
所以∠ADB =π-2B ,故由正弦定理得
AD =AB ·sin B sin (π-2B )=6sin B 2sin B cos B =3cos B
=10. 8. △ABC 中,AB =1,BC =2,则角C 的范围是(A)
A .0C.π4D.π6设AC =x ,则1cos C =4+x 2-14x =3+x 24x =34x +x 4
≥234x ·x 4=32
,当且仅当x =3时,取“=”.故0,b =3,则c = 145
. 因为cos A =35,cos B =513
, 所以sin A =45,sin B =1213
, 所以sin C =sin(A +B )=sin A cos B +cos A sin B
=45×513+35×1213=5665
. 因为b sin B =c sin C ,又b =3,所以c =b sin C sin B =145
. 10.(2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2).
(1)求cos A 的值;
(2)求sin(2B -A )的值.
(1)由a sin A =4b sin B 及a sin A =b sin B
,得a =2b . 由ac =5(a 2-b 2-c 2)及余弦定理,得
cos A =b 2+c 2-a 22bc =-55ac ac =-55
. (2)由(1),可得sin A =255
,代入a sin A =4b sin B ,得 sin B =a sin A 4b =55
.