七年级数学《数据的收集与整理》专项训练

合集下载

北师大版七年级数学上册第六章《数据的收集与整理 》训练题含答案解析 (30)

北师大版七年级数学上册第六章《数据的收集与整理 》训练题含答案解析 (30)

一、选择题1.在对n个数据进行整理的频率分布表中,各组的频数与频率之和分别等于( )A.n,1B.n,n C.1,n D.1,12.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15∼20包括15,不包括20,以下同),请根据统计图计算成绩在20∼30次的频率是( )A.0.4B.0.5C.0.6D.0.73.安居物业管理公司对某小区一天的垃圾进行了分类统计,如图是分类情况的扇形统计图,若一天产生的垃圾为300 kg,估计该小区一个月(按30天计)产生的可回收垃圾重量约是( )A.900 kg B.105 kg C.3150 kg D.5850 kg4.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是( )A.条形图B.折线图C.扇形图D.直方图5.一次数学测试后,某班40名学生的成绩被分为5组,第1∼4组的频数分别为12,10,6,8,则第5组的频率是( )A.0.1B.0.2C.0.3D.0.46.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为( )A.36∘B.20∘C.10∘D.无法确定7.如图是北京城镇居民家庭2010−2017年每百户移动电话拥有量折线统计图,根据图中信息,相邻两年每百户移动电话拥有量变化最大的是( )A.2010年至2011年B.2011年至2012年C.2014年至2015年D.2016年至2017年8.黄石农科所在相同条件下经试验发现蚕豆种子的发芽率为97.1%,请估计黄石地区1000斤蚕豆种子中不能发芽的大约有( )A.971斤B.129斤C.97.1斤D.29斤9.随着智能手机的普及,“支付宝支付”和“微信支付”等手机支付方式倍受广大消费者的青睐,某商场对2019年7−12月中使用这两种手机支付方式的情况进行统计,得到如图所示的折线图,根据统计图中的信息,得出以下四个推断,其中不合理的是( )A.6个月中使用“微信支付”的总次数比使用“支付宝支付”的总次数多B.6个月中使用“微信支付”的消费总额比使用“支付宝支付”的消费总额大C.6个月中11月份使用手机支付的总次数最多D.9月份平均每天使用手机支付的次数比12月份平均每天使用手机支付的次数多10.小刚家2017年和2018年的家庭支出情况如图所示,则小刚家2018年教育方面支出的金额比2017年增加了( )A.0.216万元B.0.108万元C.0.09万元D.0.36万元二、填空题11.某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;⋯⋯,经整理形成统计表如下:(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为元;(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为元.12.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为万人,你的预估理由是.13.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是∘C.14.为了解全区5000名初中毕业生的体重情况,随机抽测了200名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02,0.03,0.04,0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为人.15.如图,将一个圆分割成三个扇形,若甲、丙两个扇形面积之比为3:2,圆心角∠BOC=120∘,则∠AOC=∘.16.某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是.17.为了帮助班上的两名贫困学生解决经济困难,班上的20名学生捐出了零花钱,他们的捐款数(单位:元)如下:19,20,25,30,24,23,25,29,27,27,28,28,26,27,21,30,20,19,22,20.班主任老师准备将这组数据制成频数分布直方图,以表彰他们的爱心,制图时先计算最大值与最小值的差:.若取组距为2,则应分成组;若第一组的起点定为18.5,则在26.5∼28.5范围内的频数为.三、解答题18.某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋;要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1) 此次共抽查了名学生;(2) 请通过计算补全条形统计图;(3) 若该校八年级共有900名学生,请估计选择C 课程的有多少名学生.19.新冠肺炎疫情期间,某市防控指挥部想了解自1月20日至2月末各学校教职工参与志愿服务的情况.在全市各学校随机调查了部分参与志愿服务的教职工,对他们的志愿服务时间进行统计,整理井绘制成两幅不完整的统计图表.请根据两幅统计图表中的信息回答下列问题:志愿服务时间(小时)频数A0<x≤30aB30<x≤6010C60<x≤9016D90<x≤12020(1) 本次被抽取的教职工共有名;(2) 表中a=,扇形统计图中“C”部分所占百分比为%;(3) 扇形统计图中,“D”所对应的扇形圆心角的度数为∘;(4) 若该市共有30000名教职工参与志愿服务,那么志愿服务时间多于60小时的教职工大约有多少人?20.某中学举行“庆祝中华人民共和国成立70周年”知识预赛,学生会把成绩x(分)分成五组:A组:50≤x<60;B组:60≤x<70;C组:70≤x<80;D组:80≤x<90,E组:90≤x<100.统计后绘制成如下两个统计图(不完整).(1) 直接填空:① m的值为.②在图2中,C组的扇形圆心角的度数为.(2) 在图1中,画出60≤x<70所对应的条形图.(3) 若学生会计划从预赛中选拔前30名进入复赛,则进入复赛的成绩应不低于多少分?21.新华社消息:法国教育部宜布,小学和初中于2018年9月新学期开始,禁止学生在校使用手机.为了解学生手机使用情况,包河区某学校开展了“手机伴我健康行”的主题活动,学校随机抽取部分学生进行“使用手机的目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,图②的统计图.已知“查资料”的人数为42.(1) 本次抽样调查一共抽取了人;补全条形统计图;(2) 在扇形统计图中,“玩游戏”对应的圆心角的度数为度;(3) 该校共有学生2100人,请估计每周使用手机时间在2小时以上(不含2小时)的人数.22.某区举办科技比赛,某校参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图如图.(1) 该校参加机器人的人数是人;“航模”所在扇形的圆心角的度数是∘.(2) 补全条形统计图.(3) 从全区参加科技比赛选手中随机抽取80人,其中有16人获奖,已知全区参加科技比赛人数共有3215人,请你估算全区参加科技比赛的获奖人数约是多少人?23.图①是某手机生产厂第一季度三个月产量统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.(1) 该厂二月份生产的手机产量占第一季度的比例为%;(2) 求该厂三月份生产手机的产量;(3) 请求出图②中一月份圆心角的度数.24.某校开展“阳光体育活动”主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1) 样本中喜欢B项目的人数百分比是,其所在扇形统计图中的圆心角的度数是.(2) 把条形统计图补充完整.(3) 已知该校有2000人,根据样本估计全校喜欢乒乓球的人数是多少?25.“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调査的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1) 接受问卷调查的学生共有人,扇形统计图中“了解”部分所对应扇形的圆心角为度;(2) 请补全条形统计;(3) 若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.答案一、选择题1. 【答案】A【知识点】频数分布表及直方图2. 【答案】D【知识点】频数分布表及直方图3. 【答案】C【解析】300×35%×30=3150(kg),该小区一个月(按30天计)产生的可回收垃圾重量约是3150 kg.【知识点】扇形统计图4. 【答案】C【解析】根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.【知识点】扇形统计图5. 【答案】A【解析】根据题意得:40−(12+10+6+8)=40−36=4,则第5组的频率为4÷40=0.1.【知识点】数据的分布6. 【答案】A【解析】由图知“无所谓”意见人数占总人数的10%,所以图中α的度数为360∘×10%=36∘.【知识点】扇形统计图7. 【答案】B【解析】观察折线统计图可知:2011年至2012年每百户移动电话拥有量变化最大.【知识点】折线统计图8. 【答案】D【解析】由题意可得,黄石地区1000斤蚕豆种子中不能发芽的大约有:1000×(1−97.1%)= 1000×0.029=29斤.【知识点】用样本估算总体9. 【答案】B【知识点】折线统计图10. 【答案】A【解析】2017年教育方面支出所占的百分比:1−30%−25%−15%=30%,教育方面支出的金额:1.8×30%=0.54(万元);2018年教育方面支出的金额:2.16×35%=0.756(万元),小刚家2018年教育方面支出的金额比2017年增加了0.756−0.54=0.216(万元).【知识点】条形统计图、扇形统计图二、填空题11. 【答案】160;180【知识点】统计表12. 【答案】6.53;最近三年下降趋势平稳【解析】答案不唯一,预估理由需包含统计图提供的信息,且支撑预估的数据即可.【知识点】折线统计图、数据变化趋势分析13. 【答案】11【解析】∵由折线统计图可知,周一的日温差=8∘C+1∘C=9∘C;周二的日温差=7∘C+1∘C=8∘C;周三的日温差=8∘C+1∘C=9∘C;周四的日温差=9∘C;周五的日温差=13∘C−5∘C=8∘C;周六的日温差=15∘C−71∘C=8∘C;周日的日温差=16∘C−5∘C=11∘C,∴这7天中最大的日温差是11∘C.【知识点】折线统计图14. 【答案】1500【知识点】频数分布直方图、用样本估算总体15. 【答案】96【知识点】扇形统计图16. 【答案】80%【知识点】频数分布表及直方图17. 【答案】11;6;5【知识点】频数分布表及直方图三、解答题18. 【答案】(2) C 项目的人数为180−46−34−40=60(名).条形统计图补充为:(3) 估计全校选择C 课程的学生有900×60180=300(名).【解析】(1) 这次学校抽查的学生人数是40÷80360=180(名).【知识点】条形统计图、扇形统计图、用样本估算总体19. 【答案】(1) 50(2) 4;32(3) 144(4) 由题意可知:30000×16+2050×100%=21600(人).∴估计全市志愿服务时间多于60小时的教职工大约有21600人.【知识点】用样本估算总体、扇形统计图20. 【答案】(1) ① 150② 90∘(2) 400×72360=80人,所画条形图如图所示.(3) 由(1)可得E组的人数为:400−40−80−100−150=30人,∴前30名的成绩应不低于90分,即进入复赛的成绩应不低于90分.【解析】(1) ① 40÷36360=400,400×135400=150人.② 360∘×100400=90∘.【知识点】扇形统计图、条形统计图21. 【答案】(1) 105;补全条形统计图,如图所示:=1380(人).(3) 估计每周使用手机时间在2小时以上(不含2小时)的人数为2100×32+37105答:全校学生2660名学生中每周使用手机时间在2小时以上(不含2小时)的有1380人.【解析】(1) 42÷40%=105(人),3小时以上的人数为:105−(2+16+18+32)=37(人).(2) 1−(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360∘×35%=126∘.【知识点】扇形统计图、用样本估算总体、条形统计图22. 【答案】(1) 4;90(2) 因为被调查的总人数为6÷25%=24人,所以电子百拼的人数为24−(6+4+6)=8人,补全图形如下:=643人.(3) 估算全区参加科技比赛的获奖人数约是:3215×1680【解析】(1) 该校参加机器人的人数是4,“航模”所在扇形的圆心角的度数是360∘×25%=90∘.【知识点】扇形统计图、用样本估算总体、条形统计图23. 【答案】(1) 34%(2) 该厂第一季度总产量为:1500÷30%=5000(部),5000×36%=1800(部);答:该厂三月份生产手机为1800部;(3) 360∘×30%=108∘.答:图②中一月份圆心角的度数为:108∘.【解析】(1) 该厂二月份生产的手机产量占第一季度的比例为1−30%−36%=34%;【知识点】扇形统计图、条形统计图24. 【答案】(1) 20%;72∘(2)(3) 2000×44%=880【解析】(1) 1−8%−28%−44%=20%,360∘×20%=72∘.(2) 44÷44%×20%=20.【知识点】用样本估算总体、扇形统计图、条形统计图25. 【答案】(1) 60;90(2) “了解很少”的人数为60−(15+30+5)=10人,补全图形如下:=900(3) 估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数为1200×15+3060人.【解析】(1) 接受问卷调査的学生共有30÷50%=60人,扇形统计图中“了解”部分所对应扇形的圆心角=90∘.为360∘×1560【知识点】条形统计图、扇形统计图、用样本估算总体。

(典型题)初中数学七年级数学上册第六单元《数据的收集与整理》测试题(包含答案解析)

(典型题)初中数学七年级数学上册第六单元《数据的收集与整理》测试题(包含答案解析)

一、选择题1.下列说法正确..的是()A.一个数,如果不是正数,必定是负数B.所有有理数都能用数轴上的点表示C.调查某种灯泡的使用寿命采用普查D.两点之间直线最短2.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,403.下列调查中,适宜采用全面调查方式的是()A.了解全国中学生的视力情况B.调查某批次日光灯的使用寿命C.调查市场上矿泉水的质量情况D.调查某校九年级一班50名同学的身高情况4.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有5只.请你帮助工作人员估计这片山林中雀鸟的数量约为()A.1000只B.10000只C.5000只D.50000只5.某地区经过两年的产业扶贫后,经济总收入增加了一倍.为更好地了解该地区的经济收入变化情况,统计了产业扶贫前后的经济收入相关数据,得到下列统计图:下面结论不正确的是()A.经过产业扶贫后.养殖收入增加了一倍B.经过产业扶贫后,种植收入减少了C.经过产业共贫后,养殖收入与第二产业收人的总和超过了经济收入的一半D.经过产业扶贫后.其他收入增加了一倍以上6.党的十八大以来,脱贫工作取得巨大成效,全国农村贫困人口大幅减少.如图的统计图分别反映了2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况(注:贫困发生率=贫困人数(人)÷统计人数(人)×100%).根据统计图提供的信息,下列推断不正确的是()A.2012﹣2019年,全国农村贫困人口逐年递减B.2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年C.2012﹣2019年,全国农村贫困人口数累计减少9348万D.2019年,全国各省份的农村贫困发生率都不可能超过0.6%7.下列调查中,最适合采用抽样调查的是()A.了解全班同学每周体育锻炼的时间B.对市场上某一品牌电脑使用寿命的调查C.对旅客上飞机前的安检D.对“神州十一号”运载火箭发射前的零部件质量状况的调查8.下列调查中适合采用普查的是()A.调查某一居民小区感染新冠病毒的人数B.调查鞋厂生产的鞋底能承受的弯折次数C.调查市场上某种饮料中防腐剂的含量D.了解扬州市居民收看扬州电视台《今日生活》栏目的情况9.某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:根据统计图提供的信息,下列推断不合理...的是()A.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份B.2019年的月接待旅游量的平均值超过300万人次C.2017年至2019年,年接待旅游量逐年增加D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳10.下列调查中,适宜采用普查方式的是()A.调查银川市市民垃圾分类的情况B.对市场上的冰淇淋质量的调查C.对乘坐某次航班的乘客进行安全检查D.对全国中学生心理健康现状的调查11.某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法:①这600名学生的“中华经典诵读”大赛成绩的全体是总体.②每个学生是个体.③50名学生是总体的一个样本.④样本容量是50名.其中说法正确的有()A.1个B.2个C.3个D.4个12.有下列调查:①了解地里西瓜的成熟程度;②了解某班学生完成20道素质测评选择题的通过率;③了解一批导弹的杀伤范围;④了解成都市中学生睡眠情况.其中不适合普查而适合抽样调查的是()A.①②B.①②④C.①③④D.②③④二、填空题13.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为______人.14.数学小组对收集到的160个数据进行整理,并绘制出扇形图发现有一组数据所对应扇形的圆心角是72°,则该组的频数为______________________15.山西地质博物馆是山西唯一一家普及矿产资源和地球科学知识的博物馆,为了解全省人民参观山西地质博物馆的情况,宜采用______________的方式调查.(填“普查”或“抽样调查”)16.小晖统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次201596数)则通话时间不超过10min的频率为____.17.在一次智力抢答比赛中,四个小组回答正确的情况如下图.这四个小组平均正确回答__________道题目?(结果取整数)18.某班主任将其班上学生上学方式(乘公汽、骑自行车、坐小轿车、步行共4种)的调查结果绘制成下图所示的不完整的统计图,已知乘坐公汽上学的有12人,骑自行车上学的有24人,乘家长小轿车上学的有4人,则步行上学的学生人数在扇形统计图对应的扇形所占的圆心角的度数为_____.19.若某校有学生4000名,从中随机抽取了40名学生,调查他们每天做作业的时间,结果如下表:每天做作业时间t (时)01t≤<12t≤<23t≤<34t≤<4t>人数7161421则全校学生每天做作业超过3小时的人数约有___________.20.某中学开展以“我最喜欢的职业”为主题的调查活动,根据数据绘制的不完整统计图如图所示,图中工人部分所对应的圆心角为__________.三、解答题21.某市为提高学生参与体育活动的积极性,2019年5月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一学生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2018年约有初一学生20000,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.22.为丰富学生的课余生活,某校开展了A、B、C、D四类社团活动,为了解学生参加各类社团活动的情况,该校对七年级学生社团活动进行了抽样调查,得到两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查的样本容量为______.(2)请补全条形统计图;在扇形统计图中A类社团活动所对应的圆心角度数为______.(3)若学校有1200名学生参加社团活动,请你估计全校参加A类和B类社团活动的学生总人数.23.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽收n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值并补全条形统计图;(2)求扇形统计图中体育活动的圆心角度数;(3)若该校学生共有1200人,试估计该校喜爱看电视的学生人数.24.为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表.组别男女生身高(cm)x<A150155x<B155160x<C160165x<D165170x<E170175根据图表中提供的信息,回答下列问题:(1)在样本中,组距是__________,女生身高在B组的有__________人;x<之间的共有__________人,人数最多的是__________(2)在样本中,身高在170175组(填组别序号);x 之间的学生有(3)已知该校共有男生500人,女生480人,请估计身高在160170多少人?25.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括最大值但不包括最小值),请你根据统计图解决下列问题:(1)此次抽样调查的样本容量是______.(2)补全左侧统计图,并求扇形统计图中“25吨~30吨”部分的圆心角度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?26.为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为 20道判断题,每道题5分,满分 100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65, 80.85.75,65,70,65,85,70,95,80,75.80.为了便于分析数据,统计员对八年级数据进行了整理,得到表1表1:等级分数(单位:分)学生数D60<x≤705C70<x≤80aB80<x≤90bA90<x≤1002年级平均分中位数优秀率八年级78分c分m%九年级76分82.5分50%【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据有理数的定义,数轴、普查、线段的定义进行解答即可.【详解】解:A、一个数,如果不是正数,可能是负数,也可能是0,故A选项错误;B、所有的有理数都能用数轴上的点表示,故B正确;C、调查某种灯泡的使用寿命,利用普查破坏性较强,应采用抽样调查,故此选项错误;D、两点之间,线段最短,故原题说法错误.故选B.【点睛】本题考查了有理数的定义、数轴、普查、线段的定义,掌握相关知识是解题的关键.2.B解析:B【解析】试题分析:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.考点:扇形统计图.3.D解析:D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.了解全国中学生的视力情况的调查适宜采用抽样调查方式;B.调查某批次日光灯的使用寿命的调查适宜采用抽样调查方式;C.调查市场上矿泉水的质量情况的调查适宜采用抽样调查方式;D.调查某校九年级一班50名同学的身高情况适宜采用全面调查方式;故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.B解析:B【分析】由题意可知:重新捕获500只,其中带标记的有5只,可以知道,在样本中,有标记的占到5500.而在总体中,有标记的共有100只,根据比例即可解答.【详解】解:100÷5500=10000只.故选B.【点睛】本题考查了用样本估计总体的知识,体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.5.B解析:B【分析】根据统计表信息,依次判断各选项即可.【详解】设扶贫前总收入为a,则扶贫后总收入为2aA中,扶贫前后养殖收入都占总收入的30%,但扶贫后总收入增加了一倍,故扶贫后养殖收入也相应增加了一倍,A中说法正确;B中,扶贫前种植收入为:60%a,扶贫后种植总收入为37%×2a=74%a,故B中说法错误;C中,扶贫后养殖收入和第二产业收入占总和为:30%+28%=58%,超过了一半,C中说法正确;D中,扶贫前其他收入为:4%a,扶贫后为5%×2a=10%a,增加了一倍以上,D中说法正确故选:B.【点睛】本题考查根据扇形图信息判断对错,需要注意扶贫前后的经济总量是不同的.6.D解析:D【分析】观察统计图可得,2012﹣2019年,全国农村贫困人口逐年递减,可判断A;2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年,可判断B;2012﹣2019年,全国农村贫困人口数累计减少9899﹣551=9348万,可判断C;2019年,全国各省份的农村贫困发生率有可能超过0.6%,可判断D.【详解】观察统计图可知:A、2012﹣2019年,全国农村贫困人口逐年递减,正确;B、2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年,正确;C、2012﹣2019年,全国农村贫困人口数累计减少9899﹣551=9348万,正确;D、2019年,全国各省份的农村贫困发生率有可能超过0.6%,错误.故选:D.【点睛】本题考查了折线统计图、条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.7.B解析:B【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】A.了解全班同学每周体育锻炼的时间,适合全面调查;B.对市场上某一品牌电脑使用寿命的调查,有破坏性,适合抽样调查;C.对旅客上飞机前的安检,需要全面调查;D. 对“神州十一号”运载火箭发射前的零部件质量状况的调查,需要全面调查;【点睛】本题主要考查了全面调查及抽样调查,解题的关键是熟记由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8.A解析:A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:调查某一居民小区感染新冠病毒的人数,适合采用全面调查,A符合题意;调查鞋厂生产的鞋底能承受的弯折次数,适合采用抽样调查,B不合题意;调查市场上某种饮料中防腐剂的含量,适合采用抽样调查,C不合题意;了解扬州市居民收看扬州电视台《今日生活》栏目的情况,适合采用抽样调查,D不合题意;故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.D解析:D【分析】根据折线统计图的反映数据的增减变化情况,这个进行判断即可.【详解】解:A、2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份,故选项不符合题意;B、从2019年3月起,每个月的人数均超过300万人,并且整体超出的还很多,故选项不符合题意;C、从折线统计图的整体变化情况可得2017年至2019年,年接待旅游量逐年增加,故选项不符合题意;D、从统计图中可以看出2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性要大,故选项符合题意;故选:D.【点睛】本题考查折线统计图的意义和反映数据的增减变化情况,正确的识图是正确判断的前提.10.C解析:C【分析】普查的定义:为了特定目的而对所有考察对象进行的全面调查叫普查.【详解】A.调查银川市市民垃圾分类的情况, 人数多,耗时长,应当采用抽样调查的方式,故本选项错误;B.对市场上的冰淇淋质量的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;C.对乘坐某次航班的乘客进行安全检查, 因为调查的对象比较重要,应当采用全面调查,故本选项正确;D.对全国中学生心理健康现状的调查,由于人数多,故应当采用抽样调查;故选:C【点睛】本题属于基础应用题,只需学生熟练掌握普查的定义,即可完成.11.A解析:A【分析】”我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,考查对象是组织了一次全县600名学生参加的“中华经典诵读”大赛的成绩,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这600名学生的“中华经典诵读”大赛成绩的全体是总体,正确;②每个学生的成绩是个体,故原说法错误;③50名学生的成绩是总体的一个样本,故原说法错误;④样本容量是50,故原说法错误.所以说法正确有①,1个.【点睛】考查统计知识的总体,样本,个体,等相关知识点,要明确其定义.易错易混点:学生易对总体和个体的意义理解不清而错选.12.C解析:C【分析】根据普查适用的范围小,具有适用性,抽样调查具有代表性,机会均等的原则,不具破坏性的特点依次判断即可.【详解】①了解地里西瓜的成熟程度,不适合普查而适合抽样调查;②了解某班学生完成20道素质测评选择题的通过率,适合普查;③了解一批导弹的杀伤范围,不适合普查而适合抽样调查;④了解成都市中学生睡眠情况,不适合普查而适合抽样调查;故选:C.【点睛】此题考查普查与抽样调查的定义,正确理解两者的关系及各自的特点是解题的关键.二、填空题13.1100【分析】用该校的总人数乘以成绩为良和优的人数所占的百分比即可【详解】根据题意得:(人)答:其中成绩为良和优的总人数估计为1100人故答案为:1100【点睛】本题考查了条形统计图和用样本估计总解析:1100【分析】用该校的总人数乘以成绩为“良”和“优”的人数所占的百分比即可.【详解】根据题意得:85252000110018728525+⨯=+++(人), 答:其中成绩为“良”和“优”的总人数估计为1100人.故答案为:1100.【点睛】本题考查了条形统计图和用样本估计总体,根据条形统计图计算出“良”和“优”的人数所占的百分比是解题的关键.14.32【分析】该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数设该组频数为x 根据圆心角度数的计算公式求解【详解】设该组频数为xx=32故答案为:32【点睛】此题考查圆心角度数的计算公式正确解析:32该组的频数除以数据总数再乘以360度即可得到该组的圆心角度数,设该组频数为x ,根据圆心角度数的计算公式求解.【详解】设该组频数为x ,36072160x ⨯=, x=32,故答案为:32.【点睛】此题考查圆心角度数的计算公式,正确掌握计算公式是解题的关键.15.抽样调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来具体问题具体分析普查结果准确所以在要求精确难度相对不大实验无破坏性的情况下应选择普查方式当考查的对象很多或考查会给被调查对象 解析:抽样调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:了了解全省人民参观山西地质博物馆的情况,人数多,范围广,故为抽样调查. 故答案为:抽样调查.【点睛】本题考查的是调查方法的选择;正确选择调查方式要根据抽样调查和全面调查的优缺点再结合实际情况去分析.16.7【分析】根据频数分布表中的数据可以计算出通话时间不超过10min 的频率本题得以解决【详解】由表格可得:通话时间不超过10min 的频率为:07故答案为:07【点睛】本题考查频数分布表解答本题的关键是解析:7.【分析】根据频数分布表中的数据,可以计算出通话时间不超过10min 的频率,本题得以解决.【详解】由表格可得:通话时间不超过10min 的频率为:2015201596+=+++0.7. 故答案为:0.7.【点睛】本题考查频数分布表,解答本题的关键是明确题意,计算出相应的频率.17.12【分析】先求出四个小组回答的总题目数然后除以4即可【详解】解:这四个小组平均正确回答题目数(8+12+16+10)≈12(道)故答案为:12【点睛】本题考查的是条形统计图读懂统计图从不同的统计图解析:12【分析】先求出四个小组回答的总题目数,然后除以4即可.【详解】解:这四个小组平均正确回答题目数14(8+12+16+10)≈12(道),故答案为:12.【点睛】本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.90°【分析】先根据骑自行车上学的学生有12人占25求出总人数再根据步行上学的学生人数所对应的圆心角的度数为所占的比例乘以360度即可求出答案【详解】解:根据题意得:总人数是:12÷25=48人所以解析:90°【分析】先根据骑自行车上学的学生有12人占25%,求出总人数,再根据步行上学的学生人数所对应的圆心角的度数为所占的比例乘以360度,即可求出答案.【详解】解:根据题意得:总人数是:12÷25%=48人,所以乘车部分所对应的圆心角的度数为360°×48122448--=90°;故答案为:90°.【点睛】此题主要考查了扇形统计图,读懂统计图,从统计图中得到必要的信息,列出算式是解决问题的关键.19.300【分析】用总人数乘以样本中做作业超过3小时的人数占被调查人数的比例【详解】全校学生每天做作业超过3小时的人数约有4000×=300(人)故答案为:300人【点睛】本题考查的是用样本估计总体的知解析:300【分析】用总人数乘以样本中做作业超过3小时的人数占被调查人数的比例.【详解】全校学生每天做作业超过3小时的人数约有4000×2+140=300(人),故答案为:300人.【点睛】本题考查的是用样本估计总体的知识.读懂统计图,从统计表中得到必要的信息是解决问题的关键20.36°【解析】【分析】先求出被调查的总学生数然后求出喜欢工人职业的百分比再用360°乘以这个百分数即可【详解】解:被调查的学生数是:40÷20=200人喜欢工人职业的有20人20÷200=10所以扇解析:36°【解析】【分析】先求出被调查的总学生数,然后求出喜欢工人职业的百分比,再用360°乘以这个百分数即可.【详解】解:被调查的学生数是:40÷20%=200人,喜欢工人职业的有20人,20÷200=10%,所以扇形图中工人部分所对应的圆心角为360°×10%=36°.故答案为:36°【点睛】本题考查扇形统计图及相关计算.在扇形统计图中,每部分所对应的扇形圆心角的度数是360°与该部分占总部分的百分比的乘积.三、解答题21.(1)500;(2)43.2°;(3)见解析;(4)2400人【分析】(1)用喜欢健身操的学生数除以其所占的百分比即可求得样本容量;(2)用周角乘以最喜欢足球运动的学生所占的百分比即可求得其圆心角的度数;(3)求得喜欢篮球的人数后补全统计图即可;(4)用总人数乘以喜欢足球的人数占总人数的百分比即可求解.【详解】解:(1)100÷20%=500,∴本次抽样调查的样本容量是500;(2)∵360°×60500=43.2°,∴扇形统计图中“最喜欢足球运动”的学生数所对应的扇形圆心角度数为43.2°;(3)喜爱篮球的有:500×(1-20%-18%-20%-60500×100%)=150人,补全统计图如下:(4)20000×60500=2400(人)全市本届学生中“最喜欢足球运动”的学生约有2400人.【点睛】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.22.(1)200;(2)统计图见解析,144°;(3)A类:480人,B类:360人【分析】(1)用D类社团的人数除以所占百分比可得样本容量;(2)分别求出B类和C类人数,可补全统计图,再用360乘以A类社团的百分比可得圆心角;(3)分别用1200乘以样本中B类和C类所占百分比可得结果.【详解】解:(1)由图可知:D类社团人数为20人,占10%,∴20÷10%=200人,∴本次调查的样本容量为200;(2)200×20%=40人,200×30%=60人,补全统计图如下:∴A类社团活动所对应的的圆心角为360×40%=144°;(3)∵A类人数占比例为40%,B类占30%,∴A类社团人数为:1200×40%=480人,B类社团人数为:1200×30%=360人.【点睛】。

(必考题)初中七年级数学下册第十单元《数据的收集整理与描述》经典练习题(含答案解析)

(必考题)初中七年级数学下册第十单元《数据的收集整理与描述》经典练习题(含答案解析)

一、选择题1.如图是王涵某两天进行体育锻练的时间统计图,第一天锻炼了1小时,第二天锻炼了40分钟.王涵这两天体育锻炼时间最长的项目是()A.跳绳B.跳远C.跑步D.仰卧起坐A解析:A【分析】由统计图可以算出每个项目两天的锻炼时间和,然后通过比较可以得到正确选项.【详解】解:由题意可得:跳绳的锻炼时间为:108604050%182038360⨯+⨯=+=(分钟),跑步的锻炼时间为:36050%726040%40241236360⨯-⨯+⨯=+=(分钟),跳远的锻炼时间为:36010836040%6018360--⨯⨯=(分钟),仰卧起坐的锻炼时间为:72408360⨯=(分钟),所以王涵这两天体育锻炼时间最长的项目是跳绳,故选A .【点睛】本题考查扇形统计图的应用,熟练掌握扇形统计图各部分圆心角度数、各部分所占百分比及各部分数量之间的关系式是解题关键.2.北京市体育中考现场共有三个项目,分为耐力、素质和球类,其中耐力为男子1000米跑,女子800米跑.所有同学都要参加,此外,参加考试的同学需在素质和球类项目中分别选择一项参加考试,选项规则如表1所示:表1:北京市体育中考现场考试选项规则项目耐力(必选)素质(任选一项)球类(任选一项)男生1000米跑引体向上、实心球篮球绕杆、排球垫球、足球绕杆女生800米跑仰卧起坐、实心球篮球绕杆、排球垫球、足球绕杆小宇对初三A班40名同学的体育选项情况进行了统计,并根据其中部分信息绘制了表2表2:初三4班体育中考选项情况统计表以下有四个推断①一定有女生选择了实心球②一定有男生同时选择了引体向上和足球绕杆③至少有一名女生同时选择仰卧起坐和足球绕杆④男生中同时选择实心球和篮球绕杆的至多5人所有合理推断的序号是()A.①②B.①③C.②④D.③④B解析:B【分析】本题主要考察统计表的读取.其中①②③④每个选项都需在读懂题目,并判断出各个项目人数的前提下进行判断,因此本题的重难点在于判断各个项目的人数多少.【详解】解:本题各个项目人数的多少,解题的关键在于球类里面.通过排球垫球,我们可以得知,女生是16人,合计是16人,因此没有男生选择排球垫球.同理,没有女生选择足球垫球.又因为每位同学均需要在球类中选择一项,对于男同学而言,因为没有选择排球垫球的,因此全部男同学都选择了篮球绕杆和足球绕杆,因此该班男生共有20+2=22人,其中选择篮球绕杆20人,足球绕杆2人.同理,因为全班共有40名同学,因此女生共有18人,其中选择排球垫球16人,因此篮球绕杆有2人.对于素质项目,因为全班共有40人,出去仰卧起坐17人,引体向上15人,还剩余8人选择实心球.又因为仰卧起坐只能女生选择,选择仰卧起坐的人数为17人,因此18名女生中,有1人选择实心球.实心球中有7名是男生,另外15名男生选择的引体向上.下面我们分析选项:①一定有女生选择了实心球,正确,有1名女生选择.②一定有男生同时选择引体向上和足球绕杆,无法判断,可能有.但是因为选择足球绕杆的男生只有2人,这2人完全可以选择实心球,这种情况下②就不对.③因为女生只有1人选择实心球,而选择篮球绕杆的女生为2人,因此另外1人就既选择了篮球绕杆,又选择了仰卧起坐.选项正确.④无法判断.不一定至多是5人,假如选择实心球的7名男生全部选择了篮球,此时同时选择实心球和篮球绕杆的就有7人.选项错误.综上,正确选项为①③,故选:B.【点睛】本题考查统计表的读取分析能力,重点在于读懂统计表后,找出各个项目人数的多少,再根据人数的多少判断①②③④各个选项是否正确,需要一定的逻辑思维,对逻辑思维有一定的锻炼.3.下列调查中,适宜采用全面调查的是()A.调查全国初中学生视力情况B.了解某班同学“三级跳远”的成绩情况C.调查某品牌汽车的抗撞击情况D.调查2019年央视“主持人大赛”节目的收视率B解析:B【分析】根据全面调查和抽样调查的适用条件即可求解.【详解】解:对于调查方式,适宜于全面调查的常见存在形式有:范围小或准确性要求高的调查,A.调查全国初中学生视力情况没必要用全面调查,只需抽样调查即可,B.了解某班同学“三级跳远”的成绩情况,因调查范围小且需要具体到某个人,适宜全面调查,C.调查某品牌汽车的抗撞击情况,此调查兼破坏性,显然不能适宜全面调查,D.调查2019年央视“主持人大赛”节目的收视率,因调查受众广范围大,故不适宜全面调查,故选:B.【点睛】本题考查全面调查和抽样调查的适用条件,解题关键是要知道这个适用条件.4.为了解七年级4000名学生参加数学统测成绩的情况,从中随机抽取200名学生的数学成绩进行分析.下列说法正确的是()A.样本容量是200名B.每名学生是个体C.200名学生的数学成绩是总体的一个样本D.4000名学生是总体C解析:C【分析】根据总体、个体、样本、样本容量的定义即可判断.【详解】解:A.样本容量是200,故本选项不合题意;B.每名学生的数学成绩是个体,故本选项不合题意;C.200名学生的数学成绩是总体的一个样本,故本选项符合题意;D.4000名学生的数学成绩是总体,故本选项不合题意. 故选:C . 【点睛】本题考查了总体、个体、样本、样本容量的定义,总体是我们把所要考察的对象的全体,个体是把组成总体的每一个考察对象,样本是从总体中取出的一部分个体叫做这个总体的一个样本;样本容量是一个样本包括的个体数量,样本容量没有单位.5.小明家1至6月份的用水量统计如图所示,则5月份的用水量比4月份增加的百分率为( )A .25%B .20%C .50%D .33%B解析:B 【分析】先在统计图找到4月份、5月份的用水量,再根据增长率的定义即可求解. 【详解】由图可知4月份、5月份的用水量分别为5、6吨,故5月份的用水量比4月份增加的百分率为(6-5)÷5×100%=20%, 故选B 【点睛】此题主要考查统计图的应用,解题的关键是熟知增长率的定义.6.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4 B .5C .6D .7B解析:B 【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数; 【详解】∵296234.655-==, ∴分成的组数是5组. 故答案选B . 【点睛】本题主要考查了频数分布直方图,准确计算是解题的关键.7.某地区经过两年的产业扶贫后,经济总收入增加了一倍.为更好地了解该地区的经济收入变化情况,统计了产业扶贫前后的经济收入相关数据,得到下列统计图:下面结论不正确的是()A.经过产业扶贫后.养殖收入增加了一倍B.经过产业扶贫后,种植收入减少了C.经过产业共贫后,养殖收入与第二产业收人的总和超过了经济收入的一半D.经过产业扶贫后.其他收入增加了一倍以上B解析:B【分析】根据统计表信息,依次判断各选项即可.【详解】设扶贫前总收入为a,则扶贫后总收入为2aA中,扶贫前后养殖收入都占总收入的30%,但扶贫后总收入增加了一倍,故扶贫后养殖收入也相应增加了一倍,A中说法正确;B中,扶贫前种植收入为:60%a,扶贫后种植总收入为37%×2a=74%a,故B中说法错误;C中,扶贫后养殖收入和第二产业收入占总和为:30%+28%=58%,超过了一半,C中说法正确;D中,扶贫前其他收入为:4%a,扶贫后为5%×2a=10%a,增加了一倍以上,D中说法正确故选:B.【点睛】本题考查根据扇形图信息判断对错,需要注意扶贫前后的经济总量是不同的.8.下列调查中,适宜采用全面调查方式的是()A.调查某河的水质情况B.了解一批手机电池的使用寿命C.调查某品牌食品的色素含量是否达标D.了解全班学生参加社会实践活动的情况D 解析:D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、调查某河的水质情况,适合抽样调查,不合题意;B、了解一批手机电池的使用寿命,适合抽样调查,不合题意;C、调查某品牌食品的色素含量是否达标,适合抽样调查,不合题意;D、了解全班学生参加社会实践活动的情况,适合全面调查,符合题意.故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.将50个数据分成5组列出频数分布表,其中第二组的频数为15,则第二组的频率为()A.0.28 B.0.3 C.0.4 D.0.2B解析:B【分析】根据频率=频数÷数据总数,列式即可求解.【详解】∵将50个数据分成5组列出频数分布表,其中第二组的频数为15,∴第二组的频率为:15=0.350故选:B.【点睛】本题考查了频数分布表,掌握频率、频数与数据总数的关系是解题的关键.10.下列调查中,调查方式选择合理的是()A.为了了解北斗三号卫星零件的质量情况,选择全面调查B.为了了解胜溪湖森林公园全年的游客流量,选择全面调查C.为了了解某品牌木质地板的甲醛含量,选择全面调查D.新冠肺炎疫情期间,为了了解出入某小区的居民的体温,选择抽样调查A解析:A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、为了了解北斗三号卫星零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项正确;B、为了了解胜溪湖森林公园的游客流量,因为普查工作量大,适合抽样调查,故本选项错误;C、为了了解某品牌木质地板的甲醛含量,因为普查工作量大,适合抽样调查,故本选项错误;D、新冠肺炎疫情期间,为了了解出入某小区的居民的体温,是精确度要求高的调查,适于全面调查,故本项错误,故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题11.新冠肺炎在我国得到有效控制后,各校相继开学.为了检测学生在家学习情况,在开学初,我校进行了一次数学测试,如图是某班数学成绩的频数分布直方图,则由图可知,得分在70分以上(包括70分)的人数占总人数的百分比为__________.【分析】计算出总人数及成绩在70分以上(含70)的学生人数列式计算即可【详解】解:∵总人数=4+12+14+8+2=40成绩在70分以上(含70)的学生人数=14+8+2=24∴成绩在70分以上(含解析:60%【分析】计算出总人数及成绩在70分以上(含70)的学生人数,列式计算即可.【详解】解:∵总人数=4+12+14+8+2=40,成绩在70分以上(含70)的学生人数=14+8+2=24,∴成绩在70分以上(含70)的学生人数占全班总人数的百分比为24⨯=.100%60%40故答案是:60%.【点睛】本题考查读频数分布直方图的能力及对信息进行处理的能力.12.进行数据的调查收集,一般可分为以下六个步骤,但它们的顺序弄乱了,正确的顺序是__________.(用字母按顺序写出即可)A.明确调查问题;B.记录结果;C.得出结论;D.确定调查对象;E.展开调查;F.选择调查方法.ADFEBC【解析】数据的收集调查分为以下6个骤明确调查问题根据调查问题确定调查对象然后根据这些选择调查方法然后展开调查记录结果进行分析最后得出结论;所以正确地顺序是ADFEBC解析:ADFEBC【解析】数据的收集调查分为以下6个骤,明确调查问题,根据调查问题确定调查对象,然后根据这些选择调查方法,然后展开调查,记录结果进行分析,最后得出结论;所以正确地顺序是ADFEBC.13.为了解七年级学生对年级设置的4门校本课程的选修情况,年级长对本年级所有七年级学生的课程选修数据进行收集,并绘制成如图的扇形统计图,若参加“七彩数学”的人数为120人,则参加“STEAM课程”的人数是__________.160【分析】先根据参加七彩数学的人数为120人占被调查人数的30求出被调查的总人数再用总人数乘以参加STEAM课程的人数对应的百分比即可得【详解】∵参加七彩数学的人数为120人占被调查人数的30∴解析:160【分析】先根据参加“七彩数学”的人数为120人,占被调查人数的30%求出被调查的总人数,再用总人数乘以参加“STEAM课程”的人数对应的百分比即可得.【详解】∵参加“七彩数学”的人数为120人,占被调查人数的30%,∴被调查的总人数为120÷30%=400(人),∴参加“STEAM课程”的人数是400×40%=160(人),故答案为:160人.【点睛】本题考查了扇形统计图,解答本题的关键是明确题意,明确扇形统计图的特点,利用数形结合的思想解答.14.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成 _______________组.10【分析】组数定义:数据分成的组的个数称为组数根据组数=(最大值-最小值)÷组距计算注意小数部分要进位【详解】解:这组数据的极差为141-50=9191÷10=91因此数据可以分为10组故答案为:解析:10【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,因此数据可以分为10组,故答案为:10.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义来解即可.15.为了保障人民群众的身体健康,在预防新型冠状病毒期间,有关部门加强了对市场的监管力度.在对某商店检查中,抽检了5包口罩(每包10只),5包口罩中合格的口罩的只数分别是:9,10,9,10,10,则估计该商店出售的这批口罩的合格率约为_________.96【分析】在本题中可用样本平均数来估计总体平均数即求出出售的5包口罩中的合格率即可【详解】解:出售的5包口罩的平均合格率为则可估计该商店出售的这批口罩的合格率约为96故答案为:96【点睛】本题考查解析:96%【分析】在本题中,可用样本平均数来估计总体平均数,即求出出售的5包口罩中的合格率即可.【详解】解:出售的5包口罩的平均合格率为91091010100%96%510++++⨯=⨯,则可估计该商店出售的这批口罩的合格率约为96%.故答案为:96%.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.16.如图是某校九年级学生身高频数分布直方图,则身高在152cm至158cm的学生人数为____.18【分析】把身高在152cm到158cm的学生人数相加即可得出答案【详解】身高在152cm至158cm的学生人数是:(2+4)×3=18(人)故答案为:18【点睛】本题考查读频数分布直方图的能力和解析:18【分析】把身高在152cm到158cm的学生人数相加即可得出答案.【详解】身高在152cm至158cm的学生人数是:(2+4)×3=18(人),故答案为:18.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.17.某研究所发布了《2019年中国城市综合实力排行榜》,其中部分城市的综合实力、GDP和教育科研与医疗的排名情况如图所示,综合实力排名全国第5名的城市,教育科研与医疗排名全国第_____名.3【分析】由第一个图可得综合实力排名全国第5名的城市的GDP排名第九再由第二个图可求解【详解】解:由第一个图可得综合实力排名全国第5名的城市的GDP排名第九由第二个图可得GDP排名第九的城市的教育科解析:3【分析】由第一个图可得综合实力排名全国第5名的城市的GDP排名第九,再由第二个图可求解.【详解】解:由第一个图可得综合实力排名全国第5名的城市的GDP排名第九,由第二个图可得GDP排名第九的城市的教育科研与医疗的排名为第3名,故填3.18.为了估计湖里有多少条鱼,先捕了100条鱼,做好标记然后放回到湖里,过一段时间,待带有标记的鱼完全混合于鱼群后,再捕上200条鱼,发现其中带有标记的鱼为8条,湖里大约有鱼_____条.2500【分析】根据通过样本去估计总体的统计思想捕上200条鱼发现其中带有标记的鱼为8条说明有标记的占到而有标记的共有100条从而可求得总数【详解】∵捕上200条鱼发现其中带有标记的鱼为8条∴说明有解析:2500【分析】根据通过样本去估计总体的统计思想.捕上200条鱼,发现其中带有标记的鱼为8条,说明有标记的占到8200,而有标记的共有100条,从而可求得总数.【详解】∵捕上200条鱼,发现其中带有标记的鱼为8条∴说明有标记的占到8 200∵有标记的共有100条∴湖里大约有鱼100÷8200=2500条故答案为:2500【点睛】本题考查了用样本估算整体的思想,用样本估计总体时,样本容量越大,样本对总体的估计也就越精确.相应地,搜集、整理、计算数据的工作量也就越大.随机抽样是经过数学证明了的可靠的方法,它对于估计总体特征是很有帮助.19.某校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目.为了了解全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个项目),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计该学校1500名学生中选择篮球项目的学生约为______名.300【分析】先计算出调查学生人数中选择篮球项目学生所占的百分比再利用样本估计总体用总人数乘以选择篮球项目学生所占的百分比即可得出答案【详解】解:选择篮球项目学生所占的百分比为:1-16-28-36 解析:300【分析】先计算出调查学生人数中选择篮球项目学生所占的百分比,再利用样本估计总体用总人数乘以选择篮球项目学生所占的百分比即可得出答案.【详解】解:选择篮球项目学生所占的百分比为:1-16%-28%-36%=20%,∴学校1500名学生中选择篮球项目的学生人数约为:1500×20%=300(名).故答案为:300.【点睛】本题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.20.某校为了解九年级学生的体重情况,随机调查了100名学生,其中体重低于60kg的学生有72人,若该校九年级共有1000人,根据所学的统计知识可以估计该校体重低于60kg的学生大约有____________________人.【分析】根据随机调查名学生中体重低于的学生的百分比乘以九年级学生总数即可得到九年级体重低于的学生人数【详解】九年级体重低于的学生人数大约有人故答案为:【点睛】本题考查用样本估计总体解题关键在于理解掌解析:720【分析】根据随机调查100名学生中体重低于60kg的学生的百分比乘以九年级学生总数,即可得到九年级体重低于60kg的学生人数.【详解】九年级体重低于60kg的学生人数大约有721000720 100⨯=人.故答案为:720.【点睛】本题考查用样本估计总体.解题关键在于理解掌握样本与总体的相关概念及联系.三、解答题21.我市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取人;m=;n=;(2)请将条形统计图补充完整;(3)若该校学生总人数为2000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.解析:(1)200;86;27;(2)见解析;(3)540人【分析】(1)从统计图中可知,“1次及以下”的人数为20,占调查人数的10%,可求出调查人数;“3次”的占调查人数的43%,可求出“3次”的人数,确定m的值;进而求出“4次以上”的百分比,确定n值;(2)求出“2次”的人数,即可补全条形统计图;(3)“4次以上”占27%,因此估计2000人的27%是“4次以上”的人数.【详解】解:(1)从统计图可知:“1次及以下”的人数为20,占调查人数的10%,∴这次调查活动的总人数:20÷10%=200(人),∵“3次”的占调查人数的43%,∴3次”的人数:200×43%=86(人),∵“4次以上”的人数是54,∴“4次以上”占调查人数的:54÷200=27%,即m=86,n=27.故答案为:200;86;27(2)“2次”的人数:200×20%=40(人),补全条形统计图如图所示:(3)∵由(1)求得“4次以上”占调查人数的27%,∴ 2000×27%=540(人).答:该校2000名学生中一周劳动4次及以上的有540人.【点睛】本题考查条形统计图、扇形统计图的意义和制作方法,样本估计总体,从两个统计图中获取数量和数量关系是正确解答的前提.22.泉州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,某校从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.t h频数频率每天课外阅读时间()t<≤2400.5t<≤360.30.51t<≤0.41 1.51.52t<≤12b合计a1根据以上信息,回答下列问题:(1)表中a=_________ ,b=_________.(2)请补全频数分布直方图;(3)若该校有学生2000人,试估计该校学生每天课外阅读时间超过1h的人数.解析:(1)120;0.1;(2)见解析;(3)1000人【分析】(1)由0.5<t≤1的频数与频率可得总人数a,再用12除以总人数可得b的值;(2)总人数乘以0.4得出第3组频数,从而补全图形;(3)利用样本估计总体思想可得.【详解】解:(1)a=36÷0.3=120,b=12÷120=0.1,故答案为:120,0.1;(2)1<t≤1.5的人数为120×0.4=48,补全图形如下:(3)估计该校学生每天课外阅读时间超过1小时的人数为2000×(0.4+0.1)=1000(人).∴该校学生每天课外阅读时间超过1h的人数约1000人.【点睛】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.23.我市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物,厨余垃圾,有害垃圾和其他垃圾四类.现随机抽取m吨垃圾,将结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=________,n=_________;(2)根据以上信息直接补全条形统计图;(3)求扇形统计图中“厨余垃圾”所对应的扇形圆心角的度数;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.解析:(1)100,60;(2)见解析;(3)108°;(4)1200吨【分析】(1)根据其他垃圾的吨数和所占的百分比可以求得m的值,然后根据条形统计图中的数据,即可得到n的值;(2)根据统计图中的数据,可以得到可回收物的吨数,然后即可将条形统计图补充完整;(3)先求出厨余垃圾在总体中所占的百分比,然后可以计算出厨余垃圾所对应的扇形圆心角的度数;(4)利用样本估计总体,先求出可回收物在样本中所占的百分比,然后再计算出该市2000吨垃圾中约有多少吨可回收物.【详解】解:(1)m=8÷8%=100,n%=1003028100---×100%=60%,故答案为:100,60;(2)可回收物有:100-30-2-8=60(吨),补全完整的条形统计图如图所示;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为:360°×30100=108°,(4)2000×60100=1200(吨),即该市2000吨垃圾中约有1200吨可回收物.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.某学校初二和初三两个年级各有600名同学,为了科普卫生防疫知识,学校组织了一次在线知识竞赛,小字分别从初二、初三两个年级随机抽取了40名同学的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.a.初二、初三年级学生知识竞赛成绩不完整的频数分布直方图如下(数据分成5组:60x<,6070x≤<,7080x≤<,8090x≤<,90100x≤<):b.初二年级学生知识竞赛成绩在8090x≤<这一组的数据如下:80 80 81 83 83 84 84 85 86 87 88 89 89c.初二、初三序数知识竞赛成绩的平均数、中位数、方差如下:。

人教版七年级数学下册 数据的收集、整理与描述专题练习

人教版七年级数学下册 数据的收集、整理与描述专题练习

人教版七年级数学下册数据的收集、整理与描述专题练习统计图的应用一.条形统计图的应用:(一).在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为___;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m的运动员能否进入复赛.解:(1)a=25(2)x=1.61;众数是1.65;中位数是1.60(3)能;∵共有20个人,中位数是第10,11个数的平均数.∴根据中位数可以判断出能否进入前9名;∵1.65 m>1.60 m,∴能进入复赛(二)对应训练:1.八(1)班同学分成甲、乙两组,开展“社会主义核心价值观”知识竞赛,满分5分,得分均为整数,小马虎根据竞赛成绩,绘制了分组成绩条形统计图和全班成绩扇形统计图,经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)甲组同学成绩的平均数是____,中位数是__,众数是___;(2)指出条形统计图中存在的错误,并求出正确值.2.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是____;(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?二.直方图的应用:(一)。

例题:某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0~50优m51~100良44101~150轻度污染n151~200中度污染4201~300重度污染2300以上严重污染2(1) 统计表中m=___,n=___.扇形统计图中,空气质量等级为“良”的天数占___;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.解:(1)m=20,n=8,占55%(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天),补图略(3)建议不要燃放烟花爆竹(二)。

七年级数学数据的收集与整理测试题

七年级数学数据的收集与整理测试题

七年级数学数据的收集与整理测试题数据的收集与整理习题精选1.想要调查世界上还幸存着多少只大熊猫,适合作________.2.了解西部地区适龄儿童在校率作_________.3.为了考察七年级500名学生的体育锻炼时间,体育老师从七年级五个班中,每班各抽取10名学生调查中.此题中,总体是____________,样本是____________.4.有一些乒乓球,不知其数,先取6个作了标记,把它们放回袋中,混合均匀后又取了20个,发现含有两个做标记的,可以估计这袋兵乓球有_______个.5.下列调查中的样本缺乏代表性的是( )A.屠宰100头某品种的猪,了解该品种猪的瘦肉率B.某人在一所医院里调查哮喘病在该县的发病率C.从一瓶化妆品中取少量化验其化学成分D.用10台某种型号的新产品红旗轿车作撞击实验,调查该车型在耐冲撞和安全保护措施方面的性能6.某人设计了一个游戏,在一网吧征求了三位游戏迷的意见,就宣传〝本游戏深受游戏迷欢迎〞,这种说法错误的原因是( )A.样本的数量太小B.没有征求专家鉴定C.这三位玩家不具有代表性D.以上都不是7.为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重,就这个问题业说,下面说法正确的是( )A.1500名学生的总体B.1500名学生的体重是总体C.每个学生是个体D.100名学生是所抽取的一个样本8.下列说法中,错误的是( )A.条形统计图能清楚地表示出每个项目的具体数目B.折线统计图能清楚地反映出事物的变化情况C.扇形统计图能清楚地反映出各个部分所占的百分比D.统计图只有以上三种9.指出下列问题中总体.样本.个体分别是什么?(1)为了了解某商店的日营业额,现抽出某月里的6天的营业额进行统计.(2)为了了解某种酱油的质量合格情况,从几大商场的柜台上共购买了30瓶该酱油进行化验.10.下面的图表是某种股票在一天内的变化情况:时间9:3010:3011:302:303:00股价(元)9.809.919.889.949.93第10题通过图表估计这种股票在中午1:30时的股价.11.商场开业第一天,对45位顾客进行问卷调查,以了解商场的服务质量,调查结果如下:A BB C DC C EAB CD B BA D BCC DC C AB B ABB AB C CA B ADD AE A BB C CCA.满意B.较满意C.一般D.不太满意E.不满意请用表格整理上面的数据,并推断顾客对商场的服务质量的满意程度. 12.下面记录了七年级某班男生一次立定跳远的成绩,如下所示(单位:米): 1.62 1.62 1.65 1.75 1.61 1.64 1.64 1.66 1.63 1.681.72 1.67 1.60 1.59 1.65 1.67 1.64 1.58 1.70 1.631.61 1.63 1.66 1.68 1.72 1.59 1.60 1.66 1.64 1.6830名男生立定跳远成绩表成绩(米)划记人数1.58≤_<1.611.61≤_<1.641.64≤_<1.671.67≤_<1.701.70≤_<1.73合计根据这些数据说明这30名男生立定跳远的成绩分布情况.13.下列调查中分别采用了哪些调查方式?并说明这种调查方式有什么优点.(1)学校为了解初三学生做家庭作业的时间,从中抽查了初三(1)班的学生一周内做家庭作业的时间;(2)某企业为了了解员工的身体健康状况,给全体员工做了体检.14.当今,在校学生视力水平的下降已引起了全社会的关注,为了了解实验中学毕业年级300名学生的视力情况,从中检测了一部分学生的视力,进行数据整理如下:分组划记人数百分比3.95~4.2524%4.25~4.55正一612%4.55~4.85正正正正2346%4.85~5.15正正正1836%5.15~5.45一12%合计50(1)这个问题中,总体是____________________________;(2)若视力为4.9.5.0.5.1均属正常,试估计该校毕业年级视力正常的人数约为多少?15.下表是7个城市某天的空气污染指数.先画出一张条形统计图,反映当日这些城市的空气质量,要求以空气污染指数为纵轴,以城市名称为横轴.你能从图表中获得哪些信息?有什么建议?城市北京沈阳南京西安兰州广州乌鲁木齐污染指标1118869102965213216.为了了解某市七年级学生学习数学的出错情况,有关部门准备调研200份数学试卷,现有三种方案:A.调研重点学校中快班200人试卷;B.调研非重点学校中慢班200人试卷;C.在本市的市区和郊县各任选四所中学,在这八所学校的七年级学生中,用抽签的方法每校分别选出25名学生的试卷.为了达到估计本市(初中)七年级学生学习数学的出错情况,你认为哪种方案比较合理?为什么?17.某商店对某天上午卖帽子的情况作了记录:帽子尺寸5455565758顶数21830219(1)帽厂对哪个尺码的帽子最感兴趣?(2)你如果是销售部经理,如何安排进货,说说理由.18.请设计一个调查家庭情况(包括姓名.性别.人口.住房面积.人均收入等)的问卷,对全班同学作调查.收回问卷后,用适当的表格整理数据,看看有什么结论?数据的收集与整理习题精选答案1.全面调查2.抽样调查3.500名学生的体育锻炼时间,被抽取的50名学生的体育锻炼时间4.605.B6.C7.B8.D9.(1)总体是某种酱油的质量合格情况的全体;样本是从几个大商场柜台上购买的30瓶该品牌酱油的质量合格情况;个体是每瓶酱油的质量合格情况.10.略11.项目ABCDE合计人数1014136245结论略12.略13.(1)抽样调查;(2)全面调查优点略14.(1)实验中学300名学生视力的全体;(2)108名提示:300_0.36=10815.略16.采用第三种方案比较合理.因为方案A.B缺乏代表性,C方案比较有代表性.方案A调研的是重点中学快班的学生,出错率显然很低,方案B调研的是非重点校慢班的学生,出错率显然很高,这两种方案都不利于了解学生学习数学的出错情况.只有方案C,既考虑了地域条件,又考虑了公平性,所以调研结果更趋于合理,因此采用这一方案(比较合理).17.(1)56;(2)该商店应该多进尺寸为56的帽子,方能保证供应.18.略。

七年级数学下册数据的收集、整理与描述(直方图)练习题

七年级数学下册数据的收集、整理与描述(直方图)练习题

七年级数学下册数据的收集、整理与描述(直方图)练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.将容量为50的样本分成6组,其中,第1、2、3、4、5组的频率之和是0.96,那么第6组的频数是_________.2.某校对学生晚上完成作业的时间进行调查后,将所得的数据分成6组,第一组的频数是8,第二、三、四、五、六组的频率分别为0.15,0.25,0.2,0.15,0.05,则第三组的频数是________.3.某项目小组对新能源汽车充电成本进行抽测, 得到频数分布直方图(每一组含前一个边界值, 不含后一个边界值)如图所示, 其中充电成本在300元/月及以上的车有_________辆.4.老师在黑板上随手写下一串数字“002 200 220”,则数字“0”出现的频率是_______.5.某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是_____.6.频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了____,画在横轴上,纵轴表示各组数据的_____.二、单选题7.九年级体育测试某班跳绳成绩的频数分布表如下,跳绳次数x在160 ≤ x< 180的范围的学生占全班人数的()A.6%B.12%C.26%D.52%8.一组数据最大值与最小值的差为80,若确定组距为9,则分布的组数为()A.7B.8C.9D.129.某校从初二年级抽出40名女生的身高数据,分组整理出如下频数分布表:表中a,b,c分别是()A.6,12,0.30B.6,10,0.25C.8,12,0.30 D.6,12,0.2410.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是()A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°;11.某面粉厂准备确定面粉包装袋的规格,市场调查员小李随机选择三家超市进行调查,收集三家超市一周的面粉销售情况,并整理数据、做出如图所示的统计图,则该面粉厂应选择面粉包装袋的规格为()A.2kg/包B.3kg/包C.4kg/包D.5kg/包12.在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球实验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球的个数可能是()A.2个B.4个C.18个D.16个三、解答题13.为了调查本班学生对哪国动画片最喜欢,对班里20名学生进行调查,结果如下所示:(1)请完成表格:(2)根据上表画一张反映频数的条形统计图.14.在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.泰州市的一个社区随机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图.已知A、B两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.月消费额分组统计表(1)A组的频数是,本次调查样本的容量是;(2)补全直方图(需标明各组频数);(3)若该社区有3000户住户,请估计月信息消费额不少于200元的户数是多少?15.为了了解学生在2022年3月的学习情况,某校九年级1班组织了一次网上全班数学测试,任科老师从本班中抽取了n个学生的成绩(满分100分,且抽取的学生成绩均在[40,100]内)进行统计分析.按照成绩分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频数分布表和频率分布直方图.(1)求n,x的值,并补充完整频率分布直方图:(2)老师对小明说,估计你在这次的测试中成绩中等,请写出小明这次测试成绩在哪个分数段内的可能性最大?(3)在选取的样本中,从低于60分的学生中随机抽取两名学生,请用列表法或树状图求这两名学生在同一成绩分数段的概率?参考答案:1.2【详解】试题分析:频数分布表中,频率之和等于1.则第6组的频率为:1-0.96=0.04;频数=样本容量×频率=50×0.04=2.点睛:本题主要考查的就是频率、频数与样本容量之间的关系,属于中等难度的题目.所有的频数之和等于样本容量,所有的频率之和等于1.很多题目会已知前面几组的频率,然后根据频率之和得出最后一组的频率,从而根据样本容量=频数÷频率可以求出样本容量.2.10【分析】根据各组的频率之和等于1,再根据第二、三、四、五、六组的频率,即可求出第一小组的频率,根据总人数=第一组的频数÷第一组的频率,最后根据第三组的频数=总人数×第三组的频率进行计算即可.【详解】解:∵第二、三、四、五、六组的频率分别为015.,025.,02.,015.,005., ∵第一组的频率为10150250201500502-----=......,∵第三组的频数为80202510÷⨯=...故答案为:10.【点睛】本题考查频率及频数的计算,用到的知识点是频率=频数÷总数,灵活运用有关公式是解决本题的关键.3.14【分析】根据频数直方图中大于300的各组频数进行计算即可.【详解】解:9+3+2=14(辆)故答案为:14【点睛】本题考查了频数分布直方图,根据直方图得出各组频数是解题的关键.4.59【分析】结合题意,根据频率的性质计算,即可得到答案.【详解】根据题意,总共有9个数字,其中数字“0”出现5次∵数字“0”出现的频率是:59故答案为:59. 【点睛】本题考查了频率的知识;解题的关键是熟练掌握频率的定义,从而完成求解.5.80%.【分析】根据频数分布直方图可得全班的总人数及成绩高于60分的学生,从而得出答案.【详解】∵全班的总人数为3+6+12+11+7+6=45人,其中成绩高于60分的学生有12+11+7+6=36人,∵成绩高于60分的学生占全班参赛人数的百分率是36100%80%45,故答案为80%. 【点睛】本题主要考查频数分布直方图,根据频数分布直方图明确各分组人数是解题的关键.6. 分组 频数【解析】略7.C【分析】根据频数与频率的计算公式,即可得解.【详解】根据题意,得跳绳次数x 在160 ≤x < 180的范围的学生占全班人数的百分比为13100%26%2326136⨯=++++ 故选:C.【点睛】此题主要考查了读频数分布表获取信息的能力.必须认真观察、分析、研究,才能作出正确的判断和解决问题.8.C【详解】分析:根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.详解:在样本数据中最大值与最小值的差为80,已知组距为9,那么由于809=889,故可以分成9组. 故选C .点睛:本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.9.A【详解】根据题意,由频数分布表中各组的频率求出c,再由频数=总人数×频率可求出a 、b 的值. 解:由频数分布表中,各组的频数之和为样本容量,则c=1-0.05-0.15-0.35-0.15=0.3,根据题意,用150~155之间频率是0.15,而总人数为40人,a=40×0.15=6,b=40×0.3=12.“点睛”本题考查频率分别直方表的运用,以及数据的分析、处理的能力,注意结合题意,认真分析,查找数据时务必准确.10.D【分析】由80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,可得抽查总人数,即可判断A 选项;通过总人数减去其他各组人数,得到60~80分钟的人数,根据中位数的定义(一组数据从小到大或从大到小排序后,最中间的数为中位数)即可判断B 选项;由图中数据可得每天超过1小时的人数,然后用学校总人数乘以每天超过1小时的人数占抽查人数的比例即可判断C选项;根据扇形统计图圆心角得计算方法:360︒乘以该组人数所占抽查总人数得比例即可判断D选项.【详解】解:80~100分钟占所抽查学生的17.5%,且由条形统计图可知有7人,∴抽查总人数为:74017.5%=,A选项正确;60~80分钟的人数为:40451678----=人,先对数据排序后可得:最中间的数在第20,21之间,459+=,91625+=,∴中位数落在60~80分钟这一组,故B选项正确;从图中可得,每天超过1小时的人数为:7815+=人,估算全校人数中每天超过1小时的人数为:1580030040⨯=人,故C选项正确;0~20分钟这一组有4人,扇形统计图中这一组的圆心角为:43603640︒⨯=︒,故D选项错误;故选:D.【点睛】题目主要考查通过条形统计图获取信息及估算满足条件的总人数,中位数,扇形统计图圆心角的计算等,理解题意,熟练掌握基础知识点是解题关键.11.A【分析】最合适的包装即顾客购买最多的包装,而顾客购买最多的包装质量即这组数据的众数,取所得范围的组中值即可.【详解】解:由图知这组数据的众数为1.5kg~2.5kg,取其组中值2kg,故选:A.【点睛】本题主要考查频数(率)分布直方图,解题的关键是根据最合适的包装即顾客购买最多的包装,并根据频数分布直方图得出具体的数据及众数的概念.12.D【分析】根据频率=频数÷总数,可以求得白色乒乓球的个数,从而得到黄色乒乓球个数.【详解】解:∵白色乒乓球的频率稳定在0.2左右∵白色乒乓球的个数=20×0.2=4个∵黄色乒乓球的个数=20-4=16个故选D.【点睛】本题主要考查了频率与频数的计算,解题的关键在于能够熟练掌握频率=频数÷总数.13.(1)填表见解析(2)画图见解析【分析】(1)通过调查,再把调查数据填入表格即可;(2)根据表格中的频数,画好条形图即可.(1)解:通过调查,填表如下:(2)解:画条形图如下:【点睛】本题考查的是频数分布表,频数直方图,掌握“频率=频数÷总数的计算方法;条形统计图的画法”是解本题的关键.14.(1)2;50(2)见解析(3)2280户【分析】(1)根据A、B两组户数直方图的高度比为1:5,即两组的频数的比是1:5,据此即可求得A组的频数;利用A和B两组的频数的和除以两组所占的百分比即可求得总数,即样本容量;(2)利用总数乘以百分比即可求得C组的频数,从而补全统计图;(3)利用总数3000乘以对应的百分比即可.(1)A组的频数是:10÷5=2调查样本的容量是:(2+10)÷(1-40%-28%-8%)=50故答案为:2;50.(2)A组的频数是:2C组的频数是:50×40%=20,D组的频数是:50×28%=14,E组的频数是:50×8%=4,补全直方图如图.(3)∵3000×(40%+28%+8%)=2280,答:估计月信息消费额不少于200元的户数是2280户.【点睛】本题考查频数分布直方图、频率分布表,解答本题的关键是明确题意,利用数形结合的思想解答.15.(1)206n x==,(2)[70,80)(3)1 3【分析】(1)用第一组的频数除以它的频率等到n的值,再用n的值分别减去其他组的频数即可得到x值,然后补全直方图即可.(2)根据中位数的意义即可求解.第 11 页 共 11 页 (3)在分数段[40,50)中的学生用A 表示,在分数段[50,60)内的学生用B 表示,画树状图展示所有可能的结果数,找出这两名学生在同一成绩分数段的结果数,然后根据概率公式求解.(1)n =1÷0.05=20,x =20﹣1﹣2﹣5﹣4﹣2=6;[70,80)这组的频率为620=0.3; 频率分布直方图为:(2)样本的中位数在[70,80)中,所以小明这次测试成绩在[70,80)这个分数段内的可能性最大;(3)低于60分的有3个,在分数段[40,50)中的学生用A 表示,在分数段[50,60)内的学生用B 表示, 画树状图为:共有6种等可能的结果数,其中这两名学生在同一成绩分数段的结果数为2, 所以这两名学生在同一成绩分数段的概率为21=63.【点睛】本题考查了列表法与树状图法及概率公式、掌握统计图并理解,再结合题意是解答本题的关键.。

七年级数学第六章《数据的收集与整理》测试题

七年级数学第六章《数据的收集与整理》测试题

初一数学《数据的收集与整理》测试题班级姓名一、选择题(每小题3分,共30分):1、要调查下面的问题,适合做全面调查的是()A.某班同学“立定跳远”的成绩 B.某水库中鱼的种类C.某鞋厂生产的鞋底承受的弯折次数 D.某型号节能灯的使用寿命2、某校学生来自甲、乙、丙三个地区,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲地区的为180人,则下列说法不正确的是()A.扇形甲的圆心角是72°B.学生的总人数是900人C.丙地区的人数比乙地区的人数多180人D.甲地区的人数比丙地区的人数少180人3、某农户一年的总收入为50000元,如图是这个农户收入的扇形统计图,则该农户的经济作物收入为()A.20000元B.12500元C.15500元D.17500元4、为了了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于()A.50% B.55% C.60% D.65%5、小林家今年1-5月份的用电量情况如图所示.由图可知,相邻两个月中,用电量变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月6、下表为某公司200名职员年龄的次数分配表,其中36~42岁及50~56岁的次数因污损而无法看出.若36~42岁及50~56岁职员人数的相对次数分别为a、b,则a+b之值为何?()A.10 B.45 C.55 D.997、期末统考中,A校优秀人数占20%,B校优秀人数占有量25%,比较两校优秀人数()A、A校多于B校B、B校多于A校C、A、B两校一样多D、无法比较8、希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是()A.被调查的学生有200人 B.被调查的学生中喜欢教师职业的有40人C.被调查的学生中喜欢其他职业的占40% D.扇形图中,公务员部分所对应的圆心角为72°9、如图是某晚报“百姓热线”一周内接到热线电话的统计图,其中有关“环境保护”问题的电话最多,共70个,则“其他投诉”类的电话有()A.30个B.35个C.45个D.50个10、如图是光明中学七年级(1)班同学上学方式的条形图,则下列说法错误的是()A.乘车的同学占50%B.骑车和步行的同学之和等于乘车的同学C.全班共有48人D.女生步行的人数比男生多二、填空题(每小题3分,共34分):11、如图是某市人均住房面积统计图,从图中看出,________年人均住房面积最大,人均住房面积最大的一年比最小的一年多________m2.10、某文具商店9月份销售情况如下表:(1)销售量最大的文具是________,共________.(2)圆珠笔的销售量占总销量的百分比是_______ (精确到0.1%).11、某班女生人数与男生人数之比是7∶5,把男女学生人数分布情况制成扇形统计图,则表示女生人数的扇形圆心角的度数是__________°.12、如图是某校初一(2)班的一次语文测验成绩条形统计图,由图中可知,此次共有________人参加测验,人数最多的是________分数段.13、如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是人.14、某班主任把本班学生上学方式的调查结果绘制成如图所示的不完整的统计图,已知乘公交车上学的学生有20人,骑自行车上学的学生有26人,则乘公交车上学的学生人数在扇形统计图中对应的扇形所占的圆心角的度数为.15、某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图,则仰卧起坐次数在20~25次之间的频数是.16、小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为°.17、某校为了举办“庆祝新中国成立60周年”的活动,调查了本校所有学生,调查的结果如图所示,根据图中给出的信息,这所学校总人数有人,赞成举办演讲比赛的学生有______人.18、折线图是反映小明家在某一周内每天的购菜情况,则在星期________购菜金额最小,小明家在这一星期中平均每天购菜________元.三、解答题(共36分):19、2012年4月23日是第17个世界读书日,《教育导报》记者就四川省农村中小学教师阅读状况进行了一次问卷调查,并根据调查结果绘制了教师每年阅读书籍数量的统计图(不完整).设x 表示阅读书籍的数量(x为正整数,单位:本).其中A:1≤x≤3; B:4≤x≤6; C:7≤x≤9;D:x≥10.请你根据两幅图提供的信息解答下列问题:(1)本次共调查了多少名教师?(2)补全条形统计图;(3)计算扇形统计图中扇形D的圆心角的度数.20、育才学校为方便学生中午在校就餐,与某饮食服务公司联系为学生供应价格不等的6种盒饭(每人只限一份).如图所示是某一天销售情况统计表,条形框上的百分数是销售的该种盒饭占总销售量的百分数,若这一天销售了150份盒饭.(1)试求出这一天学生购买盒饭所付饭费的平均数;(2)若饮食服务公司加工各种盒饭的成本如下表所示,这一天21、在“首届中国西部(银川)房·车生活文化节”期间,某经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其他型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.图1 图2(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?。

(典型题)初中数学七年级数学上册第六单元《数据的收集与整理》测试(答案解析)

(典型题)初中数学七年级数学上册第六单元《数据的收集与整理》测试(答案解析)

一、选择题1.某学习小组为了解本城市100万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟,对于这个数据收集与处理的问题,下列说法正确的是()A.该调查的方式是普查B.本城市只有40个成年人不吸烟C.本城市一定有20万人吸烟D.样本容量是502.某校七年级(1)班体育委员对本班60名同学参加球类项目的情况做了统计(每人选一种),绘制成如图所示统计图,已知“羽毛球”所在扇形的圆心角度数为72°,则该班参加乒乓球和羽毛球项目的人数总和为()A.20人B.25人C.30人D.35人3.随机调查某小区10户家庭一周内使用环保方便袋的数量.得到数据如下(单位:只):6,5,7,8,7,9,10,5,6,7,利用所得的数据估计该小区1500户家庭一周内需要环保方便袋约为()A.1500 B.10500 C.14000 D.150004.在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分条形统计图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确的是()A.第四小组有10人B.第五小组对应圆心角的度数为45C.本次抽样调查的样本容量为50D.该校“一分钟跳绳”成绩优秀的人数约为480人5.育才学校学生来自甲、乙、丙三个地区,其人数比为7:3:2,如图所示的扇形图表示其分布情况.如果来自丙地区的学生为180人,则这个学校学生的总人数和表示乙地区扇形的圆心角度数分别为()A.1080人、90B.900人、210C.630人、90D.270人、606.为提高学生的课外阅读水平,我市各中学开展了“我的梦,中国梦”课外阅读活动,某校为了解七年级学生每日课外阅读所用的时间情况,从中随机抽取了部分学生,进行了统计分析,整理并绘制出如图所示的频数分布直方图,有下列说法:①这次调查属于全面调查②这次调查共抽取了200名学生-的人数最少③这次调查阅读所用时间在2.53h-的人数占所调查人数的40%,其中正确的有().④这次调查阅读所用时间在1 1.5hA.②③④B.①③④C.①②④D.①②③7.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为()A.4B.5C.6D.78.以下问题不适合全面调查方式的是()A.调查某班学生课前预习时间B.调查全国初中生课外阅读情况C.调查某校篮球队员的身高D.调查某中学教师的身体健康状况9.下面调查中,适合采用全面调查的是()A.了解中国诗词大会节目的收视率B.调查市民对“垃圾分类”的认同C.了解我市初中生的视力情况D.疫情缓解学校复课调查学生体温10.如果整个地区的观众中青少年、成年人、老年人的人数比为3:4:3,要抽取容量为1000的样本,则成年人抽取()合适A.300B.400C.500D.100011.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图的直方图.根据图中信息,下列说法错误的是()A.这栋居民楼共有居民125人B.每周使用手机支付次数为28~35次的人数最多C.有25人每周使用手机支付的次数在35~42次D.每周使用手机支付不超过21次的有15人12.温州6月8日~14日的气温折线统计图如图所示,其中实线表示当日最高气温,虚线表示当日最低气温,由图可知,这一周中温差最大的是( )A.6月9日B.6月11日C.6月12日D.6月14日二、填空题13.妈妈煮一道菜时,为了了解菜的咸淡是否适合,于是取了一点品尝,这属于___(填“全面调查”或“抽样调查”).14.山西地质博物馆是山西唯一一家普及矿产资源和地球科学知识的博物馆,为了解全省人民参观山西地质博物馆的情况,宜采用______________的方式调查.(填“普查”或“抽样调查”)15.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毯的扇形圆心角是60°,踢毯和打篮球的人数比是l:2,如果参加课外活动的总人数为60人,那么参加“其他”活动的人数是_____人.16.八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.17.某学校的初三(1)班,有男生20人,女生23人.现随机抽一名学生,则:抽到一名男生的概率是_____.18.某中学共有学生4600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有________人.19.某中学为了了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是________.20.如图,是小恺同学 6 次数学测验的成绩统计表,则该同学6次成绩中的最低分是.三、解答题21.某市为提高学生参与体育活动的积极性,2019年5月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一学生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2018年约有初一学生20000,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.22.为丰富学生的课余生活,某校开展了A、B、C、D四类社团活动,为了解学生参加各类社团活动的情况,该校对七年级学生社团活动进行了抽样调查,得到两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查的样本容量为______.(2)请补全条形统计图;在扇形统计图中A类社团活动所对应的圆心角度数为______.(3)若学校有1200名学生参加社团活动,请你估计全校参加A类和B类社团活动的学生总人数.23.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽收n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n 的值并补全条形统计图;(2)求扇形统计图中体育活动的圆心角度数;(3)若该校学生共有1200人,试估计该校喜爱看电视的学生人数.24.设中学生体质健康综合评定成绩为x 分,满分为100分,规定85100x 为A 级,7585x <为B 级,6075x <为C 级,60x <为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;a = ;(2)补全条形统计图;(3)扇形统计图中 C 级对应的圆心角为 度;(4)若该校共有2000名学生,请你估计该校D 级学生有多少名?25.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括最大值但不包括最小值),请你根据统计图解决下列问题:(1)此次抽样调查的样本容量是______.(2)补全左侧统计图,并求扇形统计图中“25吨~30吨”部分的圆心角度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?26.为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为 20道判断题,每道题5分,满分 100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65, 80.85.75,65,70,65,85,70,95,80,75.80.为了便于分析数据,统计员对八年级数据进行了整理,得到表1表1:等级分数(单位:分)学生数D60<x≤705C70<x≤80aB80<x≤90bA90<x≤1002年级平均分中位数优秀率八年级78分c分m%九年级76分82.5分50%【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据抽样调查的有关概念判断即可.【详解】解:随机调查了50个成年人,是抽样调查,故A 选项不符合题意;在样本中有40个成年人不吸烟,不是本城市,故B 选项不符合题意;通过样本可以估计有20万人吸烟,不是一定有20万人吸烟,故C 选项不符合题意; 样本容量是50,故D 选项符合题意;故选:D .【点睛】本题考查了抽样调查、样本、样本容量等问题,解题关键是深入理解有关概念,细心判断.2.C解析:C【分析】根据圆心角的度数,计算羽毛球所占百分比为:7220%360=,从扇形统计图看出乒乓球占30%,根据频数=样本容量×百分比计算即可.【详解】∵“羽毛球”所在扇形的圆心角度数为72°,∴羽毛球所占百分比为:7220%360=, ∵扇形统计图看出乒乓球占30%,∴羽毛球和乒乓球一共占:30%+20%=50%,∴乒乓球和羽毛球项目的人数总和为:60×50%=30(人),故选C.【点睛】 本题考查了扇形统计图的统计意义,熟练用360圆心角计算,把圆心角转化为百分比是解题的关键. 3.B解析:B【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数1500即可解答.【详解】解:∵某小区10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,9,10,5,6,7,∴平均每户使用方便袋的数量为:110(6+5+7+8+7+9+10+5+6+7)=7(只), ∴该小区1500户家庭一周内共需要环保方便袋约:7×1500=10500(只).故选:B .【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.4.B解析:B【分析】用第二组人数除以第二组的占比得到总人数,用总人数减去其他组的人数和得到第四组人数,用360︒乘以第五组的占比得到圆心角度数,用全校总人数乘以后三组的占比之和估计出成绩优秀的人数.【详解】解:1020%50÷=(人),故C 正确;50410166410-----=(人),故A 正确;636043.250︒⨯=︒,故B 错误; 1064120048050++⨯=(人),故D 正确. 故选:B .【点睛】本题考查条形统计图和扇形统计图,样本估计总体,解题的关键是能够根据统计图的信息求出统计结果.5.A解析:A【分析】用丙地区的人数除以该地区人数所占的比即可求出总人数,用360°去乘乙地区人数所占的比即可得出相应的圆心角度数,【详解】解:180÷2732++=1080人,360°×3732++=90°, 故选:A .【点睛】 本题考查了扇形统计图,理解各个部分所占整体的百分比,以及各个扇形的圆心角度数实际是这一部分所占周角的百分比即可.6.A解析:A【分析】根据抽样调查和频数分布直方图的性质逐个分析计算,即可得到答案.【详解】这次调查属于抽样调查,故①错误;结合频数分布直方图,可计算得共抽取10208070128200+++++=名学生,故②正确;结合频数分布直方图,阅读所用时间在2.53h -的共8名学生,人数最少,故③正确; 这次调查阅读所用时间在1 1.5h -的人数占比为802=2005,即40%,故④正确; 故选:A .【点睛】本题考查了抽样调查、频数分布直方图的知识;解题的关键是熟练掌握抽样调查、频数分布直方图的性质,从而完成求解. 7.B解析:B【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数;【详解】 ∵29623 4.655-==, ∴分成的组数是5组.故答案选B .【点睛】 本题主要考查了频数分布直方图,准确计算是解题的关键.8.B解析:B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.调查某班学生每周课前预习的时间适合全面调查;B. 调查全国初中生课外阅读情况适合抽样调查,不适合全面调查;C.调查某校篮球队员的身高适合全面调查;D. 调查某中学教师的身体健康状况适合全面调查;故选:B .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 9.D解析:D【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A 、了解中国诗词大会节目的收视率,适合抽样调查;B 、调查市民对“垃圾分类”的认同,适合抽样调查;C 、了解我市初中生的视力情况,适合抽样调查;D 、疫情缓解学校复课调查学生体温,适合全面调查;故选:D .【点睛】此题主要考查了全面调查与抽样调查,要熟练掌握,如何选择调查方法要根据具体情况而定.10.B解析:B【分析】青少年、成年人、老年人的人数比约为3:4:3,所以成年人的人数所占总人数的423435=++,则根据这个条件就可以求出成年人的人数. 【详解】解:因为样本容量为1000,某地区青少年、成年人、老年人的人数比约为3:4:3, 所以成年人的人数所占总人数的423435=++, 故成年人应抽取1000×25=400, 故选:B .【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 11.D解析:D【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.【详解】解:A 、这栋居民楼共有居民3+10+15+22+30+25+20=125(人),此结论正确; B 、每周使用手机支付次数为28~35次的人数最多,这是因为从直方图上可以看出,每周使用手机支付次数为28~35次的小矩形的高度最高,所以每周使用手机支付次数为28~35次的人数最多,此结论正确,;C 、有的人每周使用手机支付的次数在35~42次,此结论正确;D.每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:D.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.12.D解析:D【分析】通过图形直观可以得出温差最大的日期,即同一天的最高气温与最低气温的差最大.【详解】解:由图形直观可以得出6月14日温差最大,是35-25=10(︒C),故选:D.【点睛】本题考查折线统计图的意义和制作方法,理解“温差”的意义,和图形直观是解决问题的关键.二、填空题13.抽样调查【分析】根据普查和抽样调查的定义显然此题属于抽样调查【详解】妈妈煮一道菜时为了了解菜的咸淡是否适合于是妈妈取了一点品尝这属于抽样调查故答案为抽样调查【点睛】本题考查了抽样调查和全面调查的区别解析:抽样调查【分析】根据普查和抽样调查的定义,显然此题属于抽样调查.【详解】妈妈煮一道菜时,为了了解菜的咸淡是否适合,于是妈妈取了一点品尝,这属于抽样调查.故答案为抽样调查.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.14.抽样调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来具体问题具体分析普查结果准确所以在要求精确难度相对不大实验无破坏性的情况下应选择普查方式当考查的对象很多或考查会给被调查对象解析:抽样调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:了了解全省人民参观山西地质博物馆的情况,人数多,范围广,故为抽样调查.故答案为:抽样调查.【点睛】本题考查的是调查方法的选择;正确选择调查方式要根据抽样调查和全面调查的优缺点再结合实际情况去分析.15.12【分析】根据扇形统计图结合已知条件可知踢毯和打篮球的所占总人数的50则可计算出其他活动的人数占总人数的百分数然后计算即可求出【详解】解:由题意知踢毽的人数占总人数的比例=60°÷360°=则打篮解析:12【分析】根据扇形统计图,结合已知条件可知踢毯和打篮球的所占总人数的50%,则可计算出“其他”活动的人数占总人数的百分数,然后计算即可求出.【详解】解:由题意知,踢毽的人数占总人数的比例=60°÷360°=16,则打篮球的人数占的比例=16×2=13,∴表示参加“其它”活动的人数占总人数的比例=1﹣13﹣16﹣30%=20%,60×20%=12(人),故答案为:12.【点睛】本题考查了扇形统计的概念、特征以及实际应用,掌握扇形统计图的特征是解题的关键.16.70【分析】利用合格的人数即50-10-5=35人除以总人数即可求得【详解】解:该班此次成绩达到合格的同学占全班人数的百分比是×100=70故答案是:70【点睛】本题考查了读频数分布直方图的能力和利解析:70%【分析】利用合格的人数即50-10-5=35人,除以总人数即可求得.【详解】解:该班此次成绩达到合格的同学占全班人数的百分比是5010550--×100%=70%.故答案是:70%.【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.17.【分析】随机抽取一名学生总共有20+23=43种情况其中是男生的有20种情况利用概率公式进行求解即可【详解】解:一共有20+23=43人即共有43种情况∴抽到一名男生的概率是【点睛】本题考查了用列举解析:20 43【分析】随机抽取一名学生总共有20+23=43种情况,其中是男生的有20种情况.利用概率公式进行求解即可.【详解】解:一共有20+23=43人,即共有43种情况,∴抽到一名男生的概率是2043.【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.18.1955【分析】用总人数乘以抽取的样本中选择跳绳人数的比例可得【详解】解:估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有4600×=1955(人)故答案为:1955【点睛】本题主要考查用样本估解析:1955【分析】用总人数乘以抽取的样本中选择跳绳人数的比例可得.【详解】解:估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有4600×85200=1955(人),故答案为:1955.【点睛】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.19.600人【分析】根据频率分布直方图求出在该次数学考试中成绩小于60分的频率再求成绩小于60分的学生数【详解】根据频率分布直方图得在该次数学考试中成绩小于60分的频率是(0002+0006+0012)解析:600人【分析】根据频率分布直方图,求出在该次数学考试中成绩小于60分的频率,再求成绩小于60分的学生数.【详解】根据频率分布直方图,得在该次数学考试中成绩小于60分的频率是(0.002+0.006+0.012)×10=0.20∴在该次数学考试中成绩小于60分的学生数是3000×0.20=600.故答案为:600.【点睛】本题考查了频率分布直方图的应用问题,解题时应根据频率分布直方图提供的数据,求出频率,再求出学生数,是基础题.20.60分【解析】【分析】先从统计图中读出数据然后找出最低分数即可求解【详解】该同学6次成绩按从小到大的顺序排列606570808085∴最低分为60故答案为60【点睛】此题考查折线统计图解题关键在于看解析:60分【解析】【分析】先从统计图中读出数据,然后找出最低分数即可求解.【详解】该同学6次成绩按从小到大的顺序排列60,65,70,80,80,85,∴最低分为60.故答案为60.【点睛】此题考查折线统计图,解题关键在于看懂图中数据.三、解答题21.(1)500;(2)43.2°;(3)见解析;(4)2400人【分析】(1)用喜欢健身操的学生数除以其所占的百分比即可求得样本容量;(2)用周角乘以最喜欢足球运动的学生所占的百分比即可求得其圆心角的度数;(3)求得喜欢篮球的人数后补全统计图即可;(4)用总人数乘以喜欢足球的人数占总人数的百分比即可求解.【详解】解:(1)100÷20%=500,∴本次抽样调查的样本容量是500;(2)∵360°×60500=43.2°,∴扇形统计图中“最喜欢足球运动”的学生数所对应的扇形圆心角度数为43.2°;(3)喜爱篮球的有:500×(1-20%-18%-20%-60500×100%)=150人,补全统计图如下:(4)20000×60500=2400(人)全市本届学生中“最喜欢足球运动”的学生约有2400人.【点睛】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.22.(1)200;(2)统计图见解析,144°;(3)A类:480人,B类:360人【分析】(1)用D类社团的人数除以所占百分比可得样本容量;(2)分别求出B类和C类人数,可补全统计图,再用360乘以A类社团的百分比可得圆心角;(3)分别用1200乘以样本中B类和C类所占百分比可得结果.【详解】解:(1)由图可知:D类社团人数为20人,占10%,∴20÷10%=200人,∴本次调查的样本容量为200;(2)200×20%=40人,200×30%=60人,补全统计图如下:∴A类社团活动所对应的的圆心角为360×40%=144°;(3)∵A类人数占比例为40%,B类占30%,∴A类社团人数为:1200×40%=480人,B类社团人数为:1200×30%=360人.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.23.(1)n=50,补全统计图见解析;(2)144°;(3)240人【分析】(1)根据社会实践的学生数和所占的百分比可以求得本次调查的人数,再求出看电视对应的人数即可补全统计图;(2)用360乘以体育活动所占样本的比例可得结果;(3)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数.【详解】解:(1)n=5÷10%=50,50-15-20-5=10,补全统计图如下:(2)360×2050=144°,∴体育活动的圆心角度数为144°;(3)样本中喜爱看电视的人数为50-15-20-5=10(人),1200×1050=240,所以估计该校喜爱看电视的学生人数为240人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)50;24%;(2)补全图形见解析;(3)72;(4)160名.【分析】(1)由条形统计图得到B级学生数,由扇形统计图得B学生数占抽取学生总数的48%,用24除以48%得所抽取学生的总数即得前一个空的答案,由条形统计图得A级学生数,用其除以所抽取的学生总数再化成百分数即得a的值;(2)在(1)的基础上用抽取的总学生数减去A、B、D级的学生数得到C级的学生数,即可补全条形统计图;(3)用C级的学生数除以所抽取的总学生数乘以360°即得;。

2022学年北师大版七年级数学上册第六章《数据的收集与整理》测试卷附答案解析

2022学年北师大版七年级数学上册第六章《数据的收集与整理》测试卷附答案解析

2022-2023学年七年级数学上册第六章《数据的收集与整理》测试卷一、单选题(每题3分,共30分)1.为了考察某校八年级600名学生的视力情况,从中抽取60名学生进行视力检查,在这个问题中的样本是()A.抽取的60名学生B.600名学生的视力C.抽取的60名学生的视力D.每名学生的视力2.某校篮球队队员的身高(单位:cm)如下:179,185,166,164,179,167,166,179,166,175.获得这组数据的方法是()A.直接观察B.测量C.互联网查询D.查阅文献资料3.为了解“五项管理”的政策落实情况,枣庄市某中学计划调查七年级600名学生每晚的睡眠时间,下列调查对象选取最合适的是()A.选取该校七年级一个班级的60名学生B.随机选取该校七年级60名学生C.选取该校七年级60名女生D.选取该校七年级60名男生4.果园里有荔枝树150棵,龙眼树50棵,芒果树200棵.若画出它们的扇形统计图,则芒果树所占扇形圆心角的度数为()A.180︒B.120︒C.37.5︒D.12.5︒5.要反映一周气温的变化情况,宜采用()A.频数直方图B.条形统计图C.扇形统计图D.折线统计图6.七年级(1)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是()A.45︒B.60︒C.72︒D.120︒7.某校参加数学节的学生人数统计图如图所示,若参加说题比赛的学生有60人,则参加解题比赛有()A.70人B.75人C.80人D.85人8.为了估计鱼塘中有多少条鱼,首先从鱼塘中打捞出20条鱼,在每一条鱼身上做好标记后,把这些鱼放回鱼塘,一段时间后,再从中打捞出100条鱼,如果这100条鱼中做了标记的有10条,那么可以估计鱼塘中大约有()条鱼.A.200B.300C.400D.5009.某市有47857名初中毕业生参加升学考试,为了了解这47857名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.47857名考生的数学成绩B.2000C.抽取的2000名考生D.抽取的2000名考生的数学成绩10.小亮同学想要统计最受本班学生欢迎的北京冬奥会运动项目,以下是打乱的统计步骤.①根据统计表绘制条形统计图;②制作调查问卷,对全班同学进行问卷调查;③从条形统计图中分析出最受欢迎的冬奥会项目;④整理问卷调查数据并绘制统计表.正确的统计步骤顺序是()A.④③②①B.②①③④C.②④①③D.②④③①二、填空题(每题3分,共30分)11.我们经常通过______、______等方式获得数据信息.当调查或试验项目很大,我们个人无法完成时,还可以通过查阅______、______或上网的方式,获得数据信息.12.空气是由氮气,氧气,稀有气体,二氧化碳,还有其他气体和杂质组成,为了直观地表示空气中各成分所占的百分比,最适合使用的统计图是___.13.去年某校1500人参加中考,为了了解他们的数学成绩,从中抽取200名考生的数学成绩,其中有60名考生达到优秀,那么该校考生达到优秀的人数大约有____________名.14.元旦期间,某游乐场发布一游戏规则:在一个装有6个红球和若干个白球的不透明袋子中,随机摸出一个球,摸到红球就可获得欢动世界通票一张.已知有300人参加这个游戏,游乐场为此发放欢动世界通票60张,请你估计袋子中白球的数量是______个.15.2022年11月29日23时08分,“神舟十五”号载人飞船顺利发射,“神舟一号”至“神舟十五”都是一次性发射成功.发射前,为了确保万无一失,工程师对飞船的所有零部件进行了检查,调查方式应为______(请填“普查”或“抽样调查”).16.为了调查全校学生对购买正版书籍,唱片和软件的支持率,用简单的随机抽样方法,在全校55个班级中抽取8个班级,调查这8个班级所有学生对购买正版书籍,唱片和软件的支持率.在这次调查中,总体是_____,样本是_____,样本容量是_____,抽样方法_____(填“合理”或“不合理”).17.如图是某校七年级某班学生参加课外活动人数的扇形统计图,如果参加艺术类的人数是16人,那么参加科普类的人数是________人.18.青岛二十六中为做好复学准备,需要了解九年级共600名学生上学到校以及放学回家的出行方式,学校随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,根据图中的信息,估计该校乘坐公共交通的学生约有___________名.,,,四门社团课,随机从八年级抽取部分学生对“我最喜欢的一19.某校准备为八年级学生开设A B C D门社团课”进行调查,并将调查结果绘制成统计表及如图所示的扇形统计图.社团课A B C D人数40m120(1)m的值为_______;(2)n的值为_______.20.为了了解七年级学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的时间,并把它绘制成频数分布直方图(每组含最小值,不含最大值).由图可知,一周参加体育锻炼时间大于等于6小时的有____________人.三、解答题(共60分)21.判断下面几个抽样调查选取样本的方法是否合适,并说明理由.(1)某校今年有420名初中毕业生参加考试,从中抽取50名男生的成绩进行统计分析;(2)估计我国儿童的身高状况,在某幼儿园的一个班级里做调查;(3)为了解观众对所观看影片的评价情况,随机调查某电影院单排单号的观众.22.报纸上刊登了一则新闻,标题为“保健食品合格率75%”,请据此回答下列问题.国内进口被检数(种)505不合格数(种)131(1)这则新闻是否说明市面上所有保健食品中恰好有25%为不合格产品?(2)你认为这则消息来源于普查还是抽样调查?为什么?(3)如果已知在这次质量检查中各项指标均合格的保健食品有60种,你能算出共有多少种保健食品接受检查了吗?(4)此次质量检查的结果显示如表,由此有人说:“进口保健食品的不合格率较低,更让人放心.”你同意这种说法吗?为什么?23.在贯彻落实“五育并举”的工作中,某校开设了五个社团活动:传统国学(A)、科技兴趣(B)、民族体育(C)、艺术鉴赏(D)、劳技实践(E),每个学生每个学期只参加一个社团活动,为了了解本学期学生参加社团活动的情况,学校随机抽取了若干名学生进行调查,并将调查结果绘制成如下两幅尚不完整的统计图,请根据统计图提供的信息,解决下列问题:(1)本次调查的学生共有________人;m ________;(2)将条形统计图补充完整并写出A 所对应的扇形圆心角的度数是________;(3)若该校有2700名学生,请估算本学期参加传统国学(A )活动的学生人数.24.为丰富课后服务内容,某校开设了“3D ”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查,分别用A 、B 、C 、D 代表这四门学科,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数?(2)并将条形统计图补充完整;(3)已知该校有1500名学生,估计该校学生喜爱学科C 的学生有多少人?(4)小明和小亮参加校本课程学习,若每人从A 、B 、C 三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25.某校为了解“双减”后学生的作业时间情况,对某校学生进行随机抽样调查,其中一个问题是“你平均每天回家写作业的时间是多少?”,共有4个选项:A .1.5小时以上:B .1 1.5 小时:C .0.51 小时;D .0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图.根据以上信息,解答下列问题(1)这次调查一共抽取了______名学生,其中,选择A选项的学生占被调查学生总数的百分比是______;(2)请将条形统计图补充完整;(3)该校有1800名学生,根据调查结果,估计全校回家做作业时间在0.5小时以下的学生有多少人.26.某校为了促进学生的个性发展,计划开设四类拓展性课程,包括艺术体育类、自然科学类、人文社科类及其他类(每人限选一项,要求人人都要参加).为了解学生喜爱哪种课程,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图.请根据图中的信息回答下列问题:(1)此次抽样调查的样本容量是_____人;(2)求人文社科类在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢艺术体育类拓展课的学生人数.27.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A、微信;B、支付宝;C、现金;D、其他.该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图.(3)求在扇形统计图中A种支付方式所对应的圆心角度数.(4)若该超市这一周内有1600名购买者,请你估计使用B和C两种支付方式的购买者共有多少名?28.为了切实减轻学生的课业负担,对义务教育阶段低年级学生原则上要求老师不布置课外作业,为了了解学生对这一政策的了解程度,分四个等级对低年级部分学生关于“双减”政策的知晓情况进行了调研.A非常了解,B了解,C比较了解,D不知道.进行了统计,并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)被抽查的学生共有多少人?(2)将图中的条形图补充完整;(3)计算D不知道的圆心角为多少度?(4)某学校有2000人,请你估计A非常了解的人数.参考答案:1.C2.B3.B4.A5.D6.C7.B8.A9.D10.C11.调查试验报纸相关文献12.扇形统计图13.45014.2415.普查16.全校学生对购买正版书籍,唱片和软件的支持率所抽取的8个班级的所有学生对购买正版书籍,唱片和软件的支持率;8合理17.1018.2019.804020.1421.(1)不合适,抽取的50名学生都是男生,不具有代表性.(2)不合适,只在某幼儿园的一个班级里进行调查,样本容量太小且不具有代表性.(3)合适,这是一种随机抽样的方式,具有代表性.22.(1)解:不能说明,可从样本是否具有代表性和样本容量是否足够大两方面来分析;(2)解:抽样调查.因为总体数目太大,且实验具有破坏性,不适合普查;(3)解:6075%80÷=(种);(4)解:不同意这种说法,因为进口商品被检数太少,即样本容量太小,不能反映总体水平.23.(1)解:401090360÷=(人),18100%20%90⨯=,20m =;故答案是:90;20m =.(2)解:统计图如下:在扇形统计图中,传统国学(A )社团对应扇形的圆心角度数是3036012090︒⨯=︒.故答案为:120︒;(3)解:该校有2700名学生,本学期参加传统国学(A )社团活动的学生人数为03027009090⨯=(人).24.(1)解:4840%120÷=(人),答:被调查学生的人数为120人.(2)解:A 学科人数为120(481812)42-++=(人),补全图形如下:(3)解:181500225120⨯=(人)答:估计该校学生喜爱学科C 的约有225人.(4)解:列表如下:A B CA (,)A A (,)B A (C,A)B (,)A B (,)B B (,)C B C (A,C)(,)B C (,)C C 由列表可知:共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为3193=.答:两人恰好选中同一门校本课程的概率为13.25.(1)解:由题意可得:这次调查一共抽取学生总数为:1815%120÷=(人),选择A 选项的学生占被调查学生总数的百分比是:12100%10%120⨯=,故答案为:120(人);10%.(2)解:选项C 的人数为:120181236=54---(人),补全条形统计图如下:(3)解:由题意得:361800=540120⨯(人),答:全校回家做作业时间在0.5小时以下的学生有540人.26.(1)8040%200÷=(人)即此次共调查了200人,故答案为:200;(2)60200360108÷⨯=︒︒即人文社科类在扇形统计图中所占圆心角的度数是108︒;(3)选择自然科学类的学生有:20020%40⨯=(人),选择其它类的学生有:20080406020---=(人),补全的条形统计图如图所示:(4)150040%600⨯=(人),答:估计喜欢体育类拓展课的学生有600人.27(1)5628%200÷=(名),即本次一共调查了200名购买者;(2)D 方式支付的有:200×20%=40(人)A 方式支付的有:20056444060---=(人)补全的条形统计图如图所示,(3)在扇形统计图中A 种支付方式所对应的圆心角为:60360108200⨯=.故答案为:108°;(4)60561600928200+⨯=(名)答:估计使用A 和B 两种支付方式的购买者共有928名.1128.(1)解:3630%120÷=(人),答:被抽查的学生共有120人;(2)解:B 等级的人数为:12045%54⨯=(人),补全条形图如下:(3)解:636018120︒⨯=︒,即D 不知道的圆心角为18︒;(4)解:362000600120⨯=(人),答:估计A 非常了解的人数大约有600人.。

第六章数据的收集与整理单元练习2024-2025学年北师大版数学七年级上册

第六章数据的收集与整理单元练习2024-2025学年北师大版数学七年级上册

第六章数据的收集与整理单元练习2024-2025学年北师大版数学七年级上册一、单选题1.要反应中国在最近五届奥运会上获得奖牌数量的变化情况应选择()A.条形统计图B.扇形统计图C.折线统计图D.以上均不是2.下列采用的调查方式中,不合适的是()A.调查全省中学生视力和用眼卫生情况,采用抽样调查B.检查神舟飞船十七号的零部件,采用全面调查C.企业招聘时对应聘人员进行面试,采用抽样调查D.了解某班学生的身高,采用全面调查3.为了了解某学校七年级495名学生的视力情况,从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A.495名学生是总体B.每名学生是个体C.50名学生是所抽取的一个样本D.这个样本容量是504.梅里雪山是云南的第一高峰,有着“中国最美的十大名山”的美誉,其著名的“日照金山”是很多人梦寐以求难得一见的胜景.某校为了解全校学生最喜欢在哪个季节去梅里雪山国家公园游玩,随机抽取若干名学生进行调研,有关信息如下统计图:下列判断错误的是()A.共随机调查了60名学生;B.喜欢在秋季去梅里雪山国家公园游玩的人数比喜欢在冬季去的人数多10;C.喜欢在春季去梅里雪山国家公园游玩的人数最多;D.喜欢在夏季去梅里雪山国家公园游玩的人数占总人数的25%.5.为了估计一片牧场里老鼠的数量,从牧场中捕获60只老鼠,做上记号,然后放回牧场,几天后再捕获第二批老鼠100只,发现其中带有标记的老鼠5只,估计这片牧场中约有老鼠的只数为()A.1000B.1200C.1500D.8006.为了解某校七年级900名学生每天花费在数学学习上的时间,随机抽取了100名学生进行调查,以下说法正确的是()A.样本容量是100B.每名学生是个体C.从中抽取的100名学生是样本D.七年级900名学生是总体7.某商场为了解用户最喜欢的家用电器,设计了如下尚不完整的调查问卷:该商场准备在“①制冷电器,①微波炉,①冰箱,①电饭锅,①空调,①厨房电器”中选取四个作为问卷问题的备选项目,你认为最合理的是()调查问卷________年________月________日你最喜欢的一种家用电器是()(单选)A B C DA.①①①①B.①①①①C.①①①①D.①①①①8.某校为了了解全校学生对“智能杭州”的了解程度,随机抽取了部分学生进行问卷调查,并根据收集的信息进行了统计,绘制了下面尚不完整的统计图.根据以上的信息,给出下列判断:①参加问卷调查的学生有50人;①参加问卷调查的学生中,“基本了解”的有10人;①扇形图中“基本了解”部分的扇形的圆心角的度数是108°;①在参加问卷调查的学生中,“了解”的学生人数占10%.其中结论正确的序号是()A .①①①B .①①①C .①①①D .①①①9.某学校课外活动小组为了解同学们喜爱的电影类型,设计了如下的调查问卷(不完整):准备在“①国产片,①科幻片,①动作片,①喜剧片,①亿元大片”中选取三个作为该问题的备选答案,选取合理的是( ) 调查问卷 年 月你平时最喜欢的一种电影类型是( )(单选) A . B . C . D .其他 A .①①①B .①①①C .①①①D .①①①10.为了解学生上学的交通方式,刘老师在九年级800名学生中随机抽取了60名进行问卷调查,并将调查结果制作成如下统计表,估计该年级学生乘坐公交车上学的人数为( )A .100B .200C .300D .40011.小明为了解同学们的课余生活,设计如下调查问卷:小莉认为选项不合理,应该删去的一项是( )A .①B .①C .①D .①12.为了解某小区居民的家庭月平均用水量的情况,物业公司从该小区1500户家庭中随机抽取150户家庭进行调查,统计了他们的月平均用水量,将收集的数据整理成如下的统计图表:根据统计图表得出以下四个结论,其中正确的是( )A .本次调查的样本容量是1500B .这150户家庭中月平均用水量为7≤x <9的家庭所占比例是30%C .在扇形统计图中,月平均用水量为11≤x <13的家庭所对应圆心角的度数是95°D .若以各组组中值(各小组的两个端点的数的平均数)代表各组的实际数据,则这150户家庭月平均用水量的众数是12 二、填空题13.数据处理的一般过程包括:→ → →分析数据→得出结论,则下列选项处依次填入划线处,正确的顺序是 .(填上序号)①描述数据①收集数据①整理数据14.一个袋中有黑球15个,白球若干个,小明从袋中随机摸出10个球,记下其中黑球的数目,再把他们放回,搅匀后重复上述过程共20次,发现一共摸出黑球20个,由此你能估计出袋中白球数是个.15.一个瓶子中装有一些豆子,从瓶子中取出50粒豆子,给这些豆子做记号,把这些豆子放回瓶子中,充分摇匀,从瓶子中再取出30粒豆子,其中有记号的有2粒,则瓶子中的豆子总数约为粒.16.某校举行“大赞美丽山西,我为家乡代言”活动,同学们积极参加.如图,这是七(1)班同学6月份连续7天投稿数量的折线统计图,则稿件数量不少于5件共有天.17.某校为开展“阳光体育”活动,组织调查了该校50名学生各自最喜爱的一项体育活动,制成了如图所示的扇形统计图.全校共有3000名学生,估计该学校选择篮球的学生有名.18.某校有2000学生,想要了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,特进行了抽样调查.现将调查结果用条形图描述如图,则抽取的样本的容量为,可推测其中最受全校学生喜爱的节目是,若将该统计结果用扇形图来描述,则“动画”对应扇形的圆心角为.(填度数)三、解答题19.小李在家门口进行了一项社会调查,对从家门口经过的车辆进行记录,分析出本地车与外地车辆的数据(1)在这过程中他要收集哪些数据?(2)设计出记录用的表格.20.为满足学生锻炼身体的需求,学校将大批量添置运动器械,在购买之前对学生进行了调查,找出学生最喜欢的体育项目,然后按比例分配资金.在开始调查前应考虑好如下一些问题:(1)你要调查的问题是什么?(2)你要调查哪些人?(3)你用什么方法调查?(4)向你的调查对象提出哪些问题?21.期中考试结束后,数学课代表小丽在计算全班50名同学的数学平均成绩时,按简单随机抽样法抽出了10名同学的数学成绩,发现这10名同学的成绩均处于全班上游.使用简单随机抽样的方法,既然能抽到全班成绩较好的10名同学的成绩作为样本,当然也有可能抽到恰为全班成绩较差的10名同学的成绩作为样本,于是小丽质疑“简单随机抽样方法不可靠”.你的看法如何?22.某报纸上刊登了一则新闻,“某种品牌的节能灯的合格率为95%”,请据此回答下列问题:(1)这则新闻________(填“能”或“不能”)说明市面上所有这种品牌的节能灯恰有5%为不合格,这则消息来源于________(填“普查”或“抽样调查”);(2)如果已知在这次检查中合格产品有76个,则共有多少个节能灯接受检查? (3)如果此次检查了两种产品,数据如下表所示,有人由此认为“A 品牌的不合格率比B 品牌低,更让人放心”,你同意这种说法吗?为什么?23.某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了________名学生;(2)补全条形图,并计算“讲解题目”组所在扇形的圆心角的大小是________; (3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?24.某商场试销A 、B 两款型号的洗碗机,四个月共售出400台.试销结束后,该商场想从中选择一款洗碗机进行经销,请根据提供的两幅统计图完成下列问题.(1)第四个月销量占总销量的百分比是 %; (2)通过计算补全洗碗机月销量的折线统计图;(3)结合折线统计图,判断该商场应选择哪款洗碗机进行经销?请说明理由. 25.某单位食堂为全体960名职工提供了A ,B ,C ,D 四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查,根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A 套餐的人数为________,扇形统计图中“C ”对应扇形的圆心角的大小为________°;(2)依据本次调查的结果进行采访,估计从全体960名职工中随机找到最喜欢B 套餐的人的概率;。

新人教版七年级数学下册第十章数据的收集、整理与描述题测试题(含答案)

新人教版七年级数学下册第十章数据的收集、整理与描述题测试题(含答案)

人教版七年级下期第10章《数据的收集、整理与描述》(有答案)人教版七年级下期第10章《数据的收集、整理与描述》(有答案)一.选择题(共6小题)1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.下列调查中,适合采用普查方式的是()A.调查市场上婴幼儿奶粉的质量情况B.调查黄浦江水质情况C.调查某个班级对青奥会吉祥物的知晓率D.调查《直播南京》栏目在南京市的收视率3.下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况4.为了检查一批灯管的使用寿命,从中抽取了10只进行检测,以下说法正确的是()A.这一批灯管是总体B.10只灯管是总体的一个样本C.每只灯管是个体D.10只灯管的使用寿命是总体的一个样本5.为了了解某地区12 000名初中毕业生参加中考的数学成绩,从中抽取了500名考生的数学成绩进行统计分析,下列说法正确的是()A.个体是指每个考生B.12000名考生是个体C.500名考生的成绩是总体的一个样本D.样本是指500名考生6.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量二.填空题(共8小题)7.学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下,已知该校七年级学生有800名,那么中号校服应订制套.145155x<x<155165x<165175175185x<8.已知一组数据是连续的整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是.9.某镇卫生部门2014年4月份对镇所辖学校的中小学生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值为.D410.如图是某市20132016-年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.11.图1表示某地区2003年12个月中每个月的平均气温,图2表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):.12.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为.(填序号)13.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于.14.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是8,频率是0.2,那么该班级的人数是人.三.解答题(共6小题)15.2013年我国中东部地区先后遭遇多次大范围雾霾天气,其影响范围、持续时间、雾霾强度历史少见,给人们生产生活造成了严重影响.为此“雾霾天气的主要成因”就成为某校环保小组调查研究的课题,他们随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题;(1)填空:m=,n=,扇形统计图中表示E组的扇形圆心角等于度.(2)若该市人口约有800万人,请你估计其中持D组“观点”的市民人数;(3)治理雾霾天气需要每个人的环保行动和参与,作为一名中学生的你能为“应对雾霾天气,保护环境”做些什么?请你写出来.(只需写出一条措施或建议即可)16.某校有1000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被污染渍盖住)(1)本次调查的个体是;(2)求扇形统计图中,乘私家车部分对应的圆心角的度数;(3)请估计该校1000名学生中,选择骑车和步行上学的一共有多少人?17.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩进行统计.请你根据尚未完成的频数分布表和频数分布直方图,解答下列问题:(1)填充频数分布表的空格;(2)补全频数直方图,并绘制频数分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?18.网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对1235-岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中1823-岁部分的圆心角;(3)据报道,目前我国1235-岁的人数.-岁网瘾人数约为2000万,请估计其中122319.某校为开展每天一小时阳光体育活动,准备组建篮球、排球、羽毛球、乒乓球四个兴趣小组,并规定每名学生只能参加1个小组,且不能不参加.该校对九年级学生报名情况进行了抽样调查,并将所得数据绘制成了如下两幅统计图:根据图中的信息,解答下列问题:(1)本次调查共抽样了名学生;(2)补全条形统计图;(3)若该校九年级共有450名学生,试估计报名参加排球兴趣小组的人数.20.班主任张老师为了了解本班学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)该班共有名学生;(2)在张老师的鼓励下,该班学生第二天的发言次数比前一天明显增加,图2是全班第二天发言次数变化的人数的扇形统计图人教版七年级数学下册第十章数据的收集、整理与描述单元检测试题(解析版)人教版七年级数学下册第十章数据的收集、整理与描述单元测试题学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 某同学想了解寿春路与阜阳路交叉路口1分钟内各个方向通行的车辆数量,他应采取的收集数据方法为()A.查阅资料B.实验C.问卷调查D.观察2. 下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某类烟花爆竹燃放安全情况的调查D.对神舟飞船的零部件的质量情况的调查3. 下列调查中,适宜采用普查的是()A.调查我县初三学生每天体育锻炼的时间B.调查全校学生每月花费的零花钱C.调查初三1班某次数学考试成绩D.调查初三学生参加这次月考的心理状态4. 某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为()A.9.5万件B.9万件C.9500件D.5000件5. 下列调查方式合适的是()A.了解炮弹的杀伤力,采用普查的方式B.了解全国中学生的视力状况,采用普查的方式C.了解一批罐头产品的质量,采用抽样调查的方式D.对载人航天器“神舟七号”零部件的检查,采用抽样调查的方式6. 某市有3000名初一学生参加期末考试,为了了解这些学生的数学成绩,从中抽取200名学生的数学成绩进行统计分析.在这个问题中,下列说法:①这3000名初一学生的数学成绩的全体是总体;②每个初一学生是个体;③200名初一学生是总体的一个样本;④样本容量是200.其中说法正确的是()A.4个B.3个C.2个D.1个7. 某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A.1500B.1000C.150D.5008. 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条9. 实验中学九年级进行了一次数学测试,参加考试人数共540人,为了了解这次数学成绩,下列所抽取的样本中较合理的是()A.抽取前:100名同学的数学成绩B.抽取各班学号为3的倍数的同学的数学成绩C.抽取1、2两班同学的数学成绩D.抽取后100名同学的数学成绩10. 某校七(3)班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()A.0.4B.18C.0.6D.27二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 一个样本的50个数据分别落在5个小组内,其中第3组有8个数,那么第3组的频率为________.12. 一个容量为77的样本最大值是153,最小值是60,取组距为10,则可分成________组.13. 为了更好的刻画数据的总体的规律,我们还可以在得到的频数分布直方图上________,________,得到________图.14. 一组数据的最大值为169,最小值为141,在绘制频数分布直方图时要求组据为6,则组数为________.15. 某校对去年毕业的350名学生的毕业去向进行跟踪调查,并绘制出扇形统计图(如图所示),则该校去年毕业生在家待业人数有________人.16. 某校为了了解八年级学生的体能情况,随机选取一部分学生测试一分钟仰卧起坐次数,并绘制了如图所示的直方图,学生仰卧起坐次数在25∼30之间的频率是________.该店决定本周进货时,多进一些尺码为厘米的鞋,影响鞋店决策的统计量是18. 下图是根据某中学为地震灾区玉树捐款的情况而制作的统计图,已知该校在校学生3000人,请根据统计图计算该校共捐款________元.19. 今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是________.20. 某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为________人.三、解答题(本题共计6 小题共计60分,)(2)计算各种果树对应的圆心角度数;(3)制作扇形统计图.请根据表中信息,回答下列问题:(1)活动小组共有学生多少人?(2)制作标本数在6个及以上的人数占小组总人数的百分比是多少?(3)根据统计表制作一个形象的统计图.23. 吸烟有害健康:为配合“禁烟”运动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如图所示统计图:(1)同学们一共随机调查了________人;(2)请你把条形统计图补充完整;(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?(4)假定该社区有1万人,请估计该地区支持“警示戒烟”这种方式的大约有多少人?24. 某校七年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)接受这次调查的家长人数为多少人?(2)表示“无所谓”的家长人数为多少人?(3)在扇形统计图中,求“不赞同”的家长部分所对应扇形的圆心角大小.25. 如图所示的是一位同学设计的一幅象形统计图,不过这位同学太粗心了,应该给出的题目及一些说明性文字都忘了写,你能看出这幅图是要反应什么内容吗?能把图形中缺少的文字补上吗?(能补上三项文字性的说明即可)26. 下面三幅统计图,反映了某市两个化肥厂三个方面的情况,请看图回答问题.(1)从折线统计图中可以看出,哪个厂的产值增长得快?(2)从条形统计图中可以看出,哪个厂的工人人数多,哪个厂的技术人员多?(3)从扇形统计图中可以看出,哪个厂的外销产品占产品销售总数的百分比大?(4)综合上面的分析,你认为哪个厂的生产搞得好,为什么?参考答案与试题解析七年级数学下册第十章数据的收集、整理与描述单元检测试题一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解析】根据收集数据的基本方法有观察、统计、调查、实验、查阅文献资料或因特网查询等分析判断即可.【解答】解:想了解寿春路与阜阳路交叉路口1分钟内各个方向通行的车辆数量,他应采取的收集数据方法为观察,故选:D.2.【答案】D【解析】根据适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强,进而判断即可.【解答】解:A、适合抽样调查,因为普查的难度较大,故此选项错误;B、适合抽样调查,因为调查的破坏性较大,故此选项错误;C、适合抽样调查,因为调查的破坏性较大,故此选项错误;D、适合全面调查,因为神舟飞船零部件要求极高,不能出现任何问题,故此选项正确.故选:D.3.【答案】C【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A,对全国中学生每天体育锻炼的时间的调查不必全面调查,大概知道因为普查工作量大,适合抽样调查;B,调查全校学生每月花费的零花钱,适合抽样调查;C,调查初三1班某次数学考试成绩,适合普查;D,调查初三学生参加这次月考的心理状态,适合抽样调查.故选:C.4.【答案】A【解析】由于100件中进行质检,发现其中有5件不合格,那么合格率可以计算出来,然后利用样本的不合格率估计总体的不合格率,就可以计算出10万件中的不合格品产品数,进而求得合格品数.【解答】解:∵100件中进行质检,发现其中有5件不合格,∴合格率为(100−5)÷100=95%,∴10万件同类产品中合格品约为100000×95%=95000=9.5万件.故选A.5.【答案】C【解析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解炮弹的杀伤力,有破坏性,故得用抽查方式,故本选项错误;B、了解全国中学生的视力状况,工作量大,得用抽查方式,故本选项错误;C、了解一批罐头产品的质量,工作量大,得用抽查方式,故本选项正确;D、对载人航天器“神舟七号”零部件的检查十分重要,故进行普查检查,故本选项错误.故选C.6.【答案】C【解析】根据总体、个体、样本、样本容量的定义即可判断.【解答】解:①这3000名初一学生的数学成绩的全体是总体正确;②每个初一学生的期末数学成绩是个体,故命题错误;③200名初一学生的期末数学成绩是总体的一个样本,故命题错误;④样本容量是200,正确.故选C.7.【答案】D【解析】根据分层抽样方法,设抽到的大、中、小学生人数分别为2x、3x、5x,由抽到的中学生人数可得x,继而可得样本容量.【解答】解:设抽到的大、中、小学生人数分别为2x、3x、5x,由3x=150可得x=50,∴应抽取的样本容量等于10x=500(人),故选:D.8.【答案】C【解析】首先求出有记号的5条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】×100%=5%,解:∵5100∴20÷5%=400(条).故选C9.【答案】B【解析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、不具有代表性,故A错误B、抽取各班学号为3的倍数的同学的数学成绩,具有代表性广泛性,故B正确;C、不具有代表性,故C错误;D、不具有代表性,故D错误;故选:B.10.【答案】B【解析】根据频数分布直方图即可求解.【解答】解:根据频数分布直方图可知,第二组的频数是18.故选B.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】425【解析】根据频率的定义,频率=频数数据总和即可求解.【解答】解:第3组的频率为850=425.故答案是:425.12.【答案】10【解析】先求出该组数据最大值与最小值的差,再用极差除以组距即可得到组数.【解答】解:∵153−60=93,而93÷10=9.3,∴应该分成10组.故答案为:10.13.【答案】取点,连线,频数分布折线【解析】根据画频数分布折线图的方法即可求解.【解答】解:为了更好的刻画数据的总体的规律,我们还可以在得到的频数分布直方图上取点,连线,得到频数分布折线图.故答案为取点,连线,频数分布折线图.14.【答案】5【解析】由于一组数据的最大值为169,最小值为141,那么极差为169−141=28,而在绘制频数直方图时要求组距为6,那么根据它们即可求出组数.【解答】解:∵一组数据的最大值为169,最小值为141,∴最大值与最小值的差是169−143=28,而要求组距为6,∴28÷6=423,∴组数为5.故答案为:5.15.【答案】28【解析】首先求得在家待业的百分比,然后乘以毕业的总人数即可.【解答】解:在家待业的毕业生所占百分比为:1−24%−68%=8%,故该校去年毕业生在家待业人数有350×8%=28人,故答案为:28.16.【答案】0.2【解析】即可求解.根据频率的计算公式:频率=频数总数【解答】=0.2.解:学生仰卧起坐次数在25∼30之间的频率是:630故答案是:0.2.17.【答案】众数【解析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】由于众数是数据中出现次数最多的数,故影响鞋店决策的统计量是众数.18.【答案】37770【解析】首先根据扇形统计图求得各年级的人数,再结合条形统计图求得共捐款数.【解答】解:初一人数:3000×32%=960(人);初二人数:3000×33%=990(人);初三人数:3000×35%=1050(人).该校共捐款数:960×15+990×13+1050×10=37770(元).19.【答案】6000【解析】根据自驾车人数除以百分比,可得答案.【解答】由题意,得4800÷40%=12000,公交12000×50%=6000人教版七年级下册第十章数据的收集、整理与描述单元练习题(解析版)人教版七年级数学下册第十章数据的收集、整理与描述单元测试题一、选择题1.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重2.下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园的游客流量,选择抽样调查C.为了了解神州飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查调查3.墨墨对他所住小区的100户居民2月份天然气的使用量(单位:m3)进行统计,其结果如图所示,图中36-38段因不小心洒上水而看不清,则2月份天然气的使用量在36-38段的居民有()A.18户B.20户C.22户D.24户4.某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组树数14棵,第四组植树19棵.为了把这个班的植树情况清楚地反映出来,应该制作的统计图为()A.条形统计图B.折线统计图C.扇形统计图D.条形统计图、扇形统计图均可5.PM2.5指数是测控空气污染程度的一个重要指数.在一年中最可靠的一种观测方法是()A.随机选择5天进行观测B.选择某个月进行连续观测C.选择在春节7天期间连续观测D.每个月都随机选中5天进行观测6.水库中放养鲤鱼8 000条,鲢鱼若干.在n次随机捕捞中,共抓到鲤鱼320条,抓到鲢鱼400条,估计塘中原来放养了鲢鱼()A.9 000条B.9 600条C.10 000条D.12 000条7.老师对某班全体学生在电脑培训前后进行了一次水平测试,考分以同一标准划分为“不合格”、“合格”、“优秀”三个等级,成绩见下表.下列说法错误的是()A.培训前“不合格”的学生占80%B.培训前成绩“合格”的学生是“优秀”学生的4倍C.培训后80%的学生成绩达到了“合格”以上D.培训后优秀率提高了30%8.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少二、填空题9.为了考察某区3500名毕业生的数学成绩,从中抽出20本试卷,每本30份,在这个问题中,样本容量是________.10.我国泰山,华山等五座名山的海拔高度如下表.若根据表中的数据作出统计图,以便能更清楚地对几座名山的高度进行比较,则应选用________统计图.11.为了掌握我校初中二年级女同学身高情况,从中抽测了60名女同学的身高,这个问题中的总体是____________________,样本是____________________.12.某市2016年将有九万名考生参加中考,为了了解这九万名考生的视力情况,从中抽取了2 000名考生的视力情况进行统计分析,得出①这种调查采用了抽样抽样调查的方式;②九万名考生是总体;③2 000名考生的视力情况是总体的一个样本;④每一名考生是个体;⑤样本容量为1 000名,则以上5个结论正确的是________.13.为了了解某所初级中学学生对6月5日“世界环境日”是否知道,从该校全体学生1 200名中,随机抽查了80名学生,结果显示有2名学生“不知道”,由此,估计该校全体学生中对“世界环境日”约有________名学生“不知道”.14.下列调查中,适合用抽样调查的为________.(填序号)①了解全班同学的视力情况;②了解某地区中学生课外阅读的情况;③了解某市百岁以上老人的健康情况;④日光灯管厂要检测一批灯管的使用寿命.15.调查市场上某种食品的色素含量是否符合国家标准,这种调查适用________________.(填全面调查或者抽样调查)16.如图是某班50名学生身高(精确到1 cm)的频率分布直方图,从左起第一、二、三、四个小长方形的高的比是1∶3∶5∶1,那么身高是160 cm及160 cm以上的学生有________人.三、解答题17.某市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个品种的树苗共500株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得知:丙种树苗的成活率为89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出).(1)实验所用的乙种树苗的数量是________株.(2)求出丙种树苗的成活数,并把图2补充完整.(3)你认为应选哪种树苗进行推广?(4)请通过计算说明理由.18.请指出下列样本是否具有代表性:(1)在全县范围内随意选择十个幼儿园,对其中每个孩子的情况进行调查,以了解该县幼儿园的身体发育等情况;(2)到省城一所中学进行调查,以便了解全省中学生上网的情况;(3)在每个省任意确定两名房地产开发商,让他们每人填写一张内容详尽的调查表,包括他们负责的工程质量,所盖楼房中使用的涂料、门窗、地板是不是合格,以及建房的利润情况等,以了解全国各地的房地产开发商的工作情况.19.2016年3月,某中学以“每天阅读1小时”为主题,对学生最喜爱的书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)请把折线统计图(图1)补充完整;(2)如果这所中学共有学生900名,那么请你估算最喜爱科普类书籍的学生人数.。

2021年浙教版数学七年级下册6.1《数据的收集与整理》精选练习(含答案)

2021年浙教版数学七年级下册6.1《数据的收集与整理》精选练习(含答案)

浙教版数学七年级下册6.1《数据的收集与整理》精选练习一、选择题1.王大伯有甲.乙.丙三块不同等级的棉田60亩.20亩.10亩,想估算自己今年的棉花产量,请你给王大伯出个主意( )A.从甲棉田抽出部分进行估算B.从乙棉田抽出部分进行估算C.从丙棉田抽出部分进行估算D.按6:2:1的比例从甲.乙.丙三块棉田抽取进行估算2.要调查某校周日的睡眠时间,下列调查对象选取最合适的是( )A.选取该校一个班级的学生B.选取该校50名男生C.选取该校50名女生D.随机选取该校50名学生3.某水资源保护组织对石家庄某小区的居民进行节约水资源的问卷调查.某居民在问卷上的选项代号画“√”,这个过程是收集数据中的( )A.确定调查范围B.汇总调查数据C.实施调查D.明确调查问题4.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是( )A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查5.某电脑厂家为了安排台式电脑和手提电脑的生产比例,而进行一次市场调查,调查员在调查表中设计了下面几个问题,你认为哪个提问不合理( )A.你明年是否准备购买电脑(1)是(2)否B.如果你明年购买电脑,打算买什么类型的(1)台式(2)手提C.你喜欢哪一类型电脑(1)台式(2)手提D.你认为台式电脑是否应该被淘汰(1)是(2)否6.下面的调查,适合用实验方法的是( )A.推荐班长候选人B.调查同学们的生日C.你在10秒内能跑多少米D.世界上发生的“禽流感”的情况7.小明想知道银河系里恒星大约有多少颗,他可以获取有关数据的方式是( )A.问卷调查B.实地考察C.查阅文献资料D.实验8.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是( )A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策9.要调查你校学生学业负担是否过重,选用下列哪种方法最恰当( )A.查阅文献资料B.对学生问卷调查C.上网查询D.对校领导问卷调查10.某校篮球队员的身高(单位:cm)如下:168、167、160、164、168、168、167、168、167、163.这组数据是( )方法获得的。

新人教版七年级数学下册第十章数据的收集、整理与描述题单元测试题(含答案解析)

新人教版七年级数学下册第十章数据的收集、整理与描述题单元测试题(含答案解析)

人教版七年级下期第10章《数据的收集、整理与描述》(有答案)人教版七年级下期第10章《数据的收集、整理与描述》(有答案)一.选择题(共6小题)1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.下列调查中,适合采用普查方式的是()A.调查市场上婴幼儿奶粉的质量情况B.调查黄浦江水质情况C.调查某个班级对青奥会吉祥物的知晓率D.调查《直播南京》栏目在南京市的收视率3.下列调查中,须用普查的是()A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况4.为了检查一批灯管的使用寿命,从中抽取了10只进行检测,以下说法正确的是()A.这一批灯管是总体B.10只灯管是总体的一个样本C.每只灯管是个体D.10只灯管的使用寿命是总体的一个样本5.为了了解某地区12 000名初中毕业生参加中考的数学成绩,从中抽取了500名考生的数学成绩进行统计分析,下列说法正确的是()A.个体是指每个考生B.12000名考生是个体C.500名考生的成绩是总体的一个样本D.样本是指500名考生6.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量二.填空题(共8小题)7.学校为七年级学生订做校服,校服型号有小号、中号、大号、特大号四种.随机抽取了100名学生调查他们的身高,得到身高频数分布表如下,已知该校七年级学生有800名,那么中号校服应订制套.8.已知一组数据是连续的整数,其中最大值是242,最小数据是198,若把这组数据分成9个小组,则组距是.9.某镇卫生部门2014年4月份对镇所辖学校的中小学生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值为.10.如图是某市20132016-年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.11.图1表示某地区2003年12个月中每个月的平均气温,图2表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):.12.我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为.(填序号)13.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图的频数直方图(每小组的时间值包含最小值,不包含最大值),根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分数约等于.14.对某班组织的一次考试成绩进行统计,已知80.5~90.5分这一组的频数是8,频率是0.2,那么该班级的人数是人.三.解答题(共6小题)15.2013年我国中东部地区先后遭遇多次大范围雾霾天气,其影响范围、持续时间、雾霾强度历史少见,给人们生产生活造成了严重影响.为此“雾霾天气的主要成因”就成为某校环保小组调查研究的课题,他们随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题;(1)填空:m=,n=,扇形统计图中表示E组的扇形圆心角等于度.(2)若该市人口约有800万人,请你估计其中持D组“观点”的市民人数;(3)治理雾霾天气需要每个人的环保行动和参与,作为一名中学生的你能为“应对雾霾天气,保护环境”做些什么?请你写出来.(只需写出一条措施或建议即可)16.某校有1000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表(频数分布表中部分划记被污染渍盖住)(1)本次调查的个体是;(2)求扇形统计图中,乘私家车部分对应的圆心角的度数;(3)请估计该校1000名学生中,选择骑车和步行上学的一共有多少人?17.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩进行统计.请你根据尚未完成的频数分布表和频数分布直方图,解答下列问题:(1)填充频数分布表的空格;(2)补全频数直方图,并绘制频数分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(4)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?18.网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对1235-岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中1823-岁部分的圆心角;(3)据报道,目前我国1235-岁的人数.-岁网瘾人数约为2000万,请估计其中122319.某校为开展每天一小时阳光体育活动,准备组建篮球、排球、羽毛球、乒乓球四个兴趣小组,并规定每名学生只能参加1个小组,且不能不参加.该校对九年级学生报名情况进行了抽样调查,并将所得数据绘制成了如下两幅统计图:根据图中的信息,解答下列问题:(1)本次调查共抽样了名学生;(2)补全条形统计图;(3)若该校九年级共有450名学生,试估计报名参加排球兴趣小组的人数.20.班主任张老师为了了解本班学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)该班共有名学生;(2)在张老师的鼓励下,该班学生第二天的发言次数比前一天明显增加,图2是全班第二天发言次数变化的人数的扇形统计图七年级数学下册数据收集与整理解答题专项练习1、某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,“主动质疑”对应的圆心角为度;(3)将条形统计图补充完整;(4)如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?2、我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.3、某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).请根据上面两个不完整的统计图回答以下4个问题:(1)这次抽样调查中,共调查了名学生.(2)补全条形统计图中的缺项.(3)在扇形统计图中,选择教师传授的占%,选择小组合作学习的占%.(4)根据调查结果,估算该校1800名学生中大约有人选择小组合作学习模式.4、2017年3月27日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整致,满分为10分)进行统计,绘制了图中两幅不完整的统计图.(1)a= ,n= ;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?5、为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?6、某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.根据以上信息解决下列问题:(1)在统计表中,m= ,n= .(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.7、某校为了解九年级1 000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两种尚不完整的统计图.解答下列问题:(1) 这次抽样调查的样本容量是________,并补全频数分布直方图;(2) C组学生的频率为________,在扇形统计图中D组的圆心角是________度;(3) 请你估计该校九年级体重超过60 kg的学生大约有多少名.8、某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有________名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?9、初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?10、某中学为了搞好对“传统文化学习”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为________人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在________组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.参考答案1、解:(1)本次调查的样本容量为224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360°×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)60000×=18000(人),答:在试卷评讲课中,“独立思考”的初三学生约有18000人.2、解:(1)140÷28%=500(人),故答案为:500;(2)A的人数:500﹣75﹣140﹣245=40(人);补全条形图如图:(3)75÷500×100%=15%,360°×15%=54°,故答案为:54;(4)245÷500×100%=49%,3600×49%=1764(人).3、解:(1)由题意可得,本次调查的学生有:300÷60%=500(名),故答案为:500;(2)由题意可得,教师传授的学生有:500﹣300﹣150=50(名),补全的条形统计图如右图所示;(3)由题意可得,选择教师传授的占: =10%,选择小组合作学习的占: =30%,故答案为:10,30;(4)由题意可得,该校1800名学生中选择合作学习的有:1800×30%=540(名),故答案为:540.4、解:(1)∵本次调查的总人数为30÷10%=300(人),∴a=300×25%=75,D组所占百分比为×100%=30%,所以E组的百分比为1﹣10%﹣20%﹣25%﹣30%=15%,则n=360°×15%=54°,故答案为:75、54;(2)B组人数为300×20%=60(人),补全频数分布直方图如下:(3)2000×(10%+20%)=600,答:该校安全意识不强的学生约有600人.5、解:(1)80÷40%=200(人).∴此次共调查200人.(2).∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图.(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人6、(1)m=30,n=20;(2)90°(3)“听写正确的个数少于24个”的人数有:10+15+25=50 (人).900×=450 (人).答:这所学校本次比赛听写不合格的学生人数约为450人.7、(1) 样本容量是4÷8%=50;B组的频数为12,补全频数分布直方图如图所示。

(精练)人教版七年级下册数学第十章 数据的收集、整理与描述含答案

(精练)人教版七年级下册数学第十章 数据的收集、整理与描述含答案

人教版七年级下册数学第十章数据的收集、整理与描述含答案一、单选题(共15题,共计45分)1、某校八年一班的全体同学最喜欢的球类运动用如图所示的扇形统计图来表示,下面说法正确的是()A.从图中可以直接看出全班的总人数B.从图中可以直接看出喜欢各种球类的具体人数C.从图中可以直接看出全班同学中喜欢排球的人数多于喜欢足球的人数D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系2、下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4)为了解中央电视台春节联欢晚会的收视率。

其中适合用抽样调查的个数有( )A.1个B.2个C.3个D.4个3、下列调查方式合适的是()A.为了了解市民对电影《功夫熊猫3》的感受,小华在某校随机采访了8名九年级学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式4、下列调查中,适宜采用全面调查方式的是()A.调查春节联欢晚会在武汉市的收视率B.了解全班同学参加社会实践活动的情况C.调查某品牌食品的色素含量是否达标D.了解一批手机电池的使用寿命5、某超市销售A,B,C,D四种品牌的冷饮,某天的销售情况如图所示,则该超市应多进的冷饮品牌是()A.A品牌B.B品牌C.C品牌D.D品牌6、如图,小明用条形统计图记录某地汛期一个星期的降雨量,如果日降雨量在25 mm及以上为大雨,那么这个星期下大雨的天数为()A.3天B.4天C.5天D.6天7、学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1B.0.15C.0.25D.0.38、下列调查中,适宜采用抽样调查方式的是()A.调查中国民众对叙利亚局势持乐观态度的比例B.调查某6人小组中喜欢打篮球的人数C.调查重庆龙头寺火车站是否有乘客携带了危险物品 D.调查初三某班的体考成绩的优秀率9、以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱10、某篮球队队员年龄结构直方图如下图所示,根据图中信息,可知该队队员年龄的中位数为()A.18岁B.21岁C.23岁D.19.5岁11、某牧场为估计该地区山羊的只数,先捕捉20只山羊给它们分别做上标志,然后放回,待有标志的山羊完全混合于山羊群后,第二次捕捉80只山羊,发现其中2只有标志,从而估计该地区有山羊()A.400只B.600只C.800只D.1000只12、下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.“x 2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查13、为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条B.1750条C.2500条D.5000条14、已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组和第三小组的频率分别为()A.0.4和0.3B.0.4和9C.12和0.3D.12和915、某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组树数14棵,第四组植树19棵.为了把这个班的植树情况清楚地反映出来,应该制作的统计图为()A.条形统计图B.折线统计图C.扇形统计图D.条形统计图、扇形统计图均可二、填空题(共10题,共计30分)16、要表示某品牌奶粉中蛋白质、钙、维生素、糖和其他物质的含量的百分比,应该利用________统计图最好.17、图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为________千元.18、期末考试后,小红将本班50名学生的数学成绩进行分类统计,得到如图所示的扇形统计图,则优生人数为________.19、为了了解一批圆珠笔心的使用寿命,宜采用________方式进行调查;为了了解你们班同学的身高,宜采用________方式进行调查.20、某中学七年级(1)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息可知a的值为________.21、调查市场上手机中某种重金属含量是否超过国家规定标准,这种调查适合用________(填“普查”或“抽样调查”).22、某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况如表,请你估计这400名同学的家庭一个月节约用水的总量大约是________.节水量/m30.2 0.25 0.3 0.4 0.5家庭数/个 2 4 6 7 123、某校八年级共有400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于1。

(典型题)初中数学七年级数学上册第六单元《数据的收集与整理》测试卷(有答案解析)

(典型题)初中数学七年级数学上册第六单元《数据的收集与整理》测试卷(有答案解析)

一、选择题1.某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策2.为提高学生的课外阅读水平,我市各中学开展了“我的梦,中国梦”课外阅读活动,某校为了解七年级学生每日课外阅读所用的时间情况,从中随机抽取了部分学生,进行了统计分析,整理并绘制出如图所示的频数分布直方图,有下列说法:①这次调查属于全面调查②这次调查共抽取了200名学生-的人数最少③这次调查阅读所用时间在2.53h-的人数占所调查人数的40%,其中正确的有().④这次调查阅读所用时间在1 1.5hA.②③④B.①③④C.①②④D.①②③3.某校学生会对学生上网的情况作了调查,随机抽取了若干名学生,按“天天上网、只在周末上网、偶尔上网、从不上网”四项标准统计,绘制了如下两幅统计图,根据图中所给信息,有下列判断:①本次调查一共抽取了200名学生;②在被抽查的学生中,“从不上网”的学生有10人;③在本次调查中“天天上网”的扇形的圆心角为30°.其中正确的判断有()A.0个B.1个C.2个D.3个4.以下调查中,适合用抽样调查的是()A.了解我校初一(1)班学生的视力情况B.企业招聘,对应聘人员进行面试C .检测武汉市的空气质量D .了解北斗导航卫星的设备零件的质量情况5.下列调查中,最适合采用抽样调查的是( )A .了解全班同学每周体育锻炼的时间B .对市场上某一品牌电脑使用寿命的调查C .对旅客上飞机前的安检D .对“神州十一号”运载火箭发射前的零部件质量状况的调查6.下列调查中,最适合采用全面调查的是( )A .端午节期间市场上粽子质量B .某校九年级三班学生的视力C .央视春节联欢晚会的收视率D .某品牌手机的防水性能7.如果整个地区的观众中青少年、成年人、老年人的人数比为3:4:3,要抽取容量为1000的样本,则成年人抽取( )合适A .300B .400C .500D .10008.下列调查方式,你认为最合适的是( ) A .要调查一批灯管的使用寿命,采用全面调查的方式B .扬泰机场对旅客进行登机前安检,采用抽样调查方式C .为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D .试航前对我国国产航母各系统的检查,采用抽样调查方式9.下列调查中,适合用普查方法的是( )A .了解某班学生对“北京精神”的知晓率B .了解某种奶制品中蛋白质的含量C .了解北京台《北京新闻》栏目的收视率D .了解一批科学计算器的使用寿命10.希望中学七年级四个班的学生去阳光公园义务植树,已知在每小时内,5个女生种3棵树,3个男生种5棵树,各班学生人数如图所示,则植树最多的班级是( )A .七(1)班B .七(2)班C .七(3)班D .七(4)班 11.某校在开展“节约每一滴水” 的活动中,从九年级300名学生家庭中任选20名学生家庭某个月的节水量x (单位:t ),汇总整理成如下表: 节水量/x t 0.5 1.5x ≤< 1.5 2.5x ≤< 2.5 3.5x ≤< 3.5 4.5x ≤<人数6284估计这300名学生家庭中这个月节水量少于2.5t的户数为()A.180户B.120户C.60户D.80户12.某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法:①这600名学生的“中华经典诵读”大赛成绩的全体是总体.②每个学生是个体.③50名学生是总体的一个样本.④样本容量是50名.其中说法正确的有()A.1个B.2个C.3个D.4个二、填空题13.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成 _______________组.14.为了统计了解某市4万名学生平均每天读书时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序______________.15.为了了解某市八年级8000名学生的体重情况,从中抽查了500名学生的体重进行统计分析,在这个问题中,样本是_____________16.某公司有员工800人举行元旦庆祝活动,A、B、C分别表示参加各种活动的人数的百分比(如图),规定每人都要参加且只能参加其中一项活动,则下围棋的员工共有______人.17.甲、乙两家汽车销售公司根据近几年的销售量分别制作如下统计图:从2009-2013年,这两家公司中销售量增长较快的是__________公司.18.某学校食堂为了了解服务质量,随机调查了来食堂就餐的200名学生,调查的结果如图所示,根据图中给出的信息,这200名学生中对该食堂的服务质表示不满意的有 ___________ 人19.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.20.为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高,在这个问题中,样本容量是_______.三、解答题21.某市为提高学生参与体育活动的积极性,2019年5月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一学生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2018年约有初一学生20000,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.22.为丰富学生的课余生活,某校开展了A、B、C、D四类社团活动,为了解学生参加各类社团活动的情况,该校对七年级学生社团活动进行了抽样调查,得到两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查的样本容量为______.(2)请补全条形统计图;在扇形统计图中A类社团活动所对应的圆心角度数为______.(3)若学校有1200名学生参加社团活动,请你估计全校参加A类和B类社团活动的学生总人数.23.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽收n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n 的值并补全条形统计图;(2)求扇形统计图中体育活动的圆心角度数;(3)若该校学生共有1200人,试估计该校喜爱看电视的学生人数.24.设中学生体质健康综合评定成绩为x 分,满分为100分,规定85100x 为A 级,7585x <为B 级,6075x <为C 级,60x <为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;a = ;(2)补全条形统计图;(3)扇形统计图中 C 级对应的圆心角为 度;(4)若该校共有2000名学生,请你估计该校D 级学生有多少名?25.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地做决策,自来水公司随机抽取部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括最大值但不包括最小值),请你根据统计图解决下列问题:(1)此次抽样调查的样本容量是______.(2)补全左侧统计图,并求扇形统计图中“25吨~30吨”部分的圆心角度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?26.为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为 20道判断题,每道题5分,满分 100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65, 80.85.75,65,70,65,85,70,95,80,75.80.为了便于分析数据,统计员对八年级数据进行了整理,得到表1表1:等级分数(单位:分)学生数D60<x≤705C70<x≤80aB80<x≤90bA90<x≤1002年级平均分中位数优秀率八年级78分c分m%九年级76分82.5分50%【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C .2.A解析:A【分析】根据抽样调查和频数分布直方图的性质逐个分析计算,即可得到答案.【详解】这次调查属于抽样调查,故①错误;结合频数分布直方图,可计算得共抽取10208070128200+++++=名学生,故②正确;结合频数分布直方图,阅读所用时间在2.53h -的共8名学生,人数最少,故③正确; 这次调查阅读所用时间在1 1.5h -的人数占比为802=2005,即40%,故④正确; 故选:A .【点睛】本题考查了抽样调查、频数分布直方图的知识;解题的关键是熟练掌握抽样调查、频数分布直方图的性质,从而完成求解. 3.C解析:C【分析】结合扇形统计图和条形统计图中“只在周末上网”是120人占60%,可以求得全部人数;再利用“从不上网”的占比得到人数;“天天上网”的圆心角度数是360×10%得到.【详解】因为“只在周末上网”是120人占60%,所以总学生人数为120÷60%=200名,①正确; 因为“从不上网”的占比为:1-25%-10%-60%=5%,所以 “从不上网”的人数是200×5%=10人,②正确;“天天上网”的圆心角度数:360°×10%=36°,③错误.故选C .【点睛】考查学生对扇形统计图和条形统计图的认识,根据统计图的数据结合起来求相关的人数和占比,学生熟练从两种统计图中提取有用的数据是本题解题的关键.4.C解析:C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A 、了解我校初一(1)班学生的视力情况,必须准确,故适合普查;B 、企业招聘,对应聘人员进行面试,必须准确,故适合普查;C 、检测武汉市的空气质量,适合抽样调查;D 、了解北斗导航卫星的设备零件的质量情况,必须准确,故适合普查.故选:C .【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.5.B解析:B【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】A.了解全班同学每周体育锻炼的时间,适合全面调查;B.对市场上某一品牌电脑使用寿命的调查,有破坏性,适合抽样调查;C.对旅客上飞机前的安检,需要全面调查;D. 对“神州十一号”运载火箭发射前的零部件质量状况的调查,需要全面调查;【点睛】本题主要考查了全面调查及抽样调查,解题的关键是熟记由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.6.B解析:B【分析】直接利用全面调查与抽样调查的意义分析得出答案.【详解】解:A .调查端午节期间市场上粽子质量适合抽样调查;B .某校九年级三班学生的视力适合全面调查;C .调查央视春节联欢晚会的收视率适合抽样调查;D .某品牌手机的防水性能适合抽样调查;故选:B .【点睛】本题考查了全面调查与抽样调查,正确理解全面调查与抽样调查的意义是解题的关键. 7.B解析:B【分析】青少年、成年人、老年人的人数比约为3:4:3,所以成年人的人数所占总人数的423435=++,则根据这个条件就可以求出成年人的人数. 【详解】解:因为样本容量为1000,某地区青少年、成年人、老年人的人数比约为3:4:3,所以成年人的人数所占总人数的42 3435=++,故成年人应抽取1000×25=400,故选:B.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、要调查一批灯管的使用寿命,具有破坏性,应用抽样调查,故A错误;B、扬泰机场对旅客进行登机前安检,事关重大,采用普查方式,故B错误;C、为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,事关重大,采用普查方式,故C正确;D、试航前对我国国产航母各系统的检查,采用普查方式,故D错误.故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.A解析:A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、了解某班学生对“北京精神”的知晓率是精确度要求高的调查,适于全面调查,故A 选项正确;B、了解某种奶制品中蛋白质的含量,适合抽样调查,故B选项错误;C、了解北京台《北京新闻》栏目的收视率采用普查方法所费人力、物力和时间较多,适合抽样调查,故C选项错误;D、了解一批科学计算器的使用寿命,如果普查,所有计算器都报废,这样就失去了实际意义,故D选项错误,故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 10.C解析:C【分析】根据题意分别计算出各班植树的数目,于是得到结论.【详解】解:七(1)班共植树:35221843.253⨯+⨯=(棵), 七(2)班共植树:3566218205315⨯+⨯=(棵), 七(3)班共植树:3566713225315⨯+⨯=(棵), 七(4)班共植树:3515214453⨯+⨯=(棵), ∵6676624443.21515>>>, ∴植树最多的班级是七(3)班,故选:C .【点睛】本题考查了条形统计图,正确的识别图形是解题的关键.11.B解析:B【分析】从图表中可得出20名学生家庭中这个月节水量少于2.5t 的人数是8人,所占比例为8100%40%20⨯=,再用总人数乘以所求比例即可得出答案. 【详解】解:估计这300名学生家庭中这个月节水量少于2.5t 的户数为:62300100%30040%12020+⨯⨯=⨯=(户) 故选:B .【点睛】 本题考查的知识点是用样本估计总数,比较简单,易于掌握.12.A解析:A【分析】”我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,考查对象是组织了一次全县600名学生参加的“中华经典诵读”大赛的成绩,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这600名学生的“中华经典诵读”大赛成绩的全体是总体,正确;②每个学生的成绩是个体,故原说法错误;③50名学生的成绩是总体的一个样本,故原说法错误;④样本容量是50,故原说法错误.所以说法正确有①,1个.故选:A.【点睛】考查统计知识的总体,样本,个体,等相关知识点,要明确其定义.易错易混点:学生易对总体和个体的意义理解不清而错选.二、填空题13.10【分析】组数定义:数据分成的组的个数称为组数根据组数=(最大值-最小值)÷组距计算注意小数部分要进位【详解】解:这组数据的极差为141-50=9191÷10=91因此数据可以分为10组故答案为:解析:10【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,因此数据可以分为10组,故答案为:10.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义来解即可.14.③④②①【分析】直接利用调查收集数据的过程与方法分析排序即可【详解】解:统计的主要步骤依次为:③从4万名学生中随机抽取400名学生调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示;②解析:③④②①【分析】直接利用调查收集数据的过程与方法分析排序即可.【详解】解:统计的主要步骤依次为:③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示;②分析数据;①得出结论;故答案为:③④②①.【点睛】本题考查了调查收集数据的过程与方法,正确掌握调查的过程是解题的关键.15.抽查的500名学生的体重【分析】总体是指考查的对象的全体个体是总体中的每一个考查的对象样本是总体中所抽取的一部分个体而样本容量则是指样本中个体的数目我们在区分总体个体样本样本容量这四个概念时首先找出解析:抽查的500名学生的体重【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:由题意知,在这个问题中,样本是指被抽取得到500名学生的体重,故答案为:抽查的500名学生的体重.【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.16.160【分析】用员工总数乘以下围棋的百分比即可求出答案【详解】下围棋的员工共有(人)故答案为:160【点睛】此题考查利用扇形统计图的百分比求某部分的数量掌握求部分数量是计算公式是解题的关键解析:160【分析】用员工总数乘以下围棋的百分比即可求出答案.【详解】⨯--=(人),下围棋的员工共有800(138%42%)160故答案为:160.【点睛】此题考查利用扇形统计图的百分比求某部分的数量,掌握求部分数量是计算公式是解题的关键.17.甲【分析】结合折线统计图求出甲乙各自的增长量即可求出答案【详解】解:从折线统计图中可以看出:甲公司2009年的销售量约为100辆2013年约为500多辆则从2009~2013年甲公司增长了400多辆【分析】结合折线统计图,求出甲、乙各自的增长量即可求出答案.【详解】解:从折线统计图中可以看出:甲公司2009年的销售量约为100辆,2013年约为500多辆,则从2009~2013年甲公司增长了400多辆;乙公司2009年的销售量为100辆,2013年的销售量为400辆,则从2009~2013年,乙公司中销售量增长了400-100=300辆;∴甲公司销售量增长的较快.故答案为:甲.【点睛】本题主要考查了折线图,从折线的陡峭情况来判断,很易错选乙公司;但是两幅图中横轴的组距选择不一样,所以就没法比较了,因此还要抓住关键.18.14【分析】根据扇形统计图的定义各部分占总体的百分比之和为1由扇形统计图可求200名学生中对该食堂的服务质量表示不满意的占总体的百分比进而即可求出200名学生中对该食堂的服务质量表示不满意的人数【详解析:14【分析】根据扇形统计图的定义,各部分占总体的百分比之和为1,由扇形统计图可求200名学生中对该食堂的服务质量表示不满意的占总体的百分比,进而即可求出200名学生中对该食堂的服务质量表示不满意的人数.【详解】解:因为200名学生中对该食堂的服务质量表示不满意占总体的百分比为:()-++=,146%38%9%7%所以200名学生中对该食堂的服务质量表示不满意有:200×7%=14(人).故答案为:14.【点睛】本题主要考查扇形统计图的定义,应先得出各部分所占的百分比,再用总体乘以各部分所占的百分比,即可得各部分的具体数目.19.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数然后用总人数乘以不合格所占的百分比即可【详解】解:∵学生总人数=25÷50=50(人)∴不合格的学生人数=50×(1-50-40)=5(人)解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.20.200【分析】根据随机抽取了该校200名学生测量身高说明样本中个体的数量是200因此样本容量为200【详解】解:样本中个体的数量是样本容量即:200故答案为:200【点睛】本题考查样本容量的意义抽取解析:200【分析】根据“随机抽取了该校200名学生测量身高”说明样本中个体的数量是200,因此样本容量为200.【详解】解:样本中个体的数量,是样本容量,即:200故答案为:200.【点睛】本题考查样本容量的意义,抽取样本中的个体的数量,只是一个数,没有单位.三、解答题21.(1)500;(2)43.2°;(3)见解析;(4)2400人【分析】(1)用喜欢健身操的学生数除以其所占的百分比即可求得样本容量;(2)用周角乘以最喜欢足球运动的学生所占的百分比即可求得其圆心角的度数;(3)求得喜欢篮球的人数后补全统计图即可;(4)用总人数乘以喜欢足球的人数占总人数的百分比即可求解.【详解】解:(1)100÷20%=500,∴本次抽样调查的样本容量是500;(2)∵360°×60500=43.2°,∴扇形统计图中“最喜欢足球运动”的学生数所对应的扇形圆心角度数为43.2°;(3)喜爱篮球的有:500×(1-20%-18%-20%-60500×100%)=150人,补全统计图如下:(4)20000×60500=2400(人)全市本届学生中“最喜欢足球运动”的学生约有2400人.【点睛】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.22.(1)200;(2)统计图见解析,144°;(3)A类:480人,B类:360人【分析】(1)用D类社团的人数除以所占百分比可得样本容量;(2)分别求出B类和C类人数,可补全统计图,再用360乘以A类社团的百分比可得圆心角;(3)分别用1200乘以样本中B类和C类所占百分比可得结果.【详解】解:(1)由图可知:D类社团人数为20人,占10%,∴20÷10%=200人,∴本次调查的样本容量为200;(2)200×20%=40人,200×30%=60人,补全统计图如下:∴A类社团活动所对应的的圆心角为360×40%=144°;(3)∵A类人数占比例为40%,B类占30%,∴A类社团人数为:1200×40%=480人,B类社团人数为:1200×30%=360人.【点睛】。

七年级数学练习题第十章数据的收集、整理与描述能力测试题及答案

七年级数学练习题第十章数据的收集、整理与描述能力测试题及答案

第十章数据的收集、整理与描述能力测试题姓名:学号:得分:一、选择题(每小题分,共30分)1.下面调查统计中,适合做普查的是().A.雪花牌电冰箱的市场占有率B.蓓蕾专栏电视节目的收视率C.飞马牌汽车每百公里的耗油量D.今天班主任张老师与几名同学谈话2.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是().A.这批电视机B.这批电视机的寿命C.所抽取的100台电视机的寿命D.1003.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是().A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况4.为了了解某校学生的每日动运量,收集数据正确的是().A.调查该校舞蹈队学生每日的运动量B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量D.调查该校某个班级的学生每日的运动量5.如图1,所提供的信息正确的是().A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多6.某人设计了一个游戏,在一网吧征求了三位游戏迷的意见,就宣传“本游戏深受游戏迷欢迎”,这种说法错误的原因是().A.没有经过专家鉴定B.应调查四位游戏迷C.这三位玩家不具有代表性D.以上都不是7.如图2的两个统计图,女生人数多的学校是().A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定8.为了测量调查对象每分钟的心跳次数,甲同学建议测量2分钟的心跳次数再除以2,乙同学建议测量10秒的心跳次数再乘以6,你认为哪位同学的方法更具有代表性().A.甲同学B.乙同学C.两种方法都具有代表性D.两种方法都不合理9.某市股票在七个月之内增长率的变化状况如图3所示.从图上看出,下列结论不正确的是().A.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升 C.这七个月中,每月的股票不断上涨 D.这七个月中,股票有涨有跌10.关于如图4所示的统计图中(单位:万元),正确的说法是( ). A.第一季度总产值4.5万元 B.第二季度平均产值6万元C.第二季度比第一季度增加5.8万元 D.第二季度比第一季度增长33.5% 二、填空题(每小题3,共30分)11.为了了解某商品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是______.12.某中学要了解初二学生的视力情况,在全校初二年级中抽取了25名学生进行检测,在这个问题中,总体是______,样本是______.13.常用统计图的类型有:______、______、______.14.在扇形统计图中,其中一个扇形的圆心角为72°,则这个扇形所表示的占总体的______.15.根据预测,21世纪中叶我国劳动者构成比例绘制成扇形统计图如图5所示,则第一、二、三产业劳动者的构成比例是______∶______∶______.16.某商场5月份随机抽查了6天的营业额,结果分别如下(单位:万元):2.8,3.2,3.4,3.7,3.0,3.1,则估算该商场在第二季度的营业额约是______万元.17.为了了解某所初级中学学生对6月5日“世界环境日”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“世界环境日”约有 名学生“不知道”. 18.已知全班有40位学生,他们有的步行,有的骑车,还有的乘车来上学,根据以下已知信息完成统计表:19.如果你是班长,想组织一次春游活动,用问卷的形式向全班同学进行调查,你设计的调查内容是(请列举一条)________________________. 20.刘强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因______________. 三、解答题(共40分) 21.(6分)下面这几个抽样调查选取样本的方法是否合适,并说明理由.(1)为调查全校学生对购买正版书籍、唱片和软件的支持率,在全校所有的班级中任意抽取8个班级,调查这8个班所有学生对购买正版书籍、唱片和软件的支持率. (2)为调查一个省的环境污染情况,调查省会城市的环境污染情况.上学方式 步行 骑车 乘车划计 正正正次数9 占百分比22.(6分)开学之初,七年级一班的张老师为了安排座位,需要了解全班同学的视力情况,你认为张老师应采取哪种调查方法比较合适?说一说你的理由. 23.(6分)课堂上老师布置给每个小组一个任务,用抽样调查的方法估计全班同学的平均身高,坐在教室最后面的小强为了争速度,立即就近向他周围的三个同学做调查,计算出他们四个人的平均身高后就举手向老师示意已经完成任务了.小强所选用的这种抽样调查的方式你认为合适吗?为什么? 24.(6分)某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图6是根据这组数据绘制的条形统计图.请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少? (3)若该校九年级共有200名学生,图7是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?25.(8分)第8中学的九年级学生在社会实践中,调查了500位市民某天早上出行上班所图7 图6 最喜欢的体育活 动项目的人数/人最喜欢的体 育活动项目用的交通工具,结果用以下扇形统计图表示.(1)请你将图8这个统计图改成用折线统计图表示的形式;(2)请根据此项调查,对城市交通给政府提出一条建议.图826.(8分)今年,市政府的一项实事工程就是由政府投人1 000万元资金.对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内1200户家庭中的120户进行了随机抽样调查,并汇总成下表:改造情况均不改造改造水龙头改造马桶1个2个3个4个1个2个户数20 31 28 21 12 69 2(1)试估计该社区需要对水龙头、马桶进行改造的家庭共有_____户;(2)改造后,一只水龙头一年大约可节省5吨水,一只马桶一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水?(3)在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?参考答案一、1. D 提示:仔细分析考题提供的四种考查对象,不难推断出:A 、B 、C 分别考查电冰箱的市场占有率、电视节目的收视率、汽车每百公里的耗油量,由于它们考查的对象数量大,一般这种情况应采用抽样调查的方式,D 针对一个班而言,其人数有限,故应采取普查的方式.选D2.C 、3. D 提示:选项A 和选项B 不具有代表性,因为到公园的老年人一般都是喜欢锻练的,他们的身体素质一般都好,到医院的老年人的健康一般不算太好;选项C ,调查了10名老年,调查不具有代表性和广泛性;故选D 。

(好题)初中数学七年级数学上册第六单元《数据的收集与整理》测试(包含答案解析)

(好题)初中数学七年级数学上册第六单元《数据的收集与整理》测试(包含答案解析)

一、选择题1.网上一家电子产品店,今年1﹣4月的电子产品销售总额如图1,其中一款平板电脑的销售额占当月电子产品销售总额的百分比如图2根据图中信息,有以下四个结论,推断不合理的是()A.从1月到4月,电子产品销售总额为290万元B.平板电脑2﹣4月的销售额占当月电子产品销售总额的百分比与1月份相比都下降了C.平板电脑4月份的销售额比3月份有所下降D.今年1﹣4月中,平板电脑售额最低的是3月2.在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况.根据统计图提供的信息,给出下列判断:①2015年12月-2017年6月,我国在线教育用户规模逐渐上升;②2015年12月-2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升;③2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%,其中正确的是()2015年-2017年中国在线教育用户规模统计图A.①B.①②C.②③D.①③3.下列调查中:①检测保定的空气质量;②了解《奔跑吧,兄弟》节日收视率的情况;③保证“神舟9号“成功发射,对其零部件进行检查;④调查某班50名同学的视力情况;⑤了解一沓钞票中有没有假钞其中通合采用抽样调查的是()A.①②③B.①②C.①③⑤D.②④4.为了解某校2000名学生的视力情况,从中随机调查了400名学生的视力情况,下列说法正确的是()A.该调查的方式是抽样调查B.该调查的方式是普查C.2000名学生是样本D.样本容量是400名学生5.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为()A.6度B.7度C.8度D.9度6.下列调查活动中,适合采用全面调查的是()A.某种品牌插座的使用寿命B.为防控冠状病毒,对从境外来的旅客逐个进行体温检测和隔离C.了解某校学生课外阅读经典文学著作的情况D.调查“厉害了,我的国”大型记录电影在线收视率7.以下问题,不适合采用全面调查方式的是()A.调查全班同学对“郑万高铁”的了解程度B.了解我市中学生的近视率C.疫情期间对国外入境人员的健康状况检查D.旅客上飞机前的安检8.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批袋装食品是否含有防腐剂B.对一批导弹的杀伤半径的调查C.了解某校学生的身高情况D.对重庆市居民生活垃圾分类情况的调查9.下列调查中,适合采用全面调查的是()A.对某校诺如病毒传染情况的调查B.对全市学生每天睡眠时间的调查C.对钱塘江水质的调查D.对某品牌日光灯质量情况的调查10.下列调查中,适宜采用全面调查的是()A.对某班学生制作校服前的身高调查B.对某品牌灯管寿命的调查C.对浙江省居民去年阅读量的调查D.对现代大学生零用钱使用情况的调查11.老师布置10道题作为课堂练习,学习委员将全班同学的答题情况绘制成右图,问答对8道题同学频率是( )A.0.8 B.0.4 C.0.25 D.0.0812.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为()A.900个B.1080个C.1260个D.1800个二、填空题13.有效的垃圾分类,可以减少污染、保护地球上的资源.为了更好地开展垃圾分类工作,某社区居委会对本社区居民掌握垃圾分类知识的情况进行调查.从中随机抽取部分居民进行垃圾分类知识测试,并把测试成绩分为A,B,C,D四个等次,绘制成如图所示的两幅不完整的统计图.下面有四个推断:①本次的调查方式是抽样调查,样本容量是40;②扇形统计图中,表示C等次的扇形的圆心角的度数为72°;③测试成绩为D等次的居民人数占参测总人数的10%;④测试成绩为A或B等次的居民人数共30人.所有合理推断的序号是______.14.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成 _______________组.15.为了解某学校七年级学生每周平均课外阅读时间的情况,随机抽查了50名学生,对其每周平均课外阅读时间进行统计,绘制了扇形统计图,根据图中提供的信息,回答下列问题:(1)阅读4小时对应扇形图中的a的值为__________;(2)在扇形统计图中,阅读3小时对应扇形图的圆心角的大小为__________(度).16.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制成如下不完整的统计图表.根据图表信息,那么扇形图中表示C的圆心角的度数为_____度.成绩等级频数分布表成绩等级频数A24B10C xD217.一组数据共有50个,分成四组后其中前三组的频率分别是0.25、0.15、0.3,则第四组数据的个数为______.18.为了调查某校中学生对3月12日“植树节”是否了解,从该校全体学生1000名中,随机抽查了40名学生,结果显示有1名学生不了解,由此,估计该校全体学生中对“植树节”不了解的约有________名学生.19.为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高,在这个问题中,样本容量是_______.20.在一个扇形统计图中,扇形A、B、C、D的面积之比为,则这个扇形统计图中最小的圆心角的度数为______三、解答题21.新修订的《北京市生活垃圾管理条例》于2020年5月1日正式施行.新修订的分类标准将生活垃圾分为厨余垃圾、有害垃圾、其他垃圾和可回收物四类,为了促使居民更好地了解垃圾分类知识,小明所在的小区随机抽取了50名居民进行线上垃圾分类知识测试.将参加测试的居民的成绩进行收集、整理,绘制成如图的频数分布表和频数分布直方图:a.线上垃圾分类知识测试频数分布表成绩分组50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100频数39m128c.成绩在80≤x<90这一组的成绩为80,81,82,83,83,85,86,86,87,88,88,89根据以上信息,回答下列问题:(1)本次抽样调查样本容量为,表中m的值为;(2)请补全频数分布直方图;(3)小明居住的社区大约有居民2000人,若达到测试成绩80分为良好,那么估计小明所在的社区良好的人数约为人;(4)若达到测试成绩前十五名的可以颁发“垃圾分类知识小达人”奖章,已知居民A的得分为88分,请问居民A是否可以领到“垃圾分类知识小达人”奖章?22.某市为提高学生参与体育活动的积极性,2019年5月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一学生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2018年约有初一学生20000,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.23.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计,现从该校随机抽收n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值并补全条形统计图;(2)求扇形统计图中体育活动的圆心角度数;(3)若该校学生共有1200人,试估计该校喜爱看电视的学生人数.24.为了了解某中学学生的身高情况,随机对该校男、女生的身高进行抽样调查.抽取的样本中,男、女生的人数相同,根据所得数据绘制成如图所示的统计图表.组别男女生身高(cm)x<A150155x<B155160x<C160165x<D165170x<E170175根据图表中提供的信息,回答下列问题:(1)在样本中,组距是__________,女生身高在B组的有__________人;x<之间的共有__________人,人数最多的是__________(2)在样本中,身高在170175组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在160170x <之间的学生有多少人?25.设中学生体质健康综合评定成绩为x 分,满分为100分,规定85100x 为A 级,7585x <为B 级,6075x <为C 级,60x <为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生;a = ;(2)补全条形统计图;(3)扇形统计图中 C 级对应的圆心角为 度;(4)若该校共有2000名学生,请你估计该校D 级学生有多少名?26.为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为 20道判断题,每道题5分,满分 100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65, 80.85.75,65,70,65,85,70,95,80,75.80.为了便于分析数据,统计员对八年级数据进行了整理,得到表1表1: 等级 分数(单位:分) 学生数D60<x≤70 5 C70<x≤80 a B80<x≤90 b A90<x≤100 2 年级 平均分 中位数 优秀率八年级 78分c 分 m % 九年级 76分 82.5分 50%【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图中的数据,可以判断各个选项中的说法是否合理,从而可以解答本题.【详解】解:由图1可得,从1月到4月,电子产品销售总额为85+80+60+65=290(万元),故选项A中的说法合理;由图2可得,平板电脑2﹣4月的销售额占当月电子产品销售总额的百分比与1月份相比都下降了,故选项B中的说法合理;由图1可知,平板电脑4月份的销售额为65×17%=11.05(万元),3月份的销售额为60×18%=10.8(万元),故平板电脑4月份的销售额比3月份有所上升,故选项C中的说法不合理;平板电脑1月份销售额为85×23%=19.55(万元),2月份销售额为80×15%=12(万元),3月份的销售额为60×18%=10.8(万元),4月份的销售额为65×17%=11.05(万元),故今年1﹣4月中,平板电脑售额最低的是3月,故选项D中的说法合理;故选:C.【点睛】本题考查了条形统计图、折线统计图,解答本题的关键是明确题意,利用数形结合的思想解答.2.D解析:D【分析】由折线统计图的变化趋势可判断①,计算出每个月份中手机用户占总人数的比例即可判断②、③.【详解】解:①2015年12月~2017年6月,我国在线教育用户规模逐渐上升,此结论正确;②2015年12月~2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例分别为48.15%、42.30%、71.19%、83.11%,此结论错误;③2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%,此结论正确;故选:D.【点睛】此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键.3.B解析:B【解析】根据全面调查和抽样调查的定义可知:①②可进行抽样调查,③④⑤可进行全面调查,故选B.4.A解析:A【分析】根据题意确定调查方式、总体、样本容量即可解题.【详解】解:A. 该调查的方式是抽样调查,正确,B. 该调查的方式是普查,错误,普查要求每一个人都应该被调查,C. 2000名学生是样本,错误,2000名学生的视力情况是总体,D. 样本容量是400名学生,错误, 样本容量是400.故选A.【点睛】本题考查了简单的统计知识,属于简单题,辨析调查方式,熟悉总体和样本容量的概念是解题关键.5.D解析:D【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度),∴估计他家6月份日用电量为9度,故选:D.【点睛】本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.6.B解析:B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、某种品牌插座的使用寿命,适合采用抽样调查;B、为防控冠状病毒,对从境外来的旅客逐个进行体温检测和隔离,适合采用全面调查;C、了解某校学生课外阅读经典文学著作的情况,适合采用抽样调查;D、调查“厉害了,我的国”大型记录电影在线收视率,适合采用抽样调查;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.B解析:B【分析】在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.调查全班同学对“郑万高铁”的了解程度适合全面调查;B.了解我市中学生的近视率适合抽样调查,不适合采用全面调查;C.疫情期间对国外入境人员的健康状况检查适合全面调查;D.旅客上飞机前的安检适合合全面调查.故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.C解析:C【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查一批袋装食品是否含有防腐剂,最适宜采用抽样调查,故本选项不合题意;B、对一批导弹的杀伤半径的调查,最适宜采用抽样调查,故本选项不合题意;C、了解某校学生的身高情况,最适宜采用全面调查(普查);D、对重庆市居民生活垃圾分类情况的调查,最适宜采用抽样调查,故本选项不合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.A解析:A由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某校诺如病毒传染情况的调查,适合全面调查;B.对全市学生每天睡眠时间的调查,适合抽查;C.对钱塘江水质的调查,适合抽查;D.对某品牌日光灯质量情况的调查,适合抽查.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.A解析:A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.B解析:B【分析】根据条形统计图,求出答对题的总人数,再求出答对8道题的同学人数,然后利用答对8道题的同学人数÷答对题的总人数即可得出答案.【详解】解:答对题的总人数:4+20+18+8=50(人)答对8道题的人数: 20人∴答对8道题的同学的频率:20÷50=0.4故选:B本题主要考查了条形统计图的应用,利用条形统计图得出答对题的总人数与答对8道题的人数是解题的关键.12.C解析:C【分析】先求出6名同学家丢弃塑料袋的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.【详解】 估计本周全班同学各家总共丢弃塑料袋的数量为3325282625314512606+++++⨯=(个).【点睛】本题考查了用样本估计总体的问题,掌握算术平均数的公式是解题的关键. 二、填空题13.①②④【分析】根据扇形统计图中A 等级对应的百分比为条形统计图中读取其人数为12人可得样本容量;利用C 等级的人数占样本容量的比例可得其圆心角度数;测试成绩为D 等次的居民人数占参测总人数的百分比为求解即 解析:①②④【分析】根据扇形统计图中A 等级对应的百分比为30%,条形统计图中读取其人数为12人,可得样本容量;利用C 等级的人数占样本容量的比例,可得其圆心角度数;测试成绩为D 等次的居民人数占参测总人数的百分比为81304540-%-%-⨯100%,求解即可;测试成绩为A 或B 等次的居民人数共()403045⨯%+%,求解即可.【详解】解:①样本容量为1230%40÷=,故①正确;②表示C 等次的扇形的圆心角的度数为83607240⨯︒=︒,故②正确; ③测试成绩为D 等次的居民人数占参测总人数的百分比为81304540-%-%-⨯100%=5%,故③错误; ④测试成绩为A 或B 等次的居民人数共()40304530⨯%+%=(人),故④正确; 故答案为:①②④.【点睛】本题考查扇形统计图与条形统计图信息关联,读取两个统计图中相关信息是解题的关键. 14.10【分析】组数定义:数据分成的组的个数称为组数根据组数=(最大值-最小值)÷组距计算注意小数部分要进位【详解】解:这组数据的极差为141-50=9191÷10=91因此数据可以分为10组故答案为:解析:10【分析】组数定义:数据分成的组的个数称为组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:这组数据的极差为141-50=91,91÷10=9.1,因此数据可以分为10组,故答案为:10.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义来解即可.15.144【分析】(1)直接利用1减去其他的百分比即可得到答案;(2)利用360乘以3小时所占的百分比即可得到答案【详解】解:(1)根据题意得∴;故答案为:16;(2)阅读3小时对应扇形图的圆心角的大小解析:144【分析】(1)直接利用1减去其他的百分比,即可得到答案;(2)利用360乘以3小时所占的百分比,即可得到答案.【详解】解:(1)根据题意,得a=----=,%110%24%40%10%16%a=;∴16故答案为:16;(2)阅读3小时对应扇形图的圆心角的大小为:⨯︒=︒;36040%144故答案为:144.【点睛】本题考查扇形统计图、求扇形统计图的圆心角的度数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.36【分析】先由B等级人数及其所占百分比求出总人数再根据各等级人数之和等于总人数求出C等级人数x最后用360°乘以C等级人数所占比例即可得【详解】∵被调查的总人数为10÷25=40(人)∴C等级人数解析:36【分析】先由B等级人数及其所占百分比求出总人数,再根据各等级人数之和等于总人数求出C等级人数x,最后用360°乘以C等级人数所占比例即可得.【详解】∵被调查的总人数为10÷25%=40(人),∴C等级人数x=40﹣(24+10+2)=4(人),则扇形图中表示C的圆心角的度数为360°×440=36°,故答案为:36.【点睛】本题主要考查扇形统计图与频数分布表,解题的关键是结合扇形统计图与频数分布表得出被调查的总人数.17.15【分析】先根据各小组的频率和是1求得第四组的频率;再根据频率=频数÷数据总数进行计算即可得出第四组数据的个数【详解】解:∵一组数据共有50个分成四组后其中前三组的频率分别是02501503∴第四解析:15【分析】先根据各小组的频率和是1,求得第四组的频率;再根据频率=频数÷数据总数,进行计算即可得出第四组数据的个数.【详解】解:∵一组数据共有50个,分成四组后其中前三组的频率分别是0.25、0.15、0.3,∴第四组的频率为:1-0.25-0.15-0.3=0.3,∴第四组数据的个数为:50×0.3=15.故答案为15.【点睛】本题考查频率与频数,用到的知识点:频率=频数:数据总数,各小组的频率和是1.18.【分析】先通过样本计算对植树节不了解的所占比例然后估计整体中对植树节不了解的人数【详解】解:随机抽查了40名学生中不了解人数占的百分比为×100=25则估计该校全体学生中对植树节不了解的学生人数为1解析:25【分析】先通过样本计算对“植树节”不了解的所占比例,然后估计整体中对“植树节”不了解的人数.【详解】解:随机抽查了40名学生中“不了解”人数占的百分比为140×100%=2.5%,则估计该校全体学生中对“植树节”不了解的学生人数为1000×2.5%=25人.故答案是:25.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.19.200【分析】根据随机抽取了该校200名学生测量身高说明样本中个体的数量是200因此样本容量为200【详解】解:样本中个体的数量是样本容量即:200故答案为:200【点睛】本题考查样本容量的意义抽取解析:200【分析】根据“随机抽取了该校200名学生测量身高”说明样本中个体的数量是200,因此样本容量为200.【详解】解:样本中个体的数量,是样本容量,即:200故答案为:200.【点睛】本题考查样本容量的意义,抽取样本中的个体的数量,只是一个数,没有单位.20.60°【解析】【分析】因为扇形ABCD的面积之比为2:3:3:4所以其圆心角之比也为2:3:3:4即可求出最小扇形的圆心角度数【详解】∵扇形ABCD的面积之比为2:3:3:4∴最小的扇形的圆心角是3解析:60°【解析】【分析】因为扇形A,B,C,D的面积之比为2:3:3:4,所以其圆心角之比也为2:3:3:4,即可求出最小扇形的圆心角度数.【详解】∵扇形A,B,C,D的面积之比为2:3:3:4,∴最小的扇形的圆心角是360°×=60°.故答案为:60°.【点睛】本题考查扇形统计图,熟练掌握计算法则是解题关键.三、解答题21.(1)50;18;(2)见解析;(3)800;(4)可以领到【分析】(1)根据题意,可以得到样本容量,然后即可计算出m的值;(2)根据频数分布表中的数据和m的值,可以将频数分布表补充完整;(3)根据题目中的数据,可以得到样本中良好的人数百分比为12+850,进一步即可估计出小明所在的社区良好的人数;(4)根据题目中的数据,可以得到88分是第多少名,从而可以得到居民A是否可以领到“垃圾分类知识小达人”奖章.【详解】解:(1)由题意可得,随机抽取了50名居民进行线上垃圾分类知识测试.本次抽样调查样本容量为50,表中m的值为:m=50﹣3﹣9﹣12﹣8=18,故答案为:50,18;(2)由(1)值m的值为18,由频数分布表可知80≤x<90这一组的频数为12,补全的频数分布直方图如图所示;(3)随机抽取了50名居民进行线上垃圾分类知识测试.达到测试成绩80分为良好,良好的人数有:12+8=20(人)良好的百分比为=20100%=40% 502000×40%=800(人),即小明所在的社区良好的人数约为800人,故答案为:800;(4)由题意可得,88分是第10名或者第11名,故居民A可以领到“垃圾分类知识小达人”奖章.【点睛】本题考查样本和样本容量,频率直方分布图,用样本估计总体,掌握样本和样本容量,频率直方分布图,用样本估计总体等知识是解题的关键.22.(1)500;(2)43.2°;(3)见解析;(4)2400人【分析】(1)用喜欢健身操的学生数除以其所占的百分比即可求得样本容量;(2)用周角乘以最喜欢足球运动的学生所占的百分比即可求得其圆心角的度数;(3)求得喜欢篮球的人数后补全统计图即可;(4)用总人数乘以喜欢足球的人数占总人数的百分比即可求解.【详解】解:(1)100÷20%=500,∴本次抽样调查的样本容量是500;。

精品试卷:人教版初中数学七年级下册第十章数据的收集、整理与描述专题练习试卷(含答案详解)

精品试卷:人教版初中数学七年级下册第十章数据的收集、整理与描述专题练习试卷(含答案详解)

初中数学七年级下册第十章数据的收集、整理与描述专题练习(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在植树节活动中,某单位组织职工开展植树竞赛,下图反映的是植树量与人数之间的关系.根据图中信息可知,参与本次活动的人数为()A.19 B.17 C.14 D.562、下列调查中,适宜采用全面调查方式的是()A.对全市每天丢弃的废旧电池数的调查 B.对冷饮市场上冰淇淋质量情况的调查C.对全国中学生心理健康现状的调查D.对我国首架大型民用直升机各零件部件的调查3、在一次班级体测调查中,收集到40名同学的跳高数据,数据分别落在5个组内,且落入第一、二、三、五组的数据个数分别为2、7、11、12,则第四组频数为().A.9 B.8 C.7D.64、已知A,B两家酒店2020年下半年的月营业额折线统计图(如图),下列说法错误..的是()A.A酒店这半年的月营业额的中位数是2.2百万元.B.B酒店这半年的月营业额的众数是1.7百万元.C.A酒店这半年的月营业额一直保持增长状态.D.B酒店这半年的月营业额11月至12月的增长率最大.5、下列调查中,适合采用全面调查(普查)方式的是()A.了解江西省中小学生的视力情况B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测C.了解全国快递包裹产生包装垃圾的数量D.了解抚州市市民对社会主义核心价值观的内容的了解情况6、下面调查中,适合采用全面调查的是()A.调查全国中学生心理健康现状B.调查你所在班级同学的身高情况C.调查我市食品合格情况D.调查黄河水质情况7、在“5•18世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,于是随机调查了该街道1000个成年人,结果有180个成年人吸烟.对于这个数据的收集与处理过程,下列说法正确的是()A.调查的方式是普查B.该街道约有18%的成年人吸烟C.该街道只有820个成年人不吸烟D.样本是180个吸烟的成年人8、某企业对其生产的产品进行抽检,抽检结果如表:若该企业生产该产品10000件,估计不合格产品的件数为()A.80 B.100 C.150 D.2009、某体育场大约能容纳3万名观众,在一次足球比赛中,上座率为68%.估一估,大约有多少名观众观看了比赛?()A.6800B.20000C.2600010、某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述4种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有()A.0种B.1种C.2种D.3种二、填空题(5小题,每小题4分,共计20分)1、如图为某市未来几天的每日最高气温与最低气温的变化趋势图,根据图中信息可知,最大的温差是______.2、某兴趣班有A、B、C、D、E五个小组,如图是根据各小组人数分布绘制成的不完整统计图,则该班学生人数为___人.3、很多中学生不能注意用眼卫生,小明和几位同学一起对全校3200名学生的视力状况进行了调查,并绘制了扇形统计图,则全校视力500度以上的学生有_____人.4、超市为了制定某个时间段收银台开放方案,统计了这个时间段顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间1-2分钟表示大于或等于1分钟而小于2分钟,其它类同),这个时间段内顾客等待时间不少于5分钟的人数为________.5、德国有个叫鲁道夫的人,用毕生的精力把圆周率π算到小数点后面35位.他的计算结果是3.14159265358979423846264338327950288,在这串数字中“3”出现的频率是___.(结果保留两位小数)三、解答题(5小题,每小题10分,共计50分)1、为了解中考体育科目训练情况,某教育局从九年级学生中随机抽取了a名进行了中考体育科目测试(测试结果分四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.(1)求a的值;(2)求在a名学生中,测试结果为C级的学生人数,并补全条形统计图;(3)九年级共有9200名学生,他们全部参加了这次体育科目测试,请估计不及格的人数.2、某校组织1000名学生参加“展示我美丽祖国”庆国庆的自拍照片的评比活动.随机机取一些学生在评比中的成绩制成的统计图表如下:频数分布表根据以上图表提供的信息,解答下列问题:(1)写出表中a、b的数值:a=,b= ;(2)补全频数分布表和频数分布直方图;(3)如果评比成绩在95分以上(含95 分)的可以获得一等奖,试估计该校参加此次活动获得一等奖的人数.3、下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.4、随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.为了了解同学们的支付习惯,某校数学兴趣小组设计了一份调查问卷,随机抽取了部分同学进行调查,其中要求每人选且只能选一种最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了_______人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为_______ ;(2)请将条形统计图补充完整;(3)如果该校共有1200名学生,请你估计喜欢支付宝支付和微信支付的学生一共有多少名?(4)根据上图,你可以获得什么信息?5、如果要了解全市范围内初中生视力状况随年级的变化趋势,你该如何进行统计活动?如果要了解全国范围内初中生视力状况随年级的变化趋势呢?---------参考答案-----------一、单选题1、C【解析】【分析】根据题意和条形统计图中的数据,可以计算出参与本次活动的人数.【详解】解:由统计图可得,参与本次活动的有:1+6+1+4+2=14(人),故选:C.【点睛】本题考查条形统计图,关键是读懂条形统计图,获取必要的数据.2、D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多;而抽样调查得到的调查结果比较近似,一般适用于对精确度不是很高的场合.【详解】解:选项A:对全市每天丢弃的废旧电池数的调查,应该用抽样调查,故此选项不合题意;选项B:对冷饮市场上冰淇淋质量情况的调查,应该用抽样调查,故此选项不合题意;选项C:对全国中学生心理健康现状的调查,应该用抽样调查,故此选项不合题意;选项D:对我国首架大型民用直升机各零件部件的调查,应采用全面调查,故此选项符合题意;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、B【解析】【分析】根据题意可得:共40个数据,知道一、二、三、五组的数据个数,用总数减去这几组频数,即可得到答案.【详解】解:由题意得:第四组的频数=40-(2+7+11+12)=8;故选B.【点睛】本题是对频数的考查,掌握各小组频数之和等于数据总和是解题的关键.4、A【解析】【分析】结合折线统计图,利用数据逐一分析解答即可.【详解】解:从折线统计图可得:A、A酒店这半年的月营业额的中位数是2.2 2.72=2.45(百万元),故本选项错误,符合题意;B、小B酒店这半年的月营业额的众数是1.7百万元,正确,不符合题意;C、A酒店这半年的月营业额一直保持增长状态,正确,不符合题意;D、B酒店这半年的月营业额11月至12月的增长率最大,正确,不符合题意;故选:A.【点睛】本题考查折线统计图,解题的关键是理解题意,灵活运用所学知识解决问题.5、B【解析】【分析】由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.【详解】解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.故选:B.【点睛】本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、B【解析】【分析】根据全面调查和抽样调查的特点解答即可.【详解】解:A.调查全国中学生心理健康现状,适合抽样调查,故本选项不合题意;B.调查你所在班级同学的身高情况,适合全面调查,故本选项符合题意;C.调查我市食品合格情况,适合抽样调查,故本选项不合题意;D.调查黄河水质情况,适合抽样调查,故本选项不合题意.故选:B.【点睛】本题主要考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7、B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:根据题意,随机调查1000个成年人,是属于抽样调查,故A选项错误;这1000个人中180人吸烟不代表本地区只有180个成年人吸烟,故C选项错误;样本是1000个成年人是否吸烟,故D选项错误;本地区约有18%的成年人吸烟是对的,故B选项正确.故选:B.【点睛】本题主要考查了样本估计总体思想以及抽样调查的定义,正确把握相关定义是解题关键.8、D【解析】【分析】求出抽取件数不合格的概率,用样本估计总体即可得出10000件产品不合格的件数.【详解】抽查总体数为:10401002003005001150+++++=(件),不合格的件数为:012361022+++++=(件),22()0.021150P ∴=≈抽到不合格的产品, 100000.02200∴⨯=(件).故选:D【点睛】本题考查用样本估计总体,求出样本的不合格率来估计总体的不合格率是解题的关键.9、B【解析】【分析】根据体育场的容量×上座率计算即可.【详解】解:∵某体育场大约能容纳3万名观众,上座率为68%.∴观众观看这一次足球比赛人数为:30000×68%=20400人,与20000接近.故选:B .【点睛】本题考查频数频率与总数的关系,掌握频数=总数×频率是解题关键.10、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.本题总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.【详解】解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.故选:C【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.在本题中解题关键是注意总体、样本都是指考生的成绩,而不是考生.二、填空题1、10【解析】【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【详解】解:∵由折线统计图可知,15日温差=4−(−3)=7;16日温差=4−(−6)=10;17日温差=2−(−6)=8;18日温差=2−(−2)=4;19日温差=1−(−5)=6;20日温差=1−(−1)=2;∴最大的温差是10.故答案为:10.【点睛】本题考查了折线统计图的应用以及有理数的减法,掌握有理数减法法则是解答本题的关键.有理数减法法则:减去一个数,等于加上这个数的相反数.2、50【解析】【分析】根据A组人数和所占的百分比,可以计算出该班学生人数.【详解】解:5÷10%=50(人),即该班学生有50人,故答案为:50.【点睛】本题考查了条形统计图、扇形统计图,掌握条形统计图与扇形统计图的特点并能读懂统计图中的相关信息是解题的关键.3、224【解析】【分析】根据扇形统计图可求出全校视力500度以上的学生所占的百分比,进而可得答案.【详解】全校视力500度以上的学生所占的百分比是1﹣10%﹣18%﹣20%﹣45%=7%,∴全校视力500度以上的学生有7%×3200=224(人).故答案为:224【点睛】本题考查扇形统计图,根据扇形统计图得出全校视力500度以上的学生所占的百分比是解题关键.4、16【解析】【分析】根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于5分钟的人数,找出等待5—6分钟,6—7分钟与7—8分钟的人数相加即可.【详解】解:由频数分布直方图可得,这个时间段内顾客等待时间不少于5分钟的人数为:9+5+2=16,故答案为:16.【点睛】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.5、0.17【解析】【分析】频数即一组数据中出现符合条件的数据的个数,频率=频数÷总数.依据频数的计算公式即可求解.【详解】解:在3.14159265358979423846264338327950288中,“3”出现的次数是6次,所以在这串数字中“3”出现的频率是6÷36≈0.17.故答案为:0.17.【点睛】本题考查了频数,频率的计算公式,理解频率的计算公式是解题的关键.三、解答题1、(1)40;(2)14名,见解析;(3)1840人【分析】(1)根据扇形统计图和条形统计图提供的B级信息,用B级的频数除以所占百分比即可求解;(2)用样本容量40乘以C级所占百分比即可求解,不去条形统计图即可;(3)根据样本中D级的频率,估计全校D级的频率,用D级的频率乘以全校总人数即可求解.【详解】(1)1230%40a=÷=(名),答:a的值为40(2)4035%14⨯=(名);补全条形统计图(3)89200184040⨯=(名),答:估计不及格的人数为1840人.【点睛】本题考查了条形统计图,扇形统计图,用样本估计总体等知识,根据条形统计图与扇形统计图知识求出样本容量是解题关键.2、(1)40,40%;(2)见解析;(3)100人.【分析】(1)首先根据9095x≤<的频数和百分比求得抽取的样本总数,然后用样本容量减去其他小组的人数即可求得a值,用80除以样本容量即可求得b值;(2)用20除以样本容量即可求得95100x≤<的百分比,依据(1)中结论即可补全统计表及统计图;(3)用总人数乘以获得一等奖的百分率即可估计获得一等奖的人数.【详解】解:(1)∵抽查的学生总数为:6030%200÷=(人),∴20080602040a=---=;80100%40%200b=⨯=,故答案为:40;40%;(2)成绩在95100x≤<的学生人数所占百分比为:20100%10% 200⨯=,故频数分布表为:频数分布直方图为:(3)该校参加此次活动获得一等奖的人数为:100010%100⨯=(人),答:估计该校参加此次活动获得一等奖的人数是100人.【点睛】本题考查了频数分布直方图、频数分布表的有关知识,理解题意,充分运用数形结合思想来解决由统计图形式给出的数学实际问题是解题关键.3、(1)全面调查;(2)抽样调查;(3)抽样调查【分析】根据抽样调查和全面调查的特点即可作出判断.适合全面调查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.【详解】解:(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.属于全面调查;(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.属于抽样调查;(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.属于抽样调查.【点睛】本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.掌握抽样调查和全面调查的区别是解题关键.4、(1)200;81;(2)见解析;(3)630名;(4)超过半数的学生喜欢线上支付;采用现金支付的学生人数不足三分之一【分析】(1)根据支付宝、现金、其他的人数和所占的百分比可以求得本次调查的人数,并求出示“支付宝”支付的扇形圆心角的度数;(2)根据(1)中的结果可以求得使用微信和银行卡的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得购物选择用支付宝支付方式的学生约有多少人;(4)信息合理即可.【详解】(1)本次调查的人数为:(45+50+15)÷(1−15%−30%)=200,表示“支付宝”支付的扇形圆心角的度数为:360°×45200=81°,故答案为:200,81°;(2)使用微信的人数为:200×30%=60,使用银行卡的人数为:200×15%=30,补充完整的条形统计图如图所示:(3)()60451200630200+⨯=名. 答:1200名学生中估计喜欢支付宝支付和微信支付的学生一共有630名.(4)超过半数的学生喜欢线上支付; 采用现金支付的学生人数不足三分之一.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.5、抽样调查;随机抽样调查【分析】抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查.【详解】用抽样调查的方法进行统计.要了解全国范围初中生视力状况随年纪变化的趋势要在全国 范围内随机抽样调查 .【点睛】本题考查随机抽样调查的实际应用,掌握其含义和使用范围是本题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

300
250
200150100
50四季度三季度二季度一季度
七年级数学《数据的收集与整理》专项训练
专项对话:
数据的来源一般有两条渠道:一条是通过统计调查或科学试验得到第一手或直接的统计数据;另一条是通过查阅资料等获得第二手或间接的统计数据。

统计调查是获得第一手数据的重要途径,常常通过访问、邮寄、电话、电脑辅助等形式来收集数据;科学试验是取得自然科学数据的主要手段;各种文献资料、报刊、广播、电视媒体等都提供了大量的统计数据,通过这些资料或媒体可以获得第二手数据。

本章主要学习通过统计调查来收集数据,并对收集到的数据进行整理的方法。

全面调查和抽样调查是统计调查的常用方法,全面调查是对全体对象进行考查的一种统计调查。

专项训练:
1、下列调查中必须用抽样调查的方式收集数据的有( )个 ①检查一大批灯炮使用寿命的长短
②调查某一城市居民家庭的收入状况 ③了解全班同学的身高情况 ④检查某种药品的疗效
A.1
B.2
C.3
D.4
2、右图是某厂2004年各季度产值统计图(单位:万元),则下列说法正确的是……( )
A 、四季度中,每季度生产总值有增有减
B 、四季度中,前三季度生产总值增长较快
C 、四季度中,各季度的生产总值变化一样
D 、第四季度生产总值增长最快
3、为了考察一批电视机的质量,从中抽取100
台进行检测, 在这个问题中的样本是( ) A.电视机的全体 B.100台电视机
C.100台电视机的全体
D.100台电视机的质量
4、王欣同学计划在暑假期间与爸爸、妈妈一起到庐山自助旅游,他把旅途的各项开
① 请你帮他完成表格中空格的内容(百分比精确到0.1%) ② 根据表格制作扇形统计图
③ 观察预算表及扇形统计图,请你给王欣同学提一个合理化建议。

答案:1-3.C、D、D。

4.略。

相关文档
最新文档