打浆对纤维的五个作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
打浆对纤维的五个作用
在打浆过程中纤维没有发生化学变化。不论应用何种型式的打浆设备,主要都是使纤维产生切断、压溃、润胀和细纤维化作用,而这些都是纤维细胞壁的变化。
在植物纤维化学中已经讲过,植物纤维的构造可分为胞间层(L)、初生壁(P)、次生壁外层(S1)、次生壁中层(S2)、次生壁内层或称三生壁(S3)。根据观察分析,纤维各层细胞壁无论在物理结构和化学组成上都是不同的,因而就具有不同的特性。可以认为,初生壁是一层类似塑料的多孔层薄膜,它的厚度为0.1~1微米,其细纤维成网状的排列。从结构观点来看,它是各向同性的,且木素含量较高,因而它只能透水,而不能润胀,反而还会在打浆时限制次生壁中层的润胀。至于次生壁外层,它是介于初生壁与次生壁中间的一个过渡层,在物理结构或化学成分上都比较接近初生壁的性质。次生壁中层是纤维的主要部分,比其它各层都显得厚得多,它的厚度为1.0~5.0微米,其细纤维的排列是高度各向异性的,且与纤维的轴向呈一定的角度,因而造成纤维的纵向结合强度大,而横向的结合强度弱,所以沿着纤维的横向润胀就较为容易。次生壁中层的木素含量较低,这一情况极其有利于纤维在打浆时的润胀。次生壁内层较薄,其木素含量也较低。一般认为,打浆对纤维的作用和纤维的变化除压溃、揉搓、分裂以外,大体可主要分为以下五方面细胞壁的位移和变形,初生壁和次生壁外层的破除、润胀、细纤维化和切断等。当然这几方面的作用不是截然分开的,而是交错进行的。现分述如下:
(一)细胞壁的位移和变形
一些研究者认为,在次生壁中层的细纤维能发生位移。用偏光显微镜可以很容易观察到纤维上的亮点,这就是细纤维的位移.根据观察,未打浆的纤维有位移,而开始打浆后又出现了新的位移点,随着打浆过程的进行,位移点逐步扩大,并变得更为清晰。根据用偏光显微镜拍照所得的照相图,位移可分为三种型式。打浆的机械作用使得次生壁中层一定位置的细纤维弯曲,这样细纤维之间空隙有所增加,以致能够进入较多的水分。当初生壁还没有被破除之前,次生壁中层发生位移和润胀又会使纤维更加柔软,从而促进初生壁的破坏。有些研究结果认为,对针叶树管胞来说,在制浆和打浆之后,位移和变形发生在髓射线的部位。
(二)初生壁和次生壁外层的破除
蒸煮和漂白后的纤维仍存有一定数量的初生壁,影响着纤维润胀。同时,它和次生壁外层都会妨碍次生壁中层细纤维的细纤维化,影响着纤维的结合力。因此需要在打浆过程中借助于机械作用把初生壁和次生壁外层破坏,以利于纤维的润胀和细纤维化作用。对于不同种类的纸浆,初生壁和次生壁外层破除的难易程度和破除的情况亦是不尽相同的。例如,亚硫酸盐纸浆的初生壁和次生壁外层破除,就比硫酸盐纸浆容易一些,其原因可能是由于在蒸煮过程中,亚硫酸盐的蒸煮药液和硫酸盐法的蒸煮药液,无论在其化学性质特别是PH值,或进入纤维的途径都是不相同的。因而造成了亚硫酸盐纸浆纤维的初生壁,甚至是次生壁外层在制浆过程中受到破坏的程度,均比硫酸盐法纸浆的为高,因而在打浆过程中较易于破除。
对初生壁破除情况进行的实验研究表明,用PFI磨对漂白亚硫酸盐木浆和未漂白硫酸盐木浆进行打浆,经过不同打浆时间的处理后,在显微镜下观察100根纤维的情况,并将观察结果分为四组。对于漂白亚硫酸盐浆,仅在500转,即稍为打浆至16。SR时,半数以上的纤维失掉了部分的初生壁;在2000转时,即约22。SR,纤维初生壁几乎全部受到破坏。而对于未漂硫酸盐浆,初生壁的破除速度大大减慢。随着打浆时间的增长,纤维的润胀和细纤
维化程度都有所提高,因而,纸页的抗张强度亦随之增加。
(三)润胀
所谓润胀是指高分子化合物在吸收液体的过程中,伴随体积膨胀的一种物理现象。纸浆纤维之所以有润胀能力,主要是由于其带有羟基的关系,因而能在极性性液体中发生润胀。打浆时,纤维首先吸水而发生润胀,比容有时增加,纤维细胞壁结构变得更为松弛,内聚力则有所下降,从而提高了纤维的柔软性和可塑性。与此同时,由于润胀引起内聚力的降低,就更有利于打浆机械作用对细纤维纸的进一步细纤维化,其结果大大增加了纤维的表面积和游离的羟基数目,这无疑将会在纸页干燥时增加纤维之间的接触面积。润胀程度同纸料的组成有关。半纤维素含量高的亚硫酸盐浆较容易润胀,而硫酸盐浆就比亚硫酸盐浆润胀程度小些。木素含量高的纸料不易润胀,因此漂白能改进这种纸料的润胀能力。
测定纸料润胀程度是比较困难的,若干种润胀测定方法均尚未被公认。现举亚米(Jayme)所介绍的离心机法,作为示例。亚米是采用未漂亚硫酸盐浆作为原料,在离心磨(Jokromill)中进行不同时间的打浆,取出后测定打浆度,再用离心机甩掉水分,测其保水值,并以此作为润胀程度的比较。
(四)细纤维化
细纤维化作用是指在打浆过程中,打浆设备的机械物理作用使纤维获得纵向分裂,并分离出细纤维,而且使纤维产生起毛现象。一般认为,细纤维化可分为外部细纤维化和内部细纤维化,上述情况必属于前者,而后者用一般光学显微镜是观察不到的。有的资料认为,在打浆过程中,纤维的细纤维化是在纤维吸水润胀以后,才开始的。由于吸水润胀,致使内聚力减少,细胞壁相邻的同心层之间的侧链有所破坏,从而给水分的进入,创造了条件,使层与层之间彼此滑动而使纤维变得柔软可塑。
许多研究者把打浆过程细胞壁的变化称为内部细纤维化。爱曼顿(Emerton)形象地提出打浆过程中纤维变形的两种型式,一种是细胞壁的弹性变形(1),一种是塑性变形(2)。爱曼顿指出,纤维细胞壁的变形可以是弹性或塑性的。纤维的塑性变形达到某一平衡状态;而弹性变形是,当其变形应力消失以后,纤维将恢复到其原始形状。显然,通过打浆处理,希望能使纤维获得塑性变形。纤维细胞塑性变形的能力,是随着内部细纤维化过程的进展而提高的。内部细纤维化实质上是指破坏纤维细胞壁同心层间的连接的过程,从而使次生壁中层中发生层间的滑动。为此,当纤维处于高度润胀和细纤维化状态时,纤维将会保持良好的柔韧和可塑性,而纤维与纤维之间即可能保持优异的接触,有利于纤维的结合,和在随后纸张干燥时,得到较高的强度和紧度。
有人曾用超声波处理纤维浆料,结果的浆度上长很少,而润胀值却剧烈增加,初生壁和次生壁外层都充分保留着。用这种纸料抄出的纸页强度也很高,这足以说明超声波处理使纤维产生了强烈的内部细纤维化。可以在普通显微镜下观察到,纤维的纵向分裂,以及由此而分丝出细纤维,这是外部细纤维化。前已述及,次生壁中层是细胞壁的主要部分,由于细纤维在其上是平行排列的,因而易于向两侧润胀,这样,如果次生壁外层未被破除,次生壁中层势必只能朝细胞腔方向作有限的向内润胀,而难于实现外部细纤维化。导致发生外部细纤维化的过程,首先有赖于细纤维之间的主要物质(半纤维素)的润胀。当有足够的润胀压力,就能使细纤维之间的氢键破裂,从而使纤维进一步朝两侧膨胀。如果没有次生壁外层的限制,次生壁中导就易于发生纵向分裂产生细纤维。但事实上,除非在一般高度粘状打浆的情况下,次生壁外层并没有全部除去。可是也有的资料指出,次生壁外层中半纤维素含量高,例如,在针叶木亚硫酸盐纸浆中,其次生壁外层有相当数量的木糖,它对氢键联结是特别有效的。因此,是否需要在打浆过程中除去全部次生壁外层,还是一个有待进一步研究的问题。