10.章-陶瓷基复合材料-1

合集下载

浅谈陶瓷基复合材料的分类及性能特点

浅谈陶瓷基复合材料的分类及性能特点

浅谈陶瓷基复合材料的分类及性能特点蒋永彪(贵州省机械工业学校,贵州贵阳550000)1陶瓷基复合材料分类陶瓷基复合材料,根据增强体分成两大类:连续增强的复合材料和不连续增强的复合材料,如表1所示。

其中,连续增强的复合材料包括一方向,二方向和三方向纤维增强的复合材料,也包括多层陶瓷复合材料;不连续增强的复合材料包括晶须、晶片和颗粒的第二组元增强体和自身增强体,如Si 3N 4中等轴晶的基体中分布一些晶须状β-Si 3N 4晶粒起到增韧效果。

纳米陶瓷既可以是添加纳米尺寸的增强体复合材料,也可以是自身晶粒尺寸纳米化及增强。

表1陶瓷基复合材料分类陶瓷基符合材料也可以根据基体分成氧化物基和非氧化物基符合材料。

氧化物基复合材料包括玻璃、玻璃陶瓷、氧化物、复合氧化物等,弱增强纤维也是氧化物,常称为全氧化物复合材料。

非氧化物基复合材料以SiC ,Si 3N 4,MoS 2基为主。

2陶瓷基复合材料的力学特性陶瓷本体具有耐高温、抗氧化、高温强度高、抗高温蠕变性好、高硬度、高耐磨损性、线膨胀系数小、耐化学腐蚀等优点,但也存在致命的弱点(脆性),它不能承受激烈的机械冲击和热冲击,这限制了它的应用。

可通过控制晶粒、相变韧化、纤维增强等手段制成复合材料,陶瓷基复合材料具有了更高的熔点、刚度、硬度和高温强度,并具有抗蠕变、疲劳极限好、高抗磨性,在高温和化学侵蚀的场合下能承受大的载荷等优点,使其在航空、航天等众多领域有着广泛的应用前景。

2.1陶瓷基复合材料的主要物理和化学性能(1)热膨胀。

复合材料有纤维、界面和基体构成,因此热膨胀的相容性是非常重要的。

虽然线膨胀系数彼此相同是最为理想的,但是几乎实现不了。

通常用线膨胀系数来表征材料的热膨胀,晶体的线膨胀系数存在各向异性,因此,线膨胀系数的各向异性造成的热应力常常是导致多晶体材料从烧结温度冷却下来即发生开裂的原因。

在陶瓷基复合材料里,一般希望增强体承压缩的残余应力,这样即使是弱界面,也不会发生界面脱黏。

陶瓷基复合材料

陶瓷基复合材料

Ceramic-matrix
注意事项 : (1)料浆应能与纤维表面保持良好润湿。料浆中包括:陶瓷基体粉末、 载液(通常是蒸馏水)和有机粘接剂,有时还加入某些促进剂和基体润湿 剂。为使纤维表面均匀粘附料浆,要求陶瓷粉体粒径小于纤维直径,并 能悬浮于载液和粘接剂混合的溶液中。 (2)纤维应选用容易分散的、捻数低的丝束,保持其表面清洁无污染。 在操作过程中尽量避免纤维损伤,并注意排除气泡。 (3)热压烧结应按预定规律(即热压制度)升温和加压。在热压过程中, 将发生基体颗粒重新分布、烧结和在外压作用下的粘性流动等过程,最 终获得致密化的陶瓷基复合材料。很多陶瓷基复合材料体系在热压过程 中往往没有直接发生化学反应,主要通过系统表面能减少的驱动,使疏 松粉体熔结而致密化。 存在的问题: (1)纤维和陶瓷粉末不容易复合成型。 (2)烧结时由于基体收缩或热压烧结时无粘性流动,会使颗粒和纤维 之间的机械作用而损伤纤维。 (3)目前,直径小于0.1微米-1微米的粉末很难买到。并且,其中的夹 杂物不易排除。同时,细的粉末在制造复合材料过程中又不易分散。 (4)在热压时会损伤纤维结构。
Ceramic-matrix
注意事项:
(1)与高聚物先驱体转化法不同的是,溶胶—凝胶工艺的先驱体是在溶液浸 进纤维编织坯件后在原位合成的。 (2)采用溶胶—凝胶法制备复合材料可以先制备复合凝胶体,即将复合的各 相以原子或分子级进行均匀混合形成复合溶胶和凝胶化,得到高纯、超细、均 相、分子级或包裹式的复合陶瓷粉末,再经成型、烧结而形成复合材料的基体 或者通过控制溶剂的蒸发速度将复合的溶胶凝胶化后,直接烧结成陶瓷基复合 材料。 (3)如果第二相是粉末或纤维,则可浸在适当的溶液中,通过形核和成长, 使溶液形成溶胶,均匀包围粉末和纤维,经凝胶化处理和热解后即形成陶瓷基 复合材料的基体。 (4)溶胶—凝胶法制备陶瓷基复合材料的质量保证关键主要有:选择合适的 先驱体反应物,控制溶液的浓度和pH值、气氛、分散剂、选用胶溶剂、去除 团聚以及使各相处于良好的分散状态等。

陶瓷基复合材料

陶瓷基复合材料
耐磨蚀、极好抗热震性、极好润滑性 非常高的硬度、极好的热传导体 耐热、高热传导体
耐热、耐腐蚀、耐磨损、高热导体 高断裂韧性、高强度
几种常用的陶瓷基体材料简介:
氧化铝(Al2O3) 二氧化锆(ZrO2) 莫来石(3Al2O32SiO2) 氮化硅(Si3N4,Sialon) 碳化硅(SiC) 玻璃陶瓷(LAS、MAS、CAS)
250-300 1200 5-5.5 25-30
刚玉瓷
95瓷 95
-Al2O3
3.5 180 280-350 2000 5.5-7.5 15-18
刚玉瓷
99瓷 99
-Al2O3
3.9 250 370-450 2500 6.7 25-30
氧化铝瓷的其它性能 :
❖ 氧化铝的硬度约为20GPa,仅次于金刚石、立方氮化 硼和碳化硅,有很好的耐磨性。
基复合材料
❖ 晶片补强增韧陶瓷基复合材料——包括人工晶片和天然片状
材料
❖ 长纤维补强增韧陶瓷基复合材料 ❖ 叠层式陶瓷基复合材料——包括层状复合材料和梯度陶瓷基复
合材料。
陶瓷基复合材料类型汇总表
增强体形态 (材料名称)
颗粒
(陶瓷、金属)
晶须
(陶瓷)
纤维
(连续、短纤维) (陶瓷、高熔点金属)
结构复合式
(叠层、梯度) (按设计要求选择材料)
基体材料种类 (材料名称) 玻璃:SiO2等
玻璃陶瓷:LAS、MAS、CAS
氧化物陶瓷:Al2O3, MgO, ZrO2, Mullite
非氧化物陶瓷 碳化物:B4C, SiC, TiC, ZrC, Mo2C, WC 氮化物:BN, AlN, Si3N4,TiN,ZrN 硼化物:AlB2, TiB2, ZrB2

陶瓷基复合材料综述报告

陶瓷基复合材料综述报告

陶瓷基复合材料综述报告陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料,具有优异的耐高温性能,主要用作高温及耐磨制品。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

迄今,陶瓷基复合材料已实用化或即将实用化的领域有刀具、滑动构件、发动机制件、能源构件等。

有些发达国家已将长纤维增强碳化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得了不错的使用效果[1]。

一、陶瓷基复合材料增强体用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种[2-4] :1.1纤维类增强体纤维类增强体有连续长纤维和短纤维。

连续长纤维的连续长度均超过数百。

纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。

1.2颗粒类增强体颗粒类增强体主要是一些具有高强度、高模量。

耐热、耐磨。

耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。

细金刚石、高岭土、滑石、碳酸钙等。

主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末1.3晶须类增强体晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为0.2~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。

1.4金属丝用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。

1.5片状物增强体用于复合材料的片状增强物主要是陶瓷薄片。

将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。

二、陶瓷基的界面及强韧化理论陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。

浅谈陶瓷基复合材料的分类及性能特点

浅谈陶瓷基复合材料的分类及性能特点

浅谈陶瓷基复合材料的分类及性能特点陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料,有效解决了陶瓷的脆性问题,开始在航空、航天、国防等领域得到广泛应用,例如连续纤维补强陶瓷基复合材料,具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的工业生产领域的极大关注。

文章对陶瓷复合材料的分类、主要性能、机械加工特点进行介绍。

标签:陶瓷基复合材料;分类;力学特性;加工特点1陶瓷基复合材料分类陶瓷基复合材料,根据增强体分成两大类:连续增强的复合材料和不连续增强的复合材料,如表1所示。

其中,连续增强的复合材料包括一方向,二方向和三方向纤维增强的复合材料,也包括多层陶瓷复合材料;不连续增强的复合材料包括晶须、晶片和颗粒的第二组元增强体和自身增强体,如Si3N4中等轴晶的基体中分布一些晶须状β-Si3N4晶粒起到增韧效果。

纳米陶瓷既可以是添加纳米尺寸的增强体复合材料,也可以是自身晶粒尺寸纳米化及增强。

陶瓷基符合材料也可以根据基体分成氧化物基和非氧化物基符合材料。

氧化物基复合材料包括玻璃、玻璃陶瓷、氧化物、复合氧化物等,弱增强纤维也是氧化物,常称为全氧化物复合材料。

非氧化物基复合材料以SiC,Si3N4,MoS2基为主。

2陶瓷基复合材料的力学特性陶瓷本体具有耐高温、抗氧化、高温强度高、抗高温蠕变性好、高硬度、高耐磨损性、线膨胀系数小、耐化学腐蚀等优点,但也存在致命的弱点(脆性),它不能承受激烈的机械冲击和热冲击,这限制了它的应用。

可通过控制晶粒、相变韧化、纤维增强等手段制成复合材料,陶瓷基復合材料具有了更高的熔点、刚度、硬度和高温强度,并具有抗蠕变、疲劳极限好、高抗磨性,在高温和化学侵蚀的场合下能承受大的载荷等优点,使其在航空、航天等众多领域有着广泛的应用前景。

2.1陶瓷基复合材料的主要物理和化学性能(1)热膨胀。

复合材料有纤维、界面和基体构成,因此热膨胀的相容性是非常重要的。

陶瓷基复合材料的制备方法与工艺

陶瓷基复合材料的制备方法与工艺

陶瓷基复合材料的制备方法与工艺随着科学技术的不断发展,陶瓷基复合材料在工业生产和科学研究中得到了广泛的应用。

陶瓷基复合材料具有优良的耐磨性、高温稳定性和化学稳定性,因此在航空航天、汽车制造、医疗器械等领域有着重要的地位。

本文将介绍陶瓷基复合材料的制备方法与工艺。

一、陶瓷基复合材料的制备方法1. 热压法:热压法是一种常用的陶瓷基复合材料制备方法。

首先将陶瓷粉末与增强相(如碳纤维、玻璃纤维等)混合均匀,然后将混合物放入模具中,经过一定的温度和压力条件下进行热压,使得陶瓷粉末和增强相充分结合,最终得到陶瓷基复合材料制品。

2. 溶胶-凝胶法:溶胶-凝胶法是一种制备陶瓷基复合材料的新型方法。

首先将陶瓷前驱体(如硅酸酯、铝酸盐等)与增强相混合,在一定的条件下形成溶胶,然后通过凝胶化过程使得溶胶形成凝胶,最终通过热处理制备出陶瓷基复合材料。

3. 拉伸成型法:拉伸成型法是一种制备纤维增强陶瓷基复合材料的方法。

首先将陶瓷粉末与增强相混合,然后通过拉伸成型设备将混合物进行拉伸成型,最终得到纤维增强的陶瓷基复合材料。

二、陶瓷基复合材料的制备工艺1. 原料选择:在制备陶瓷基复合材料时,需要选择优质的陶瓷粉末和增强相。

陶瓷粉末的选择应考虑其颗粒大小、形状和化学成分,而增强相的选择应考虑其强度、刚度和耐热性能。

2. 混合均匀:在制备过程中,陶瓷粉末和增强相需要进行混合均匀,以确保最终制品的性能稳定。

3. 成型工艺:根据不同的制备方法,成型工艺也有所不同。

在热压法中,需要选择合适的温度和压力条件;在溶胶-凝胶法中,需要控制好溶胶和凝胶的形成过程;在拉伸成型法中,需要控制好拉伸成型设备的参数。

4. 烧结工艺:烧结是制备陶瓷基复合材料的重要工艺环节,通过烧结可以使得材料颗粒之间结合更加紧密,提高材料的密度和强度。

5. 表面处理:在制备陶瓷基复合材料的最后一道工艺中,可以对制品进行表面处理,如抛光、涂层等,以提高制品的表面质量和外观。

陶瓷基复合材料

陶瓷基复合材料

陶瓷基复合材料的复合机理、制备、生产、应用及发展前景摘要:材料是科学技术发展的基础,材料的发展可以推动科学技术的发展,材料主要有金属材料、聚合物材料、无机非金属材料和复合材料四大类。

其中复合材料是是最新发展地来的一大类,发展非常迅速。

最早出现的是宏观复合材料,它复合的组元是肉眼可以看见的,比如混凝土。

随后发展起来的是微观复合材料,它的组元肉眼看不见。

由于复合材料各方面优异的性能,因此得到了广泛的应用。

复合材料对航空、航天事业的影响尤为显著,可以说如果没有复合材料的诞生,就没有今天的飞机、火箭和宇宙飞船等高科技产品。

本文从纤维增强陶瓷基复合材料C f/SiC入手,综述了陶瓷基复合材料(ceramic matrix composite,CMC)的特殊使用性能、界面增韧机理、制备工艺作了较全面的介绍,并对CMC的的研究现状、未来发展进行了展望。

正文1、陶瓷基复合材料的定义与特性陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。

这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。

陶瓷基复合材料(CMC)由于具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,是制造推重比10 以上航空发动机的理想耐高温结构材料。

一方面,它克服了单一陶瓷材料脆性断裂的缺点,提高了材料的断裂韧性;另一方面,它保持了陶瓷基体耐高温、低膨胀、低密度、热稳定性好的优点。

陶瓷基复合材料的最高使用温度可达1650℃,而密度只有高温合金的70%。

因此,近几十年来,陶瓷基复合材料的研究有了较快发展。

目前CMC 正在航空发动机的高温段的少数零件上作评定性试用。

陶瓷基复合材料PPT课件

陶瓷基复合材料PPT课件
定的成果。
面临的挑战
高成本
陶瓷基复合材料的制备工 艺复杂,导致其成本较高, 限制了大规模应用。
性能稳定性
陶瓷基复合材料在复杂环 境下性能稳定性不足,易 受温度、湿度等外部因素 影响。
生产效率
目前陶瓷基复合材料的生 产效率相对较低,影响了 其推广和应用。
未来展望
降低成本
通过技术创新和规模化生产,降低陶瓷基复合材 料的成本,提高其市场竞争力。
制备工艺的优化
熔融浸渗法
压力辅助成型法
通过优化熔融浸渗工艺参数,如温度、 压力和时间,提高陶瓷基复合材料的 致密化程度和力学性能。
通过调整压力辅助成型的压力、温度 和时间等参数,提高复合材料的密度 和力学性能。
化学气相沉积法
优化化学气相沉积工艺参数,如反应 温度、气体流量和沉积时间,以获得 均匀、致密的陶瓷基复合材料。
04
陶瓷基复合材料的性能优化
增强相的选择与优化
增强相种类
选择合适的增强相是提高陶瓷基 复合材料性能的关键,常用的增 强相包括碳纤维、玻璃纤维、晶
须等。
增强相分散与分布
优化增强相在基体中的分散和分布, 确保其均匀分布,以提高复合材料 的整体性能。
增强相表面处理
通过表面处理技术改善增强相与基 体之间的界面结合力,提高复合材 料的力学性能。
陶瓷基复合材料的性能优化主要通过 添加增强相、调整基体组成和工艺参 数实现。
陶瓷基复合材料在高温、高强度、抗 氧化等极端环境下的应用前景广阔, 但需要解决其可靠性、寿命和成本等 问题。
对未来研究的建议
01
02
03
04
深入研究陶瓷基复合材料的微 观结构和性能之间的关系,为 材料设计和优化提供理论支持

陶瓷基复合材料综述

陶瓷基复合材料综述

陶瓷基复合材料综述报告Z09016124 王帅摘要:综述了陶瓷基复合材料增强体的种类陶瓷基复合材料界面和界面的增韧,并且介绍了陶瓷基复合材料的复合新技术以及发展动态关键词:陶瓷基增强体强韧1陶瓷基复合材料增强体复合材料中的增强体,按几何形状划分,有颗粒状(简称零维)、纤维状(简称一维)、薄片状(简称二维)和由纤维编织的三维立体结构。

按属性划分,有无机增强体和有机增强体,其中有合成材料也有天然材料,复合材料最主要的增强体是纤维状的。

复合材料中常见的纤维状增强体有玻璃纤维、芳纶纤维、碳纤维、硼纤维、碳化硅纤维、氧化铝纤维和金属纤维等。

它们有连续的长纤维、定长纤维、短纤维和晶须之分。

玻璃纤维有许多品种,它是树脂基复合材料最常用的增强体,由玻璃纤维增强的复合材料是现代复合材料的代表,但是,由于它的模量偏低,而且使用温度不高,通常它不属于高级复合材料增强体。

2.1陶瓷基复合材料的界面陶瓷基复合材料作为新一代高性能耐高温结构材料,在航空航天领域具有广阔的应用前景。

然而,由于其固有的脆性,陶瓷材料在外载作用下极易发生脆性断裂。

为了改善材料的韧性,不仅要使用高强纤维,还需要在纤维与基体之间增加界面相,从而引入裂纹桥联、裂纹偏转、纤维脱粘滑移等增韧机制。

纤维与基体之间的热解碳界面层对于陶瓷基复合材料是至关重要的。

大量拉伸试验均表明,强界面材料模量高而强度低,断裂应变较小,断口整齐;弱界面材料模量低而强度高,断裂应变较大,纤维拔出较长,可见,界面可以起到增强和增韧的效果,这得益于弱界面的脱粘作用。

界面脱粘可以减缓纤维应力集中,偏转基体裂纹扩展路径,避免裂纹沿某一横截面扩展,并阻止应力和能量在材料局部集中,使得材料韧性增加,不发生灾难性破坏。

然而,基体裂纹的扩展也具有一定的随机性,与材料的初始缺陷有关。

基体裂纹的连通会导致裂纹发生失稳扩展,最终造成材料的断裂失效。

界面对陶瓷基复合材料拉伸性能的影响在20世纪就是研究热点,因此,这方面的文献报道较多,但主要成果是基于统计强度理论和剪滞理论建立起来的细观力学模型,其中包括模量和强度的计算模型。

(完整word版)陶瓷基复合材料的机理、制备、生产应用及发展前景

(完整word版)陶瓷基复合材料的机理、制备、生产应用及发展前景

陶瓷基复合材料的机理、制备、生产应用及发展前景姓名:王珍学号:Z09016203科学技术的发展对材料提出了越来越高的要求,陶瓷基复合材料由于在破坏过程中表现出非脆性断裂特性,具有高可靠性,在新能源、国防军工、航空航天、交通运输等领域具有广阔的应用前景.陶瓷基复合材料是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷。

陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。

其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。

连续纤维增强复合材料是以连续长纤维为增强材料,金属、陶瓷等为基体材料制备而成。

金属基复合材料是以陶瓷等为增强材料,金属、轻合金等为基体材料而制备的。

从20世纪60年代起各国都相继对金属基复合材料开展了大量的研究,因其具有高比强度、高比模量和低热膨胀系数等特点而被应用于航天航空及汽车工业。

陶瓷材料具有熔点高、密度低、耐腐蚀、抗氧化和抗烧蚀等优异性能,被广泛用于航天航空、军事工业等特殊领域.但是陶瓷材料的脆性大、塑韧性差导致了其在使用过程中可靠性差,制约了它的应用范围。

而纤维增强陶瓷基复合材料方面克服了陶瓷材料脆性断裂的缺点,另一方面保持了陶瓷本身的优点.一、陶瓷基复合材料的基本介绍和种类1、陶瓷基复合材料的基本介绍陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。

陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷.这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。

而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。

陶瓷基复合材料-无损检测

陶瓷基复合材料-无损检测

制造工艺与流程
制造工艺
主要包括粉末制备、成型、烧结等工 艺。
制造流程
原料选择与制备→混合→成型→烧结 →后处理→性能检测。
应用领域与前景
应用领域
航空航天、汽车、能源、电子等领域。
前景
随着科技的发展,陶瓷基复合材料的应用领域将不断扩大,未来有望在更多领 域得到应用。
02
无损检测技术简介
无损检测的定义与重要性
现更准确的缺陷定位和定量分析。
复杂结构陶瓷基复合材料的检测
总结词
详细描述
对于复杂结构陶瓷基复合材料,如多层结构、 夹杂物和纤维增强等,无损检测技术面临更 大的挑战。
对于复杂结构陶瓷基复合材料的无损检测, 可以采用多种检测技术相结合的方法,如超 声检测与射线检测或红外检测的组合。同时, 针对不同结构和材料特性,开发专用的检测 设备和方法,以提高检测的可靠性和准确性。
利用X射线或γ射线对材料进行穿 透,通过检测穿透后的射线强度
来检测材料内部缺陷。
超声检测
利用超声波在材料中传播的特 性,通过分析反射、折射和散 射的回波信号来检测材料内部 缺陷。
红外检测
利用红外辐射对材料进行热成 像,通过分析材料表面的温度 分布来检测内部缺陷。
电磁检测
利用电磁原理对材料进行磁化 或涡流检测,通过分析材料的 磁性或导电性能来检测内部缺
射线检测
总结词
射线检测利用X射线或γ射线穿透材料 的特性,通过分析透射或散射的射线 强度,判断材料内部是否存在缺陷。
详细描述
射线检测具有较高的检测精度和分辨 率,能够检测出微小的缺陷。然而, 射线检测需要使用放射性物质,对环 境和人体有一定影响,且设备成本较 高。
磁粉检测

陶瓷基复合材料(CMC)

陶瓷基复合材料(CMC)

4.溶解——沉淀
在有液相参与的烧结中,若液相能润湿和溶解 固体,由于小颗粒的表面能较大,其溶解度也 比大颗粒的大。小颗粒不断溶解并在大颗粒表 面析出,空隙消失而致密化。
陶瓷基复合材料(CMC)
第四节 CMC制备工艺
一、粉末冶金法 将陶瓷粉末、增强材料(颗粒或纤维)
和加入的粘结剂混合均匀后,冷压制成 所需形状,然后进行烧结或直接热压挠 结或等静压烧结制成陶瓷基复合材料。
六、化学气相浸渍法
陶瓷基复合材料(CMC)
第五节 CMC界面
一、CMC界面的特点 CMC一般制备的温度较高,原子的活性增
特点: 低密度,2.0-2.8g/cm3 高弹性模量(80-140GPa)和弯曲强度
(70-350MPa)
陶瓷基复合材料(CMC)
第三节 陶瓷粉末的烧结
粉末状物料在压制成型后,含有大量气孔,颗粒 之间接触面积较小,强度也比较低。经过高温作 用后,坯体中颗粒相互烧结,界面逐渐扩大成为 晶界,最后数个晶粒结合在一起,产生再结晶与 聚集再结晶,使晶粒长大。气孔体积缩小,大部 分甚至全部从体坯中排出,体收缩而致密,强度 增加,成坚固整体。上述整个过程叫烧结过程。
初期:晶界不移动,也就是晶粒不成长 中期:晶界开始移动,晶粒开始成长,气孔成
三维连通状 末期:还体浙趋致密,当相对密度达95%左右,
气孔逐渐封闭,成为不连续状态
陶瓷基复合材料(CMC)
二、烧结动力
任何系统都有向最低能量状态转变的趋 势,所以这种表面自由能的降低,在很 多情况下就成为物质烧结的主要动力。 此外高度分散物料的表面还存在严重歪 曲,内部也具有比较严重的结构缺陷, 这些都促使晶格活化,性质点易于迁移, 从而构成烧结动力的另一部分。
陶瓷基复合材料(CMC)

陶瓷基复合材料

陶瓷基复合材料

8
3 Application and development prospect of ceramic matrix composites
3.1 Ceramic matrix composites applications in industry
Ceramic matrix composites have excellent high temperature performance,
7


Silicon nitride Series Fiber. They are actually composite ceramic fibers from the Si, N, C, and so on 0 composition. Such fibers also through organic polymer Precursor legal,Its performance similar to silicon carbide fibers .
5
(2). ceramic matrix composites
reinforced body
Ceramic matrix composites reinforced body, the body is often referred to as toughness.。 From the geometry of the reinforcement fibers can be divided into (long, short fibers), three types of whiskers and particles.
9
In the cutting tools, SiCw fine particles of toughening Al2O3 ceramic composite materials have been successfully used for industrial and manufacturing cutting tool 。Below SiCw prepared by pressing the

陶瓷基纳米复合材料

陶瓷基纳米复合材料

备等先进方法, 在广泛的领域中研究纳米复合的问题 必然导致复合
材料在作为结构、功能材料的应用领域开拓新的前景;必然导致复合 材料制备科学理论和结构理论的进步。
存在的问题
• 脆性是陶瓷材料难以克服的缺点,通过纳米化,易碎的陶 瓷可以具有和塑料一样的韧性。在制备纳米陶瓷中还存在 以下问题:纳米陶瓷粉体的尺寸、形貌和粒径分布的控制, 团聚体的控制和分散,块体的形态缺陷、粗糙度以及成分 的控制等等。 • 虽然纳米陶瓷还有许多关键技术问题需要解决,但是 纳米陶瓷的制备已经较为成熟,新工艺和新方法不断涌现。 相信随着研究的深入,纳米陶瓷的制备将更加完善,使纳 米陶瓷在工业生产中广泛应用,从而使纳米陶瓷的优良特 性得以造福人类。
图l展示不同系统的 陶瓷中,引入一定 量的纳米相后,陶 瓷的断裂强度、耐 高温性能的提高。
展望
纳米复合的概念
在已有的报道中,纳米复合主要指在微米级结构的基体中引入纳米级分 散相。然而从基体与分散相的粒径大小关系,复合可分为微米——微 米、微米——纳米、纳米——纳米复台。 纳米复合应包括后二种情形,即纳米复合的概念应指至少有一种相,其 颗粒尺寸在纳米级范围的复合材料。对于纳米——纳米复合材料目前
陶瓷基纳米复合材料的性能
陶瓷基纳米复合材料中纳米粒子主要弥散于基体晶粒 内或晶粒间,其作用不仅可以提高室温力学性能,如纳米 复合陶瓷能使其基体材料的强度和韧性提高2~5倍,而且 可改善高温力学性能,如硬度、强度、抗蠕变性及其抗疲 劳破坏性能。
一 高强度、高韧性
纳米复合材料的强度和韧性均比未加增强体的基 体材料要高,这些性能的改善,有利于抗热、抗震等
搅动球磨亦称高能球磨。它 利用内壁不带齿的搅动球磨 机进行粒子粉碎与混料。
气流粉碎的缺点是由于物料与气 流充分接触,粉碎后物料吸附的 气体较多,增加了粉末使用前排 除吸附气体的工序

陶瓷基复合材料

陶瓷基复合材料

2. 固相合成法
• (1)S1→S2 + G (热分解反应法) CaCO3 →CaO + CO2 ↑
• (2)S1 + G1(L)→S2 + G2(L) SiO2 + 3C → SiC + 2CO↑(氧化物还原-化合法)
• (3)S1 + S2 → S3 + G0 (烧结法) BaCO3 +TiO2 → BaTiO3 + CO2 ↑
液相烧结
• 由于粉料中常含有少量杂质,使材料在烧 结过程中或多或少都要出现一些液相,除 固相烧结的推动力外,来自细小固体颗粒 之间液相的毛细管压力也是推动力。由于 流动传质比扩散传质速度要快得多,因而 其烧结速率高,可在较低的温度下获得致 密烧结体。
(5)、耐火材料: 用于各种高温工业窑炉的 耐火材料; (6)、特种陶瓷: 用于各种现代工业和尖端 科学技术的特种陶瓷制品,有高铝氧质瓷、 镁石质瓷、钛镁石质瓷、锆英石质瓷、锂质 瓷、以及磁性瓷、金属陶瓷等。
特种陶瓷
四者关系
二、 过程工艺
• 传统陶瓷的制作工艺流程 (1)淘泥 把瓷土淘成可用的瓷泥。 (2)摞泥 淘好的瓷泥并不能立即使用,要
压法不经济。
4. 烧结
• 固相烧结:粉体经压制成为具有一定外形 的坯体后一般含有百分之十几的气孔,颗 粒之间仅仅是点接触。在高温的作用下发 生了颗粒间接触面积的扩大,颗粒聚集, 体积收缩;颗粒中心距离的靠近,逐渐形 成晶界;气孔形状变化,体积缩小,从连 通的气孔逐渐变成孤立的气孔,并逐渐缩 小,以致排出,最终成为致密体。
将其分割开来,摞成柱状,以便于储存和 拉坯用。 (3)拉坯 将摞好的瓷泥放入大转盘内,通 过旋转转盘,用手和拉坯工具,将瓷泥拉 成瓷坯。

陶瓷基复合材料(CMC).

陶瓷基复合材料(CMC).

陶瓷基复合材料(CMC).第四节陶瓷基复合材料(CMC)1.1概述⼯程中陶瓷以特种陶瓷应⽤为主,特种陶瓷由于具有优良的综合机械性能、耐磨性好、硬度⾼以及耐腐蚀件好等特点,已⼴泛⽤于制做剪⼑、⽹球拍及⼯业上的切削⼑具、耐磨件、发动机部件、热交换器、轴承等。

陶瓷最⼤的缺点是脆性⼤、抗热震性能差。

与⾦属基和聚合物基复合材料有有所不同的,是制备陶瓷基复合材料的主要⽬的之⼀就是提⾼陶瓷的韧性。

特别是纤维增强陶瓷复合材料在断裂前吸收了⼤量的断裂能量,使韧性得以⼤幅度提⾼。

表6—1列出了由颗粒、纤维及晶须增强陶瓷复合材料的断裂韧性和临界裂纹尺⼨⼤⼩的⽐较。

很明显连续纤维的增韧效果最佳,其次为品须、相变增韧和颗粒增韧。

⽆论是纤维、晶须还是颗粒增韧均使断裂韧性较整体陶瓷的有较⼤提⾼,⽽且也使临界裂纹尺⼨增⼤。

陶瓷基复合材料的基体为陶瓷,这是⼀种包括范围很⼴的材料,属于⽆机化合物纳构远⽐⾦属与合⾦复杂得多。

使⽤最多的是碳化硅、氮化硅、氧化铝等,它们普遍具有耐⾼温、耐腐蚀、⾼强度、重量轻和价格低等优点。

陶瓷材料中的化学键往注是介于离⼦键与共价键之间的混合键。

陶瓷基复合材料中的增强体通常也称为增韧体。

从⼏何尺⼨上可分为纤维(长、短纤维)、晶须和颗粒三类。

碳纤维是⽤来制造陶瓷基复合材料最常⽤的纤维之⼀。

碳纤维主要⽤在把强度、刚度、重量和抗化学性作为设计参数的构件,在1500霓的温度下,碳纤维仍能保持其性能不变,但对碳纤维必须进⾏有效的保护以防⽌它在空⽓中或氧化性⽓氛中被腐蚀,只有这样才能充分发挥它的优良性能。

其它常⽤纤维是玻璃纤维和硼纤维。

陶瓷材料中另⼀种增强体为晶须。

晶须为具有⼀定长径⽐(直径o 3。

1ym,长30—lMy”)的⼩单晶体。

从结构上看,晶须的特点是没有微裂纹、位偌、孔洞和表⾯损伤等⼀类缺陷,⽽这些缺陷正是⼤块晶体中⼤量存在且促使强度下降的主要原因。

在某些情况下,晶须的拉伸强度可达o.1Z(Z为杨⽒模量),这已⾮常接近⼗理论上的理想拉伸强度o.2Z。

陶瓷基复合材料

陶瓷基复合材料

碳/碳化硅陶瓷基复合材料一、简介陶瓷基复合材料(Ceramic matr ix composite ,CMC)是在陶瓷基体中引入第二相材料, 使之增强、增韧的多相材料, 又称为多相复合陶瓷(Multiphase composite ceramic)或复相陶瓷(Diphase ceramic)。

陶瓷基复合材料是20 世纪80 年代逐渐发展起来的新型陶瓷材料, 包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。

其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用, 成为理想的高温结构材料。

报道,陶瓷基复合材料正是人们预计在21 世纪中可替代金属及其合金的发动机热端结构的首选材料。

鉴于此, 许多国家都在积极开展陶瓷基复合材料的研究, 大大拓宽了其应用领域, 并相继研究出各种制备新技术。

其中,C/SiC 陶瓷基复合材料是其中一个非常重要的体系。

C/SiC 陶瓷基复合材料主要有两种类型, 即碳纤维/碳化硅(Cf /SiC)和碳颗粒/碳化硅(Cp/SiC)陶瓷基复合材料。

Cf /SiC 陶瓷基复合材料是利用Cf 来增强增韧SiC 陶瓷, 从而改善陶瓷的脆性, 实现高温结构材料所必需的性能, 如抗氧化、耐高温、耐腐蚀等;Cp/SiC 陶瓷基复合材料是利用Cp 来降低SiC 陶瓷的硬度, 实现结构陶瓷的可加工性能,同时具有良好的抗氧化性、耐腐蚀、自润滑等。

本文主要综述了Cf /SiC 陶瓷基复合材料的制备及应用研究现状,并且从结构和功能一体化的角度, 提出了采用软机械力化学法制备Cp 与SiC 复合粉体, 通过无压烧结得到强度、抗氧化性、耐腐蚀等性能以满足普通民用工业用的Cp/SiC 陶瓷基复合材料的制备技术及应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22
二、界面的作用
对于陶瓷基复合材料来讲,界面粘结性能影响陶瓷 基体和复合材料的断裂行为。
对于陶瓷基复合材料的界面来说:
一方面,应强到足以传递轴向载荷,并具有高的横向 强度; 另一方面,陶瓷基复合材料的界面要弱到足以沿界 面发生横向裂纹及裂纹偏转直到纤维的拔出。
因此,陶瓷基复合材料界面要有一个最佳的界面强度。
15
10.1.3 微晶玻璃
玻璃组成中引入晶核剂,通过热处理、光照或化 学处理等手段,使玻璃内均匀析出大量微小晶体, 形成致密的微晶相和玻璃相的多相复合体。 控制析出的微晶的种类、数量和尺寸,可以获得 透明微晶玻璃、膨胀系数为零的微晶玻璃及可切削 的微晶玻璃。按照基础玻璃组成,分为硅酸盐、铝 硅酸盐、硼硅酸盐、硼酸盐和磷酸盐5大类
34
晶须的拔出长度存在一个临界值lpo,当晶须
的某一端距主裂纹距离小于这一临界值时,则晶
须从此端拔出,此时的拔出长度小于临界拔出长
度lpo ;
lpo
35
如果晶须的两端到主裂纹的距离均大于临界拔出 长度时,晶须在拔出过程中产生断裂,断裂长度仍小 于临界拔出长度lpo ;
l1>lpo 及 l1>lpo
2
10.1 陶瓷基体
一些陶瓷材料的熔点/℃
化合物 熔点/℃ 化合物 熔点/℃ 化合物 熔点/℃
Al2O3 ZrO2 莫来石
2054 2677 1850
ZnO TiO2 SiC
1975 1857 2837
ZrN Ti2B TiC
2980 2897 3070
3
10.1 陶瓷基体 具有致命的缺点,即脆性。
l2
l1 l2 l1
36
界面结合强度直接影响了复合材料的韧化机制 与韧化效果。
界面强度过高,晶须将与基体一起断裂,限制了 晶须的拔出,因而也就减小了晶须拔出机制对韧性 的贡献。 但另一方面,界面强度的提高有利于载荷转移, 因而提高了强化效果。 界面强度过低,则使晶须的拔出功减小,这对韧 化和强化都不利,因此界面强度存在一个最佳值。
仍保持很高的机械强度。
化学稳定性好,与酸碱都不发生作用,常温下,也不 与氢氟酸发生作用。具有很好的介电性,同时还可以作
为透光度为80%以上的制品。
9
10.1.1 氧化物陶瓷
1)氧化铝陶瓷的主要性能
名 称
牌 号 刚玉-莫来石瓷 刚玉瓷 95 瓷 -Al2O3 3.5 180 280 -350 5.5 – 7.5 15 – 18 刚玉瓷 99 瓷 -Al2O3 3.9 250 370 - 450 6.7 25 - 30
12
10.1.2 非氧化物陶瓷
1)碳化硅陶瓷
α和β两种晶型, α为六方型多层链状结构。β型为立方 结构,在2100℃转变为α型。 无熔点,在2830℃发生分解。理论密度3.21g/cm3,莫氏 硬度9.2,耐磨性好,导热性好,热膨胀系数4.7×10-6/℃。 化学稳定性好,除磷酸、硝酸和氢氟酸混合酸外,与所 有的酸都不反应。碳化物中抗氧化能力最好。高温下能与 金属氧化物发生反应。 工业陶瓷中碳化硅有黑色和绿色两种,黑色是碳过量, 绿色是硅过量。
优点:耐高温、耐腐蚀、高强度、重量轻和价格低

6
10.1 陶瓷基体
常见的陶瓷基体有:
(1)氧化物基体
(2)非氧化物基体 金属碳化物,氮化物、硼化物等 (3)微晶玻璃
7
10.1.1 氧化物陶瓷
主要由离子键结合,也有一定成分的共价键
纯氧化物陶瓷的熔点多超过2000℃。在800~
1000℃以前强度降低不大
这一弱点正是目前陶磁材料的使用受到很 大限制的主要原因。
4
10.1 陶瓷基体
如何实现陶瓷的韧性化问题成了近年来陶瓷开 发的一个重点问题。 向陶瓷材料中加入起增韧作用的第二相、制成 陶瓷基复合材料是解决陶瓷增韧的重要手段。
5
10.1 陶瓷基体
现代陶瓷材料最早源于硅酸盐材料,逐渐扩大到 其他的无机非金属材料。 如:碳化硅、氮化硅、氧化铝、氧化锆、氧化镁
13
10.1.2 非氧化物陶瓷
2)氮化硅陶瓷
氮和硅的唯一化合物。有α、β两中晶型,α属于低温型, 在1400~1600℃时转变为β型(高温稳定型)。 两种变体均属于六方晶系,但c方向上α型晶格常数β型 的2倍。两种晶型密度很相近,相变时几乎不发生体积变 化 。理论密度为3.184g/cm3,布氏硬度99级,分解温度 1900℃,α型膨胀系数为3.0×10-6/℃, β型热膨胀系数为 3.6×10-6/℃。 20℃时电阻率为1013~14Ω∙cm。机械强度高,尤其是高 温机械强度。化学稳定性好,抗氧化能力强。
氧化物陶瓷在高温下不会被氧化,所以常做高
温耐火结构材料
常见的基体材料有氧化铝和氧化1)氧化铝陶瓷的主要性能
主要有具有α、β和γ三种晶型,其中α和γ型是纯氧化
铝,而β型是含碱的铝酸盐 基体材料的氧化铝陶瓷主要是α-Al2O3,纯度为99~ 99.5%,密度3.75~3.85g/cm3,熔点2054℃。 刚玉瓷具有很好的机械强度,加热到1600~1700℃
40
三、颗粒增韧机理
颗粒弥散强化: 直径从纳米量级到几十个微米,利用弹性模量和热 膨胀系数的差异,在冷却粒子和基体周围产生残余应力场。 与扩展裂纹尖端应力交互作用,从而产生裂纹的偏转、绕 道、分支和钉扎等效用,从而对基体产生增韧作用。
陶瓷基复合材料尤其是先进陶瓷基颗粒复合材料大 多数都是颗粒弥散增强。成本低,复合材料呈各向同 性。除了金属增韧粒子外,颗粒增强在高温下仍然起
75 瓷 -Al2O3 和 主晶相 -Al2O3 2SiO2 -3 3.2 – 3.4 密度,(gcm ) 140 抗拉强度, MPa 250 – 300 抗弯强度, MPa -6 5 - 5.5 热膨胀系数 ,10 /℃ 25 – 30 介电强度, KV/mm
10
10.1.1 氧化物陶瓷
11
10.1.2 非氧化物陶瓷
在自然界很少,需要人工合成。
非氧化物陶瓷主要是共价键结合而成,但也有
一定的金属键成分。
这类陶瓷材料的熔点高、硬度大和耐磨性好。
具有特殊的电磁和化学性质。
但这类材料的脆性大,高温抗氧化能力不高, 所以在高温氧化气氛中使用寿命有限。 常见的基体材料有碳化硅和氮化硅陶瓷。
16
陶瓷复合材料的增强体
几何尺寸上增强体可分为三类: 纤维(长、短纤维) 晶须 颗粒
17
10.2 陶瓷基复合材料的界面和强韧化机理
10.2.1 陶瓷基复合材料的界面 一、 界面的粘结形式
二、 界面的作用
三、 界面性能的改善
18
一、界面的粘结形式
对于陶瓷基复合材料来讲,界 面的粘结形式主要有两种: (1) 机械粘结 (2) 化学粘结
37
下图为SiCw/ ZrO2材料的载荷--位移曲线:
载 荷
从图中可以看出,有明显的锯齿效应,这 是晶须拔出桥连机制作用的结果。
38
(N) (位移 um)
三、颗粒增韧机理
增韧机制可能有裂纹受阻或裂纹偏转、相变增韧 和弥散增韧。
39
三、颗粒增韧机理
延性颗粒: 过渡元素(铁、钴、镍、铬、钨、钼等) 及其合金。复合材料韧性有明显提高,强度不足。 刚性颗粒: 主要是陶瓷颗粒,如SiC、TiB2、B4C等, 脆性问题没有解决。 刚性颗粒增强陶瓷复合材料的抗弯强度和断裂韧性 都有所增加,但结果不甚理想,尤其是断裂韧性。 金属颗粒增强陶瓷复合材料韧性可以显著增强,但 强度变化不大,尤其是高温强度下降。
10.陶瓷基复合材料
1
10.1 陶瓷基体
陶瓷基体,是一种包括范围很广的材料,属于无机化合物而 不是单质,所以它的结构远比金属合金复杂得多。 陶瓷材料中的化学键往往是介于离子键与共价键之间的 混合键。
基体普遍特点:
熔点高,耐高温,硬度大,耐磨性好 化学稳定性好,耐腐蚀
密度较小
韧性低(或脆性) 热膨胀系数较小,抗热震性能差
23
强的界面粘结往往导致
纤维
脆性破坏,如下图 (a)所
示。 裂纹可以在复合材料的 任一部位形成,并迅速扩 展至复合材料的横截面, 导致平面断裂。 (a)强界面结合 平面断裂主要是由于在断裂过程中,强的界面 结合不产生额外的能量消耗。
24
基体
若界面结合较弱,当基体 中的裂纹扩展至纤维时,将
导致界面脱粘,其后裂纹发
莫来石纤维增强玻璃基体复合材料的断裂行为差异:
莫来石纤维上未涂BN涂层
莫来石纤维上涂有BN涂层
从图中可看出,若纤维未涂BN涂层,则复合材料 的断面呈现为脆性的平面断裂;而经CVD沉积0.2um的 29 BN涂层后,断面上可见到大量的纤维拔出。
10.2.2 陶瓷基复合材料的强韧化机理
一、纤维增韧机理 二、晶须增韧机理 三、颗粒增韧机理
26
三、界面性能的改善
为获得最佳的界面结合强度 ① 完全避免界面间的化学反应 或 ② 尽量降低界面间的化学反应程度和范围
27
在实际应用中,除选择纤维和基体在加工和使 用期间能形成稳定的热力学界面外,最常用的方法就 是在与基体复合之前,往增强材料表面上沉积一层薄 的涂层。 C和BN是最常用的涂层,此外还有SiC、ZrO2 和SnO2涂层。 涂层的厚度通常在0.1~1um,涂层的选择取决 于纤维、基体、加工和服役要求。 纤维上的涂层除了可以改变复合材料界面结合 强度外,对纤维还可起到保护作用,避免在加工和处 理过程中造成纤维的机械损坏。 28
实际材料断裂过程中,纤维的断裂并非发生在 同一裂纹平面,这样主裂纹还将沿纤维断裂位置 的不同而发生裂纹转向。 这也同样会使裂纹的扩展阻力增加,从而使韧 性进一步提高。
33
二、晶须增韧机理
相关文档
最新文档