2014-2015学年北师大版七年级上期中考试数学试题及答案

合集下载

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试卷2022年一、单选题1.下图中哪个图形经过折叠后可以围成一个棱柱()A .B .C .D .2.如果收入80元记作+80元,那么支出20元记作()A .+20元B .-20元C .+100元D .-100元3.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点为439000米.将439000用科学记数法表示应为()A .60.43910⨯B .64.3910⨯C .54.3910⨯D .34.3910⨯4.用一个平面去截一个如图所示的正方体,截面形状不可能为()A .B .C .D .5.下面说法正确的是()A .13πx 2的系数是13B .13xy 2的次数是2C .﹣5x 2的系数是5D .3x 2的次数是26.下列运算正确的是()A .4a+3b=7abB .4xy-3xy=xyC .-2x+5x=7xD .2y-y=17.“五一”小长假期间,某公园的门票价格是:成人10元,学生5元.某旅行团有成人x 人,学生y 人,该团应付的门票为()A .(105)x y +元B .(105)y x +元C .(1515)x y +元D .15xy 元8.一天早晨的气温是﹣7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A .﹣5℃B .﹣6℃C .﹣7℃D .﹣8℃9.已知-5a 6b 2和7a 2nb 2是同类项,则代数式10n-2的值是()A .58B .18C .28D .3810.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,搭100个这样的小正方形需要小棒()根.A .300B .301C .302D .400二、填空题11.计算:-3+2=_____.12.从正面,左面,上面看到的几何体的形状图都一样的几何体是________(一种即可).13.数轴的单位长度为1,如果点A 表示的数是-2,那么点B 表示的数是_________.14.计算(﹣1)÷6×(﹣16)=_____.15.化简:2(a+1)-a=____16.若a-2b=3,则2a-4b-5=______.17.数a ,b 在数轴上的位置如图所示,化简a a b --的结果是__________.三、解答题18.计算:2108(2)(4)(3)-+÷---⨯-.19.化简:822(52)a b a b ++-.20.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.21.9月10日这一天下午,出租车司机小王在东西走向的幸福大道上运营,若规定向东为正,向西为负,出租车的行车里程如下:+15,-4,+13,-10,-12,+3,-13,-17(1)将最后一名乘客送到目的地,小王距离出车地点多少千米?(2)若汽车耗油量为0.2升/千米,这天下午汽车共耗油多少升?22.如图是分别从正面、左面、上面观察一个几何体得到的图形,请解答以下问题:(1)这个几何体的名称为;(2)若从正面看到的是长方形,其长为10cm ;从上面看到的是等边三角形,其边长为4cm ,求这个几何体的侧面积.23.有一道化简求值题:“当a=-2,b=-3时,求(3a 2b-2ab )-2(ab-4a 2)+(4ab-a 2b )的值.”小芳做题时,把“a=-2”错抄成了“a=2”,但她的计算结果却是正确的,小芳百思不得其解,请你先化简并求值,再帮助她解释一下原因.24.在数轴上把下列各数表示出来,并用“<”连接各数.0,|1|--,-3,112,-(-4)25.已知,一个点从数轴上的原点开始,先向左移动7个单位到达A 点,再从A 点向右移动12个单位到达B 点,把点A 到点B 的距离记为AB ,点C 是线段AB 的中点.(1)点C 表示的数是;(2)若点A以每秒2个单位的速度向左移动,同时C、B点分别以每秒1个单位、4个单位的速度向右移动,设移动时间为t秒,①点C表示的数是(用含有t的代数式表示);②当t=2秒时,求CB-AC的值;③试探索:CB-AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太麻烦,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果:1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×=.(1)补全例题解题过程;(2)请猜想:1+2+3+4+5+6+…+(2n﹣2)+(2n﹣1)+2n=.(3)试计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).参考答案1.B【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:选项A、D缺少一个面,不能围成棱柱;选项C中折叠后底面重合,不能折成棱柱;只有B能围成三棱柱.所以B选项是正确的.【点睛】考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.2.B【解析】【详解】试题分析:具有相反意义的量是指意义相反,与值无关,收入为正,则支出为负.∵收入80元记作+80元,∴支出20元记作-20元.故选:B.考点:具有相反意义的量.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:439000=4.39×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【解析】【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,截面也不可能有弧度,因此截面形状不可能为圆.解:用一个平面无论如何去截,截面也不可能有弧度,因此截面形状不可能为圆.故选:C .【点睛】本题考查正方体的截面.正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形或其它的弧形.5.D 【解析】【分析】根据单项式的系数和次数的定义即可完成即可.【详解】解:A .13πx 2的系数是13π,故此选项错误;B .12xy 2的次数是3,故此选项错误;C .﹣5x 2的系数是﹣5,故此选项错误;D .3x 2的次数是2,正确.故答案为D .【点睛】本题考查了单项式的系数和次数,解题的关键在于掌握单项式的系数和次数的求法,即系数为单项式的数字部分,注意π为数字,这是解答本题的关键.6.B 【解析】【分析】根据整式加减法的运算法则进行计算判断即可.【详解】A 选项中,因为43a b +中两个项不是同类项,不能合并,所以A 中计算错误,不符合题意;B 选项中,因为43xy xy xy -=,所以B 中计算正确,符合题意;C 选项中,因为253x x x -+=,所以C 中计算错误,不符合题意;D 选项中,因为2y y y -=,所以D 中计算错误,不符合题意.故选B .熟记“整式加减法的运算法则”是正确解答本题的关键.7.A【解析】【分析】门票费=成人门票总价+学生门票总价.【详解】解:门票费为(10x+5y)元.故选A.【点睛】解决问题的关键是读懂题意,找到所求的量的等量关系.8.A【解析】【详解】=-+-=-℃晚上的气温71195故选A.9.C【解析】【分析】根据同类项定义,相同字母的指数相同,可得出n的值,继而可得出答案.【详解】解:∵-5a6b2和7a2nb2是同类项,∴2n=6,解得:n=3,∴10n-2=28.故选择:C.【点睛】本题考查了同类项,掌握同类项的定义是解题的关键.10.B【解析】【分析】通过归纳与总结得出规律:每增加1个正方形,火柴棒的数量增加3根,由此求出第n个图形时需要火柴的根数的代数式,然后代入求值即可.【详解】解:搭2个正方形需要4+3×1=7根火柴棒;搭3个正方形需要4+3×2=10根火柴棒;…,搭n个这样的正方形需要4+3(n﹣1)=3n+1根火柴棒;∴搭100个这样的正方形需要3×100+1=301根火柴棒;故选B.【点睛】本题考查了图形规律型:图形的变化.解题的关键是发现各个图形的联系,找出其中的规律,有一定难度,要细心观察总结.11.-1【解析】【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【详解】解:﹣3+2=﹣1.故答案为:﹣1.12.球(答案不唯一)【解析】【分析】根据主视图,左视图,俯视图的定义找出从正面,左面,上面看到的几何体的形状图都一样的几何体即可.【详解】解:球从正面,左面,上面看到的平面图形为全等的圆,故答案为球(答案不唯一).【点睛】本题考查三视图的有关知识,注意三视图都相同的常见的几何体有球、正方体.13.2【解析】由4,AB=点A表示的数是-2,把点A往右移动4个单位可得答案.【详解】解: 点A表示的数是-2,4,AB=∴把点A往右移动4个单位可得点B,B∴表示的数为:242,-+=故答案为:2.【点睛】本题考查的是数轴上两点之间的距离,及点的移动后对应的数的表示,掌握以上知识是解题的关键.14.1 36.【解析】【分析】由有理数的乘除法的运算法则进行计算,即可得到答案.【详解】解:原式=111()66-⨯⨯-=136;故答案为:1 36.【点睛】本题考查了有理数的乘除法混合运算,解题的关键是掌握运算法则进行解题.15.a+2##2+a【解析】【详解】解:原式=2a+2-a=a+2.故答案为:a+216.1【解析】【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.解:a-2b=3,∵2a ﹣4b ﹣5=2(a ﹣2b)-5=2×3-5=1.故答案为:1.17.-b 【解析】【分析】根据数轴可判断a <0,a−b <0,然后去绝对值即可.【详解】解:由数轴可知,a <0,a−b <0,∴()a a b a b a a b a b --=---=--+=-,故答案为-b .【点睛】本题考查了数轴与绝对值,解决此类题目的关键是判断绝对值里式子的符号,熟练运用去绝对值的法则,合并同类项的法则,是各地中考的常考点.18.-20【解析】【分析】根据有理数的运算顺序,先算乘方,再算乘除,最后算加减即得.【详解】解:原式=−10+8÷4−12=-10+2-12=-20【点睛】本题考查有理数的混合运算,按照有理数运算顺序计算是解题关键,按照乘法与除法运算法则确定符号是易错点.19.18a−2b 【解析】【分析】根据整式的运算法则,先去括号,再合并同类项即可求出答案.【详解】解:原式=8a+2b+10a−4b=18a−2b【点睛】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.见解析【解析】【分析】从正面看:共有3列,从左往右分别有1,2,1个小正方形;从左面看:共有2列,左面一列有2个,右边一列有1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】此题考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.21.(1)小王距离出车地点西边25千米(2)这天下午汽车共耗油17.4升【解析】【详解】试题分析:(1)根据有理数的加法,直接可求解;(2)根据行车就要耗油,求其各段行驶过程的绝对值,乘以单位耗油量即可.试题解析:(1)+15-4+13-10-12+3-13-17=-25千米小王距离出车地点西边25千米(2)+15+4+13+10+12+3+13+17=87千米这天下午汽车共耗油87×0.2=17.4升22.(1)三棱柱;(2)这个几何体的侧面积为2120cm.【解析】【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10cm,4cm,计算出一个长方形的面积,乘3即可.【详解】解:(1)这个几何体是三棱柱;故答案为:三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长,宽是三棱柱的高,所以三棱柱侧面展开图形的面积为:()2S cm=⨯⨯=.3410120120cm.答:这个几何体的侧面积为2【点睛】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.2a2b+8a2,8,理由见解析【解析】【分析】先把(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)去括号后合并同类项化为2a2b+8a2,再代入求值即可.无论a=−2,还是a=2,a2都等于4,代入后结果是一样的.【详解】解:(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)=3a2b−2ab−2ab+8a2+4ab−a2b=2a2b+8a2当a=−2,b=−3时,原式=2×4×(−3)+8×4=8.原因:因为无论a=−2,还是a=2,a 2都等于4,代入后结果是一样的,所以计算结果是正确的.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.24.见解析,-3<|1|--<0<112<-(-4).【解析】【分析】在数轴上表示出各数,从左到右用“<”连接起来即可.【详解】解:如图所示,,由图可知,-3<|1|--<0<112<-(-4).故答案为见解析,-3<|1|--<0<112<-(-4).【点睛】本题考查数轴,有理数的大小比较,熟知数轴上右边的数总比左边的大是解题的关键.25.(1)-1(2)①−1+t ;②0;③CB−AC 的值不随着时间t 的变化而改变,CB−AC 的值为0.【解析】【分析】(1)根据题意可以求得点C 表示的数;(2)①根据题意可以用代数式表示点C 运动时间t 时表示的数;②根据题意可以求得当t =2秒时,CB−AC 的值;③先判断是否变化,然后求出CB−AC 的值即可解答本题.(1)解:由题意可得,AC =12×12=6,∴点C 表示的数为:0−7+6=−1,故答案为:−1;(2)解:①由题意可得,点C移动t秒时表示的数为:−1+t,故答案为:−1+t;②当t=2时,CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0;③CB−AC的值不随着时间t的变化而改变,∵CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0,∴CB−AC的值不随着时间t的变化而改变,CB−AC的值为0.【点睛】点评:本题考查数轴,解答本题的关键是明确题意,找出所求问题需要的条件.26.(1)50;5050;(2)n(2n+1);(3)100a+4950b.【解析】【分析】(1)由题意可得从1到100共有100个数据,两个一组,则共有50组,由此即可补全例题的解题过程;(2)观察、分析所给式子可知,所给代数式中共包含了2n个式子,这样参照例题方法解答即可;(3)观察、分析所给式子可知,所给代数式中共包含了100个式子,再参照例题方法解答即可.【详解】解:(1)原式=1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×50=5050;故答案为:50;5050;(2)原式=(1+2n)+(2+2n-1)+(3+2n-2)+…+(n+n+1)=(2n+1)+(2n+1)+(2n+1)+…+(2n+1)=(2n+1)×n=n(2n+1);故答案为:n(2n+1);(3)原式=[a+(a+99b)]+[(a+b)+(a+98b)]+…+[(a+49b)+(a+50b)]=(2a+99b)+(2a+99b)+…+(2a+99b)=50(2a+99b)=100a+4950b.【点睛】本题的解题要点是通过观察、分析得到本题的三个式子都有如下规律:(1)每个算式中都包含了偶数个式子;(2)每个算式中相邻两个式子的差是相等的;(3)每个算式中第1个和最后1个式子相加,第2个式子和倒数第2个式子相加,…,所得的和相等;这样根据上述特点即可按例题中的方法方便的计算出每个小题的结果了.。

初中七年级上数学试卷与解析-北师大版第6章 数据的收集与整理测试卷(3)

初中七年级上数学试卷与解析-北师大版第6章 数据的收集与整理测试卷(3)

《第六章数据的收集与整理》章末测试卷一、选择题1.(2018•重庆)下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查2.如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.音乐组B.美术组C.体育组D.科技组3.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.964.如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占学校教职工人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组5.(2018•梧州)九年级一班同学根据兴趣分成A、B、C、D、E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.11人C.12人D.15人6.(2018•荆州)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人二、填空题7.(2018•长沙)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如图扇形统计图,则“世界之窗”对应扇形的圆心角为度.8.(2015•凉山州)小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A型血的有20人,则O型血的有人.9.(2015•广州)根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是.(填主要来源的名称)10.下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=.三、解答题11.杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.12.(2018•常州)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.13.(2015•大连)某地区共有1800名初三学生,为了解这些学生的体质健康状况,开学之初随机选取部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分.等级测试成绩(分)人数优秀45≤x≤50140良好37.5≤x<4536及格30≤x<37.5不及格x<306根据以上信息,解答下列问题:(1)本次测试学生体质健康成绩为良好的有36人,达到优秀的人数占本次测试总人数的百分比为70%.(2)本次测试的学生数为200人,其中,体质健康成绩为及格的有18人,不及格的人数占本次测试总人数的百分比为3%.(3)试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数.14.市交警支队对某校学生进行交通安全知识宣传,事先以无记名的方式随机调查了该校部分学生闯红灯的情况,并绘制成如图所示的统计图.请根据图中的信息回答下列问题:(1)本次共调查了多少名学生?(2)如果该校共有1500名学生,请你估计该校经常闯红灯的学生大约有多少人;(3)针对图中反映的信息谈谈你的认识.(不超过30个字)15.(2018•阜新)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共20种,扇形统计图中a=40,扇形统计图中A部分圆心角的度数为72°;(2)补全条形统计图;(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?16.(2018•贵港)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是50;在扇形统计图中,m=16,n=30,“答对8题”所对应扇形的圆心角为86.4度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.参考答案一、选择题1.(2018•重庆)下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.音乐组B.美术组C.体育组D.科技组【考点】扇形统计图.【分析】根据扇形统计图中扇形面积越大,所占的比例越重,相应的人数越多,可得答案.【解答】解:由40%>25%>23%>12%,体育组的人数最多,故选:C.【点评】本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.96【考点】频数(率)分布直方图;用样本估计总体.【专题】图表型.【分析】根据直方图求出身高在169.5cm~174.5cm之间的人数的百分比,然后乘以300,计算即可.【解答】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:×100%=24%,所以,该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题4.如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占学校教职工人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组【考点】频数(率)分布直方图;中位数;众数.【分析】各组的频数的和就是总人数,然后根据百分比、众数、中位数的定义即可作出判断.【解答】解:A、该学校教职工总人数是4+6+11+10+9+6+4=50(人),故正确;B、在40≤x<42小组的教职工人数占该学校全体教职工总人数的比例是:×100%=20%,故正确;C、教职工年龄的中位数一定落在40≤x<42这一组,正确;D、教职工年龄的众数一定在38≤x<40这一组.错误.故选:D.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5.(2018•梧州)九年级一班同学根据兴趣分成A、B、C、D、E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.11人C.12人D.15人【分析】从条形统计图可看出A的具体人数,从扇形图找到所占的百分比,可求出总人数.然后结合D所占的百分比求得D小组的人数.【解答】解:总人数50(人)D小组的人数=5012(人).故选:C.【点评】本题考查了条形统计图和扇形统计图,从上面可得到具体的值,以及用样本估计总体和扇形统计图,扇形统计图表示部分占整体的百分比.6.(2018•荆州)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人【分析】结合条形图和扇形图,求出样本人数,进而进行解答.【解答】解:A、本次抽样调查的样本容量是5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.【点评】本题考查了频数分布直方图、扇形统计图,熟悉样本、用样本估计总体是解题的关键,另外注意学会分析图表.二、填空题7.(2018•长沙)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如图扇形统计图,则“世界之窗”对应扇形的圆心角为90度.【分析】根据圆心角=360°×百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°×(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.【点评】本题考查的是扇形统计图的综合运用,读懂统计图是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.8.(2015•凉山州)小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A型血的有20人,则O型血的有10人.【考点】扇形统计图.【分析】根据A型血的有20人,所占的百分比是40%即可求得班级总人数,根据AB型所对应的扇形圆心角的度数求得对应的百分比,则用总人数乘以O型血所对应的百分比即可求解.【解答】解:全班的人数是:20÷40%=50(人),AB型的所占的百分比是:=10%,则O型血的人数是:50(1﹣40%﹣30%﹣10%)=10(人).故答案为:10.【点评】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.9.(2015•广州)根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是机动车尾气.(填主要来源的名称)【考点】扇形统计图.【分析】根据扇形统计图即可直接作出解答.【解答】解:所占百分比最大的主要来源是:机动车尾气.故答案是:机动车尾气.【点评】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.10.下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=12.【考点】频数(率)分布折线图.【专题】计算题;数形结合.【分析】根据折线图即可求得a、b的值,从而求得代数式的值.【解答】解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案为:12.【点评】本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.三、解答题11.杭州市推行垃圾分类已经多年,但在剩余垃圾中除了厨余类垃圾还混杂着非厨余类垃圾.如图是杭州某一天收到的厨余垃圾的统计图.(1)试求出m的值;(2)杭州市某天收到厨余垃圾约200吨,请计算其中混杂着的玻璃类垃圾的吨数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据整体单位减去其它类垃圾所占的百分比,可得厨余类所占的百分比;(2)根据总垃圾乘以玻璃类垃圾所占的百分比,可得答案.【解答】解:(1)m%=1﹣22.39%﹣0.9%﹣7.55%﹣0.15%=69.01%,m=69.01;(2)其中混杂着的玻璃类垃圾的吨数约等于200×0.9%=1.8(吨).【点评】本题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.12.(2018•常州)为了解某市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该市共有12000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.【分析】(1)根据2册的人数除以占的百分比即可得到总人数;(2)求出1册的人数是100×30%=30人,4册的人数是100﹣30﹣40﹣20=10人,再画出即可;(3)先列出算式,再求出即可.【解答】解:(1)40÷40%=100(册),即本次抽样调查的样本容量是100,故答案为:100;(2)如图:;(3)12000×(1﹣30%﹣40%)=3600(人),答:估计该市初中学生这学期课外阅读超过2册的人数是3600人.【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.13.(2015•大连)某地区共有1800名初三学生,为了解这些学生的体质健康状况,开学之初随机选取部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分.等级测试成绩(分)人数优秀45≤x≤50140良好37.5≤x<4536及格30≤x<37.5不及格x<306根据以上信息,解答下列问题:(1)本次测试学生体质健康成绩为良好的有36人,达到优秀的人数占本次测试总人数的百分比为70%.(2)本次测试的学生数为200人,其中,体质健康成绩为及格的有18人,不及格的人数占本次测试总人数的百分比为3%.(3)试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数.【考点】扇形统计图;用样本估计总体;统计表.【分析】(1)根据统计图和统计表即可直接解答;(2)根据优秀的有140人,所占的百分比是70%即可求得总人数,利用总人数减去其它组的人数即可求得及格的人数,然后根据百分比的意义求得不及格的人数所占百分比;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)本次测试学生体质健康成绩为良好的有36人.达到优秀的人数占本次测试总人数的百分比为70%.故答案是:36,70;(2)调查的总人数是:140÷70%=200(人),体质健康成绩为及格的有200﹣140﹣36﹣6=18(人),不及格的人数占本次测试总人数的百分比是:×100%=3%.故答案是:200,18,3%;(3)本次测试学生体质健康成绩为良好的有36人,=18%,估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数是:1800×(70%+18%)=1584(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.14.(2013•盐城)市交警支队对某校学生进行交通安全知识宣传,事先以无记名的方式随机调查了该校部分学生闯红灯的情况,并绘制成如图所示的统计图.请根据图中的信息回答下列问题:(1)本次共调查了多少名学生?(2)如果该校共有1500名学生,请你估计该校经常闯红灯的学生大约有多少人;(3)针对图中反映的信息谈谈你的认识.(不超过30个字)【考点】频数(率)分布直方图;用样本估计总体.【分析】(1)每项的人数的和就是总人数;(2)1500乘以经常闯红灯的人数所占的比例即可求解;(3)根据实际情况说一下自己的认识即可,答案不唯一.【解答】解:(1)调查的总人数是:55+30+15=100(人);(2)经常闯红灯的人数是:1500×=225(人);(3)学生的交通安全意识不强,还需要进行教育.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.(2018•阜新)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共20种,扇形统计图中a=40,扇形统计图中A部分圆心角的度数为72°;(2)补全条形统计图;(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?【分析】(1)根据A类的种数除以占的百分比即可得到总人数;再根据总数依次求出即可;(2)求出B的种数是20﹣4﹣6﹣8=2,画出即可;(3)用样本估计总体.【解答】解:(1)这次抽查了四类特色美食共4÷20%=20种,∵8÷20=0.4=40%,∴a=40,360°×20%=72°,即扇形统计图中A部分圆心角的度数是72°,故答案为:20,40,72°;(2);(3)12036(种),答:估计约有36种属于“豆制品类”.【点评】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.16.(2018•贵港)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是50;在扇形统计图中,m=16,n=30,“答对8题”所对应扇形的圆心角为86.4度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.【分析】(1)先读图,根据图形中的信息逐个求出即可;(2)求出人数,再画出即可;(3)根据题意列出算式,再求出即可.【解答】解:(1)5÷10%=50(人),本次抽查的样本容量是50,0.16=16%,1﹣10%﹣16%﹣24%﹣20%=30%,即m=16,n=30,360°86.4°,故答案为:50,16,30,86.4;(2);(3)2000×(24%+20%+30%)=1480(人),答:该校答对不少于8题的学生人数是1480人.【点评】本题考查了条形统计图,总体、样本、个体、样本容量等知识点,能根据图形得出正确信息是解此题的关键.第21页(共21页)。

新北师大版2014-2015年七年级上学期期末考试数学试题及答案

新北师大版2014-2015年七年级上学期期末考试数学试题及答案

新北师大版2014—2015学年第一学期期末考试七年级数学试题时间120分钟 满分120分 2015、1、17 一、选择题(本大题有8小题,每小题3分,共24分.)1.下列各组数中,互为相反数的是( ).A.()2--和2B. )(和3)3(+--+C. 221-和 D. ()55----和2.下列方程①x-2=x 3,②x=0,③y +3=0,④x +2y =3,⑤x 2=2x,⑥x x 61312=+中是一元一次方程的有( ).A .2个B .3个C .4个D .5个3. 十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为( )A .146×107B .1.46×107C .1.46×109D .1.46×10104.下列结论正确的是( ). A.单项式52xy π的系数是51,次数是4 B. 32ab 3的次数是6次C.单项式-xyz 的系数是-1,次数是4D.多项式2x+xy-3是二次三项式5.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( ).A .a +b>0B .ab >0C .110a b -<D .110a b +>6.如下图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( ).A .①②B .②③C .②④D .③④7.整理一批图书,由一个人做要40h 完成,现计划有一部分人先做4h ,然后增加2人与他们一起做8h ,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x 人先做4h ,下列四个方程中正确的是( ) A.140840)2(4=++x x B.140)2(8404=++x xC.140)2(8404=-+x x D.1408404=+x x8.当x=1时,代数式ax 13++bx 的值为2014,则当x= -1时,ax 13++bx 的值为( ).A.-2012B.2015C. 2012D.不能确定二、填空题(本大题有8小题,每小题3分,共24分)9. 132-的相反数是________,倒数是________. 10. 已知∠A =40°,则它的余角的度数为 . 11. 若23(2)0m n -++=,则m +2n 的值为 .12.若(a-1)x a +3=-6是关于x 的一元一次方程,则a=________.13.小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是____ .14. 按下图所示的程序流程计算,若开始输入的值为3=x ,则最后输出的结果是____ .15若∠的度数为 .16.观察下列各数:331=,932=,2733=,8134=,24335=……则20143的个位数字是________.三、计算题(本大题共有4小题,共24分)17.(6分)计算:-14-14×[2-(-3)]18.(6分)计算: 48°39′+67°33′19.(6分)解方程:4352x x --=--20.(6分)解方程:3122413--=+y y四.解答题(共48分)21.(6分)先化简,再求值:)(3)213(2222y x y x x x ++-+-,其中2-=x ,3=y .DCBA22.(6分):一个角的余角比它的补角的13大10゜,求这个角的度数.23.(8分)根据下列语句,画出图形.已知四点A 、B 、C 、D. ① 画直线AB ; ② 连接AC 、BD ,相交于点O ; ③ 画射线AD 、BC ,交于点P .24.(8分)2015年元旦,某人用400元购买了8套儿童服装,准备以一定价格出售.如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下: +2,-4,+2,+1,-2,-1,0,-2.(单位:元) (1)当他卖完这8套儿童服装后是盈利还是亏损? (2)每套儿童服装的平均售价是多少元?25.(10分) 如图,OB是∠AOC的平分线,OD是∠EOC的平分线.(1)如果∠AOD=75°,∠BOC=19°,求∠DOE的度数.(2)如果∠BOD=56°,求∠AOE的度数.26. (10分).某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)设购买乒乓球x盒时,在甲家购买所需多少元?在乙家购买所需多少元?(用含x 的代数式表示,并化简)(2)当购买乒乓球多少盒时,两种优惠办法付款一样?(3)当购买30盒乒乓球时,若让你选择一家商店去办这件事,你打算去哪家商店购买?为什么?初一数学试题答案二、填空题(本大题有6小题,每小题4分,共24分) 9. 213;7210. 60度 11. -1 12. -1 13.两点确定一条直线14. 231 15. 120度 16. 9三、解答题(本大题共有7小题,共60分)26、解:(1)甲店:30×5+5×(x-5)=5x+125(元) 乙店:90%(30×5+5x)=4.5x+135(元); (2)5x+125=4.5x+135 解得:x=20; (3)当购买30盒乒乓球时,若在甲店购买,则费用是:30×5+125=275元, 若在乙店购买,则费用是:30×4.5+135=270元, 应该在乙店购买.答:当购买乒乓球20盒时,在甲、乙两店所需支付的费用一样;当购买30盒乒乓球时,应该在乙店购买.。

北师大版七年级上册数学期中试题及答案

北师大版七年级上册数学期中试题及答案

北师大版七年级上册数学期中试题2022年一、单选题1.下列计算不正确...的是()A .253-=-B .()()257-+-=-C .()239-=-D .()211-+=-2.把351000用科学记数法表示,正确的是()A .0.351×106B .3.51×105C .3.51×106D .35.1×1043.下列说法正确的是()A .x 不是单项式B .0不是单项式C .-x 的系数是-1D .1x是单项式4.下列各组式子中是同类项的是()A .4x 与4yB .24xy 与4xyC .24xy 与24x yD .24xy 与24y x5.下列计算中结果正确的是()A .459ab ab +=B .22330a b ba -=C .66xy x y-=D .34712517x x x +=6.用算式表示“比3-℃低8℃的温度”正确的是()A .385-+=B .3811--=-C .3811-+=-D .385--=-7.在代数式25x +,1-,232x x -+,π,5x,215x x ++中,多项式有()A .2个B .3个C .4个D .6个8.有理数a 、b 在数轴上的位置如右图所示,则下面的关系式中正确的个数为()①a-b>0②a+b >0③11a b>④b a ->0A .1个B .2个C .3个D .4个9.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n 需几根火柴棒()A .2+7nB .8+7nC .4+7nD .7n+110.单项式3245a b c -的系数和次数分别是()A .﹣5和9B .﹣5和4C .15-和4D .15-和911.计算27--的结果是()A .9-B .9C .5-D .512.数据393000米用科学记数法表示为()A .70.39310⨯米B .63.9310⨯米C .53.9310⨯米D .439.310⨯米13.下列各数−28,15--,0,−(−6.1),−22中,负数的个数有()A .2个B .3个C .4个D .5个14.下面各组数中,相等的一组是()A .﹣22与(﹣2)2B .323与3(23C .﹣|﹣2|与﹣(﹣2)D .(﹣3)3与﹣3315.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A .①②③④B .②①③④C .③②①④D .④②①③16.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元之后又降低20%,现在售价为n 元,那么该电脑的原售价为()A .(5m+n )元B .(5n+m )元C .(54n m +)元D .(45n m +)元17.下列各题正确的有()个:①()201612016-=;②()011÷-=-;③76233()322⎛⎫-⨯-=- ⎪⎝⎭;④n 棱柱有(2)n +个面,2n 个顶点;⑤平方数是它本身的数是1或0;⑥倒数是它本身的数是±1或0.A .2个B .3个C .4个D .5个18.若a 、b 为实数.2|2|(1)0a b -++=,则2a b -的值为()A .0B .3C .5D .119.一只蚂蚁在数轴上先向右爬3个单位,再向左爬6个单位,所在位置正好距离数轴原点2个单位,则蚂蚁的起始位置所表示的数是()A .5B .-1或5C .1或5D .0或-520.如图,硬纸板上有10个无阴影的正方形,从中选1个,使得它与图中多个有阴影的正方形一起能折叠成一个正方体纸盒,选法共有()A .4种B .5种C .6种D .7种二、填空题21.若3a 2bcm 为七次单项式,则m 的值为___.22.()311246⎛⎫-⨯-= ⎪⎝⎭______.23.写出一个在122-和2之间的负整数:______.24.代数式38x -与3互为相反数,则x =______.25.计算:()()2021201920201236⎛⎫-⨯-⨯-= ⎪⎝⎭______.26.现有一列数1x ,2x ,…,2021x ,其中23x =-,75x =,3336x =-,且满足任意相邻三个数的和为相等的常数,则122021x x x +++L 的值为______.27.已知单项式21312m x y --与64n xy +是同类项,则m n ⋅=_______28.已知代数式2a a +的值是1,则代数式2222011a a ++值是____29.用“>”或“=”或“<”填空.①﹣5_____3;②34-_____35-;③﹣|﹣2.25|_____﹣2.530.已知2350x y --=,则6915x y -+=___.31.如图是一个数值转换机,若输入a 的值为-1,则输出的结果应为___.32.已知a ,b ,c 是三个有理数,他们在数轴上的位置如图所示,化简a b c a b c -+--+=___.33.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,⋯⋯,按此规律,图案ⓝ需________________根火柴棒.三、解答题34.计算(1)()()136243-÷-+⨯-(2)()2411333⎡⎤--⨯--⎣⎦35.解方程(1)617x +=(2)3845x x -=-36.画出数轴,在数轴上标出下列各数,并用“<”把这些数连接起来.2, 3.5-,3-,2.5,5-,()22-.37.先化简,再求值:()()22222222322x y y xyx ++---,其中1,2x y =-=.38.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:9+、4+、7-、5+、8-、6+、3-、6-、4-、10+.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?39.小红做一道数学题“两个多项式A、B,B为2456x x--,试求A+B的值”.小红误将A+B看成A-B,结果答案(计算正确)为271012x x-++.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.40.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工重量减少了20%,价格增加了40%,问:(1)写出x千克这种蔬菜加工后可卖钱数的代数式;(2)如果这种蔬菜1000千克,不加工直接出售,每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?41.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.(1)则a=,b=,c=.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C 的距离和为40个单位?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是xP、xQ、xT,点Q出发的时间为t,当143<t<172时,求2|xP﹣xT|+|xT﹣xQ|+2|xQ﹣xP|的值.42.请大家阅读下面两段材料,并解答问题:材料1:我们知道在数轴上表示4和1的两点之间的距离为3(如图1),而|4﹣1|=3,所以在数轴上表示4和1的两点之间的距离为|4﹣1|.材料2:再如在数轴上表示4和﹣2的两点之间的距离为6(如图2)而|4﹣(﹣2)|=6,所以数轴上表示数4和﹣2的两点之间的距离|4﹣(﹣2)|.(1)(如图3)根据上述规律,我们可以得出结论:在数轴上表示数a和数b两点之间的距离等于.(2)试一试,求在数轴上表示的数523与﹣414的两点之间的距离为.(3)已知数轴上表示数a的点M与表示数﹣1的点之间的距离为3,表示数b的点N与表示数2的点之间的距离为4,求M,N两点之间的距离.43.计算(1)-9-5-(-12)+(-3)(2)-3+(-5)-(-6)+|-4|44.计算(1)122(4.5)4⎛⎫-+-⨯- ⎪⎝⎭(2)357(32)1684⎛⎫-⨯-+ ⎪⎝⎭(3)4311(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦45.若a 、b 互为相反数,c 、d 互为倒数,||4m =,求2563a bm cd m m++-+的值.46.如图是小强用七块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图.47.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减+5-2-4+13-10+16-9(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行计件工资制,每辆车60元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?48.如图,新城社区要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:米).(1)求阴影部分的面积(用含x 的代数式表示);(2)当x =20,π取3时,求阴影部分的面积.49.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和1的两点之间的距离是.②数轴上表示-2和-6的两点之间的距离是.③数轴上表示-4和3的两点之间的距离是.归纳:一般的,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)应用:①如果表示数a 和3的两点之间的距离是9,则可记为:|3|9a -=,那么a =.②若数轴上表示数a 的点位于-4与3之间,求|4||3|a a ++-的值.③当a 取何值时,413a a a ++-+-的值最小,最小值是多少?请说明理理由.参考答案1.C 【解析】【分析】根据有理数的加法运算法则,减法运算法则,乘方的运算对各选项计算后选取答案.【详解】解:A、2−5=−3,正确;B、(−2)+(−5)=−(2+5)=−7,正确;C、(−3)2=9,故本选项错误;D、(−2)+1=−2+1=−1,正确.故选:C.【点睛】本题考查有理数的加法、减法和有理数的乘方的运算,熟练掌握运算法则是解题的关键.2.B【解析】【详解】科学记数法是指:a×n10,1≤a<10,n是指这个数的整数位数减1.即原数=3.51×510.故选B3.C【解析】【分析】根据单项式的定义解答即可.【详解】解:x,0是单项式,故A,B项不正确;x 的系数为-1,故C项正确;D项1x不是整式,故不是单项式.故选:C.【点睛】本题考查了单项式的相关知识,解题的关键是掌握单项式的定义. 4.D【解析】【分析】含有相同的字母,且相同字母的指数也分别相等的项是同类项,根据定义解答.【详解】解:A.4x与4y不是同类项,故该项不符合题意;4xy与4xy不是同类项,故该项不符合题意;B.24xy与24x y不是同类项,故该项不符合题意;C.24xy与24y x是同类项,故该项符合题意;D.2故选:D.【点睛】此题考查了同类项定义,熟记定义及正确应用是解题的关键.5.B【解析】【分析】根据同类项的定义及合并同类项法则依次判断.【详解】解:4与5ab不是同类项,不能合并,故选项A不符合题意;22-=,,故选项B符合题意;a b ba3306xy与-x不是同类项不能合并,故选项C不符合题意;12x3与5x4不是同类项,不能合并,故选项D不符合题意;故选:B.【点睛】此题考查了同类项的定义及合并同类项的法则,正确掌握定义及合并的法则是解题的关键.6.B【解析】【分析】-减去8,进而根据有理数的减法进行计算即可根据题意列算式即,用3【详解】-℃低8℃的温度”可得,解:由“比33811--=-故选B【点睛】本题考查了有理数减法的应用,理解题意是解题的关键.7.A 【解析】【分析】根据多项式的定义分析即可.【详解】解:25x +,232x x -+是多项式,1-,π是单项式,5x,215x x ++的分母含字母,不是整式;故选A .【点睛】本题考查了整式、单项式、多项式的识别,只含有加、减、乘、乘方的代数式叫做整式;其中不含有加减运算的整式叫做单项式,单独的一个数或衣蛾字母也是单项式;含有加减运算的整式叫做多项式.8.B 【解析】【分析】首先根据数轴可以得到b <−1<0<a <1,以及|a|<|b|,根据有理数的加法法则以及不等式的性质即可作出判断.【详解】根据数轴可以得到:b <−1<0<a <1.∵a >b∴a−b >0,b−a <0故①正确,④错误;∵a >0,b <0,且|a|<|b|∴a +b <0,故②错误;∵a >0,b <0∴ab <0在a >b 两边同时除以ab ,得:1b <1a ,即11a b>,故③正确;故正确的是:①③.故选:B .【点睛】本题主要考查了利用数轴比较数的大小以及不等式的性质,判断③时,两边同时除以ab ,不等号的方向变化是容易出现的错误.9.D【解析】【详解】∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n 需火柴棒:8+7(n ﹣1)=7n+1根;故选D .【点睛】本题是一道规律题.分析图形得出从第2个图形开始每增加一个八边形需要7根火柴是解题的关键.10.D【解析】【详解】试题分析:根据单项式系数、次数的定义,单项式3245a b c -的系数和次数分别是15-和9.故选D .考点:单项式系数和次数11.A【解析】【分析】先把减法转化为加法,再按照有理数的加法法则运算即可.【详解】解:()27279.--=-+-=-【点睛】本题考查的是有理数的减法,掌握有理数的减法法则进行运算是解题的关键.12.C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将393000用科学记数法表示为:53.9310⨯.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.B【解析】【分析】根据相反数的定义以及绝对值的性质化简相关的数,再根据小于零的数是负数,可得答案.【详解】解:-|-15|=-15,-(-6.1)=6.1,-22=-4,∴负数有−28,-|-15|,-22,共3个.故选:B .【点睛】本题考查了正数和负数,小于零的数是负数,大于零的数是正数,注意零既不是正数也不是负数.14.D【解析】【分析】根据有理数的乘方,绝对值和多重符号化简的运算法则逐一计算可得.A.﹣224=-,(﹣2)24=,故该选项不符合题意;B.328=33,3(238=27,故该选项不符合题意;C.﹣|﹣2|2=-,﹣(﹣2)2=,故该选项不符合题意;D.(﹣3)327=-,﹣3327=-,故该选项符合题意;故选D【点睛】本题考查了有理数的乘方,绝对值和多重符号化简的运算法则,正确的计算是解题的关键.15.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.16.C【解析】【分析】设电脑的原售价为x 元,按原价降低m 元之后又降低20%,价格为(x -m )(1-20%)等于现售价为n 元作为相等关系,列方程解出即可.【详解】设电脑的原售价为x 元,则(x -m )(1-20%)=n ,∴x =54n m +.【点睛】当题中数量关系较为复杂时,利用一元一次方程作为模型解题不失为一种好的方法,思路清晰简单,避免了思维混乱而出现的错误.17.B【解析】【分析】根据幂指数定义可判断①,根据除法的运算法则可判断②,根据乘法法则可判断③,根据棱柱的定义可判断④,根据平方的定义可判断⑤,根据倒数的定义可判断⑥.【详解】解:∵(-1)2016=1,∴①错误,∵0÷(-1)=0×(-1)=0,∴②错误,∵(−23)6×(−32)7=(−23)6×(−32)6×(−32)=−32,∴③正确,∵n棱柱有(n+2)个面,2n个顶点,∴④正确,∵平方数是它本身的数只有1和0,∴⑤正确,∵0没有倒数,∴⑥错误,∴正确的有③④⑤,共3个,故选:B.【点睛】本题主要考查了有理数的运算,关键是要牢记乘除法,乘方等的运算法则,理解平方和倒数的含义.18.C【解析】根据绝对值和偶次方的非负数性质求出a、b的值,再代入所求式子计算即可.【详解】解:∵a、b为实数,且|a-2|+(b+1)2=0,而|a-2|≥0,(b+1)2≥0,∴a-2=0,b+1=0,解得a=2,b=-1,∴a2-b=22-(-1)=4+1=5.故选:C.【点睛】本题考查的是非负数的性质,熟知绝对值以及偶次方具有非负性是解答此题的关键.19.C【解析】【分析】根据数轴的相关知识解题.【详解】解:设蚂蚁的起始位置所表示的数是x,则根据题意知,x+3-6=-2或x+3-6=2,解得,x=1或x=5.故选:C.【点睛】本题考查了数轴,关键是对数轴定义、数轴上点的表示方法等知识应用.20.A【解析】【分析】利用正方体的展开图即可解决问题,共四种.【详解】解:如图所示:共四种.故选A .【点睛】本题主要考查了正方体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.21.4.【解析】【分析】单项式3a 2bcm 为七次单项式,即是字母的指数和为7,列方程求m 的值.【详解】依题意,得:2+1+m=7解得:m=4.故答案为4.【点睛】本题考查了单项式的次数的概念.单项式的次数是指各字母的指数和,字母指数为1时,省去不写.22.-7【解析】【分析】根据乘法分配律解答.【详解】解:()()()31311212129274646⎛⎫-⨯-=⨯--⨯-=-+=- ⎪⎝⎭,故答案为:-7.【点睛】此题考查了乘法分配律的计算法则,熟记计算法则并应用是解题的关键.23.-2或者-1【解析】【分析】可以通过画数轴的方法,直观的找出在122-和2之间的负整数.【详解】解:如数轴所示,在122-和2之间的负整数为-2,-1即答案为:-2或-1【点睛】本题主要考查了学生对有理数的认识,解答此题的关键是正确理解负整数的定义.24.53【解析】【分析】根据相反数的定义得到38x -+3=0,通过解一元一次方程计算即可.【详解】解:由题意得38x -+3=0,解得x=53,故答案为:53.【点睛】此题考查了解一元一次方程,相反数的定义:只有符号不同的两个数是互为相反数,熟记定义是解题的关键.25.112【解析】【分析】根据同底数幂相乘的逆运算将()20212020136⎛⎫-⨯- ⎪⎝⎭写成()201920192113(3)()66⎛⎫-⨯-⨯-⨯- ⎪⎝⎭,再根据积的乘方逆运算及乘法法则解答.【详解】解:原式=()()20192019201921123(3)()66⎛⎫-⨯-⨯-⨯-⨯- ⎪⎝⎭=()()201921123(3)()66⎡⎤⎛⎫-⨯-⨯-⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦=11(3)36-⨯-⨯=112.故答案为:112.【点睛】此题考查了有理数的乘法计算,正确掌握同底数幂乘法法则的逆运算及积的乘方逆运算及乘法法则是解题的关键.26.-2690【解析】【分析】先根据任意相邻三个数的和为相等的常数可推出x 1=x 4=x 7=…=x 2020=x 7=5,x 2=x 5=x 8=…=x 2021=-3,x 3=x 6=x 9=…=x 333=x 2019=-6,由此可求x 1+x 2+x 3+…+x 2021的值.【详解】解:∵x 1+x 2+x 3=x 2+x 3+x 4,∴x 1=x 4,同理可得:x 1=x 4=x 7=…=x 2020=x 7=5,x 2=x 5=x 8=…=x 2021=-3,x 3=x 6=x 9=…=x 333=x 2019=-6,∴x 1+x 2+x 3=-4,∵2021=673×3+2,∴x 1+x 2+x 3+…+x 2021=(-4)×673+(5-3)=-2692+2=-2690.故答案为:-2690.【点睛】本题考查数字的变化规律,通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.27.﹣3【解析】【详解】试题分析:由同类项的定义得n=﹣3,m=1,代入中,结果为﹣3.考点:同类项的定义28.2013【解析】【详解】试题分析:因为=1,所以()2=220112013a a ++=.考点:代数式的求值29.<<>【解析】【分析】根据正数大于零,零大于负数,两个负数比较时绝对值大的反而小可得答案.【详解】解:①﹣5<3;②33153312,44205520-==-==,15122020> 3345∴-<-;③ 2.25 2.25-= 2.5 2.5∴-=2.25 2.5<∴-->-2.25 2.5故答案为:①<;②<;③>.【点睛】本题考查有理数的大小比较,涉及绝对值的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.30.30【解析】【分析】由2x-3y-5=0得出2x-3y=5,再把6x-9y+15变形为3(2x-3y)+15即可得出答案.【详解】解:∵2x-3y-5=0,∴2x-3y=5,又∵6x-9y+15=3(2x-3y)+15,∴6x-9y+15=3×5+15=30,故答案为:30.【点睛】本题主要考查了代数式求值问题,关键是要能把6x-9y+15变形为3(2x-3y)+15的形式.31.11【解析】【分析】把a的值代入数值转换机中计算即可确定出结果.【详解】解:把a=-1代入得:[(-1)2-4]×(-3)+2=9+2=11,故答案为:11.【点睛】本题考查了有理数的混合运算,弄清数值转换机中的运算是解本题的关键.32.2a【解析】【分析】由a、b、c在数轴上的位置知a-b>0、c-a<0、b+c<0,再根据绝对值的性质取绝对值符号,然后去括号、合并即可得.【详解】解:由数轴知c<b<0<a,则a-b>0,c-a<0,b+c<0,∴原式=(a-b)-(c-a)+(b+c)=a-b-c+a+b+c=2a.故答案为:2a.【点睛】本题主要考查了数轴,解题的关键是掌握点的数轴上的位置及绝对值的性质.7n1+33.()【解析】【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,8=7+1,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒7n+1根.【详解】图案①需火柴棒:7+1=8根;图案②需火柴棒:7+7+1=15根;图案③需火柴棒:7+7+7+1=22根;…,∴图案n需火柴棒:7n+1根;故答案为:7n+1【点睛】本题是一道规律探究题,仔细观察,根据所给图形找出图形的变化规律是解答本题的关键. 34.(1)4(2)1【解析】【分析】(1)同时计算乘除法,再计算加减法;(2)先计算乘方,再计算括号内的即乘法,最后计算加法.(1)解:()()136243-÷-+⨯-=13+3-12=4;(2)解:()2411333⎡⎤--⨯--⎣⎦=11(39)3--⨯-=-1+2=1.【点睛】此题考查了有理数的混合运算,含乘方的有理数的混合运算,正确掌握运算顺序及法则是解题的关键.35.(1)x=1(2)x=-3【解析】【分析】先移项,再合并同类项,化系数为1即可求解;先移项,再合并同类项,化系数为1即可求解;(1)解:移项,得6x=7-1,合并同类项,得6x=6,系数化为1,得x=1.(2)解:移项,得3x-4x=-5+8,合并同类项,得-x=3,系数化为1,得x=-3.【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解答此题的关键.36.数轴见详解,−3.5<−3<2<2.5<(−2)2<|−5|.【解析】【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.【详解】解:如图所示:用“<”连接为:−3.5<−3<2<2.5<(−2)2<|−5|.【点睛】本题考查了有理数大小比较,利用数轴上的点表示的数右边的总比左边的大是解题关键.37.7【解析】【分析】先化简,再将x、y的值代入计算即可.【详解】原式=2x2+y2+2y2-3x2-2y2+4x2=3x2+y2当x=-1y=2时,原式=3×(-1)2+22=3 1+4=7.38.(1)出租车离鼓楼出发点6km,在鼓楼东边(2)148.8元【解析】【分析】(1)把记录的数字加起来,看结果是正还是负,就可确定是向东还是西;(2)求出记录数字的绝对值的和,再乘以2.4即可.(1)解:9+4+7-5+8-6+3-6-4-10+=6故出租车最后在鼓楼东边6km 的位置;(2)解:9+4+7+5+8+6+3+6+4+10=6262 2.4148.8⨯=故司机一个下午的营业额是148.8元.【点睛】本题考查了正数和负数的理解,有理数的运算,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量是解题的关键.39.(1)2x ;(2)9.【解析】【分析】(1)因为271012A B x x -=-++,且2456B x x =--,所以可以求出A ,再进一步求出A B +;(2)根据(1)的结论,把3x =代入求值即可.【详解】解:(1)由题意271012A Bx x -=-++,∴2(456)A x x ---271012x x =-++,∴2456A x x =--271012x x -++=2356x x -++.2356A B x x ∴+=-++2456x x +--2.x =(2)把3x =代入2x 得:239.A B +==【点睛】考点:整式的加减.40.(1)1.12xy 元;(2)加工后可卖1680元,比加工前多卖180元【解析】【分析】(1)求出加工后的蔬菜重量和价格,即可求出代数式;(2)将数字代入(1)中代数式即可.【详解】(1)x 千克这种蔬菜加工后可卖钱为:()120%140% 1.12x y xy -+= ()(元)(2)加工后可卖:1.121000 1.51680⨯⨯=比加工前多卖:1680151000180-⨯=.(元)答:1680元,比加工前多卖180元【点睛】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.要掌握销售问题的价格与重量之间的关系.41.(1)﹣24,﹣10,10;(2)t =2s 或5s ;(3)46【解析】【分析】(1)根据二次多项式的定义,列出方程求解即可;(2)分三种情形,分别构建方程即可解决问题;(3)当点P 追上T 的时间t 1=1414413=-.当Q 追上T 的时间t 2=3417512=-.当Q 追上P 的时间t 3=2054-=20,推出当143<t <172时,位置如图,利用绝对值的性质即可解决问题.【详解】(1)∵M =(a +24)x 3﹣10x 2+10x +5是关于x 的二次多项式,∴a +24=0,b =﹣10,c =10,∴a =﹣24,故答案为﹣24,﹣10,10.(2)①当点P 在线段AB 上时,14+(34﹣4t )=40,解得t =2.②当点P 在线段BC 上时,34+(4t ﹣14)=40,解得t =5,③当点P 在AC 的延长线上时,4t+(4t-14)+(4t-34)=40,解得t=223,不符合题意,排除,∴t =2s 或5s 时,P 到A 、B 、C 的距离和为40个单位.(3)当点P 追上T 的时间t 1=1414413=-.当Q 追上T 的时间t 2=3417512=-.当Q追上P的时间t3=2054=20,∴当143<t<172时,位置如图,∴2|xP﹣xT|+|xT﹣xQ|+2|xQ﹣xP|=2(3t-14)+34-4t+2(20-t)6t-28+34-4t+40-2t=74-28=46.【点睛】本题考查多项式、绝对值、数轴、一元一次方程的应用等知识,解题的关键是理解题意,学会构建方程解决问题,学会用分类讨论的思想思考问题.42.(1)|a﹣b|;(2)91112;(3)2或4或10.【解析】【分析】(1)根据材料提供的数轴上两点之间距离的计算方法即可得出答案;(2)根据(1)的结论计算即可;(3)根据题意可求出a、b的值,根据a、b的不同值,分别代入计算即可求出结果.【详解】解:(1)在数轴上表示数a和数b两点之间的距离等于|a﹣b|,故答案为|a﹣b|;(2)|523﹣(﹣414)|=91112,故答案为91112.(3)由题意得,|a﹣(﹣1)|=3,|b﹣2|=4,解得,a=2或a=﹣4,b=6或b=﹣2.①当a=2,b=6时,|a﹣b|=|2﹣6|=4,②当a=2,b=﹣2时,|a﹣b|=|2﹣(﹣2)|=4,③当a=﹣4,b=6时,|a﹣b|=|﹣4﹣6|=10,④当a=﹣4,b=﹣2时,|a﹣b|=|﹣4﹣(﹣2)|=2.答:点M、N之间的距离为2或4或10.【点睛】本题考查了数轴上两点之间的距离、绝对值的意义和有理数的加减运算,正确理解数轴上两点之间的距离、全面分类、准确计算是解答的关键.43.(1)-5(2)2【解析】【分析】(1)先将减法转化为加法,再根据加法法则计算可得;(2)先将减法转化为加法,再根据加法法则计算可得.(1)解:-9-5-(-12)+(-3)=-9-5+12-3=(-9-5-3)+12=-17+12=-5;(2)解:-3+(-5)-(-6)+|-4|=−3−5+6+4=(−3−5)+(6+4)=−8+10=2.【点睛】本题主要考查了有理数的加减混合运算,解题的关键是掌握有理数的加减运算法则和运算顺序及其运算律.44.(1)65 8(2)-42(3)-6【解析】【分析】(1)先算乘法,再算加法;(2)根据乘法分配律简便计算计算;(3)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(1)解:−2+(−214)×(−4.5)=-2+94×92=-2+81 8=65 8;(2)解:357 (32)1684⎛⎫-⨯-+⎪⎝⎭357(32)(32)(32)1684 =-⨯--⨯-⨯=-6+20-56=-42;(3)解:-14-(1-0.5)×13×[3−(−3)3]=-1-12×13×(3+27)=-1-12×13×30=-1-5=-6.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.45.35或-13.【解析】【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可得到结果.【详解】解:根据题意得:a+b=0,cd=1,m=4或-4,当m=4时,2563a b m cd m m++-+=0+16-5+24=35;当m=-4时,2563a b m cd m m ++-+=0+16-5-24=-13.【点睛】本题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.46.见解析.【解析】【分析】根据从正面看到的小正方体个数以及排列方式可得从正面看到的图形,同理可得从左面看到的图形,从上面看到的图形,据此画出即可.【详解】如图所示:【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.47.(1)599(2)26(3)该厂工人这一周的工资是84630元.【解析】【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与减产的最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.(1)解:前三天生产的辆数是200×3+(5-2-4)=599(辆).故答案为:599;(2)解:超产的最多是星期六,超产16辆;减产的最少是星期五,减产10辆;则16-(-10)=16+10=26(辆),故答案为:26;(3)解:这一周多生产的总辆数是5-2-4+13-10+16-9=9(辆).(1400+9)×60+9×10=84630(元).答:该厂工人这一周的工资是84630元.【点睛】本题考查了正数和负数以及有理数的混合运算,理解正负数的意义,掌握有理数的运算法则是关键.48.(1)(6x ﹣20﹣4.5π)平方米;(2)86.5平方米【解析】【分析】(1)先求出两个长方形的面积,再减去半圆的面积,即可得出阴影部分的面积;(2)把20x =,π取3代入(1)中的结论,即可得出答案.【详解】解:(1)由图可知上面的长方形的面积为4(22)(416)x x ⨯--=-(平方米),下面的长方形的面积为2(2)(24)x x ⨯-=-(平方米),∴两个长方形的面积为620x -(平方米),半圆的半径为(42)23+÷=(米),∴半圆的面积为232 4.5ππ⋅÷=(平方米),∴阴影部分的面积为(620 4.5)x π--平方米;(2)当20x =,π取3时,阴影部分的面积=620 4.5x π--62020 4.53=⨯--⨯1202013.5=--=(平方米),86.5∴阴影部分的面积为86.5平方米.49.(1)①4;②4;③7(2)①12或-6;②7;③a=1时,|a+4|+|a-1|+|a-3|的值最小,最小值是7.【解析】(1)根据两点间的距离公式,可得答案;(2)①根据两点间的距离公式,可得答案;②根据线段上的点到线段两端点的距离的和最小,可得答案;③根据线段上的点到线段两端点的距离的和最小,可得答案.(1)解:①数轴上表示5和1的两点之间的距离是4,②数轴上表示-2和-6的两点之间的距离是4,③数轴上表示-4和3的两点之间的距离是7,故答案为:①4,②4,③7;(2)解:①如果表示数a和3的两点之间的距离是9,则可记为:|a-3|=9,则a-3=9或a-3=-9,那么a=12或-6,故答案为:12或-6;②若数轴上表示数a的点位于-4与3之间,则|a+4|+|a-3|=a+4+3-a=7;③∵|a+4|+|a-1|+|a-3|表示数轴上数a和数-4,1,3之间的距离之和,∴a=1时距离的和最小,∴|a+4|+|a-1|+|a-3|=5+0+2=7.∴a=1时,|a+4|+|a-1|+|a-3|的值最小,最小值是7.31。

2014-2015北师大版七年级上册 数学期中考试卷

2014-2015北师大版七年级上册  数学期中考试卷

期中测试卷1、下列各组单项式中,是同类项的是()A.3a和-bD.B.C.2、下列计算正确的()A.-B.D.C.3、下列各组数中,互为相反数的是()B.C.D.A.4、下列图中,左边的图形是立方体的表面展开图,把它折叠成立方体,它会变右边的()5、某学校阶梯教室,第一排有m个座位,后面每一排都比前面一排多4个座位,则第n排座位数是()A.m+4 B.m+4n C.n+4(m-1) D.m+4(n-1)6、在数轴上表示-2的点离开原点的距离等于()A.2 B.-2 C.D.7、多项式1+xy-xy²的次数及最高次项的系数分别是()A.3,1 B.2,-1 C.3,-1 D.5,-18、如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()。

A.|a|>|b| B.a+b>0 C.ab<0 D.|b|=b一、填空题(注释)9、在数轴上,与表示的点距离为5的数是________.10、若与是同类项,则-2m+n=_______________.11、“*”是规定的一种运算法则:,则的值是 .12、如果x-2y=5,那么2x-4y-3=13、若,且,,则m+n= .14、15、计算:(每小题4分,共24分)(1) (2)(3) (4)(5) (6)16、计算题:(1)1(2)17、(1)3a-2b-5a-b(2)化简求值:2(x-y)-(-x-4y ),其中,y=118、(6分)用火柴棒按下图方式搭三角形.(1)填写下表:(2)照这样的规律搭下去,搭n个这样的三角形需要根火柴棒。

2014----2015学年度上学期北师大版七年级第一章测试题

2014----2015学年度上学期北师大版七年级第一章测试题

北师大版2014----2015学年度上学期七年级数学第一章测试题一、单选题1、能把表面依次展开成如图所示的图形的是( )A .球体、圆柱、棱柱B .球体、圆锥、棱柱C .圆柱、圆锥、棱锥 D .圆柱、球体、棱锥2、水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( ) A .O B .6 C .快 D .乐3、如图,长方体的面有( )A .4个 B .5个 C .6个 D .7个4、一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是( )5、一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为[ ]A .2个B .3个C .5个D .10个6、如图是一个几何体的三视图,则这个几何体的侧面积是[ ]A .12πcm 2B .8πcm 2C .6πcm 2D .3πcm 27、如图所示,将平面图形绕轴旋转一周,得到的几何体是( )A .B .C .D .8、如图为从正面看到的图形的几何体,它从上面看到的图形是( )A .B .C .D .A. B. C. D.9、如图是由几个相同的小立方块组成的三视图,小立方块的个数是[ ] A.3个 B.4个 C.5个 D.6个10、骰子是一种特别的数字立方体(如图),它符合规则:相对两面的点数之和总是7.下面四幅图中可以折成符合规则的骰子的是()A. B.C. D.11、用平面去截下图中的正方体,截面形状不可能是()A. B. C. D.12、如图,模块①﹣⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①﹣⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为()A.模块①,②,⑤B.模块①,③,⑤C.模块②,④,⑤D.模块③,④,⑤下的几何体面的个数和棱的条数分别为()A.6,14 B.7,14 C.7,15 D.6,1514、如图是一个立体图形的二视图,根据图示的数据求出这个立体图形的体积是()A.24cm3 B.48cm3 C.72cm3 D.192cm315、如图所示的平面图形中,不可能围成圆锥的是()A. B.C. D.二、填空题(注释)16. 如图,长方体中,与棱AA′平行的面是________________.17、一个五棱柱有____个面,用一个平面去截五棱柱,则得到的截面的形状不可能是____(填“七边形“或“八边形“)18、展开图:几何体名称:_______,_______,_______,_______.19、如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是____.20、如图,正方体每个侧面的面积为2平方米,用经过A,B,C三点的平面截这个正方体,则所得的切面的周长是____米.21、一个矩形绕着它的一边旋转一周,所得到的立体图形是________________.22、三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为 cm.23、一个物体的外形是长方体,其内部构造不详.用一组水平的平面截这个物体时,得到了一组(自下而上)截面,截面形状如图所示,这个长方体的内部构造可能是________.三、解答题24、如图1,大正方体上截去一个小正方体后,可得到图2的几何体.(1)设原大正方体的表面积为S,图2中几何体的表面积为S′,那么S′与S的大小关系是()A、S′>SB、S′=SC、S′<SD、不确定(2)小明说:“设图1中大正方体各棱的长度之和为c,图2中几何体各棱的长度之和为c′,那么c′比c正好多出大正方体3条棱的长度.”若设大正方体的棱长为1,小正方体的棱长为x,请问x为何值时,小明的说法才正确?(3)如果截去的小正方体的棱长为大正方体棱长的一半,那么图3是图2中几何体的表面展开图吗?如有错误,请在图3中修正.25、一个正方体,截掉一个角,剩余部分还有几个角?26、将一个正方体的表面涂上颜色.如图把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,通过观察我们可以发现8个小正方体全是3个面涂有颜色的.如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体,通过观察我们可以发现这些小正方体中有8个是3个面涂有颜色的,有12个是2个面涂有颜色的,有6个是1个面涂有颜色的,还有1个各个面都没有涂色.(1)如果把正方体的棱4等分,所得小正方体表面涂色情况如何呢?把正方体的棱n等分27.如图,这6个图形虽然形状各异,但是可以将它们各剪一刀,各自能拼成一个正方形,你会做到吗?28、把图中的几何体分类,并简要说明理由.29、如图所示,用1、2、3、4标出的四块正方形,以及由字母标出的八块正方形中任意一块,一共要用5块连在一起的正方形折成一个无盖方盒,共有几种不同的方法?请选择合适的方法.30、指出下列平面图形是什么几何体的展开图:。

新北师大版2014-2015年七年级上学期期末考试数学试题

新北师大版2014-2015年七年级上学期期末考试数学试题

2014-2015七年级上学期期末考试数学试题(卷)时间 90分钟 满分100分 2015、1、16一、 填空;(每空2分,共26分)1.3的相反数是_ __,___ 的相反数是412, 绝对值等于5的数是 ; 2.在-7与37之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 .3.如果数轴上的点A 对应有理数为-2,那么与A 点相距3个单位长度的点所对应的有理数为___________。

4.如果a 与211互为相反数,那么a 的倒数是____________; 5.化简:[(2)]a b ---= ;6.请写出一个b a 23-的同类项: ;7.代数式332xy -的系数是 ,次数是 ;8.若方程05233=--m x 是一元一次方程,则m=_____________;9.若|623-x |+(0.2+2y)2=0,则x 2+y 2=____________; 10.当x 的值为-3时,代数式-3x 2 + a x -7的值是-25,则当x = -1时, 这个代数式的值为 。

二、选择题:(每题3分,共18分)11.如果一个数的平方与这个数的绝对值相等,那么这个数是 ( )A .0B .1C .-1D .0,1或-112.a 是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,则这个五位数为 ( )A .a b +B a b +10C a b +100D a b +100013.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是 ( )A 28B 33C 45D 5714.已知y=1是方程2-y y m 2)(31=-的解,则关于x 的方程m(x+4)=m(2x+4)的解是( ) A x=1 B x=-1 C x=0 D 方程无解15.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了( )道题。

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试卷一、选择题。

(每小题只有一个答案正确)1.在﹣3,﹣1,0,1四个数中,比﹣2小的数是( )A .﹣3B .﹣1C .0D .12.据世界卫生组织2020年10月21日公布的数据显示,全球累计新冠确诊病例达4066万多例,将数据4066万用科学记数法表示为( )A .4.066×105B .4.066×106C .4.066×107D .4.066×108 3.下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是( ) A . B . C . D . 4.下列计算正确的是( )A .-2a +5b =3abB .-22+│-3│=7C .3ab 2-5b 2a =-2ab 2D .-5÷3×(-13)=5 5.下列说法中正确的是( )A .有理数就是有限小数和无限小数的统称B .数轴上的点表示的数都是有理数C .一个有理数不是整数就是分数D .正分数、零、负分数统称为分数 6.若a ,b 互为相反数,c ,d 互为倒数,则代数式(a+b ﹣1)(cd+1)的值是( ) A .1 B .0 C .﹣1 D .﹣2 7.已知|a -2|+(b +3)2=0,则a b 的值是( )A .-6B .6C .-9D .98.如果2x a+1y 与x 2y b ﹣1是同类项,那么a b的值是( ) A .12 B .32 C .1 D .39.数a ,b 在数轴上的位置如图所示,下列式子中错误的是( )A .a <bB .-a <bC .a +b <0D .b -a >0 10.计算3(2)4(2)x y x y --+-的结果是( )A .2x y -B .2x y +C .2x y --D .2x y -+ 11.已知21x y -=,则324x y -+的值为( )A .-1B .0C .1D .212.如果把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13310=+B .25916=+C .491831=+D .361521=+二、填空题13.如果风车顺时针旋转60°记作+60°,那么逆时针旋转80°记作________.14.如果数轴上点A 表示3,将A 向左移动6个单位长度,再向右移动4个单位长度,那么终点表示的数是________. 15.如果对于任何非零有理数a ,b 定义一种新的运算“★”如下:a ★b =1b a-,则﹣4★2的值为_____.16.计算:(-1)+(-1)2+(-1)3+……+(-1)2020=________.17.冬季某天我国三个城市的最高气温分别是10C ︒-,1℃,7C ︒-,则任意两城市最高气温的最大温差是______.三、解答题18.计算与化简:(1)-9+5-(-12)+(-3) (2)-2÷(-124)×(-4.5) (3)(-32)×(316-58+74) (4)-34×[-32×(-23)2+(-22)]19.化简(1)(﹣2ab+3a )﹣2(2a ﹣b )+2ab ;(2)先化简,再求值:5a 2+3b 2+2(a 2﹣b 2)﹣(5a 2﹣3b 2),其中a =﹣1,b =12.20.小明用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,请你帮助小明在①上补全.(作图要求:先用尺和铅笔画图,再用黑色的签字笔描一遍)(3)小明说:已知这个长方形纸盒高为3cm,底面是一个正方形,并且这个长方形纸盒所有棱长的和是92cm,请计算,这个长方体纸盒的体积是___________cm3.21.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组10名女生的成绩记录,其中“+”号表示成绩大于18秒,“-”号表示成绩小于18秒.求这个小组女生的达标率为多少平均成绩为多少?22.若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为h(单位为:cm).(1)用m,n,h表示所需地毯的面积;(2)若m=160,n=60,h=75,求地毯的面积.23.福田农批市场某商店出售茶杯和茶壶,茶杯每个定价4元,茶壶每个定价20元.该商店的优惠办法是买一个茶壶赠一个茶杯.某顾客欲购买茶壶5个,购买(包括送的)茶杯x 个(x 5).(1)用含x的式子表示这位顾客应付的钱数;(2)当x=12时,该顾客应付多少元?24.“数形结合”是重要的数学思想.请你结合数轴与绝对值的知识回答下列问题:(1)一般地,数轴上表示数m和数n的两点之间的距离等于│m-n│.如果表示数a和-2的两点之间的距离是3,记作│a-(-2)│=3,那么a=.(2)利用绝对值的几何意义,探索│a+4│+│a-2│的最小值为______,若│a+4│+│a -2│=10,则a的值为________.(3)当a=______时,│a+5│+│a-1│+│a-4│的值最小.(4)如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,且AC=8,动点P从点B出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.点M是AP的中点,点N是CP的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,求线段MN的长度.25.小林同学积极参加体育锻炼,天天坚持跑步,他每天以1000m为标准,超过的记作正数,不足的记作负数.下表是一周内小林跑步情况的记录:(1)星期三小林跑了多少米?(2)小林跑步最少的一天跑了多少米?跑步最多的一天比最少的一天多跑了多少米?m,求本周小林用于跑步的时间.(3)若小林跑步的平均速度为240/min参考答案1.A【分析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小, 所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A.【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.2.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】4066万=40660000将40660000的小数点向左移动7位,所以将40660000用科学记数法表示为4.066×107故选C.【点睛】本题考查了科学记数法,本题的关键是判断小数点向左移动了几位.3.B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点逐项判断即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A、手的对面是勤,所以本选项不符合题意;B、手的对面是口,所以本选项符合题意;C、手的对面是罩,所以本选项不符合题意;D、手的对面是罩,所以本选项不符合题意.故选:B.【点睛】本题考查了正方体相对面上的文字,属于常考题型,熟知正方体相对两个面的特征是解题的关键.4.C【分析】根据合并同类项,有理数的运算,绝对值的运算法则进行计算即可.【详解】A、-2a+5b=-2a+5b,故A项错误;B、-22+│-3│=-1,故B项错误;C、3ab2-5b2a=-2ab2,故C项正确;D、-5÷3×(-13)=59,故D项错误;故选:C.【点睛】本题考查了合并同类项,有理数的运算,绝对值,掌握运算法则是解题关键.5.C【分析】根据有理数的分类和定义、数轴的特点、分数的定义对每个选项逐一判断即可解答.【详解】A、有理数是整数和分数的统称,即包括有限小数和无限循环小数,故此选项错误;B、数轴上的点与实数具有一一对应关系,包括有理数和无理数,故此选项错误;C、有理数是整数与分数的统称,故此选项正确;D、分数包括正分数和负分数,零是整数,不属于分数,故此选项错误,故选:C.【点睛】本题考查有理数、分数的定义,数轴的特点,熟知这些知识是解答的关键.6.D根据互为相反数的定义可得a+b=0,倒数的定义可得cd=1,然后代入代数式进行计算即可得解.【详解】解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴(a+b-1)(cd+1)=(0-1)(1+1)=-2.故选:D.【点睛】本题考查了代数式求值,相反数及倒数.互为相反数的数相加得零;互为倒数的两数相乘得1.7.D【分析】根据非负性求出a,b,故可求解.【详解】∵|a-2|+(b+3)2=0,∴a-2=0,b+3=0解得a=2,b=-3∴a b=(-3)2=9故选D.【点睛】此题主要考查非负性的应用,解题的关键是熟知绝对值与乘方的性质及运算法则.8.A【分析】根据同类项的概念可得a+1=2,b-1=1,解方程求得a、b的值,代入ab进行计算即可得.【详解】由题意得:a+1=2,b-1=1,解得:a=1,b=2,所以ab=12,【点睛】本题考查了同类项,熟知所含字母相同,相同字母的指数也相同的项是同类项是解题的关键. 9.B【分析】根据a ,b 在数轴上的位置易判断a ,b 的正负性,从而判断各式的正确性.【详解】解:由图易有a <0<b 且|a |>|b |,∴a <b ,a +b <0, b -a >0,-a >b .故选:B【点睛】此题考查了运用数轴比较数的大小以及有理数的运算法则.10.A【详解】原式去括号合并即可得到结果.解:原式=﹣3x+6y+4x ﹣8y=x ﹣2y ,故选A .11.C【分析】根据21x y -=,得到242x y -+=-,代入324x y -+中,计算即可.【详解】解:∵21x y -=,∴21x y -+=-,∴242x y -+=-,∴324321x y -+=-=,故答案为:C .【点睛】本题考查了代数式的求值,正确掌握整体代入思想是解题的关键.12.D【分析】题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值【详解】解:根据规律:正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),只有D、36=15+21符合,故选:D.【点睛】本题考查探究、归纳的数学思想方法.本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.13.-80°【分析】为了表示两种相反意义的量,出现了负数,也就是说正数和负数是两种相反意义的量,如果顺时针旋转60°记作+60°,那么逆时针旋转80°记作−80°.【详解】解:顺时针旋转60°记作+60°,那么逆时针旋转80°记作−80°.故答案为:−80°.【点睛】本题重点是考查正数和负数,要明确正、负数是两种相反意义的量.14.1【分析】根据数轴的性质,通过计算即可得到答案.【详解】数轴上点A表示3,将A向左移动6个单位长度,即:3-6=-3;再向右移动4个单位长度,即:-3+4=1;故答案为:1.【点睛】本题考查了数轴的知识;解题的关键是熟练掌握数轴的性质,从而完成求解.15.1 12 -【分析】根据题中的新定义将所求式子化为普通运算,计算即可得到结果.【详解】解:根据题意:-4★2=24--1=112-.故答案为:112 -.【点睛】本题考查了有理数的混合运算及新定义下的运算.有理数的混合运算首先弄清楚运算顺序,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的,同级运算从左至右依次计算.弄清题中的新定义是解题的关键.16.0【分析】根据-1的奇次幂等于-1,-1的偶次幂等于1将各式化简,再计算有理数的加减法.【详解】(-1)+(-1)2+(-1)3+……+(-1)2020=-1+1-1++……+1=0,故答案为:0.【点睛】此题考查有理数的乘方运算,有理数的加减运算,正确掌握-1的乘方计算结果是解题的关键.17.11℃【解析】【分析】根据题意列出代数式:1℃-(-10℃)=11℃,1℃-(-7℃)=8℃,-7℃-(-10℃)=3℃,通过比较即可推出任意两城市中最大的温差是11℃.【详解】∵三个城市的最高气温分别是−10℃,1℃,−7℃,∴1℃−(−10℃)=11℃,1℃−(−7℃)=8℃,−7℃−(−10℃)=3℃,∵11℃>8℃>3℃,∴任意两城市中最大的温差是11℃。

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试卷一、选择题。

(每小题只有一个答案正确)1.主视图、左视图和俯视图完全相同的几何体是()A.B.C.D.2.六棱柱共有()条棱.A.16 B.17 C.18 D.20 3.下列几何体由三个面围成的是()A.圆柱B.三棱锥C.球D.三棱柱4.下面几何体中为圆柱的是()A.B.C.D.5.把下列图形折成正方体的盒子,折好后与“祝”相对的字是()A.利B.你C.顺D.考6.下列数轴画正确的是()A.B.C.D.7.如果向东走20m记为+20m,则向西走300m记为()A.+300m B.-20m C.+20m D.-300m 8.下列说法正确的是()A.正整数和正分数统称正有理数B.正整数和负整数统称整数C.正整数、负整数、正分数、负分数统称有理数D .0不是有理数9.下列各组单项式中,是同类项的一组是( )A .3x 3y 与3xy 3B .2ab 2与﹣3a 2bC .a 2与b 2D .﹣2xy 与3 yx10.计算2234x x -+的结果为( )A .-7x 2B .7x 2C .-x 2D .x 2二、填空题11.单项式5xy -的系数是__________. 12.若213-xy 与5m n x y 是同类项,则m n -=__________. 13.找规律填数:﹣1,2,﹣4,8,________14.-11的绝对值是__________.15.太阳半径约为696000千米,数字696000用科学记数法表示为_______千米. 16.用一个平面截一个正方体,截面最多是_______边形三、解答题17.计算:(1)(12)(3)(67)(8)---+--- (2)431(3)[4(2)]6-⨯----÷18.如图是几个正方体所组成的几何体的俯视图,小正方形中的数字表示该位置小正方块的个数.请画出这个几何体的主视图和左视图.19.若a+12与-8+b 互为相反数,求a 与b 的和.20.先化简,再求值:(2+x )(2﹣x )+(x ﹣1)(x ﹣5),其中x=32.21.代数式()()333123x x x ---+的值与x 的值有关吗?请说明理由22.画一条数轴,在数轴上表示下列各数以及它们的相反数,并用“<”将这四个数连接起来. ﹣1.5,0,2,﹣3.23.某公园的门票价格是:成人单价是10元,儿童单价是4元.某旅行团有a 名成人和b 名儿童;那么:()1该旅行团应付多少的门票费.()2如果该旅行团有32个成人,10个儿童,那么该旅行团应付多少的门票费.24.如图A 在数轴上对应的数为-2.(1)点B 在点A 右边距离A 点4个单位长度,则点B 所对应的数是_____.(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A 运动到-6的点处时,求A 、B 两点间的距离.(3)在(2)的条件下,现A 点静止不动,B 点以原速沿数轴向左运动,经过多长时间A 、B 两点相距4个单位长度.25.小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,-3,+10,-8,-6,+12,-10.问:(1)小虫最后是否回到出发点O ?(2)小虫离开出发点O 最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,那么小虫共可得到多少粒芝麻?参考答案1.D【解析】试题解析:A.圆锥的主视图和左视图都是等腰三角形,而俯视图是圆,故本选项错误;B.长方体的主视图、左视图和俯视图都是长方形,但不完全相同,故本选项错误;C.圆柱俯视图是圆,但主视图和左视图是长方形,故本选项错误;D.正方体的主视图、左视图和俯视图都是干什么个人正方形,故本选项正确.故选D.考点:几何体的三视图.2.C【分析】根据棱柱的概念和特性:n棱柱共有3n条棱,即可求出.【详解】根据棱柱的概念和特性:n棱柱共有3n条棱,则六棱柱共有18条棱,故选C.【点睛】本题考查的知识点为:n棱柱共有3n条棱.3.A【解析】【分析】根据题意,分别分析由几何体几个面围成的,解答出即可.【详解】A. 圆柱由三个面围成的,符合题意;B. 三棱锥由四个面围成的,不符合题意;C. 球由一个面围成的,不符合题意;D. 三棱柱由五个面围成的,不符合题意;故选:A.【点睛】本题考查了几何体的面,熟悉各个物体的展开图,是解题的关键。

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试题及答案

北师大版七年级上册数学期中考试试题一、单选题1.若盈余2万元记作2+万元,则2-万元表示( )A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损 2.如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )A .B .C .D .3.将5亿这个数用科学记数法表示为( )A .7510⨯B .8510⨯C .9510⨯D .10510⨯ 4.如图是某几何体的展开图,该几何体是( )A .长方体B .圆柱C .圆锥D .三棱柱 5.下列运算正确的是( )A .6a 2b ﹣a 2b =5abB .6a 2b ﹣a 2b =5C .6a 2b ﹣a 2b =5a 2bD .6a 2b ﹣a 2b =5ab 26.下表是几种液体在标准大气压下的沸点:则沸点最高的液体是( )A .液态氧B .液态氢C .液态氮D .液态氦 7.一个儿何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是()A.B.C.D.8.已知点C是线段AB的中点,下列说法:①AB=2AC;①BC=12AB;①AC=BC.其中正确的个数是()A.0 B.1 C.2 D.39.有三堆棋子,数目相等,每堆至少有4枚.从左堆中取出3枚放入中堆,从右堆中取出4枚放入中堆,再从中堆中取出与左堆剩余棋子数相同的棋子数放入左堆,这时中堆的棋子数是()A.3 B.4 C.7 D.1010.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.ab>0 B.a+b<0 C.ab>0 D.|a|>|b|二、填空题11.﹣(﹣2)=___.12.“x的2倍与5的和”用代数式表示为_________.13.如图,点C,D在线段AB上,且AD=BC,则AC___BD(填“>”、“<”或“=”).14.数轴上表示数m和m﹣4的点到原点的距离相等,则m的值为____.15.已知点C是直线AB上一点,且AC:BC=7:3,若AB=10,则AC=___.16.根据如图所示的程序进行计算,若输入x的值为1 ,则输出y的值为______.17.若有理数a 、b 互为相反数,cd 互为倒数,则2014(a +b )2016+(1ab)2015=________. 三、解答题18.计算:(1)321()(2)433-⨯-+-;(2)3228(2)0.5()(2)5-⨯--÷-.19.先化简,再求值:2(2mn ﹣2m +1)﹣3(2m ﹣mn +2),其中m =2,n =320.尺规作图:已知:如图,线段AB .求作:线段A B '',使2A B AB ''=.21.已知三角形第一条边长为4m +2n ,第二条边比第一条边长m ﹣2n ,第三条边比第一条边短2m +n .(1)第二条边长为 ,第三条边长为 .(2)求这个三角形的周长.22.如图是由若干个大小相同的小立方块搭成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.23.已知点C,D是线段AB上两点,点M,N分别为AC,DB的中点.(1)如图,若点C在点D的左侧,AB=12,CD=5,求MN的长.(2)若AB=a,CD=b,请直接用含a,b的式子表示MN的长.24.定义“*”运算:当a,b同号时,a*b=+(a2+b2);当a,b异号时,a*b=﹣(a2﹣b2).(1)求4*1的值.(2)求52*[(﹣2)*3]的值.25.某公交车原有乘客(3a-b)人,中途有一半人下车,又上车若干人,使车上共有乘客(8a-5b)人(注:题目中给定的a,b 符合实际意义)试求(1)上车的乘客人数是多少人?(2)当a=10 时,b=8 时,上车的乘客有多少人?26.如图,点A在数轴上所对应的数为2,(1)点B在点A左侧且距点A为3个单位长度,则点B所对应的数为,请在数轴上标出点B的位置;(2)在(1)的条件下,点A以每秒1个单位长度沿数轴向右运动,点B以每秒2个单位长度沿数轴向左运动,当点A运动到5所在的点处时停止运动,同时点B也停止运动,求此时A,B两点间距离;(3)在(2)的条件下,若点A不动,点B沿数轴向右运动,经过t秒A,B两点相距3个单位长度,求t值;(4)在(1)的条件下,点A以每秒1个单位长度,点B以每秒2个单位长度同时沿数轴向左运动,当点B运动到所对应的数为m时停止运动,请直接写出此时点A所对应的数为;若点A继续运动,请直接写出当AB=2时,点A继续运动的距离为.(用含m的式子表示)参考答案1.B2.D3.B4.B5.C6.A7.B8.D9.D10.B11.2【分析】根据相反数的意义计算即可.【详解】①﹣(﹣2)=+2=2,故答案为:2.【点睛】本题考查了有理数的化简,熟练掌握相反数的意义是解题的关键.12.2x+5【解析】【分析】首先表示x 的2倍为2x ,再表示“与5的和”为2x+5.【详解】由题意得:2x+5,故答案为2x+5.【点睛】此题主要考查了列代数式,关键是列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.13.=【解析】【分析】利用线段的和差关系与AD BC =可得:,AC CD CD BD 从而可得答案.【详解】 解: AD =BC ,,AC BD ∴=故答案为:=【点睛】本题考查的是线段的和差关系,等式的基本性质,利用图形掌握线段的和差关系是解题的关键.14.2【分析】表示数m 和m -4的点到原点的距离相等可以表示为|m|=|m -4|.然后,进行分类讨论,即可求出对应的m 的值.【详解】解:由题意得|m|=|m -4|,①m=m -4或m=-(m -4),①m=2.故答案为:2.【点睛】本题在根据绝对值的几何意义列出方程之后,在解方程的时候要注意分类讨论,除了同一个数的绝对值相等之外,相反数的绝对值也相等.并且,在解方程之后,会发现有一个方程是无解的.这是一个易错题.15.7或175.【解析】【分析】分两种情况讨论:如图,当C 在线段AB 上时,如图,当C 在线段AB 的延长线上时,再利用线段的和差关系列运算式或方程,从而可得答案.【详解】解:如图,当C 在线段AB 上时,AC :BC =7:3,AB =10,如图,当C 在线段AB 的延长线上时,:7:3,10,AC BC AB设7,AC x 则3,BC x故答案为:7或175.【点睛】本题考查的是线段的和差关系,一元一次方程的应用,掌握利用方程解决线段问题是解题的关键.16.4【详解】试题分析:观察可得计算顺序,可以看出当输入的数输出时时可能会有两种结果,一种是输入后结果小于0,此时就需要将结果返回重新计算,直到结果大于0才能输出结果;另一种是结果大于0,此时可以直接输出结果.将输入得[(-1)+2]×(-2)-4,结果为-6,-6<0,再次输入可得[(-6)+2]×(-2)-4,结果为4,输出即可.考点:有理数的混合运算.17.1【解析】【分析】根据互为相反数两数相加得0,乘积为1的两个数互为倒数,代入计算即可.【详解】解:①有理数a、b互为相反数,cd互为倒数,①0a b+=,1cd=,①2014(a+b)2016+(1ab)2015=2014×02016+12015=1.故答案为:1.【点睛】本题考查了相反数的意义以及倒数的性质,熟知互为相反数两数相加得0,乘积为1的两个数互为倒数是解本题的关键.18.(1)54;(2)8425【解析】【分析】(1)先计算括号,再计算乘法;(2)先计算乘方,把除法转化乘法,最后计算加减即可.【详解】(1)321 ()(2) 433 -⨯-+-=31 ()(2) 43 -⨯-+=35()()43-⨯- =54; (2)3228(2)0.5()(2)5-⨯--÷-641=8240.55-⨯⨯ 16=425- =8425. 【点睛】本题考查了有理数的混合运算,熟练掌握运算顺序,准确计算是解题的关键.19.-52m +7mn -4, 18【解析】【分析】先去括号,后合并同类项,最后代入求值即可.【详解】①2(2mn ﹣2m +1)﹣3(2m ﹣mn +2)=4mn ﹣22m +2﹣32m +3mn -6=-52m +7mn -4,当m =2,n =3时,原式=-5×22+7×2×3-4= -20+42-4,=18.20.作图见解析【分析】利用直尺先作射线,再利用圆规依次在射线上截取两条与AB 相等的线段,从而可得答案.【详解】则线段A B ''即为所求作的线段.【点睛】本题考查的是尺规作图,作一条线段等于已知线段的2倍,掌握“作一条线段等于已知线段”是解题的关键.21.(1)5,2m m n ;(2)113m n【解析】【分析】(1)根据第二条边比第一条边长用加法列运算式,第三条边比第一条边短用减法列运算式,再合并同类项即可;(2)把三角形的三边相加,再合并同类项即可.【详解】解:(1) 三角形第一条边长为4m +2n ,第二条边比第一条边长m ﹣2n ,第三条边比第一条边短2m +n ,∴ 第二条边为:4225,m n m n m第三条边为:4224222,m nm n m n m n m n故答案为:5,2m m n (2)这个三角形的周长为:4252113.m n m m n m n【点睛】本题考查的是列代数式,整式的加减运算的应用,掌握列出正确的代数式是运算的基础,是解题的关键.22.见解析【解析】【分析】观察几何体,作出三视图即可.【详解】解:如图所示:【点睛】此题考查了作图-----三视图,熟练掌握三视图的画法是解本题的关键.23.(1)172;(2)2a b【解析】【分析】(1)先根据AC+CD+DB=AB,计算AC+DB,再根据MN=MC+CD+DN,线段的中点计算即可;(2)利用(1)的结论一般化即可.【详解】(1)如图,①点M,N分别为AC,DB的中点,①AM=MC= 12AC,DN=NB= 12DB,①MC+DN=12AC+12DB=12(AC+BD)=12(AB-CD),①MN=MC+CD+DN=12(AB-CD)+CD=12(AB+CD),①AB=12,CD=5,①MN= 12(12+5)=172;(2)①点M,N分别为AC,DB的中点,①AM=MC= 12AC,DN=NB= 12DB,①MC+DN=12AC+12DB=12(AC+BD)=12(AB-CD),①MN=MC+CD+DN=12(AB -CD )+CD=12(AB+CD ), ①AB =a ,CD =b , ①MN=2a b +. 【点睛】本题考查了线段的中点,线段的和差计算,熟练掌握线段中点,线段和差的意义是解题的关键.24.(1)17;(2)1254. 【解析】【分析】(1)原式利用已知新定义计算即可得到结果;(2)原式利用已知新定义先计算中括号内的,再行计算即可得到结果. 【详解】解:(1)根据已知新定义得:4*1=42+12=17;(2)根据已知新定义得:(﹣2)*3=-(a 2﹣b 2)= b 2-a 2=32-(-2)2=5, 则52*[(﹣2)*3]=5 2*5=(52)2+52=1254.25.(1)13922a b ⎛⎫- ⎪⎝⎭人;(2)29人 【解析】【分析】(1)根据公交车原有乘客()3a b -人,中途有一半人下车,则下车的人数()132a b =-人,再由又上车若干人,使车上共有乘客()85a b -人,即可得到上车的乘客人数()()()185332a b a b a b ⎡⎤=-----⎢⎥⎣⎦人; (2)根据(1)求得的结果把a=10 ,b=8 代入计算即可.【详解】解:(1)公交车原有乘客()3a b -人,中途有一半人下车,①下车的人数()132a b =-人,又①又上车若干人,使车上共有乘客()85a b -人,①上车的乘客人数()()()185332a b a b a b ⎡⎤=-----⎢⎥⎣⎦ ()18532a b a b =--- 13922a b ⎛⎫=- ⎪⎝⎭人 答:上车的乘客人数是13922a b ⎛⎫- ⎪⎝⎭人; (2)当 a=10 时,b=8 时,1391391086536292222a b ⎛⎫-=⨯-⨯=-= ⎪⎝⎭人, ①上车的乘客有29人,答:上车的乘客有29人.【点睛】本题主要考查了整式的加减计算和代数式求值,解题的关键在于能够根据题意准确求出上车的乘客的代数式.26.(1)-1,点B 的位置见解析;(2)此时A ,B 两点间距离为12;(3)t=6或t=3;(4)52m +,12m -或92m - 【分析】(1)根据数轴的意义,即在数轴上标出点B 的位置;(2)根据题意,点A 运动了4个单位长度,用时4秒,则可计算点B 运动的距离,可得到此时点B 在数轴上所对应的数,根据两点距离公式即可求解;(3)经过t 秒,点B 在数轴上所对应的数为2t -1,根据两点距离公式列出方程解答便可; (4)点B 运动的距离为-1-m ,则时间为12m --,即可得点A 所对应的数,再分类求解即可. 【详解】解:(1)点B 在点A 左侧且距点A 为3个单位长度,则点B 所对应的数为-1, 点B 的位置如图所示:(2)根据题意,点A 运动了523-=个单位长度,则用时31=3秒, ①点B 运动了:3⨯2=6(个长度单位),①点B 在数轴上所对应的数为-1-6=-7,①A ,B 两点间距离为5-(-7)=12(个长度单位);(3)经过t 秒,点B 在数轴上所对应的数为2t -7, 根据题意得:2723t --=,即2t -9=3或2t -9=-3,解得t=6或t=3;(4)根据题意,点B 运动的距离为-1-m ,则时间为12m--,①点A 所对应的数为15222mm--+-=,当点A 继续运动到点B 的右侧,此时点A 所对应的数为2m +, ①点A 继续运动的距离为()51222mmm +--+=;当点A 继续运动到点B 的左侧,此时点A 所对应的数为2m -, ①点A 继续运动的距离为()59222mmm +---=. 故答案为:52m +,12m-或92m-.。

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试卷含答案

北师大版七年级上册数学期中考试试题一、单选题1.3-的相反数是( )A .3B .3-C .13D .13-2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D .五次二项式 3.已知长方形周长为20cm ,设长为x cm ,则宽为( )A .20x -B .202x- C .202x - D .10x -4.下列各式的化简,正确的是( )A .-(-3)= -3B .-[-(-10)]= -10C .-(+5)=5D .-[-(+8)]= -85.我国最长的河流长江全长约6300千米,6300千米用科学记数法表示为( ) A .6.3×102千米 B .6.3×103千米C .0.63×104千米D .630×10千米6.有理数a b ,在数轴上的位置如图,则下列各式成立的是( )A .a b >B .0a b +<C .0ab >D .||a b < 7.已知:32m x y -与5n xy 是同类项,则代数式2m n -的值是( )A .6-B .5-C .2-D .58.如图,边长为a 的正方形中,阴影部分的面积是( )A .22a a π-B .22a a π-C .222a a π⎛⎫- ⎪⎝⎭ D .2()a π-9.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是( )A .4B .5C .7D .不能确定10.将下面平面图形绕直线l 旋转一周,可得到如图所示立体图形的是( )A .B .C .D .二、填空题11.如果﹣20%表示减少20%,那么+6%表示_____.12.单项式25xy -的系数是______.13.表示“x 与4的差的3倍”的代数式为_____.14.在(﹣25)4中,底数是___,指数是___;在﹣63中,底数是______.15.用“<”“=”或“>”号填空:-3_____0 89- _____89- -(+6) _____-|-6|16.根据你学过的数学知识,写出一个运算结果为2a -的多项式______________. 17.观察一列单项式:234,2,4,8,...a a a a -- 根据你发现的规律,第7个单项式为_____________;第n 个单项式为________.三、解答题18.计算:(1)341119-+--+--()()()()(2)321210.5233---⨯⨯--()[()](3)372a b a b ++-()()(4)222(8)3(2)x y y x y y +--19.先化简,再求值:222[7(43)2]x x x x ----,其中12x =-.20.已知:a b ,互为相反数,c d ,互为倒数,(3)m =--.求2||a b m cd m m+---的值.21.如图,由5个相连的正方形可以折成一个无盖的正方体盒子.请你再画出3种不同的由5个正方形相连组成的图形,使它可以折成一个无盖的正方体盒子.22.已知:已知:A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1.(1)求2A ﹣3B ;(2)若A+2B 的值与a 的取值无关,求b 的值.23.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣3(单位:元);请通过计算说明:(1)当他卖完这八套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?24.某自然风景区的门票价格为:成人票20元,学生票10元.某中学七年级共有学生m人,老师n人,八年级学生人数是七年级学生人数的32倍,八年级老师人数是七年级老师人数的6 5倍,若他们一起去此风景区,买门票要花多少钱?若200m=,10n=,你能具体求出门票是多少钱吗?25.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并化简;(3)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.参考答案1.A2.A3.D4.B5.B6.B7.B8.C9.B10.B11.增加6%【分析】根据正负是相反意义的量,“正”和“负”相对,即可解题.【详解】如果﹣20%表示减少20%,那么+6%表示增加6%.故答案为增加6%.12.1 5 -【分析】单项式中的数字因数是单项式的系数,根据定义可得答案.【详解】因为:22155xyxy-=-,所以25xy-的系数是15-.故答案是:1 5 -【点睛】本题考查单项式的系数,掌握单项式系数概念是解题关键.13.3(x-4)【详解】x与4的差为:x-4,差的3倍为:3(4)x-.故答案为3(4)x-.14.﹣2546【分析】根据乘方的定义,即可解答.【详解】解:在425⎛⎫-⎪⎝⎭中,底数是25-,指数是4;在﹣63中,底数是6,故答案为:﹣25,4,6.【点睛】本题考查了有理数的乘方,熟练掌握乘方的定义是解题的关键.15. < = =【解析】【详解】解:因为负数小于0,所以-3<0;89-=89-;因为-(+6)=-6,-|-6|=-6,所以-(+6) =-|-6|.故答案是:<,=,=.16.222a a -(答案不唯一)【分析】运用合并同类项、单项式乘法、单项式除法等知识均可求解,注意答案不唯一.【详解】解:例如:2222a a a -=-故答案为222a a -(答案不唯一)【点睛】本题考查了合并同类项、单项式乘法、单项式除法等知识,属于开放型题目.17. 64a 7(或26a 7) (-2)n -1an【解析】通过观察已知条件,找出这列单项式的规律即可求出结果.【详解】解:根据观察可得,系数是(-2)n -1,a 的指数是n ,∴第7个单项式为64a 7,第n 个单项式为(﹣2)n ﹣1an .故答案为64a 7,(﹣2)n ﹣1an .18.(1)1(2)-416(3)10a ﹣b(4)222x y y -+根据有理数的混合运算和整式的加减的运算法则进行计算即可.(1)解:341119-+--+--()()()()71119--=+1819=-+1=(2) 解:321210.5233---⨯⨯--()[()] 1182923-⨯⨯-=-() 786+=- 416=- (3)解:372a b a b ++-()() 372a a b b ++-=()()10a b -=(4)解:222(8)3(2)x y y x y y +--2221636x y y x y y =+-+2223616x y x y y y =-++222x y y =-+【点睛】本题主要考查了有理数的混合运算和整式的加减,牢固掌握有理数的混合运算和整式的加减的运算法则并准确计算是做出本题的关键.19.12- 【解析】先对222[7(43)2]x x x x ----进行化简,然后将x 的值代入即可求解.【详解】解:222[7(43)2]x x x x ---- 222(7432)x x x x =--+-2227432x x x x =-+-+2433x x =--. 当12x =-时,原式1131433134222⎛⎫=⨯-⨯--=+-=- ⎪⎝⎭. 【点睛】本题主要考查代数式的化简求值,代数式的化简是解答本题的关键.20.5【解析】【分析】根据a ,b 互为相反数,c ,d 互为倒数的性质,以及求出m 的值,代入代数式,即可求解.【详解】解:由已知得0a b +=,1cd =,3m =.20||91|3|91353a b m cd m m +---=---=--=. 【点睛】考查了代数式求值,此题的关键是把a+b ,cd 当成一个整体求值.21.见解析【解析】【分析】根据正方体展开图的特征,画出能折叠成正方体纸盒的展开图即可,注意答案不唯一.【详解】解:画出3种图形如下(答案不唯一):【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.22.(1)7a2+3ab﹣4a+1;(2)b=25.【解析】【分析】(1)把A与B代入原式,去括号合并即可得到结果;(2)由A+2B的结果与a的取值无关,即a的系数为0,确定出b的值即可.【详解】解:(1)∴A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴2A﹣3B=2(2a2+3ab﹣2a﹣1)﹣3(﹣a2+ab﹣1)=4a2+6ab﹣4a﹣2+3a2﹣3ab+3=7a2+3ab﹣4a+1;(2)∴A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴A+2B=2a2+3ab﹣2a﹣1﹣2a2+2ab﹣2=5ab﹣2a﹣3=(5b﹣2)a﹣3,由结果与a的取值无关,得到5b﹣2=0,解得:b=25.【点睛】本题考查整式的加减,熟练掌握运算法则是解本题的关键.23.(1)当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)每套儿童服装的平均售价是54.5元.【解析】【分析】(1)将数据求和,就是和55元偏离的值,用总价减去成本就是盈利.(2)用总售价除以总件数,就是平均售价.【详解】解:(1)售价:55×8+(2﹣3+2+1﹣2﹣1+0﹣3)=440﹣4=436,盈利:436﹣400=36(元);答:当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)平均售价:436÷8=54.5(元),答:每套儿童服装的平均售价是54.5元.24.门票为5440元【解析】【分析】先用m 、n 表示出八年级的学生数和老师数,然后运用总票价=人数×单价即可.【详解】 解:八年级的学生数和老师数32n ,65m 则七八年级一起去景区,应付票钱为:365111020102025442525m m n n m n m n ⎛⎫⎛⎫+++=⨯+⨯=+ ⎪ ⎪⎝⎭⎝⎭. 当200m =,10n =时,原式25200441050004405440=⨯+⨯=+=(元).答:门票为5440元.【点睛】本题主要考查了列代数式以及代数式求值问题,根据已知得出式子表示该支付门票费用是解题关键.25.(1)5a+3b ,2a+3b ;(2)9a+11b ;(3)78【解析】【详解】解:(1)∴三角形的第一条边长为2a +5b ,第二条边比第一条边长3a -2b ,第三条边比第二条边短3a ,∴第二条边长=(2a +5b)+(3a -2b)=2a +5b +3a -2b=5a +3b ,第三条边长=(5a +3b)-3a11 =5a +3b -3a=2a +3b ;故答案为:5a+3b ,2a+3b ;(2)周长:()()()255323911a b a b a b a b +++++=+; (3)∴|a ﹣5|+(b ﹣3)2=0,∴a -5=0,b -3=0,即a =5,b =3,∴周长:9a +11b =45+33=78.。

新北师大版七年级(上)期中考试数学试题(含答案) (294)

新北师大版七年级(上)期中考试数学试题(含答案) (294)

2019-2020学年云南省文山州广南县七年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列各个平面图形中,属于圆锥表面展开图的是()A.B.C.D.2.下面几何体截面一定是圆的是()A.圆柱B.圆锥C.球D.圆台3.下列说法中正确的是()A.最小的整数是0B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等4.在数轴上,原点两旁与原点等距离的两点所表示的数的关系是()A.相等B.互为倒数C.互为相反数D.不能确定5.一个数的倒数是它本身的数是()A.1 B.﹣1 C.±1 D.06.下列计算结果等于1的是()A.(﹣2)+(﹣2)B.(﹣2)﹣(﹣2)C.﹣2×(﹣2)D.(﹣2)÷(﹣2)7.下列各题的结果正确的是()A.3x+3y=6xy B.7x﹣5x=2x2C.﹣y2﹣y2=0 D.19a2b﹣9a2b=10a2b 8.多项式3x+5y的次数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)9.谜语:正看三条边,侧看三条边,上看圆圈圈,就是没直边(打一几何体).10.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)=.11.在(﹣)3中,指数是,底数是.12.气温从﹣1℃升高到5℃,升高了多少℃?列出算式为5﹣(﹣1)=℃.13.一个三角形的三边长都是c,它的周长是.14.单项式7h的次数是次.三、解答题15.计算:(1)当x=10,y=9时,求代数式x2﹣y2的值.(2)12﹣7×(﹣4)+8÷(﹣2).(3)(﹣1)2014+(﹣1)2015.16.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长168 000 000m,用科学记数法表示这个数.17.某冷冻厂的一个冷库现在的室温是﹣2℃,现在一批食品需要在﹣28℃下冷藏,如果每小时能降温4℃,需要几小时才能降到所需温度?18.在数轴上表示下列各数:0,﹣2.5,3,﹣2,+5,并比较它们的大小.19.下表是某中学七年级5名学生的体重情况,试完成下表(1)谁最重?谁最轻?(2)最重的与最轻的相差多少?20.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4cm、宽为3cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?(结果保留π)21.画出下面几何体的从正面、从左面、从上面看到的形状图.22.先化简下列代数式,再求出这个代数式的值:﹣3x2+5x﹣0.5x2+x﹣1,其中x=2.23.用火柴棒按下图中的方式搭图形.(1)按图示规律填空:(2)按照这种方式搭下去,搭第n个图形需要根火柴?2015-2016学年云南省文山州广南县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.下列各个平面图形中,属于圆锥表面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由圆锥的展开图特点:侧面是扇形,底面是个圆.【解答】解:因为圆锥的展开图为一个扇形和一个圆形.故选D.2.下面几何体截面一定是圆的是()A.圆柱 B.圆锥 C.球D.圆台【考点】截一个几何体.【分析】根据题意,分别分析四个几何体截面的形状,解答出即可.【解答】解:由题意得,圆柱的截面有可能为矩形,圆锥的截面有可能为三角形,圆台的截面有可能为梯形,球的截面一定是圆.故选C.3.下列说法中正确的是()A.最小的整数是0B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等【考点】正数和负数;相反数;绝对值.【分析】根据有理数及正数、负数、相反数、绝对值等知识对每个选项分析判断.【解答】解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.4.在数轴上,原点两旁与原点等距离的两点所表示的数的关系是()A.相等 B.互为倒数 C.互为相反数D.不能确定【考点】相反数;数轴.【分析】根据互为相反数的定义和数轴解答.【解答】解:在数轴上,原点两旁与原点等距离的两点所表示的数的关系是:互为相反数.故选C.5.一个数的倒数是它本身的数是()A.1 B.﹣1 C.±1 D.0【考点】倒数.【分析】根据倒数的定义求解即可.【解答】解:一个数的倒数是它本身的数是±1.故选:C.6.下列计算结果等于1的是()A.(﹣2)+(﹣2)B.(﹣2)﹣(﹣2)C.﹣2×(﹣2)D.(﹣2)÷(﹣2)【考点】有理数的除法;有理数的加法;有理数的减法;有理数的乘法.【分析】分别根据有理数的加、减、乘、除运算法则计算出各选项的值,再与1比较即可.【解答】解:A、(﹣2)+(﹣2)=﹣4,A选项错误;B、(﹣2)﹣(﹣2)=0,B选项错误;C、﹣2×(﹣2)=﹣(﹣4)=4,C选项错误;D、(﹣2)÷(﹣2)=1,D选项正确.故选:D.7.下列各题的结果正确的是()A.3x+3y=6xy B.7x﹣5x=2x2C.﹣y2﹣y2=0 D.19a2b﹣9a2b=10a2b【考点】合并同类项.【分析】先求出每个式子的值,再判断即可.【解答】解:A、3x和3y不能合并同类项,故本选项不符合题意;B、结果是2x,故本选项不符合题意;C、结果是﹣2y2,故本选项不符合题意;D、结果是10a2b,故本选项符合题意;故选D.8.多项式3x+5y的次数是()A.1 B.2 C.3 D.4【考点】多项式.【分析】根据多项式的次数的定义进行解答即可.【解答】解:多项式3x+5y的次数是1,故选A.二、填空题(每小题3分,共18分)9.谜语:正看三条边,侧看三条边,上看圆圈圈,就是没直边(打一几何体)圆锥.【考点】由三视图判断几何体.【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图都是三角形,故此几何体为锥体,从上面看到的图叫做俯视图是圆圈,故此几何体为圆锥.【解答】解:根据题意可得:此几何体为圆锥.故答案为:圆锥.10.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)=16.【考点】有理数的混合运算.【分析】根据题中的新定义a*b=3a﹣2b,将a=2,b=﹣5代入计算,即可求出2*(﹣5)的值.【解答】解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.11.在(﹣)3中,指数是3,底数是﹣.【考点】有理数的乘方.【分析】根据乘方的定义得出即可.【解答】解:在(﹣)3中,指数是3,底数是﹣,故答案为:3,﹣.12.气温从﹣1℃升高到5℃,升高了多少℃?列出算式为5﹣(﹣1)=6℃.【考点】有理数的加减混合运算.【分析】用后面的温度减去前面的温度,列出算式可求升高了多少℃.【解答】解:5﹣(﹣1)=6℃.故升高了6℃.故答案为:6.13.一个三角形的三边长都是c,它的周长是3c.【考点】列代数式.【分析】根据题意,可以用相应的代数式表示它的周长.【解答】解:∵一个三角形的三边长都是c,∴这个三角形的周长是:c+c+c=3c,故答案为:3c.14.单项式7h的次数是1次.【考点】单项式.【分析】根据单项式次数的定义来求解,单项式中所有字母的指数和叫做这个单项式的次数.【解答】解:单项式7h的次数是1次.故答案为:1.三、解答题15.计算:(1)当x=10,y=9时,求代数式x2﹣y2的值.(2)12﹣7×(﹣4)+8÷(﹣2).(3)(﹣1)2014+(﹣1)2015.【考点】代数式求值;有理数的混合运算.【分析】(1)直接代入即可;(2)根据有理数的加减乘除进行计算即可;(3)根据乘方进行计算即可.【解答】解:(1)当x=10,y=9时,原式=102﹣92=100﹣81=19;(2)原式=12+28﹣4=40﹣4=36;(3)原式=1﹣1=0.16.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长168 000 000m,用科学记数法表示这个数.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:168 000 000m,用科学记数法表示1.68×108m.17.某冷冻厂的一个冷库现在的室温是﹣2℃,现在一批食品需要在﹣28℃下冷藏,如果每小时能降温4℃,需要几小时才能降到所需温度?【考点】有理数的混合运算.【分析】由现在的温度减去食品需要的温度,求出应将的温度,除以每小时能降温4℃,即可求出需要的时间.【解答】解:根据题意列得:[﹣2﹣(﹣28)]÷4=(﹣2+28)÷4=26÷4=6.5(小时),答:需要6.5小时才能降到所需温度.18.在数轴上表示下列各数:0,﹣2.5,3,﹣2,+5,并比较它们的大小.【考点】有理数大小比较;数轴.【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的是右边的总比左边的大,可得答案.【解答】解:把数在数轴表示如图,,由数轴上的点表示的是右边的总比左边的大,得﹣2.5<﹣2<0<3<+5.19.下表是某中学七年级5名学生的体重情况,试完成下表(1)谁最重?谁最轻?(2)最重的与最轻的相差多少?【考点】有理数的加减混合运算;有理数大小比较.【分析】(1)由小颖的体重与体重和平均体重的差,求出平均体重,进而确定出其他人的题中,填表后,找出最重的与最轻的即可;(2)用最重的减去最轻的列出算式,计算即可得到结果.【解答】解:(1)由小颖体重为34千克,体重与平均体重的差为﹣7,得到平均体重为34﹣(﹣7)=34+7=41(千克),则小明的体重为41+3=44(千克);小刚的体重为44千克;小京的体重为41+(﹣4)=37(千克);小宁的体重为41千克,填表如下:∴小刚的体重最重;小颖的体重最轻;(2)最重与最轻相差为45﹣34=11(千克).20.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4cm、宽为3cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?(结果保留π)【考点】圆柱的计算.【分析】圆柱体的体积=底面积×高,注意底面半径和高互换得圆柱体的两种情况.【解答】解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.21.画出下面几何体的从正面、从左面、从上面看到的形状图.【考点】作图﹣三视图.【分析】由已知图形分别从正面看,从左面看,从上面看,得出每列正方形个数,据此可画出图形.【解答】解:如图所示:22.先化简下列代数式,再求出这个代数式的值:﹣3x2+5x﹣0.5x2+x﹣1,其中x=2.【考点】整式的加减—化简求值.【分析】原式合并同类项得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=﹣3.5x2+6x﹣1,当x=2时,原式=﹣14+12﹣1=﹣3.23.用火柴棒按下图中的方式搭图形.(1)按图示规律填空:(2)按照这种方式搭下去,搭第n个图形需要2n+2根火柴?【考点】规律型:图形的变化类.【分析】(1)由图形发现,后面的图形都比前面相邻的图形多2根火柴棒,由此计算得出答案即可;(2)利用表中的规律得出一般的规律即可.【解答】解:(1)填表如下:(2)搭第n个图形需要(2n+2)根火柴.2017年5月17日。

2014-2015北师大版七年级数学上册期末测试卷

2014-2015北师大版七年级数学上册期末测试卷

北师大版七年级数学上册测试卷 姓名 成绩:一、选择题:(每小题3分,共30分)1、用一个平面去截正方体,截面形状不可能的是( )A、三角形 B、梯形 C、六边形 D、七边形2、如图是正方体的表面展开图,在正方形的A 处填一个数,使它和相对面的数为相反数( )A 、2B 、3C 、-3D 、-23、如果2()13⨯-=,则“”内应填的实数是( ) A .32 B .23 C .23- D .32- 4、下列说法,正确的是( )A 、经过一点有且只有一条直线B 、两点确定一条直线C 、两条直线相交至少有两个交点D 、线段AB 就是表示点A 到点B 的距离5、下列方程中,属于一元一次方程的是 ( ) A.021=+x B. 3x2+4y=2 C. x2+3x=x2-1 D.x2+3x-1=8+5x6、下列各数互为相反数的是( )A 、24-与2)4(-B 、43与34C 、33-与3)3(- D 2--与)2(-- 7、下列各式中,结果正确的是( )。

A 、(-3)2=6 B 、(-21)2=1 C 、(0.1)2=0.02 D 、 (-23)2=-827 8、 当分针指向12,时针这时恰好与分针成120°角,此时是( )A.9点钟B.8点钟C.4点钟D.8点钟或4点钟9、已知-1<a <0,则21,,,a a a a-大小是( ). A . 21a a a a <<-< B. 21a a a a -<<< C. 21a a a a <<<- D. 21a a a a-<<< 10、如果代数式4y 2-2y +5的值是7,那么代数式2y 2-y+1的值等于( )A . 2B . 3C .﹣2D .4二、填空题(每小题3分,共18分)11、2010年一季度,全国城镇新增就业人数为289万人,将289万人用科学计数法表示为_________人.。

江苏省无锡市前洲中学2014-2015学年七年级数学上学期期中试题 北师大版苏科版

江苏省无锡市前洲中学2014-2015学年七年级数学上学期期中试题 北师大版苏科版

江苏省无锡市前洲中学2014-2015学年七年级数学上学期期中试题一、精心选一选(本大题共10小题,每题3分,共30分)1.方程5(x-1)=5的解是……………………………………………… ( ) A .x=1 B .x=2 C .x=3 D .x=42.下列关于单项式一252yx 的说法中,正确的是…………………………( ) A .系数是-25,次数是4 B .系数是-25,次数是3C .系数是-5,次数是4D .系数是-5,次数是33.甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低的地方高………………………………………………………………( ) A .5m B .10m C .25m D .35m4.根据国家安排,今年江苏省保障性安居工程计划建设106800套,106800用科学记数学法可表示为…………………………………………………( )A .1068×102B .10.68×104C .1.068×105D .0.1068×1065.两个数的商是正数,下面判断中正确的是………………………………( ) A .和是正数 B .差是正数 C .积是正数 D .以上都不对6.如图,图中数轴的单位长度为1.如果点B ,C 表示的数的绝对值相等,那么点A 与点D 表示的数分别是……………………………………………( )A .—2,2B .—4 , 1C .—5 , 1D .—6 , 27.若A 、B 都是五次多项式,则A-B 一定是………………………………( ) A .四次多项式 B .五次多项式C .十次多项式D .不高于五次的多项式8.下列计算中正确的是……………………………………………………( ) A .6a-5a=1 B .5x-6x=11x C .m2-m=m D .x3+6x3=7x39.已知(x -1)3=ax3+bx2+cx +d.,则a +b +c +d 的值为……………………………( ) A .—1 B .0 C .1 D .210.在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离是10m ,如图,第一棵树左边5m 处有一个路牌,则从此路牌起向右340m ~380m 之间树与灯的排列顺序是…………………………………………( )二、细心填一填(本大题共9小题13空,每空2分,共26分) 11.-2的绝对值是 ,相反数是12.当x= 时,代数式23x 的值是0.已知多项式2x2-4x 的值为10,则多项式x2−2x+6的值为 .13.若4x4yn+1与-5xmy2的和仍为单项式,则m= ,n= .14.方程x+a=2的解与方程2x+3=-5的解相同,则a= 15.已知|a-2|+(b+1)2=0,则(a+b )2012=16.如图所示的运算程序中,若开始输入的x 的值为10,我们发现第一次输出的结果为5,第二次输出的结果为8,…,则第10次输出的结果为17.请写出一个方程的解是2的一元一次方程: .18.如图,边长为(m+3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是 .19.已知a= |x —5|+|x —2|+|x+3|,求当x= 时,a 有最小值为 三、认真答一答(本大题共7小题,共44分) 20.计算:(本题共2小题,每题3分,共6分)(1)-23+(-37)-(-12)+45; (2)⨯--)926132((-6)2.21.解方程:(本题共2小题,每题3分,共6分)(1)2(2x+1)=1-5(x-2); (2)2x -35x +=122.(本题5分)已知y x A 2-=,14+--=y x B (1)求)2(2)(3B A B A --+的值;(结果用x 、y 表示)(2)当21+x 与2)1(-y 互为相反数时,求(1)中代数式的值.23.(本题5分)某自行车厂一周计划生产1050辆自行车,平均每天生产150辆,由于各种原因实际每天(1)产量最多的一天比产量最少的一天多生产 辆; (2)根据记录可知前三天共生产 辆;(3)该厂实行计件工资制,每辆车50元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?24.(本题7分)世博会某国国家馆模型的平面图如图所示,其外框是一个大正方形,中间四个大小相同的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个大小相同的正方形是展厅,剩余的四个大小相同的休息厅,已知核心筒的正方形边长比展厅的正方形边长的一半多1米. (1)若设展厅的正方形边长为x 米,用含x 的代数 式表示核心筒的正方形边长为 米.(2)若设核心筒的正方形边长为y 米,求该模型的平面图外框大正方形的周长及每个休息厅的图形周长. (用含y 的代数式表示)(3)若设核心筒的正方形边长为2米,求该国家展厅(除四根核心筒)的占地面积。

北师大七级上册数学期中考试试题及答案

北师大七级上册数学期中考试试题及答案

北师大七级上册数学期中考试试题及答案一、选择题(每题4分,共40分)1. 下列选项中,既是有理数又是无理数的是()A. 0.333…B. √2C. -5D. 3.142. 若a是正数,b是负数,则下列各式正确的是()A. a + b > 0B. a - b > 0C. ab > 0D. a/b > 03. 已知a > b,则下列不等式中正确的是()A. a^2 > b^2B. a^3 > b^3C. a/b > b/aD. a + b > 04. 下列各数中,哪个数的平方等于1?()A. -1B. 1/2C. 0D. √25. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = 2x6. 下列各式中,正确的是()A. (a^2)^3 = a^6B. (a^3)^2 = a^6C. a^2 a^3 = a^5D. a^5 / a^3 = a^27. 已知函数f(x) = 2x + 3,求f(-1)的值()A. -1B. 1C. 2D. 38. 下列关于x的不等式中,有解的是()A. x + 1 > 0B. x - 2 < 0C. 2x - 3 ≥ 0D. 3x + 4 ≤ 09. 下列关于函数的叙述正确的是()A. 一次函数的图像是一条直线B. 二次函数的图像是一个椭圆C. 幂函数的图像是一条抛物线D. 指数函数的图像是一条过原点的直线10. 若平行四边形ABCD的对角线交于点E,且AE = 6cm,BE = 4cm,CE = 8cm,则DE的长度为()A. 2cmB. 3cmC. 4cmD. 5cm二、填空题(每题4分,共40分)11. 已知a = 3,b = -2,求a + b的值。

12. 已知函数f(x) = 2x - 1,求f(3)的值。

答案:_______13. 求下列函数的定义域:y = √(x - 3)。

北师大版数学七年级上册期中考试试题及答案

北师大版数学七年级上册期中考试试题及答案

北师大版数学七年级上册期中考试试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.(3分)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.3.(3分)下列说法中错误的是()A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5t记作+5t,那么运出货物5t记作﹣5tD.一个有理数不是正数,那它一定是负数4.(3分)据统计,2017年“十•一”国庆长假期间,某市共接待国内外游客约517万人次,与2016年同比增长16.43%,数据517万用科学记数法表示为()A.0.517×107B.5.17×105C.5.17×106D.517×1065.(3分)若a的倒数是﹣1,则a2017的值是()A.1 B.﹣1 C.2017 D.﹣20176.(3分)下列运算正确的是()A.a2+a=a3B.a2•a=a3C.a2÷a=2 D.(2a)2=4a7.(3分)如图,是由若干个相同的小立方体搭成的几何体.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或78.(3分)化简x﹣y﹣(x+y)的最后结果是()A.0 B.2x C.﹣2y D.2x﹣2y9.(3分) 13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.7710.(3分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是()A.n B.n+2 C.n2D.n(n+2)二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)粉笔在黑板上写字说明;车轮旋转时看起来像个圆面,这说明;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明.12.(3分)计算:(﹣1)2015+(﹣1)2016= .13.(3分)若a﹣2b=3,则9﹣2a+4b的值为.14.(3分)若﹣2a m b5与5a3b n+7是同类项,则m+n= .15.(3分)若|a+5|+(b﹣4)2=0,则(a+b)2017= .16.(3分)李明与王伟在玩一种计算的游戏,计算的规则是=ad ﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你算一算,得.17.(3分)按照如图所示的操作步骤,若输入x的值为2,则输出的值为.18.(3分)如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需根火柴棒,…,则第n个图形需根火柴棒.三、解答题(本大题共7小题,共66分)19.(10分)计算:(1)(﹣7)+(+15)﹣(﹣25)(2)﹣24﹣×[5﹣(﹣3)2].20.(6分)化简:﹣3(xy﹣2)+2(1﹣2xy)21.(8分)先化简,后求值:(﹣4x2+2x﹣12)﹣(x﹣1),其中x=﹣1.22.(10分)如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个几何体的名称;(2)根据图中有关数据,求这个几何体的表面积.23.(10分)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?24.(10分)若xy|a|与3x|2b+1|y是同类项,其中a、b互为倒数,求2(a﹣2b2)﹣(3b2﹣a)的值.25.(12分)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:图形(1)(2)(3)…黑色瓷砖的块数 4 7 …黑白两种瓷砖的总块数15 25 …(2)依上推测,第n个图形中黑色瓷砖的块数为;黑白两种瓷砖的总块数为(都用含n的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2016•广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分)(2017秋•宿州期中)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.【分析】根据n棱柱的展开图有n个矩形侧面,上下底面是两个n边形,可得答案.【解答】解:三棱柱的侧面是三个矩形,上下底面是三角形,故选:A.【点评】本题考查了几何体的三视图,n棱柱的展开图有n个矩形侧面,上下底面是两个n边形.3.(3分)(2017秋•宿州期中)下列说法中错误的是()A.0既不是正数,也不是负数B.0是自然数,也是整数,也是有理数C.若仓库运进货物5t记作+5t,那么运出货物5t记作﹣5tD.一个有理数不是正数,那它一定是负数【分析】根据有理数的定义和分类以及正负数的意义进行判断即可.【解答】解:有理数包括正有理数、负有理数和零,所以一个有理数不是正数,那它可能是0,也可能是负数,D不正确.故选:D.【点评】本题考查了有理数的定义和分类,牢记有关定义是解题的关键,同时考查了正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.4.(3分)(2017秋•宿州期中)据统计,2017年“十•一”国庆长假期间,某市共接待国内外游客约517万人次,与2016年同比增长16.43%,数据517万用科学记数法表示为()A.0.517×107B.5.17×105C.5.17×106D.517×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n是负数.【解答】解:517万=517 0000=5.17×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2017•泰安模拟)若a的倒数是﹣1,则a2017的值是()A.1 B.﹣1 C.2017 D.﹣2017【分析】根据倒数定义可得a的值,再根据乘方的意义可得答案.【解答】解:由题意得:a=﹣1,则a2017=﹣1,故选:B.【点评】此题主要考查了倒数,以及乘方,关键是掌握乘积是1的两数互为倒数.6.(3分)(2015•薛城区校级三模)下列运算正确的是()A.a2+a=a3B.a2•a=a3C.a2÷a=2 D.(2a)2=4a【分析】根据合并同类项、同底数幂的除法、同底数幂的乘法等运算法则求解,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、a2•a=a3,计算正确,故本选项正确;C、a2÷a=a,原式计算错误,故本选项错误;D、(2a)2=4a2,原式计算错误,故本选项错误.故选:B.【点评】本题考查了合并同类项、同底数幂的除法、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.7.(3分)(2017秋•宿州期中)如图,是由若干个相同的小立方体搭成的几何体.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或7【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选:D.【点评】本题考查了由三视图判断几何体,也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个小立方体.8.(3分)(2014•永康市模拟)化简x﹣y﹣(x+y)的最后结果是()A.0 B.2x C.﹣2y D.2x﹣2y【分析】原式去括号合并即可得到结果.【解答】解:原式=x﹣y﹣x﹣y=﹣2y.故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.(3分)(2016•舟山)13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.77【分析】有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.【解答】解:依题意有,刀鞘数为76.故选:C.【点评】考查了有理数的乘方,关键是根据题意正确列出算式,是基础题型.10.(3分)(2017秋•宿州期中)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是()A.n B.n+2 C.n2D.n(n+2)【分析】第1个图形是3×1﹣3=1×3,第2个图形是4×3﹣4=2×4,第3个图形是4×5﹣5=3×5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是:边数×每条边的点数﹣边数=(n+2)(n+1)﹣(n+2)=n(n+2).【解答】解:第一个是1×3,第二个是2×4,第三个是3×5,…第 n个是n(n+2),故选:D.【点评】此题考查图形的变化规律,从简单入手,找出图形蕴含的规律,利用规律解决问题.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017秋•宿州期中)粉笔在黑板上写字说明点动成线;车轮旋转时看起来像个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.【分析】根据点动成线,线动成面,面动成体填空即可.【解答】解:笔尖在纸上写字说明点动成线;车轮旋转时看起来象个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.故答案为:点动成线;线动成面;面动成体.【点评】此题主要考查了点线面体,关键是掌握点动成线,线动成面,面动成体.12.(3分)(2015秋•高阳县期末)计算:(﹣1)2015+(﹣1)2016= 0 .【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.13.(3分)(2015•苏州)若a﹣2b=3,则9﹣2a+4b的值为 3 .【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.(3分)(2017秋•宿州期中)若﹣2a m b5与5a3b n+7是同类项,则m+n= 1 .【分析】根据同类项定义可得m=3,n+7=5,再解即可.【解答】解:由题意得:m=3,n+7=5,解得:m=3,n=﹣2,m+n=3﹣2=1,故答案为:1.【点评】此题主要考查了同类项定义,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.(3分)(2017秋•宿州期中)若|a+5|+(b﹣4)2=0,则(a+b)2017= ﹣1 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a+5=0,b﹣4=0,解得a=﹣5,b=4,所以,(a+b)2017=(﹣5+4)2017=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.(3分)(2017秋•宿州期中)李明与王伟在玩一种计算的游戏,计算的规则是=ad﹣bc,李明计算,根据规则=3×1﹣2×5=3﹣10=﹣7,现在轮到王伟计算,请你算一算,得﹣28 .【分析】直接利用有理数的混合运算法则计算得出答案.【解答】解:=2×(﹣5)﹣3×6=﹣28.故答案为:﹣28.【点评】此题主要考查了有理数的混合运算,正确掌握运算法则是解题关键.17.(3分)(2013•苏州)按照如图所示的操作步骤,若输入x的值为2,则输出的值为20 .【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.18.(3分)(2015•石城县模拟)如图,是用火柴棒拼成的图形,第1个图形需3根火柴棒,第2个图形需5根火柴棒,第3个图形需7根火柴棒,第4个图形需9 根火柴棒,…,则第n个图形需2n+1 根火柴棒.【分析】按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的根数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加(n﹣1)个,那么此时火柴棒的根数应该为:3+2(n﹣1)进而得出答案.【解答】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:9,2n+1.【点评】此题主要考查了图形变化类,本题解题关键根据第一问的结果总结规律是得到规律:三角形的个数每增加一个,火柴棒的根数增加2根,然后由此规律解答.三、解答题(本大题共7小题,共66分)19.(10分)(2017秋•宿州期中)计算:(1)(﹣7)+(+15)﹣(﹣25)(2)﹣24﹣×[5﹣(﹣3)2].【分析】(1)在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.(2)有理数混合运算时,先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣7)+(+15)﹣(﹣25)=﹣7+15+25=﹣7+40=33(2)﹣24﹣×[5﹣(﹣3)2]=﹣16﹣×(5﹣9)=﹣16﹣×(﹣4)=﹣16+2=﹣14【点评】本题主要考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.(6分)(2017秋•宿州期中)化简:﹣3(xy﹣2)+2(1﹣2xy)【分析】首先去括号,然后再合并同类项即可.【解答】解:原式=﹣3xy+6+2﹣4xy=﹣7xy+8.【点评】此题主要考查了整式的加减,关键是去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.21.(8分)(2017秋•宿州期中)先化简,后求值:(﹣4x2+2x﹣12)﹣(x﹣1),其中x=﹣1.【分析】根据整式的加减的运算顺序,先去括号,再合并同类项,再将x的值代入求值即可.【解答】解:(﹣4x2+2x﹣12)﹣(x﹣1)=﹣x2+x﹣3﹣x+1=﹣x2﹣2当x=﹣1时,原式=﹣1﹣2=﹣3.【点评】本题主要考查整式的加减的化简求值,解决此类问题时,要注意去括号时符号变化.22.(10分)(2017秋•宿州期中)如图所示的是某个几何体从三种不同方向所看到的图形.(1)说出这个几何体的名称;(2)根据图中有关数据,求这个几何体的表面积.【分析】(1)根据三视图可直接得出这个立体图形是三棱柱;(2)根据直三棱柱的表面积公式进行计算即可.【解答】解:(1)根据三视图可得:这个立体图形是三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.【点评】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,同时也考查学生的空间想象能力.23.(10分)(2017秋•宿州期中)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?【分析】(1)将各数据相加即可得到结果;(2)将各数据的绝对值相加得到结果,乘以10即可得到最后结果.【解答】解:(1)60+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=65.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=59.4(吨),则下午运完货物后存货59.4吨;(2)(5.5+4.6+5.3+5.4+3.4+4.8+3)×10=32×10=320(元),则下午货车共得运费320元.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,然后利用各种运算法则计算,有时可以利用运算律来简化运算.24.(10分)(2017秋•宿州期中)若xy|a|与3x|2b+1|y是同类项,其中a、b互为倒数,求2(a﹣2b2)﹣(3b2﹣a)的值.【分析】根据绝对值的性质及倒数的定义,求出a,b的值,再将多项式去括号合并同类项,代入求值即可.【解答】解:根据题意,得:|2b+1|=1,|a|=1,∴b=0或﹣1,a=±1,又∵a,b不为倒数,∴a=﹣1,a=﹣1,∵2(a﹣2b2)﹣(3b2﹣a)=2a﹣2b2﹣b2+=a﹣b2当a=﹣1,b=﹣1时,原式==﹣6.【点评】本题主要考查整式的化简求值及绝对值、倒数、同类项的综合运用,解决此题时,能根据绝对值的性质,判断出a,b的值可能是多少,再根据a,b倒数,确定a,b的值是关键.25.(12分)(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表:图形(1)(2)(3)…黑色瓷砖的块数 4 7 10 …黑白两种瓷砖的总块数15 25 35 …(2)依上推测,第n个图形中黑色瓷砖的块数为3n+1 ;黑白两种瓷砖的总块数为10n+5 (都用含n的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【分析】(1)第一个图形有黑色瓷砖4块,黑白两种瓷砖的总块数为15;第二个图形有黑色瓷砖7块,黑白两种瓷砖的总块数为25;第三个图形有黑色瓷砖10块,黑白两种瓷砖的总块数为35;由此填表即可;(2)由(1)可知每一个图形的黑色瓷砖块数比前一个图形多3,总块数多10,由此求得答案即可;(3)利用(2)的规律利用“白色瓷砖的块数可能比黑色瓷砖的块数多2015块”联立方程,求得整数解就能,否则不能.【解答】解:(1)填表如下:图形(1)(2)(3)…黑色瓷砖的块数 4 7 10 …黑白两种瓷砖的总块数15 25 35 …(2)第n个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5;(3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015,解得:n=503答:第503个图形.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.高效教学的诀窍高效教学,具体应该怎么说呢?我们很难精确地给它下一个定义,但大家都能清晰地感受到它。

2015北师大附中初一(上)期中数学

2015北师大附中初一(上)期中数学

2015北师大附中初一(上)期中数学一、选择题(本大题共10道小题,每小题3分,共30分)1.(3分)的相反数是()A.B.﹣ C.3 D.﹣32.(3分)下列各对数中,相等的一对数是()A.﹣23与﹣32B.(﹣2)3与﹣23C.(﹣3)2与﹣32D.﹣(﹣2)与﹣|﹣2|3.(3分)下列运算正确的是()A.2x2﹣x2=2 B.2a2﹣a=a C.﹣a2﹣a2=﹣2a2D.2m2+3m3=5m54.(3分)多项式x3y2﹣5x2y+6xy﹣3的次数是()A.2 B.3 C.5 D.105.(3分)下列结论不正确的是()A.若a+c=b+c,则a=b B.若ac=bc,则a=bC.若,则a=b D.若ax=b(a≠0),则6.(3分)在数轴上,与表示数﹣1的点的距离是3的点表示的数是()A.2 B.﹣4 C.±3 D.2或﹣47.(3分)下列方程中,解为x=4的方程是()A.B.4x=1 C.x﹣1=4 D.8.(3分)己知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a>b B.ab<0 C.b﹣a>0 D.a+b>09.(3分)一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3 B.﹣x2+x﹣1 C.﹣x2+5x﹣3 D.x2﹣5x﹣1310.(3分)某企业2014年的生产总值为a万元,预计2015年的生产总值比去年增长20%,那么该企业这两年的生产总值之和是()A.20%a万元B.(20%+a)万元 C.(1+20%)a万元D.[a+(1+20%)a]万元二、填空题(本大题共8道小题,每空2分,共20分)11.(2分)若赢利2000元记作+2000元,则亏损800元记作元.12.(2分)比较大小:﹣﹣(填“>”或“<”)13.(4分)单项式﹣2xy3的系数是,次数是.14.(2分)用四舍五入法求0.12874精确到千分位的近似数为.15.(2分)若|m﹣3|+(n+2)2=0,则m+n的值为.16.(2分)若a、b互为相反数,c、d互为倒数,则+2cd= .17.(2分)若方程kx|k+1|+2=0是关于x的一元一次方程,则k= .18.(4分)有一组数,.请观察这组数的构成规律,用你发现的规律确定第6个数是,第n个数是.三.计算题(本大题共4道小题,每小题16分,共16分)19.(16分)(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)(2)(3)(4).四.化简求值题(本大题共2道小题,每小题4分,共8分)20.(4分)3x2+1﹣2x﹣5﹣3x﹣x2.21.(4分)先化简,再求值:(9ab2﹣3)+a2b+3﹣2(ab2+1),其中a=﹣2,b=3.五.解方程(本大题共2道小题,每小题8分,共8分)22.(8分)解方程:(1)2(x﹣3)﹣5(3﹣x)=21(2)﹣=4.六.解答题(本大题共3道小题,每小题6分,共18分)23.(6分)有理数a,b在数轴上的对应点位置如图所示,(1)用“<”连接0,a,b,﹣1;(2)化简:|a|+|a+b|﹣2|b﹣a|.24.(6分)(1)已知代数式3x2﹣4x的值为6,求代数式6x2﹣8x﹣9的值;(2)已知,求代数式的值.25.(6分)已知﹣x1﹣m y2与是同类项,求(m﹣2n)2﹣5(m+n)﹣2(2n﹣m)2+m+n的值.七.附加题26.填空题:(请将结果直接写在横线上)现定义运算“△”,对于两个有理数a,b,都有a△b=ab﹣(a+b),例如:(﹣2)△1=(﹣2)×1﹣(﹣2+1)=﹣2﹣(﹣1)=﹣1,则5△1= ;(m﹣2)△1= ;m△(n△1)= .27.探究题:下图是某月的月历.(1)如图1,带阴影的方框中的9个数之和是;(2)如果将带阴影的方框移至图2的位置,则这9个数之和是;(3)如果将带阴影的方框移至9个数之和为198的位置,求这9个数中最小的数.28.阅读理解题:如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.9 ★☆x ﹣6 2 …(1)可求得x= ,第2015个格子中的数为;(2)判断:前n个格子中所填整数之和是否可能为2015?若能,求出n的值,若不能,请说明理由;(3)若取前3格子中的任意两个数,记作a、b,且a≥b,那么所有的|a﹣b|的和可以通过计算|9﹣★|+|9﹣☆|+|☆﹣★|得到.其结果为;若取前19格子中的任意两个数,记作s、t,且s≥t,求所有的|s﹣t|的和.数学试题答案一、选择题(本大题共10道小题,每小题3分,共30分)1.【解答】﹣的相反数是.故选:A.2.【解答】A、﹣23=﹣8,﹣32=9,﹣8≠9,故错误;B、(﹣2)3=﹣8,﹣23=﹣8,﹣8=﹣8,故正确;C、(﹣3)2=9,﹣32=﹣9,9≠﹣9,故错误;D、﹣(﹣2)=2,﹣|﹣2|=﹣2,﹣2≠2,故错误;故选:B.3.【解答】A、2x2﹣x2=x2,故A错误;B、不是同类项,不能合并,故B错误;C、正确;D、不是同类项,不能合并,故D错误.故选:C.4.【解答】多项式x3y2﹣5x2y+6xy﹣3的次数是5,故选C5.【解答】A、a+c=b+c,两边同时减去c,则a=b,故选项正确;B、当c=0时,a=b不一定成立,故选项错误;C、=,两边同时乘以c,则a=b,故选项正确;D、若ax=b(a≠0),两边同时除以a得x=,故选项正确.故选B.6.【解答】在数轴上,与表示数﹣1的点的距离是3的点表示的数有两个:﹣1﹣3=﹣4;﹣1+3=2.故选:D.7.【解答】A、把x=4代入,左边=2,左边=右边,因而x=4是方程的解.B、把x=4代入,左边=16,左边≠右边;因而x=4不是方程的解;C、把x=4代入得到,左边=3,左边≠右边,因而x=4不是方程的解;D、把x=4,代入方程,左边=,左边≠右边,因而x=4不是方程的解;故选:A.8.【解答】:根据数轴,得b<a<0.A、正确;B、两个数相乘,同号得正,错误;C、较小的数减去较大的数,差是负数,错误;D、同号的两个数相加,取原来的符号,错误.故选A.9.【解答】由题意得:这个多项式=3x﹣2﹣(x2﹣2x+1),=3x﹣2﹣x2+2x﹣1,=﹣x2+5x﹣3.故选C.10.【解答】由题意得,2015年的生产总值=(1+20%)a,两年的生产总值之和是:a+(1+20%)故选D.二、填空题(本大题共8道小题,每空2分,共20分)11.【解答】若赢利2000元记作+2000元,则亏损800元记作﹣800元,故答案为:﹣800.12.【解答】∵<,∴﹣>﹣;故答案为:>.13.【解答】单项式﹣2xy3的系数为﹣2,次数为4次.故答案为:﹣2,4.14.【解答】0.12874≈0.129四舍五入法求0.12874精确到千分位的近似数为0.129.故答案为:0.129.15.【解答】由题意得,m﹣3=0,n+2=0,解得m=3,n=﹣2,所以,m+n=3+(﹣2)=1.故答案为:1.16.【解答】根据题意得:a+b=0,cd=1,则原式=2.故答案为: 217.【解答】根据一元一次方程的特点可得:,解得:k=﹣2.故填:﹣2.18.【解答】第6个数是=,第n个数是(﹣1)n.故答案为:,(﹣1)n.三.计算题(本大题共4道小题,每小题16分,共16分)19.【解答】(1)原式=﹣20+3+5﹣7=﹣27+8=﹣19;(2)原式=﹣×(﹣)×=;(3)原式=﹣28+33﹣6=﹣1;(4)原式=﹣25×+×(﹣8)=﹣+﹣6=﹣.四.化简求值题(本大题共2道小题,每小题4分,共8分)20.【解答】原式=3x2﹣x2﹣2x﹣3x﹣5+1=2x2﹣5x﹣4.21.【解答】原式=3ab2﹣1+a2b+3﹣2ab2﹣2=a2b+ab2,当a=﹣2,b=3时,原式=12﹣18=﹣6.五.解方程(本大题共2道小题,每小题8分,共8分)22.【解答】(1)去括号 2x﹣6﹣15+5x=21,移项得,2x+5x=21+6+15,合并同类项得,7x=42,系数化1得,x=6;(2)去分母得,2(2﹣x)﹣9(x﹣1)=24,去括号得,4﹣2x﹣9x+9=24,移项得,﹣2x﹣9x=24﹣4﹣9,合并同类项得,﹣11x=11,系数化1得,x=﹣1.六.解答题(本大题共3道小题,每小题6分,共18分)23.【解答】(1)根据图示,可得a<﹣1<0<b.(2)∵a<0,a+b<0,b﹣a>0,∴|a|=﹣a,|a+b|=﹣(a+b),|b﹣a|=b﹣a,∴|a|+|a+b|﹣2|b﹣a|=﹣a﹣(a+b)﹣2(b﹣a)=﹣a﹣a﹣b﹣2b+2a=﹣3b24.【解答】(1)∵3x2﹣4x=6,∴6x2﹣8x﹣9=2(3x2﹣4x)﹣9=2×6﹣9=3;(2)∵,∴=,∴=2×8+4×=16.25.【解答】∵由已知得:1﹣m=5,2=n,∴m=﹣4,n=2,∴(m﹣2n)2﹣5(m+n)﹣2(2n﹣m)2+m+n=(m﹣2n)2﹣5(m+n)﹣2(m﹣2n)2+m+n=﹣(m﹣2n)2﹣4(m+n)=﹣(﹣4﹣2×2)2﹣4(﹣4+2)=﹣56.七.附加题26.【解答】∵a△b=ab﹣(a+b),∴5△1=5﹣(5+1)=5﹣6=﹣1;(m﹣2)△1=(m﹣2)﹣(m﹣2+1)=﹣1;m△(n△1)=m△[n﹣(n+1)]=m△(﹣1)=﹣m﹣(m+1)=﹣2m﹣1.故答案为:﹣1,﹣1,﹣2m+1.27.【解答】(1)3+4+5+10+11+12+17+18+19=99;(2)8+9+10+15+16+17+22+23+24=144;(3)设中心数为x,则9个数之和为(x﹣8)+(x﹣7)+(x﹣6)+(x﹣1)+x+(x+1)+(x+6)+(x+7)+(x+8)=9x,根据题意,得9x=198,解得x=22,故最小数为x﹣8=14.答:这9个数中最小的数为14.故答案为99;144.28.【解答】(1)∵任意三个相邻格子中所填整数之和都相等,∴表格中从左向右每三个数字一个循环,∴x=9,★=﹣6,☆=2,∵2015÷3=671…2,∴第2015格子中的数为:﹣6.故答案为:9,﹣6.(2)能.∵9+(﹣6)+2=5,2015÷5=403,∴n=403×3=1209,答:前n个格子中所填整数之能为2015,n等于1209.(3)∵取前3格子中的任意两个数,记作a、b,且a≥b,∴所有的|a﹣b|的和为:|9﹣(﹣6)|+|9﹣2|+|2﹣(﹣6)|=30.∵由于是三个数重复出现,那么前19个格子中,这三个数,9出现了7次,﹣6和2各出现了6次.∴代入式子可得:|9﹣(﹣6)|×7×6+|9﹣2|×7×6+|2﹣(﹣6)|×6×6=1212.答:|9﹣★|+|9﹣☆|+|☆﹣★|结果为30,所有的|s﹣t|的和为1212.。

【北师大版】七年级数学上期中一模试题及答案(1)

【北师大版】七年级数学上期中一模试题及答案(1)

一、选择题1.下列图形都是由同样大小的笑脸按一定的规律组成,其中第①个图形一共有2个笑脸,第②个图形一共有8个笑脸,第③个图形一共有18 个笑脸…按此规律,则第⑥个图形中笑脸的个数为( )A .98B .72C .50D .362.如图,数轴上的三个点对应的数分别是a ,a ,b ,化简a b a b -++的结果是( )A .2aB .2a -C .2bD .2b -3.已知3a b +=,2c d -=,则()()a c b d +--+的值是( ) A .5B .5-C .1D .1-4.观察下面有规律的三行数:2-,4、8-,16,32-,64,① 0,6,6-,18,30-,66,②1,2-,4,8-,16,32-,③ 设x ,y ,z 分别为第①②③行的第2020个数,则22x y z -+的值为( ) A .20202B .2-C .0D .25.下列计算结果正确的是( ) A .()111--=B .()010-=C .2142-⎛⎫-=- ⎪⎝⎭D .()211--=-6.如图所示的几何体从正面看,得到的图形是( )A .B .C .D .7.从左面看如图中的几何体,得到的平面图形正确的是( )A .B .C .D .8.如图是正方体的表面展开图,则“乐”字相对面上的字为( )A .南B .开C .生D .快9.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻的可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A C -表示观测点A 相对观测点C 的高度),根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )A C -C D -E D -F E -G F - B G -100米80米60-米50米70-米20米A .240-米B .240米C .390米D .210米10.对于有理数a ,b ,有以下四个判断:①若a b =,则b a ≥;②若a b >,则a >b ;③若a b =,则a b =;④若a b <,则a b <.其中错误的判定个数是( ) A .4个B .3个C .2个D .1个11.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是( )A .0a b +>B .0a c +<C .0a b c +->D .0b c a +-> 12.用平面去截一几何体,不可能出现三角形截面的是( )A .长方体B .棱柱C .圆柱D .圆锥二、填空题13.已知数a 、b ,c 在数轴上的位置如图所示,化简│a +b│-│c -b│的结果是__________;14.已知2m n -=-,那么()233m n m n --+=___________.15.在-1.0426中用数字3替换其中的一个非零数字后,使所得的数最大,则被替换的数字是________.16.有一数值转换器,原理如图所示,若开始输入x 的值是7,可以得出第1次输出的结果是12,第2次输出的结果是6,依次继续下去…,第2021次输出的结果是__________.17.一百货大楼地上共有30层,地下共有3层,若某人乘电梯从地下2层升至地上16层,则电梯一共升了______________层.18.如图,若要使图中平面展开图折叠成正方体后,相对面上两个数字之和为6,则x ﹣y=________ .19.如图,用一个平面从正方体的三个顶点处截去正方体的一角变成一个新的多面体,这个多面体共有________ 条棱.20.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“建”相对的汉字是_____.三、解答题21.用火柴棒按下面的方式搭图形(1)把下表填完整: 图形编号 ① ②③火柴棒根数7n 的代数式表示) (3)是否存在一个图形共有117根火柴棒?若存在,求出是第几个图形,如不存在,请说明理由.22.先化简,再求值:2222552282x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦,其中3x =,13y =-. 23.计算:(1)()()()2815175---+--+ (2)()()()2021242213429-+-⨯--÷- 24.计算:231111(2)23⎛⎫--+⨯÷- ⎪⎝⎭ 25.问题提出:求n 个相同的长方体(相邻面的面积不相同)摆放成一个大长方体的表面积.问题探究:探究一:为了研究这个问题,同学们建立了如下的空间直角坐标系:空间任意选定一点O,以点O 为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y 轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标系内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.问题一:如图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为______.组成这个几何体的单位长方体的个数为______个.探究二:为了探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),同学们针对若干个单位长方体进行码放,制作了下列表格几何体单位长方体表面上面积表面上面积表面上面积表面积有序数组的个数为S1的个数为S2的个数为S3的个数(1,1,1)12222S1+2S2+2S3(1,2,1)24244S1+2S2+4S3(3,1,1)32662S1+6S2+6S3(2,1,2)44844S1+8S2+4S3(1,5,1)51021010S1+2S2+10S3(1,2,3)6………………………………问题二:请将上面表格补充完整:当单位长方体的个数是6时,表面上面积为S1的个数是______.表面上面积为S2的个数是______;表面上面积为S3的个数是______;表面积为______.问题三:根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z)=______(用x、y、z、S1、S2、S3表示)探究三:同学们研究了当S1=2,S2=3,S3=4时,用3个单位长方体码放的几何体中,有三种码放的方法,有序数组分别为(1,1,3),(1,3,1),(3,1,1).而S(1,1,3)=38,S(1,3,1)=42,S(3,1,1)=46.容易发现个数相同的长方体,由于码放的方法不同,组成的几何体的表面积就不同.拓展应用:要将由20个相同的长方体码放的几何体进行打包,其中每个长方体的长是8,宽是5,高是6.为了节约外包装材料,请直接写出使几何体表面积最小的有序数组,并写出这个最小面积(不需要写解答过程).(缝隙不计)26.用小立方体搭成一个几何体,从正面和上面看到该几何体的形状图如图所示.(1)搭建这样的几何体最多要_____个小立方体,最少要_____个小立方体.(2)画出最多和最少时从左面看到的形状图.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】先根据题意求找出其中的规律,即可求出第⑥个图形中笑脸的个数. 【详解】解:第①个图形一共有2个笑脸, 第②个图形一共有:2+(3×2)=8个笑脸, 第③个图形一共有8+(5×2)=18个笑脸, ……第n 个图形一共有: 1×2+3×2+5×2+7×2+…+2(2n-1) =2[1+3+5+…+(2n-1)], =[1+(2n-1)]×n =2n 2,则第⑥个图形一共有: 2×62=72个笑脸; 故选:B . 【点睛】本题考查了规律型:图形变化类,把图形分成三部分进行考虑,并找出第n 个图形的个数的表达式是解题的关键.2.C解析:C 【分析】根据数轴观察可以确定原点的位置,再由数轴可得a <0,b >0,且且b a >,依此再化简原式即可. 【详解】解:如下图数轴可得原点0的位置,且可得a >0, a 点在原点左边,a <0, b 点在原点的右边,b >0,且b a >,.因此可得:0a b -<,0a b +>. 则:a b a b -++()()=b a a b -++=b a a b -++=2b故选:C . 【点睛】本题考查数轴的基本知识结合绝对值的综合运用,看清题中条件即可.3.A解析:A 【分析】先把()()a c b d +--+变形为()()a b c d ++-,然后再整体代入即可. 【详解】解:∵3a b +=,2c d -=, ∴()()a c b d +--+ =()()a b c d ++- =3+2 =5. 故选:A . 【点睛】本题主要考查了代数式求值,解答此题的关键是灵活运用整体代入法.4.B解析:B 【分析】分别找出第①②③行的数字规律,求出每行的第2020个数,代入求解即可. 【详解】解:第①行数的规律为()12nn -⋅, ∴第①行的第2020个数()202020202020122x =-⋅=;第②行数是在第一行的基础上加2,其规律为()122nn -⋅+, ∴第②行的第2020个数()20202020202012222y =-⋅+=+;第③行数的规律为()1112n n ---⋅,∴第③行的第2020个数()20201202012019122z --=-⋅=-;∴()20202020202022222222x y z -+=⨯-+-=-,故选:B . 【点睛】本题考查数字的规律探索,找出每一行数的规律是解题的关键,注意三行数的内在联系.5.D解析:D结合负整数指数幂和零指数幂的概念和运算法则进行求解即可.【详解】解:A、(-1)-1=-1≠1,本选项错误;B、(-1)0=1≠0,本选项错误;C、212-⎛⎫- ⎪⎝⎭=4≠-4,本选项错误;D、-(-1)2=-1,本选项正确.故选:D.【点睛】本题考查了负整数指数幂,解答本题的关键在于熟练掌握该知识点的概念和运算法则.6.A解析:A【解析】【分析】根据从正面看得到的图形是主视图和主视图的特点,可得答案.【详解】解:从正面看最下面一层是三个小正方形,上面一层有1个正方形,且位于最右侧,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.7.A解析:A【解析】【分析】根据从左面看得到的图形是左视图,可得答案.【详解】从左面看得到的图形为:,故选:A.【点睛】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.8.B解析:B【分析】根据正方体的表面展开图的性质,即可求得答案.【详解】“乐”字相对面上的字为“开” 故答案为:B . 【点睛】本题考查了正方体的表面展开图,掌握正方体表面展开图的性质是解题的关键.9.B解析:B 【分析】根据表格信息,利用有理数的加法运算法则进行计算. 【详解】解:由表可知:100A C -=(米),80C D (米),60D E(米),50E F(米),70F G(米),20G B -=-(米),∴()()()()()()()()1008060507020240A C C D D E E F F G GB A B -+-+-+-+-+-=-=+++-++-=(米). 故选:B . 【点睛】本题考查有理数加法的应用,解题的关键是掌握有理数的加法运算法则.10.B解析:B 【分析】根据绝对值的性质依次判断即可. 【详解】解:①若a b =,则,b a =±且0b ≥,所以b a ≥,正确; ②若2,5a b ==-时,a b >,但a <b ,原说法错误; ③若a b =,则a b =±,原说法错误;④若2,5a b ==-时,a b <,但a b >,原说法错误; 故选:B . 【点睛】本题考查了绝对值的定义及其相关性质.牢记以下规律:(1)|a|=-a 时,a≤0;(2)|a|=a 时,a≥0;(3)任何一个非0的数的绝对值都是正数.11.D解析:D 【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可. 【详解】解:根据数轴上点的位置得:a<0<b<c,且|b|<|a|<|c|,∴a+b<0,故选项A错误,不符合题意;a c+>,故选项B错误,不符合题意;+-<,故选项C错误,不符合题意;a b cb c a+->,故选项D正确,符合题意;故选:D.【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.12.C解析:C【分析】当截面的角度和方向不同时,圆柱,球的截面不相同,无论什么方向截取圆柱都不会截得三角形.【详解】用一个平面截一个几何体,不能截得三角形的截面的几何体有圆柱,球.故选C.【点睛】考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.二、填空题13.a+c【分析】由数轴上右边的数总比左边的数大且离原点的距离大小即为绝对值的大小判断出a+b与c-b的正负利用绝对值的代数意义化简所求式子去掉绝对值符号合并同类项即可得到结果【详解】解:由数轴上点的位解析:a+c【分析】由数轴上右边的数总比左边的数大,且离原点的距离大小即为绝对值的大小,判断出a+b 与c-b的正负,利用绝对值的代数意义化简所求式子去掉绝对值符号,合并同类项即可得到结果.【详解】解:由数轴上点的位置可得:c<b<0<a,且|b|<|a|,∴a+b>0,c-b<0,则|a+b|-|c-b|=a+b+c-b=a+c.故答案为:a+c.【点睛】此题考查了整式的加减运算以及数形结合的能力,能利用数轴的性质判断各个字母所代表的数的大小去掉绝对值符号是解答此题的关键.14.10【分析】把(m-n)看作一个整体并代入代数式进行计算即可得解【详解】解:∵∴(m-n)²-3(m-n)=(-2)²-3×(-2)=4+6=10故答案为:10【点睛】本题考查了代数式求值整体思想的解析:10【分析】把(m-n )看作一个整体并代入代数式进行计算即可得解.【详解】解:∵2m n -=-,∴()233m n m n --+=(m-n)²-3(m-n)=(-2)²-3×(-2)=4+6=10, 故答案为:10.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.15.4【分析】根据两个负数绝对值大的其值反而小比较被替换的数的绝对值的大小得到答案【详解】解:被替换的数是-30426-10326-10436-10423|-10326|<|-10423|<|-1043解析:4【分析】根据两个负数,绝对值大的其值反而小比较被替换的数的绝对值的大小,得到答案.【详解】解:被替换的数是-3.0426,-1.0326,-1.0436,-1.0423,|-1.0326|<|-1.0423|<|-1.0436|<|-3.0426|,∴最大的数是-1.0326,∴使所得的数最大,则被替换的数字是4,故答案为:4.【点睛】本题考查的是有理数的大小比较,掌握有理数的大小比较法则:正数都大于0; 负数都小于0; 正数大于一切负数,两个负数,绝对值大的其值反而小是解题的关键. 16.4【分析】根据计算程序将每次的结果依次计算出来发现规律:每7次为一个循环组利用得到答案【详解】每次输出的结果为:第1次:12第2次:6第3次:3第4次:8第5次:4第6次:2第7次:7第8次:12每解析:4【分析】根据计算程序将每次的结果依次计算出来,发现规律:每7次为一个循环组,利用202172885÷=得到答案.【详解】每次输出的结果为:第1次:12,第2次:6,第3次:3,第4次:8,第5次:4,第6次:2,第7次:7,第8次:12,,每7次为一个循环组,∵202172885÷=, ∴第2021次输出的结果与第5次输出的结果相同,即为4,故答案为:4.【点睛】此题考查数字类规律探究,有理数的运算,掌握图形中的计算程序图的计算过程,发现计算结果的规律并运用规律解决问题是解题的关键. 17.17【分析】地下为负地上为正所以可以看做从-2层上升到+16层由于没有0层所以应该再减去1计算即可求得【详解】16-(-2)-1=18-1=17(层)∴电梯一共升了17层故答案为:17【点睛】本题主解析:17【分析】地下为负,地上为正,所以可以看做从-2层上升到+16层,由于没有0层,所以应该再减去1,计算即可求得.【详解】16-(-2)-1=18-1=17(层)∴电梯一共升了17层.故答案为:17【点睛】本题主要考查正负数的应用及有理数的运算,先根据数的意义确定出正负再进行计算,易错点是从地下1层到地上1层只上升了1层.18.-1019.1220.国三、解答题21.(1)见解析;(2)52s n =+;(3)存在,见解析,第23个图形【分析】(1)观察图形与表格发现,后一个图形比前一个图形多用5根火柴棒,由此得出第三个图形比第二个图形多用5根火柴棒,第四个图形比第三个图形多用5根火柴棒;(2)由后一个图形比前一个图形多用5根火柴棒,而第一个图形用了7根火柴;即7=5×1+2,即可求出第n 个图形需要(5n+2)根小棒;(3)将s=117代入计算,即可求出答案.【详解】解:(1)根据题意,把下表填完整:7=5×1+2;第二个图形用了12根火柴;即12=5×2+2;第三个图形用了17根火柴;即17=5×3+2;…∴第n 个图形需要(5n+2)根小棒;∴52s n =+;故答案为:52s n =+.(3)根据题意,当117s =时,则52117n +=,解得:23n =,第23个图形共有117根火柴棒.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出发生变化的位置,并且观察变化规律,进而用式子表示一般规律.22.226xy xy +,0【分析】根据整式加减法的性质计算,即可完成化简;结合3x =,13y =-,根据代数式、含乘方的有理数混合运算性质计算,即可得到答案.【详解】 2222552282x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦ 222252258x y xy xy x y xy ⎡⎤=--++⎣⎦222252258x y xy xy x y xy =-+-+226xy xy =+∵3x =,13y =-∴2222552282x y xy xy x y xy ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦226xy xy =+ 21123+6333⎛⎫⎛⎫=⨯⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭2+2=-=.【点睛】本题考查了整式加减、代数式、有理数运算的知识;解题的关键是熟练掌握整式加减、代数式、含乘方的有理数混合运算的性质,从而完成求解.23.(1)35-;(2)0【分析】(1)先将减法化为加法,再将负数先相加,将结果与15相加;(2)先计算乘方、绝对值,再计算除法和乘法,最后计算加、减.【详解】解:(1)原式=2815(17)(5)-++-+-28(17)(5)15=-+-+-+35;=-(2)原式21916169=-+⨯-÷121=-+-=.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键.24.15 16 -【分析】先算乘方,再算乘除,最后算加减;同级运算应按照从左到右的顺序进行计算;如果有括号,要先做括号内的运算;【详解】原式111(1)(8)23=--+⨯÷-3111()238=--⨯⨯-1116=-+1516=-【点睛】本题考查了有理数的混合运算,有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算应按照从左到右的顺序进行计算;如果有括号,要先做括号内的运算;25.(1)(1,2,3),6;(2)12,6,4,12S1+6S2+4S3;(3)2yzS1+2xzS2+2xyS3;拓展应用:几何体表面积最小的有序数组为(2,2,5),最小面积为S(2,2,5)=1786.【解析】【分析】(1)根据题中所给的标示法和图4中主视图知,摆放的长方体共有两列三层,由左视图知长方体共一排,则这种码放方式的有序数组为(1,2,3);组成这个几何体的单位长方体的个数为6个;(2)几何体有序数组(1,2,3)时,表示几何体码放了1排2列3层,单位长方体的个数为6个,表面上面积为S1的个数为12个,表面上面积为S2的个数6个,表面上面积为S3的个数4个,表面积为:12S1+6S2+4S3;(3)根据题意可知当有序数组(x,y,z)时,根据长方体的面积公式知,表面上面积为S1的个数为2yz个,表面上面积为S2的个数2xz个,表面上面积为S3的个数2xy个,该几何体表面积计算公式S(x,y,z)=2yzS1+2xzS2+2xyS3(4)拓展应用:由题目中所给出的S1=2,S2=3,S3=4时,S(x,y,z)=2(yzS1+xzS2+xyS3)=2(2yz+3xz+4xy),分析出要使S(x,y,z)的值最小,应满足x≤y≤z(x、y、z为正整数),然后按条件将20分为:20=1×1×20、20=1×2×10、20=1×4×5、20=2×2×5四种形式,从面得出S(2,2,5)的值最小值为1786.【详解】解:(1)根据如图4中主视图知,摆放的长方体共有两列三层,由左视图知长方体共一排,根据题中所给的标示法,则这种码放方式的有序数组为(1,2,3);组成这个几何体的单位长方体的个数为1×2×3=6(个)故答案(1,2,3),6(2)由题意知,当几何体有序数组(1,2,3)时,表示几何体码放了1排2列3层,单位长方体的个数为6个∴表面上面积为S1的个数为12个,表面上面积为S2的个数6个,表面上面积为S3的个数4个,表面积为:12S1+6S2+4S3故答案为:12,6,4,12S1+6S2+4S3;(3)当有序数组(x,y,z)时,表面上面积为S1的个数为2yz个,表面上面积为S2的个数2xz个,表面上面积为S3的个数2xy个,∴该几何体表面积计算公式S(x,y,z)=2yzS1+2xzS2+2xyS3故答案2yzS1+2xzS2+2xyS3拓展应用:当S1=2,S2=3,S3=4时,S(x,y,z)=2(yzS1+xzS2+xyS3)=2(2yz+3xz+4xy)要使S(x,y,z)的值最小,不难看出x,y,z应满足x≤y≤z(x、y、z为正整数)∵将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3,其中每个长方体的长是8,宽是5,高是6∴S1=30,S2=40,S3=48∴满足要求的组合有(1,1,20),(1,2,10),(1,4,5),(2,2,5)∵S(1,1,20)=2×30×20+2×40×20+2×48=2896S(1,2,10)=2×30×2×10+2×40×10+2×48×2=2192S(1,4,5)=2×30×4×5+2×40×5+2×48×4=1984S(2,2,5)=2×30×2×5+2×40×2×5+2×48×4=1786∴S(2,2,5)的值最小∴几何体表面积最小的有序数组为(2,2,5),最小面积为S(2,2,5)=1786.【点睛】本题为创新题,考查了空间直角坐标系的具体应用及组合体面积的求法,拓展应用中,分析出x≤y≤z就解题的关键.26.(1)17,11;(2)见解析.【解析】【分析】(1)画出俯视图,在俯视图的方格中写出最多与最少时小正方体的个数即可解答问题;(2)根据左视图的定义进行画图即可.【详解】(1)根据最多情形的俯视图可知:搭建这样的几何体最多要17个小立方体,根据最少情形的俯视图可知,最少要11个小立方体,故答案为17,11;(2)最多时的左视图:最少时,左视图:【点睛】本题考查了三视图,正确理解题意,灵活运用相关知识是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014——2015学年度第一学期期中考试
数 学 试 卷
考试时间为90分钟;试卷总分100分
※考生注意:请在答题卡各题目规定答题区域内作答,答在本试卷上无效
一、选择题(8小题,每小题2分,共16分) 1.如图,该物体的俯视图是(▲)
A B C D
2.下列各数-2,3,-(-0.75),-5.4,9-,-3,0,4中,属于整数的有___个,属于正数的有___个(▲) A .6,4
B .5,5
C .4,3
D .3,6
3.用代数式表示“2m 与5的差”为(▲) A .52m -
B .25m -
C .2(5)m -
D .2(5)m -
4.下列说法正确的是(▲) A .
23xyz 与2
3
xy 是同类项 B .1x 和2x 是同类项
C .320.5x y -和232x y 是同类项
D .25m n 和22nm -是同类项 5.下列比较大小正确的是(▲) A .(21)(21)--<+- B .227(7)33--=-- C .5465-<- D .12
10823
-->
6.下列计算正确的是(▲)
A .ab b a 523=+
B .235=-y y
C .277a a a =+
D .y x yx y x 2
2223=-
7.若代数式35)2(2
2++-y x m 的值与字母x 的取值无关,则m 的值是(▲) A .2 B .-2 C .-3 D .0
8.计算:1
211-=,2213-=,3217-=,42115-=,5
2131-=,
归纳各计算结果中的个位数字规律,猜测1-2
2014
的个位数字是(▲)
A .1
B .3
C .7
D .5
9.支出350元记作-350元,那么+600元表示 ▲ .
10.如图所示,将图沿虚线折起来,得到一个正方体,那么“我”的对面是 ▲ (填汉字).
11.单项式256
x y -的系数是 ▲ ,次数是 ▲ .
12.“早穿皮袄午穿纱”这句民谣形象地描绘了新疆奇妙的气温变化现象。

乌鲁木齐五月
的某一天,最高气温是18℃,温差是20℃,则当天的最低气温是 ▲ ℃. 13.据中新社报道:2010年我国粮食产量将达到540 000 000 000 kg ,用科学记数法表示
这个粮食产量为 ▲ kg .
14.若5=a ,则a = ▲ ,⎪⎭⎫ ⎝⎛-215-的倒数是 ▲ ,⎪⎭
⎫ ⎝⎛+523-相反数是 ▲ . 15.如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是 ▲ .
16.数a 、b 在数轴上的位置如图所示,
化简 a b a -
-= ▲ 。

三、画图题(4分)
17.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。

请你画出它的主视图与左视图。

此处不答题
2
4
13
2
18.(1) 11
( 1.5)4 2.75(5)42-+++- (2) )2
1(322)31(213-++--
此处不答题
(3) 23122
(3)(1)6293
--⨯-÷- (4) 419932(4)(1416)41313⎡⎤
--⨯-÷-⎢⎥⎣⎦
此处不答题
(5) )7(2)3(52
222ab b a ab b a --- (6) 3(2)(3)3ab a a b ab -+--+
此处不答题
五、化简求值(2小题,每小题6分,共12分) 19.21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-3
2
此处不答题
20.x x x x x x 5)64(2
1
)3123(312323-++-+--,其中x =-1
此处不答题
21.初一年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费. (1)若有m名学生,用代数式表示两种优惠方案各需多少元?
m=时,采用哪种方案优惠?
(2)当70
m=时,采用哪种方案优惠?
(3)当100
此处不答题
22.小丽有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:
(1) 从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?
(2) 从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是
多少?
(3) 从中取出2张卡片,利用这2张卡片上数字进行某种运算,得到一个最大的数,
如何抽取?最大的数是多少?
(4) 从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式
子(一种即可).
此处不答题
2014——2015学年度七年级第一学期期中考试
数学试卷 答 题 卡
四 1.请按照题号顺序在各题目的答题区域内作答,超出黑色矩形边框限定答题区域写
的答案无效!在草稿纸、试题卷上答题无效。

2.保持卡面清洁,不要弄破。

3.注意题号顺序
一、选择题(8小题,每小题2分,共16分)


事 项
参考答案
一、选择题(8小题,每小题2分,共16分)
9. 收入600元 ; 10. 数 ; 11. 6
5
-
3 ; 12. -2 ; 13. 11
104.5⨯ ; 14. 5±
2 5
2
3 ; 15. 38 ; 16. b ; 三、画图题(4分) 17.
主视图 左视图
四、计算题(6小题,每小题5分,共30分) 18.(1) 11
( 1.5)4
2.75(5)42-+++- (2) )2
1(322)31(213-++-- 0
77)75.225.4()]5.5()5.1[(=+-=++-+-= 63331
322)21(213=+=+
+-+=
(3) 23122
(3)(1)6293
--⨯
-÷- (4) 419932(4)(1416)41313⎡⎤
--⨯-÷-⎢⎥⎣⎦
439
4
3
923
692)827(
9-
=--=⨯-⨯-= 36
)2(72)2()981(=-÷-=-÷+-=
(5) )7(2)3(52
222ab b a ab b a --- (6) 3(2)(3)3ab a a b ab -+--+
2
222222
2223141525142155ab b a ab ab b a b a ab b a ab b a -=+-+-=+--=)
()( b a b a a ab ab ab
b a a ab +=+-++-=++-+-=3)36()33(3363
五、化简求值(2小题,每小题6分,共12分) 19.
21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-3
2
2
22223)31
32()23221(312332221y x y y x x x y x y x x +-=++--=+-+-=
原式 当x =-2,y =-3
2
时,946)32()2(32=-+-⨯-=原式
20. x x x x x x 5)64(2
1)3123(312323-++-+--其中x =-1 6
6)54()2
123()3131(5642
1312331222332323+-=+-+-+-=-++--+=x x x x x x x x x x x x x x 原式 当x =-1时,86)1()1(2=+---=原式
六、解答题(2小题,每小题7分,共14分)
21.
(1)甲方案:m m 248.030=⨯⨯(元)
乙方案:5.1125.2275.0)5(30+=⨯+m m (元)
(2)当70=m 时,1680702424=⨯=m (元)
5.16875.112705.225.1125.22=+⨯=+m (元)
1680<1687.5,选甲方案
(3)当100=m 时,24001002424=⨯=m (元) 5.23625.1121005.225.1125.22=+⨯=+m (元)
2400>2362.5,选乙方案
22.
(1)抽取53--,;15)5()3(=-⨯-
(2)抽取53-,;3
53)5(-=÷- (3)抽取54-,;625)5(4=-
(4)答案不唯一;例如抽取-3,-5,3,4;24)43()]5()3[(=+⨯---。

相关文档
最新文档