初一数学课课练答案
2023-2024学年人教部编版初中七年级下册数学课时练《5.3.2 命题、定理、证明》(含答案)
第三课青春的证明 3.2青春有格一、单项选择题:1. 青春,我们敢想敢做,但青春并不意味着放纵,也要懂得选择。
下列有关“选择”的说法不正确的是( ) A. 只要自己愿意,就可作出各种选择 B. “羞恶之心”是我们明确行为选择的理由C. 我们要树立底线意识,违背道德或法律的行为坚决不做D. 要独立思考,明辨是非善恶,不盲目从众,作出正确的选择2. “世界那么大,我想去看看”,但世界又是纷繁复杂的,美丑、善恶交织在一起,这就要求我们“行己有耻”。
引导我们辨别是非、做出正确选择的主要因素是( )A. 恻隐之心B. 辞让之心C. 是非之心D. 羞恶之心3. 很多人觉得自己计划完不成,拖延,生活中养成种种恶习的根源在于自控力不强。
下列增强自控力的合理建议是( )①每天坚持做一些自己力所能及的事情①认真记录一些自己平时不关注的事情①尝试不做某些事情,纠正自己的行为①拒绝一切娱乐活动,专注提高学习成绩A. ①②③B. ①②④C. ①③④D. ②③④4. 后汉东莱太守杨震经过管辖地昌邑县时,县令王密送去十金,并说“暮夜无知者”。
杨震严词拒受,说:“天知,地知,你知,我知,何谓无知?”人们因此称他为“四知太守”。
杨震值得我们当代人学习的品质是( ) A. 自信,要相信自己的能力 B. 自爱,不做有损人格的事C. 自强,有不断进取的精神D. 自负,遇事有自己的主见5. “行己有耻”需要我们磨砺意志,拒绝不良诱惑,不断增强自控力。
我们要做到()①增强“我不要”的力量。
尝试不做某些事情,纠正自己的行为①增强“我想要”的力量。
每天坚持做一些自己未能做到的事情①加强自我监控。
认真记录一些自己平时不关注的事①面对挫折,半途而废A. ①①①B. ①①①C. ①①①D. ①①①6. “行己有耻”出自《论语·子路》。
春秋时期的孔子曾说:“行己有耻,使于四方,不辱君命,可谓士矣。
”下列行为中,没有做到“行己有耻”的是( )①拿别人的缺点、缺陷、姓名开玩笑②经常帮助同学,特别是身体残疾的同学③喜欢散播小道消息,专门讲同学的糗事④上课时给同学讲故事听,逗同学发笑A. ①①①B. ①①①C. ①①①D. ①①①7. 雨果说:“谁虚度了年华,青春就将褪色。
人教版七年级数学(上册)全册课时练习及答案
人教版七年级数学(上册)全册课时练习及答案第一章有理数1.1正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( ) A.-4米 B.+16米 C.-6米 D.+6米3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是( )2.如图,点M 表示的数可能是( )A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是( )A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是 .6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.2.3相反数1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4绝对值 第1课时绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则( )A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3有理数的加减法1.3.1有理数的加法 第1课时有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是 kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2有理数的减法 第1课时有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4有理数的乘除法1.4.1有理数的乘法 第1课时有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2有理数的除法 第1课时有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5有理数的乘方1.5.1乘方 第1课时乘方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为 1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章整式的加减2.1整式第1课时用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( ) A.(m +0.8n)元 B.0.8n 元 C.(m +n +0.8)元 D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是 .5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n 的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是( )A.5个B.4个C.3个D.2个2.多项式3x2-2x-1的各项分别是( )A.3x2,2x,1B.3x2,-2x,1C.-3x2,2x,-1D.3x2,-2x,-13.多项式1+2xy-3xy2的次数是( )A.1B.2C.3D.44.多项式3x3y+2x2y-4xy2+2y-1是次项式,它的最高次项的系数是.5.写出一个关于x,y的三次二项式,你写的是(写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时整式的加减1.化简x+y-(x-y)的结果是( )A.2x+2yB.2yC.2xD.02.已知A=5a-3b,B=-6a+4b,则A-B为( )A.-a+bB.11a+bC.11a-7bD.-a-7b3.已知多项式x3-4x2+1与关于x的多项式2x3+mx2+2相加后不含x的二次项,则m的值是( )4.若某个长方形的周长为4a,一边长为(a-b),则另一边长为( )A.(3a+b)B.(2a+2b)C.(a+b)D.(a+3b)5.化简:(1)(-x2+5x+4)+(5x-4+2x2);(2)-2(3y2-5x2)+(-4y2+7xy).第三章一元一次方程3.1从算式到方程3.1.1一元一次方程1.下列各方程是一元一次方程的是( )2.方程x+3=-1的解是( )A.x=2B.x=-4C.x=4D.x=-23.若关于x的方程2x+a-4=0的解是x=-2,则a的值是( )A.-8B.0C.8D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x名学生,则由题意可列方程为.5.商店出售一种文具,单价3.5元,若用100元买了x件,找零30元,则依题意可列方程为.6.七(2)班有50名学生,男生人数是女生人数的倍.若设女生人数为x名,请写出等量关系,并列出方程.3.1.2等式的性质1.若a=b,则下列变形一定正确的是( )2.下列变形符合等式的基本性质的是( )A.若2x-3=7,则2x=7-3B.若3x-2=x+1,则3x-x=1-2C.若-2x=5,则x=5+2D.3.解方程- x=12时,应在方程两边( )A.同时乘-B.同时乘4C.同时除以D.同时除以-4.由2x-16=5得2x=5+16,此变形是根据等式的性质在原方程的两边同时加上了.5.利用等式的性质解下列方程:(1)x+1=6; (2)3-x=7;(3)-3x=21;3.2解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为( )A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:计费方式全球通神州行月租费25元/月0本地通话费0.2元/min 0.3元/min(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是( )2.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆3.下列图形属于棱柱的有( )A.2个B.3个C.4个D.5个4.将下列几何体分类:其中柱体有,锥体有,球体有(填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形个,圆个.6.把下列图形与对应的名称用线连起来:圆柱四棱锥正方体三角形圆第2课时从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是( )2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是( )3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是( )4.下面图形中是正方体的展开图的是( )5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是( )A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2点、线、面、体1.围成圆柱的面有( )A.1个B.2个C.3个D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识.(1)飞机穿过云朵后留下痕迹表明;(2)用棉线“切”豆腐表明;(3)旋转壹元硬币时看到“小球”表明.4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是( )A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时线段的长短比较与运算1.如图所示的两条线段的关系是( )A.a=bB.a<bC.a>bD.无法确定第1题图第2题图2.如图,已知点B在线段AC上,则下列等式一定成立的是( )A.AB+BC>ACB.AB+BC=ACC.AB+BC<ACD.AB-BC=BC3.如图,已知D是线段AB的延长线上一点,C为线段BD的中点,则下列等式一定成立的是( )A.AB+2BC=ADB.AB+BC=ADC.AD-AC=BDD.AD-BD=CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是.5.如图,已知线段AB=20,C是线段AB上一点,D为线段AC的中点.若BC=AD+8,求AD 的长.4.3角4.3.1角1.图中∠AOC的表示正确的还有( )A.∠OB.∠1C.∠AOBD.∠BOC第1题图第2题图2.如图,直线AB,CD交于点O,则以O为顶点的角(只计算180°以内的)的个数是( )A.1个B.2个C.3个D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是°.4.把下列角度大小用度分秒表示:(1)50.7°; (2)15.37°.5.把下列角度大小用度表示:(1)70°15′; (2)30°30′36″.4.3.2角的比较与运算1.如图,其中最大的角是( )A.∠AOCB.∠BODC.∠AODD.∠COB第1题图第2题图2.如图,OC为∠AOB内的一条射线,且∠AOB=70°,∠BOC=30°,则∠AOC的度数为°.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC为∠AOB内的一条射线,OM,ON分别平分∠AOC,∠COB.若∠AOM=30°,∠NOB=35°,求∠AOB的度数.4.3.3余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是( )2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为( )A.14B.10C.8D.73.如图,该几何体的展开图可能是( )4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章有理数 1.1正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2有理数的减法 第1课时有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140. (2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)283 2.B 3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213. 4.解:32-6+2×2=30(℃).答:关掉空调2小时后的室温为30℃.1.5 有理数的乘方。
初一数学课课练答案
初一数学课课练答案【篇一:人教版七年级数学上册同步练习题及答案全套(课课练)】.1 正数和负数基础检测1.?1,0,2.5,?,?1.732,?3.14,106,?,?1中,正数有负数有。
2.如果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作 m,水位不升不降时水位变化记作m。
3.在同一个问题中,分别用正数与负数表示的量具有的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是()a.零是正数不是负数b.零既不是正数也不是负数c.零既是正数也是负数d.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是()a.向东行进30米b.向东行进-30米c.向西行进30米d.向西行进-30米7.甲、乙两人同时从a地出发,如果向南走48m,记作+48m,则乙向北走32m,436725记为这时甲乙两人相距 m.9.如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数; _ ___和_____统称为分数;______、______、______、______和______统称为有理数;______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是()a、-3.14b、0c、d、33、既是分数又是正数的是()a、+2b、-4c、0d、2.3拓展提高4、下列说法正确的是()a、正数、0、负数统称为有理数b、分数和整数统称为有理数 1373c、正有理数、负有理数统称为有理数d、以上都不对5、-a一定是()a、正数b、负数c、正数或负数d、正数或零或负数6、下列说法中,错误的有()①?2是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
2023年七年级数学上册课时练习带参考答案与解析
选择题下列去括号中,正确的是()A.B.C.D.【答案】C【解析】根据去括号的法则对每个选项分别变形即可.解:A. ,故A选项错误;B. ,故B选项错误;C..故C选项正确;D. ,故D选项错误;故选:C选择题下列等式恒成立的是()A. B.C. D.【答案】C【解析】根据加括号的法则分别计算各选项即可判断.解:A. ,故A选项不合题意;B. ,故B选项不合题意;C.,故C选项符合题意;D. 不能合并,故D选项不合题意故选:C选择题不改变代数式的值,将括号前面的符号变为“+”号,正确的是A. B.C. D.【答案】D【解析】按去括号和添括号的法则,先去括号,再添括号.添括号后使括号前的符号为“+”号.解:=3a-2a+b.故选:D填空题(__________)(____________).【答案】, .【解析】按照添括号的法则,分别进行计算即可.故答案为:填空题已知2a-3b2=5,则10-2a+3b2的值是▲.【答案】5。
【解析】代数式求值。
先将10-2a+3b2进行变形,然后将2a-3b2=5整体代入即可得出答案:▲10-2a+3b2=10-(2a-3b2),2a-3b2=5,▲10-2a+3b2=10-(2a-3b2)=10-5=5。
填空题有一长方形花坛,其周长为米,长为米,则它的宽为________.【答案】米【解析】根据长方形周长的计算方法可得宽等于周长的一半减去长.解:因为长方形花坛的周长为米,所以长+宽的和为米.所以花坛的宽为(米).答案:米解答题先化简,再求值:,其中.【答案】9【解析】根据整式的加减运算法则进行计算化简,然后代入求值.解:.当时,原式.解答题天平的左边挂重为,右边挂重为,请你猜一猜,天平会倾斜吗?如果出现倾斜,将向哪边倾斜?【答案】天平会倾斜,向左边倾斜.【解析】将两个代数式相减,如果差是正数,说明被减式较大.解:因为.所以天平会倾斜,向左边倾斜.解答题规定: ,试计算.【答案】【解析】根据新定义运算的规则,把转化为整式的加减混合运算,再根据运算法则计算即可.解:▲▲.。
课课练七年级上数学答案
课课练七年级上数学答案【篇一:七年级下册数学课课练】class=txt>1. 木箱的体积就是木箱的容积. ()2. 正方体的棱长扩大3倍,它的表面积就扩大27倍.()3. 长方体的12条棱中,平行的4条棱都相等.()4. 将一个长方体切成两个相等的正方体,每个正方体的表面积是长方体表面积的一半.()二、单选题(每道小题 2分共 8分 )1. 一种汽车上的油箱可装汽油150[]a.升b.毫升c.方2. 把一个正方体铁块浸没在盛水的容器中,水面[]a.升高b.降低c.不变3. 两个体积相等的正方体,它们棱的总长是24厘米,每个正方体的体积是[]a.1立方厘米b.2立方厘米c.16立方厘米4. 一个长方体水箱容积是100升,这个水箱底面是一个边长为5分米的正方形.水箱的高是[]a.20分米b.10分米c.4分米三、填空题(1-7每题 2分, 8-9每题 4分, 第10小题 8分, 第11小题 12分, 共 42分)1. 1立方分米的正方体可以分成()个1立方厘米的小正方体.2. 4.05升=()毫升3. 0.7平方米=()平方分米4. 把一个无盖的长方体铁桶的外面喷上油漆,需要喷()个面.5. 棱长是1米的正方体体积是()立方米.6. 长方体有()面,()条棱,()个顶点.7. 一个表面积是54平方厘米的正方体,它的体积是()立方厘米.8. 5.07立方米=()立方米()立方分米9. 一个长方体,长是2分米,宽和高都是长的一半,这个长方体的表面积是()平方分米,体积是()立方分米.四、应用题(1-2每题 5分, 3-6每题 8分, 共 42分)1. 求长7分米,宽和高都是2分米的长方体的表面积和体积.2. 求棱长5分米的正方体的表面积和体积.3. 用一种车箱是长方体的汽车运煤,从里面量长3米,宽2.5米,装煤高度是0.4米,每立方米煤重1.4吨,5辆同样的汽车共运煤多少吨?4. 50本数学书摆成一个长18厘米,宽13厘米,高25厘米的长方体,平均每本书的体积是多少?5. 木工做一只棱长是5分米的正方体无盖木箱至少用木板多少平方分米?6. 把一块棱长10厘米的正方体铁块,锻造成宽5厘米,高10厘米的长方体铁条,这个铁条长是多少?(用方程解)【篇二:人教版七年级数学上册同步练习题及答案全套】教版七年级数学上册同步练习题及答案全套名称(课课练)学科类型大小年级教材添加时间点击评价数学试题|试卷 0.57 mb 初一|七年级新课标人教版 2012-08-26 11:53 20393 ☆☆☆☆☆审核 admin第三章一元一次方程3.11一元一次方程(1)知识检测1.若4xm-1-2=0是一元一次方程,则m=______.2.某正方形的边长为8cm,某长方形的宽为4cm,且正方形与长方形面积相等,?则长方形长为______cm.3.已知(2m-3)x2-(2-3m)x=1是关于x的一元一次方程,则m=______.4.下列方程中是一元一次方程的是()a.3x+2y=5 b.y2-6y+5=0 c.x-3=d.4x-3=05.已知长方形的长与宽之比为2:1?周长为20cm,?设宽为xcm,得方程:________.7.某班外出军训,若每间房住6人,还有两间没人住,若每间住4人,恰好少了两间宿舍,设房间为x,两个式子分别为(x-2)6人,(x+2)4,得方程_______.8.某农户2006年种植稻谷x亩,2007?年比2006增加10%,2008年比2006年减少5%,三年共种植稻谷120亩,得方程_______.9.一个两位数,十位上数字为a,个位数字比a大2,且十位上数与个位上数和为6,列方程为______.10.某幼儿园买中、小型椅子共50把,中型椅子每把8元,小型椅子每把4?元,?买50把中型、小型椅子共花288元,问中、小型椅子各买了多少把??若设中型椅子买了x把,则可列方程为______.11.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除5%的利息税).设到期后银行向储户支付现金x元,则所列方程正确的是() 12.足球比赛的计分方法为:胜一场得3分,平一场得1分,负一场得0分,一个队共打了14场比赛,负了5场,得19分,设该队共平x场,则得方程()a.3x+9-x=19b.2(9-x)+x=19c.x(9-x)=19 d.3(9-x)+x=1913.已知方程(m-2)x|m|-1+3=m-5是关于x的一元一次方程,求m的值,?并写出其方程.拓展提高14.小明爸爸把家里的空啤酒瓶让小明去换饮料,现有40个空啤酒瓶,1个空啤酒瓶回收是0.5元,一瓶饮料是2元,4个饮料瓶可换一瓶饮料,问小明可换回多少瓶饮料?【篇三:人教版七年级数学上册同步练习题及答案全套(课课练)】.1 正数和负数基础检测1.?1,0,2.5,?,?1.732,?3.14,106,?,?1中,正数有负数有。
最新版初中七年级数学题库 七上课课练2.1 正数和负数 学案及测试题(含答案)
单元学习评价一 正数和负数一、选择题1.1- 不是( )(A)自然数. (B)负数. (C)整数. (D)有理数. 2.下列说法正确的是( )(A)0是表示没有. (B)非负有理数就是正有理数. (C)整数和分数统称为有理数. (D)正整数和负整数统称为整数. 3.下列说法错误的是( )(A)零是整数. (B)零是非负数. (C)零是最小的整数. (D)零是偶数. 4.最小的整数是( )(A)1- (B)0 (C)1 (D)不存在. 5.下列说法不正确的是( )(A)有理数可分为正整数、正分数、0、负整数、负分数. (B)一个有理数不是分数就是整数. (C)一个有理数不是正数就是负数.(D)若一个数是整数,则这个数一定是有理数. 6.非负数的组成为( )(A)0 (B)正数和零 (C)正数 (D)以上都不对. 7.下列说法正确的个数为( )⑴0是整数. ⑵负分数一定是负有理数. ⑶π是有理数. (A)0个 (B)1个 (C)2个 (D)3个. 8.下列说法正确的是( )(A)π一定是正数; (B)a -一定是负数; (C)a +一定是正数; (D)3a +一定是正数. 9.在数2005,1.10,32,6.0,,4.6--π中 ( ) (A)有理数有6个 (B)π-是负数 (C)非正数有3个 (D)以上都不对. 10.在数%6.5,100,99,21,0,5.1--中( )(A)负数有1个; (B)正数有2个; (C)非负数有3个; (D)以上都不对.二、填空题11.向东前进100米记作100+,那么向西前进500米记作__________米. 12.向南走20-米的实际意义_______________.13.从负有理数的集合中去掉所有负分数,得到___________的集合. 14.一个数既不是正数,也不是负数,则这个数是_________. 15.零下5℃比零下10℃温度要低__________度.16.整数和分数统称为___________.整数包括_________,_______,_________.分数包括 _________,___________.17.盈利为正,那么盈利2000元记作___________元,亏损500元记作______________元. 18.t 5- 表示浪费5t 水,那么+3t 表示_______________,+3千元表示盈余3千元,那么-1千元表示_________________,存入银行500元记作+500元,那么取出300元记作_________________.19.每小时向东走-6千米,若用正数表示它的意义是___________. 20.产品成本提高-10%,实际表示_________. 三、解答题:21.把下列各数填到相应的大括号内:-4 , + 5 , -2.6 , 81- , 0 ,2.8 , 92-, 913 , .3.0 ,2005 .有理数集合{ …} 整数集合 { …} 分数集合 { …} 非负整数集合{ …} 正有理数集合{ …} 负有理数集合{ …} 非负有理数集合{ …} 正分数集合 { …} 负分数集合 { …}22.长江中的水位比正常水位高0.2米,记作 + 0.2米,那么比正常水位低0.5米记作什么?23.用正负数表示下列问题中相反意义的量:⑴温度上升8℃,温度下降5℃; ⑵收入100元,支出100元; ⑶运出600吨,运进500吨; ⑷从某处向上3米和下降6米; (5)某种物品多余50件和缺少20件;24.生活中你常常会遇到一些具有相反意义的量的例子,如:(1)一次股票交易中,某人在第一天盈利100元,第二天亏损50元。
人教版七年级上册数学章节课课练(全册)
人教版七年级上册数学章节课课练(全册)1.4.2 有理数的除法5分钟训练(预习类训练,可用于课前)1.填空:(1)乘积是1的两个数互为______;(2)有理数的除法法则,除以一个数等于乘以这个数的______;(3)两数相除,同号得______,异号得______,并把绝对值______,0除以任何一个不等于0的数都得______.思路解析:根据倒数定义及除法法则来判别.答案:(1)倒数(2)倒数(3)正负相除02.-513,2.6,|-17|,-(-4),-2.5的倒数分别为________.思路解析:本题是求有理数的倒数,正数的倒数小学里我们学过,负数的倒数先确定符号,仍为负数,再把它们的绝对值求倒数注意先要化简.[来源:学#科#网]答案:-135,513,7,14,-253.化简下列分数:(1)412--; (2)3618-; (3)-244-.思路解析:本题利用除法可以简化分数的符号.分子、分母、分数的值三个符号中,任意改变其中的两个,值不变.答案:(1)13;(2)-2;(3)6.10分钟训练(强化类训练,可用于课中)1.填空题:(1)-6的倒数是_____,-6的倒数的倒数是_______,-6的相反数是______,-6的相反数的相反数是_______;(2)当两数_____时,它们的和为0;(3)当两数_____时,它们的积为0;(4)当两数_____时,它们的积为1.思路解析:根据倒数、相反数的定义来解.答案:(1) -16-6 6 -6[来源:学科网ZXXK](2)互为相反数(3)其中有一个数为0 (4)互为倒数2.计算:(1)(+36)÷(-4); (2)(-213)÷(-116);(3)(-90)÷15; (4)-1÷(+35).思路解析:本题第(1)(3)两小题应选用除法法则二;第(2)(4)两小题应选用除法法则一进行计算.解:(1)原式=-364=-9;(2)原式=73×67=2;[来源:学科网][来源:学科网ZXXK](3)原式=-9015=-6;(4)原式=-1×53=-53.3.计算下列各题:(1)(-1 700 000)÷(-16)÷(-25)÷25;(2)(+125)÷(-3)+(-62)÷3+(+187)÷3.思路解析:同级运算应依次由前向后进行,混合运算应先乘除后加减,或化除为乘.两小题都应用了技巧(1)用了化除为乘,避免了大数的运算;(2)逆用了运算法则.解:(1)原式=-1 700 000×116×125×125=-170;(2)原式=-13(125+62-187)=0.4.用简便方法计算:(1)(-81)÷214-94÷(-16);(2)1÷{(-1111)×(-156)-(-3.9)÷[1-34+(-0.7)]}.思路解析:依照混合运算顺序进行逐层计算.解:(1)原式=-81×49+49×116=-36+136=-353536;(2)原式=1÷[1211×116+3.9÷(-0.45)]=1÷(2-263)=-320.5.化简下列分数:(1)26--; (2)39--;(3)03-; (4)-ab--.思路解析:利用除法化简分数,主要是简化分数的符号,一般地有,分数的分子、分母、分数本身的三个符号中,任意改变其中两个的符号,分数的值不变,这一结论使上述问题化简过程更为简便,如第(4)小题-ab--=-ab++=-ab.答案: (1)1/3; (2)13; (3) 0; (4)-ab.[来源:学.科.网]快乐时光[来源:]三部曲老师:“这次你考试不及格,所以我要送你三本书.现在先看第一本《口才》.尽量说服父亲不要打你.如果说服不了,赶紧看第二本书《短跑》.如果没跑掉,就只能看第三本书了.”学生:“什么书?”老师:“《外科医学》.”30分钟训练(巩固类训练,可用于课后) 1.计算:(1)(-40)÷(-8);(2)(-5.2)÷33 25.思路解析:题(1)能整除,在确定商的符号之后,直接除比较简便;题(2)的除数是分数,把它转化为乘法比较简便.解:(1)原式=5;(2)原式=-265×2578=53.2.计算:(1)(-1)÷(-310); (2)(-0.33)÷(+13)÷(-9);[来源:学科网ZXXK](3)(-9.18)×(0.28)÷(-10.71); (4)63×(-149)+(-17)÷(-0.9).思路解析:先确定结果的符号,然后将除法运算转化成乘法运算.解:(1)原式=103;(2)原式=0.33×3×19=0.11;(3)原式=-9.18×0.28×110.71=-625;(4)原式=63×(-149)+17×109=-91+1063=-905363.[来源:学+科+网Z+X+X+K]3.计算:(-163)÷(19-27+23-114).思路解析:乘法对加法满足分配律,但除法对加法并不满足分配律.只有当把除法转化为乘法以后,才能运用分配律.解:原式=-163÷(1641991414+--)=-163÷53126=-253.4.计算:(1)29÷3×13;(2)(-35)×(-312)÷(-114)÷3;[来源:学。
2022年七年级上册数学课课练答案
2022年七年级上册数学课课练答案题型:选择题1.将以下有理数从小到大排列,正确的是:A. 7/9,-5/8,5/6B. -5/8,7/9,5/6C. 5/6,7/9,-5/8D. 7/9,5/6,-5/82. 下列选项中,与-1/8相等的小数是:A. -0.125B. 0.125C. -0.12D. 0.123.有两个数 a 和 b ,如果 a:b=7:8 ,且 a+b=225 ,则 a 的值为:A. 105B. 120C. 126D. 1354.一个分数,将分子分母都减去3,其值变成原分数的1/4,这个分数是:A. 1/3B. 2/5C. 3/7D. 4/95.宾馆中有标准间和豪华间两种客房,标准间每间每晚收费280元,豪华间则收费580元。
已知一批旅游团住宿花费共计13200元,标准间和豪华间各住了若干间,其中标准间的数量是豪华间的2倍,则该团一共住宿了多少间客房?A. 15B. 20C. 25D. 30题型:填空题1. 分数 -10(3/4) 化成带数的形式为 ____ 。
2. 33的三倍是 ____ 。
3. 求: -72\div(-9)=____4. 某人的财产为30万元,他把其中 (1/7) 的财产捐献给慈善事业,捐献后他还剩下 ____ 万元。
5. 一条有4个红球、3个黄球和2个蓝球的绳索,从中任取1个球,则是红球的概率是 ____ 。
题型:解答题1. 小明的爷爷1920年出生,今年几岁?2. 一个数去掉四分之三后剩下18,这个数是多少?3. 大小为 5\mathrm{cm}\times8\mathrm{cm} 的矩形叶子,粘在长为30cm的圆形拐杖上(粘在最长的侧面),如果叶子的短边与圆柱轴线成35度的角,求叶子重叠的长度。
4. 小孙家种了一片长50米,宽20米的地,打算把这块地分成若干个长方形菜块,每块长为5米,求可以分出几块来,最多种多少个蔬菜?5. 如图所示,正方形 ABCD 和正方形 EFGH 的边长分别为4和2。
华师大版七年级上册课课练《2.1 正数和负数 学案及测试题(含答案)》
单元学习评价一 正数和负数一、选择题1.1- 不是( )(A)自然数. (B)负数. (C)整数. (D)有理数.2.下列说法正确的是( )(A)0是表示没有. (B)非负有理数就是正有理数.(C)整数和分数统称为有理数. (D)正整数和负整数统称为整数.3.下列说法错误的是( )(A)零是整数. (B)零是非负数.(C)零是最小的整数. (D)零是偶数.4.最小的整数是( )(A)1- (B)0 (C)1 (D)不存在.5.下列说法不正确的是( )(A)有理数可分为正整数、正分数、0、负整数、负分数.(B)一个有理数不是分数就是整数.(C)一个有理数不是正数就是负数.(D)若一个数是整数,则这个数一定是有理数.6.非负数的组成为( )(A)0 (B)正数和零 (C)正数 (D)以上都不对.7.下列说法正确的个数为( )⑴0是整数. ⑵负分数一定是负有理数. ⑶π是有理数.(A)0个 (B)1个 (C)2个 (D)3个.8.下列说法正确的是( )(A)π一定是正数; (B)a -一定是负数;(C)a +一定是正数; (D)3a +一定是正数.9.在数2005,1.10,32,6.0,,4.6--π中 ( ) (A)有理数有6个 (B)π-是负数(C)非正数有3个 (D)以上都不对.10.在数%6.5,100,99,21,0,5.1--中( )(A)负数有1个; (B)正数有2个; (C)非负数有3个; (D)以上都不对.二、填空题11.向东前进100米记作100+,那么向西前进500米记作__________米.12.向南走20-米的实际意义_______________.13.从负有理数的集合中去掉所有负分数,得到___________的集合.14.一个数既不是正数,也不是负数,则这个数是_________.15.零下5℃比零下10℃温度要低__________度.16.整数和分数统称为___________.整数包括_________,_______,_________.分数包括 _________,___________.17.盈利为正,那么盈利元记作___________元,亏损500元记作______________元.18.t 5- 表示浪费5t 水,那么+3t 表示_______________,+3千元表示盈余3千元,那么-1千元表示_________________,存入银行500元记作+500元,那么取出300元记作_________________.19.每小时向东走-6千米,若用正数表示它的意义是___________.20.产品成本提高-10%,实际表示_________.三、解答题:21.把下列各数填到相应的大括号内:-4 , + 5 , -2.6 , 81- , 0 ,2.8 , 92-, 913 , .3.0 , . 有理数集合{ …}整数集合 { …}分数集合 { …}非负整数集合{ …}正有理数集合{ …}负有理数集合{ …}非负有理数集合{ …}正分数集合 { …}负分数集合 { …}22.长江中的水位比正常水位高0.2米,记作 + 0.2米,那么比正常水位低0.5米记作什么?23.用正负数表示下列问题中相反意义的量:⑴温度上升8℃,温度下降5℃; ⑵收入100元,支出100元;⑶运出600吨,运进500吨; ⑷从某处向上3米和下降6米;(5)某种物品多余50件和缺少20件;24.生活中你常常会遇到一些具有相反意义的量的例子,如:(1)一次股票交易中,某人在第一天盈利100元,第二天亏损50元。
七年级数学北师大版下册课时练第1章《整式的除法》(含答案解析)(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第1单元整式的乘除整式的除法一、选择题(共14小题)1.单项式与−32的乘积是662,则单项式是 A.23B.−23C.−24D.242.下列运算正确的是 A.32=5B.2+3=5C.−2÷−2=D.−2=2−23.如果42−32÷=−4+3,那么单项式等于 A. B.− C. D.−2,那么,的值为 4.如果83÷282=27A.=4,=3B.=4,=1C.=1,=3D.= 2,=35.2⋅的运算结果是 A.2+B.2+C.2+D.2⋅6.下列计算正确的是 A.1034+1522÷52=222+3B.924−1235−34÷−34=32+43C.4352+736÷232=62+144D.−2162+2842÷−722=322−4227.计算252−52÷5的结果等于 A.−5+B.5−C.−5+1D.−5−18.计算7234−3623+92÷−92的结果是 A.−822+4−1B.−822−4−1C.−822+4+1D.−822+49.下列运算正确的是 .A.2+3=5B.−223=−65C.2+12−1=22−1D.23−2÷2=2−110.计算−362÷92的结果是 32 B.−34 C.−332 D.A.−134−1311.设>>0,2+2=4,则2−2= A.23B.3C.6D.312.下列运算正确的是()A.2+3=5B.32=92C.−12=2−1D.22÷=213.任意给定一个非零数,按如图所示的程序进行计算,最后输出的结果是A. B.2 C.+1 D.−114.下列运算正确的是 A.25−35=5B.2⋅3=6C.−23=−5D.−4÷−2=22二、填空题(共5小题)15.计算143−72+21÷−7=.2=−987,则=.16.若−3433÷−3217.已知被除式等于3+2−1,商式是,余式等于−1,那么除式是.18.+3÷+÷ =+2.19.当化简求+2++−+2−2−2÷的值时,嘉嘉把的值看错后代入得到的结果为16.而琪琪代入正确的的值得到正确的结果也是16.经探究后,发现所求代数式的值与无关,则他们俩代入的的值的和为.三、解答题(共5小题)20.计算:(1)99÷33.(2)−242÷162.(3)2335÷−3222.(4)32416÷−2446.21.计算:3⋅5+342÷2.22.18433÷3432÷632.23.计算:(1)43+622−3÷2;(2)−232−322+2÷2.24.已知6+5÷−2=−37,求−的值.答案1.C2.C3.B4.A5.B6.C7.B8.A9.D10.D11.A12.D13.C14.D15.−22+−316.11617.2+218.+2−219.020.(1)36..(2)−323.(3)−4910.(4)−4321.原式=3+5+98÷2=8+98÷2=108÷2=106.22.3633.23.(1)原式=22+3−122.(2)原式=−2−32+1.24.由+5−1=7,−=1解得=3,=2.所以−=3−2=19.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学课课练答案【篇一:人教版七年级数学上册同步练习题及答案全套(课课练)】.1 正数和负数基础检测1.?1,0,2.5,?,?1.732,?3.14,106,?,?1中,正数有负数有。
2.如果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作 m,水位不升不降时水位变化记作m。
3.在同一个问题中,分别用正数与负数表示的量具有的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是()a.零是正数不是负数b.零既不是正数也不是负数c.零既是正数也是负数d.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是()a.向东行进30米b.向东行进-30米c.向西行进30米d.向西行进-30米7.甲、乙两人同时从a地出发,如果向南走48m,记作+48m,则乙向北走32m,436725记为这时甲乙两人相距 m.9.如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数; _ ___和_____统称为分数;______、______、______、______和______统称为有理数;______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是()a、-3.14b、0c、d、33、既是分数又是正数的是()a、+2b、-4c、0d、2.3拓展提高4、下列说法正确的是()a、正数、0、负数统称为有理数b、分数和整数统称为有理数 1373c、正有理数、负有理数统称为有理数d、以上都不对5、-a一定是()a、正数b、负数c、正数或负数d、正数或零或负数6、下列说法中,错误的有()①?2是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
a、1个b、2个c、3个d、4个7、把下列各数分别填入相应的大括号内:?7,3.5,?3.1415,0,1314,0.03,?3,10,? 172247自然数集合{ ?};整数集合{ ?};正分数集合{ ?};非正数集合{ ?};8、简答题:(1)-1和0之间还有负数吗?如有,请列举。
(2)-3和-1之间有负整数吗?-2和2之间有哪些整数?(3)有比-1大的负整数吗?有比1小的正整数吗?(4)写出三个大于-105小于-100的有理数。
1.2.2数轴基础检测1、2、在数轴上表示-4的点位于原点的边,与原点的距离是个画出数轴并表示出下列有理数:1.5,?2,2,?2.5,,?,0. 9223单位长度。
3、比较大小,在横线上填入“>”、“<”或“=”。
10;0-1;-1-2;-5-3;-2.52.5.拓展提高4.数轴上与原点距离是5的点有个,表示的数是。
5.已知x是整数,并且-3<x<4,那么在数轴上表示x的所有可能的数值有。
6.在数轴上,点a、b分别表示-5和2,则线段ab的长度是。
7.从数轴上表示-1的点出发,向左移动两个单位长度到点b,则点b 表示的数是,再向右移动两个单位长度到达点c,则点c表示的数是。
8.数轴上的点a表示-3,将点a先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是个单位长度。
基础检测1、-(+5)表示的相反数,即-(+5)=;-(-5)表示的相反数,即-(-5)=。
x k b 1 . c o m2、-2的相反数是;的相反数是;0的相反数是。
3、化简下列各数:-(-68)= -(+0.75)=-(-)=-(+3.8)=+(-3)= +(+6)=4、下列说法中正确的是()a、正数和负数互为相反数b、任何一个数的相反数都与它本身不相同c、任何一个数都有它的相反数d、数轴上原点两旁的两个点表示的数互为相反数拓展提高:5、-(-3)的相反数是。
6、已知数轴上a、b表示的数互为相反数,并且两点间的距离是6,点a在点b的左边,则点a、b表示的数分别是。
7、已知a与b互为相反数,b与c互为相反数,且c=-6,则a=。
8、一个数a的相反数是非负数,那么这个数a与0的大小关系是a0.9、数轴上a点表示-3,b、c两点表示的数互为相反数,且点b到点a的距离是2,则点c表示的数应该是。
10、下列结论正确的有()5735【篇二:人教版七年级数学上册同步练习题及答案全套(课课练)】.1 正数和负数基础检测 4621.?1,0,2.5,?,?1.732,?3.14,106,?,?1中,正数有375有。
2.如果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作 m,水位不升不降时水位变化记作m。
3.在同一个问题中,分别用正数与负数表示的量具有的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是()a.零是正数不是负数b.零既不是正数也不是负数c.零既是正数也是负数d.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是()a.向东行进30米b.向东行进-30米c.向西行进30米d.向西行进-30米7.甲、乙两人同时从a地出发,如果向南走48m,记作+48m,则乙向北走32m,记为这时甲乙两人相距 m.9.如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数; _ ___和_____统称为分数;______、______、______、______和______统称为有理数;______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是()7a、-3.14b、0c、 d、3 33、既是分数又是正数的是()1a、+2 b、-4 c、0d、2.3 3拓展提高4、下列说法正确的是()a、正数、0、负数统称为有理数b、分数和整数统称为有理数c、正有理数、负有理数统称为有理数d、以上都不对5、-a一定是()a、正数b、负数c、正数或负数d、正数或零或负数6、下列说法中,错误的有()4①?2是负分数;②1.5不是整数;③非负有理数不包括0; 7④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
a、1个b、2个c、3个d、4个7、把下列各数分别填入相应的大括号内:1314?7,3.5,?3.1415,0,,0.03,?3,10,? 1722自然数集合{ ?};整数集合{ ?};正分数集合{ ?};非正数集合{ ?};8、简答题:(1)-1和0之间还有负数吗?如有,请列举。
(2)-3和-1之间有负整数吗?-2和2之间有哪些整数?(3)有比-1大的负整数吗?有比1小的正整数吗?(4)写出三个大于-105小于-100的有理数。
1.2.2数轴基础检测921、画出数轴并表示出下列有理数:1.5,?2,2,?2.5,,?,0. 232、在数轴上表示-4的点位于原点的边,与原点的距离是个单位长度。
3、比较大小,在横线上填入“>”、“<”或“=”。
10;0-1;-1-2;-5-3;-2.52.5.拓展提高4.数轴上与原点距离是5的点有个,表示的数是。
5.已知x是整数,并且-3<x<4,那么在数轴上表示x的所有可能的数值有。
6.在数轴上,点a、b分别表示-5和2,则线段ab的长度是。
7.从数轴上表示-1的点出发,向左移动两个单位长度到点b,则点b 表示的数是,再向右移动两个单位长度到达点c,则点c表示的数是。
8.数轴上的点a表示-3,将点a先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是个单位长度。
基础检测1、-(+5)表示的相反数,即-(+5)=;-(-5)表示的相反数,即-(-5)=。
x k b 1 . c o m52、-2的相反数是;的相反数是;0的相反数是。
73、化简下列各数:3-(-68)= -(+0.75)=-(-)=5-(+3.8)=+(-3)= +(+6)=4、下列说法中正确的是()a、正数和负数互为相反数b、任何一个数的相反数都与它本身不相同c、任何一个数都有它的相反数d、数轴上原点两旁的两个点表示的数互为相反数拓展提高:5、-(-3)的相反数是。
6、已知数轴上a、b表示的数互为相反数,并且两点间的距离是6,点a在点b的左边,则点a、b表示的数分别是。
7、已知a与b互为相反数,b与c互为相反数,且c=-6,则a=。
8、一个数a的相反数是非负数,那么这个数a与0的大小关系是a0.9、数轴上a点表示-3,b、c两点表示的数互为相反数,且点b到点a的距离是2,则点c表示的数应该是。
10、下列结论正确的有()①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号。
a 、2个b、3个 c、4个 d、5个11、如果a=-a,那么表示a的点在数轴上的什么位置?1.2.4 绝对值基础检测:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱=a, 则a 。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果 x<y<0, 那么︱x︱︱y︱。
7.︱x-1︱=3 ,则x =。
8.若︱x+3︱+︱y -4︱= 0,则 x + y =。
9.有理数a,b在数轴上的位置如图所示,则ab,︱a︱︱b︱。
11.已知︱x︱-︱y︱=2,且y =-4,则 x =。
12.已知︱x︱=2,︱y︱=3,则x +y = 。
13.已知︱x+1︱与︱y-2︱互为相反数,则︱x︱+︱y︱=。
14. 式子︱x +1 ︱的最小值是,这时,x值为。
15. 下列说法错误的是()a 一个正数的绝对值一定是正数b 一个负数的绝对值一定是正数c 任何数的绝对值一定是正数d 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数a 3b 2c 1d 017.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则 a + b + c 等于()a -1b 0c 1d 2拓展提高:18.如果a , b互为相反数,c, d 互为倒数,m 的绝对值为2,求式子 a?b + m -cd 的值。